

Genetic resources of macroalgae: Development of an efficient method using microsatellite markers in non-model organisms

Stéphane Mauger, Aurélien Baud, Gildas Le Corguillé, Gwenn Tanguy, Erwan Legeay, Emeline Creis, Myriam Valero, Philippe Potin, Christophe Destombe

To cite this version:

Stéphane Mauger, Aurélien Baud, Gildas Le Corguillé, Gwenn Tanguy, Erwan Legeay, et al.. Genetic resources of macroalgae: Development of an efficient method using microsatellite markers in non-model organisms. Algal Research - Biomass, Biofuels and Bioproducts, 2023, 75, pp.103251. 10.1016/j.algal.2023.103251 hal-04206217

HAL Id: hal-04206217 <https://hal.science/hal-04206217v1>

Submitted on 21 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Public Domain

Genetic resources of macroalgae: development of an efficient

method using microsatellite markers in non-model organisms

- 3 Stéphane Mauger^{a*}, Aurélien Baud^{a, d*}, Gildas Le Corguillé^b, Gwenn Tanguy^c, Erwan Legeay^c,
- Emeline Creis^a, Myriam Valero^a, Philippe Potin^d and Christophe Destombe^a
- ^a IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC,
- UACH, Station Biologique de Roscoff, CS 90074, Place Georges Teissier, 29688 Roscoff cedex
- 8 ^b ABiMS, FR2424, CNRS, Sorbonne Université, Station Biologique, Place Georges Teissier, 29688
- Roscoff cedex
- 10 ^c Genomer, FR2424, CNRS, Sorbonne Université, Station Biologique, Place Georges Teissier, 29688
- Roscoff cedex
- ^d UMR 8227, Integrative Biology of Marine Models, CNRS, Sorbonne Université, Station
- Biologique, Place Georges Teissier, 29688 Roscoff cedex
- 14 * Both authors contributed equally to the paper

ORCID

- Stéphane Mauger:<https://orcid.org/0000-0002-8779-1516>
- Aurélien Baud:
- Gildas Le Corguillé: https://orcid.org/0000-0003-1742-9711
- Gwenn Tanguy: https://orcid.org/0009-0003-0444-3810
- Erwan Legeay:
- Emeline Creis:
- Myriam Valero:<https://orcid.org/0000-0002-9000-1423>
- Philippe Potin: https://orcid.org/0000-0001-7358-6282
- 25 Christophe Destombe: https://orcid.org/0000-0001-5656-9659
-
- **Corresponding author**: Stéphane Mauger stephane.mauger@sb-roscoff.fr and Christophe
- christophe.destombe@sb-roscoff.fr

CRediT Authorship contribution statement

 S. Mauger: original concept, laboratory work, bioinformatics analysis, analysis of molecular data, led manuscript drafting and editing; A. Baud: sampling, led manuscript drafting and editing; G. Le Corguillé: bioinformatics analysis, editing manuscript; G. Tanguy: laboratory work and editing manuscript; E. Legeay: laboratory work and editing manuscript; E. Creis: sampling and editing manuscript; M. Valero: drafting and editing manuscript; P. Potin: funding and supervision, drafting and editing manuscript; C. Destombe: funding and supervision, sampling and editing manuscript.

ABSTRACT

 Red and brown seaweeds are species with high ecological and economic importance. Here we report the feasibility of cost-effective molecular marker development in 6 species from different phyla. Microsatellite markers of two brown seaweed species *Alaria esculenta* and *Pylaiella littoralis*, and of four red seaweed species *Calliblepharis jubata, Gracilaria gracilis*, *Gracilaria dura* and *Palmaria palmata* were identified and characterized in genomic sequences obtained using Double-Digest Restriction site Associated DNA (ddRAD). A total of 64,623,186 reads were generated from two runs of multiplexed Illumina Miseq sequencing, from which 30,636 reads containing microsatellite motifs including 15,443 where primer pairs could be designed. Five hundred seventy-six primers pairs were selected for amplification trials to determine levels of polymorphism. Of these 576 loci, 338 could be amplified and 142 of the 338 loci were polymorphic. A total of 28 usable polymorphic markers were developed in *A. esculenta*, 18 in *P. littoralis*, 11 in *C. jubata*, 14 in *G. gracilis*, 21 in *G. dura* and 13 in *P. palmata*. The overall number of alleles per locus ranged from 2 to 22. These 105 new microsatellite markers will be useful for further studies of population genetics, breeding programs and conservation genetics of these species. Compared with traditional approaches, our study yielded thousands of microsatellite loci for six different species in a short time and with affordable costs. This study, based on the use of ddRADseq, provided preliminary data about the genetic structure and reproduction mode of these six non-model species based on a small number of individuals from two geographically-distant populations and on the genetic structure and reproduction mode of two non-model species, i.e.

- detection of clonality for two red algae, *C. jubata* and *G. dura* and detection of highly genetically divergent populations corresponding probably to different cryptic species under the name *P. littoralis*.
- **Keywords:** genetic diversity, microsatellite markers, seaweed, Rhodophyta, Ochrophyta, ddRAD.
-

1. Introduction

 Evaluation of genetic resources is crucial for the sustainable conservation of economically or ecologically important species. It is also a key step in the domestication process of new species [1], [2]. In the context of global change, most of the seaweed biomass in Europe comes from harvesting wild populations (FAO, 2018), questioning the sustainability of the wild genetic resources [3]. Moreover, the development of seaweed aquaculture since the 1950s in China for the Japanese kelp, or more recently in the 1980s in South East Asia and East Africa for tropical red seaweeds, has led to long-distance translocations of a few genotypes. These aquaculture practices are raising concern about their possible detrimental effects on local adaptation of wild populations that may be impacted by human-mediated gene-flow when located in the vicinity of farms [4]. There is therefore, an urgent need for genetic markers to conduct genetic studies on an increasing number of seaweed species that may be negatively impacted by intensive exploitation of their natural populations, the future development of aquaculture or the impact of global change. For example, recent studies reveal that marine heat waves in recent years have played a role in the decline of several macroalgal species on the coast of northern Spain [5], [6]; a possible influence of latitudinal patterns of genetic diversity on the vulnerability of the kelp *Ecklonia radiata* to a marine heatwave on the South-Eastern Australian coast [7]; multi-decadal decline in the cover of the giant kelp *Macrocystis pyrifera* at the southern limit of its Australian range [8]. These studies highlight the need to step up coastal monitoring efforts in order to analyse the impact of extreme temperature events on algal genetic biodiversity.

 Even if genome-wide studies are more accessible as a result to next generation sequencing (NGS) methods, there are still numerous non-model, but nonetheless valuable, algae species for which

 genomic data are not available. This restricts the possibility to search for molecular markers *in silico*. Double Digested Restriction site Associated DNA sequencing (ddRADseq) has already been used to efficiently develop molecular markers such as Single Nucleotides Polymorphism (SNPs) [9] and, more recently, Short Sequence Repeats (SSRs) or microsatellite markers for non-model species [10], [11]. For over twenty years, microsatellite markers have set the standard in the field of population genetic markers, offering the possibility of population analysis over time and providing useful insights based on the results of the many studies carried out with this type of molecular marker. These markers have the characteristic of being transferable between related species of the same genus, opening the possibility of studying the same locus in different species [12]. They also provide excellent results in paternity analysis, where SNPs have not yielded accurate information [13]. Although SNPs have better genome coverage than microsatellites, the bioinformatic skills required, the computational power and the cost of reagents limit their application to large numbers of individuals. Moreover, development of SNPs, also requires a greater number of sample replications because of the high error rate compared to microsatellite markers. Recent studies have indicated that, when addressing genetic structure or patterns of genetic diversity, a study with a dozen of microsatellite markers gave similar results to those obtained with thousands of SNP markers [13], [14]. Microsatellite markers are therefore better suited (cheaper) for large sample studies and require less bioinformatic skills and computer power than SNPs [12], [15], making them more accessible. The ability of microsatellite markers to uncover genetic variations at the same locus beyond time and species, along with their accessibility, makes them a gold standard in population genetic studies.

 Since 2010, data on whole genome sequencing have been accumulating for seaweeds facilitating the search for microsatellites (i.e., for *Ectocarpus* species 7, referred to as *Ectocarpus siliculosus* [16]; for *Saccharina japonica* [17]; for *Ecklonia radicosa* [18]). However, developing new microsatellite markers for a non-model species can be challenging when there is a lack of genomic data for *in silico* research [see for review: 19] because the traditional microsatellite marker isolation approach, such as generation of an enriched library followed by cloning and Sanger sequencing or NGS pyrosequencing, is a costly, labour-intensive and often inefficient process. Although the use of expressed sequence tag (EST) databases has proved to be a valuable source for the development of SSR markers that are potentially transferable between taxa [20], there are still some taxonomic groups where this type of sequence remains rare. Other Methods to develop microsatellite markers rapidly and cost-effectively are needed for population genetic studies of non-model species. An efficient method was developed during the last ten years for non-model animals and plants [10], [11], based on the generation of double-digest restriction site associated DNA (ddRADseq; [9]) from genomic DNA of a few individuals of the species of interest using Illumina sequencing technology. Microsatellite markers are mined *in silico* using tools that require limited bioinformatic skills and computer power compared to SNP development.

 Marine macroalgae are a valuable resource with a wide range of applications, from ecosystem services, for example by acting as carbon sinks and fish nurseries, to food and feed production [21], [22]. As the demand for seaweed biomass increases, new tools such as species-specific genetic markers are needed for the sustainable exploitation of wild resources as well as for the implementation of cultivation of those valuable species [4]. Since ddRADseq allows DNA tagging for sample-pooled sequencing, the aim of this study was to extend the method of Mori et al. [11] to multiple species using a maximum of two sequencing runs. In this way, it was possible to increase yields and reduce the cost of microsatellite marker development for economically important non-model species of seaweeds. We focused our study on 6 seaweed species, commonly found along the European coast, which are known for their socio-economic, ecological and scientific values. *Palmaria palmata* and *Alaria esculenta* are used for human consumption, cosmetics and animal feed [23], [24]. *Calliblepharis jubata* and *Pylaiella littoralis* are used for cosmetics [25]. *Gracilaria gracilis and Gracilaria dura* are known for their high agar content and serves as model species to test hypotheses related to the evolution of sex [26], [27], [28], [29]. Except for *A. esculenta* none of those six North Atlantic species are cultivated at large scales [30] but several cultivation trials have been conducted in the past twenty years for *P. palmata* [31], and more recently for *P. littoralis* and *C. jubata* [32]. The development of microsatellite markers, which was performed for individuals from two geographically- distinct populations, provided a set of new preliminary data on the genetic structure and mode of reproduction of the six non-model species: the two brown seaweeds (Phaeophyceae): *A. esculenta and P. littoralis* and the four red algae (Rhodophyta): *P. palmata*, *C. jubata, G. gracilis* and *G. dura*.

2. Materials and methods

2.1. Sample collection and DNA extraction

 A total of 275 individuals from six species of seaweed were collected from thirteen sampling locations (Table 1). The ploidy levels were known (either using phenological observations or flow-cytometry analyses) prior to genotyping for all study species except *G. dura* and *C. jubata*. Only later after genotyping, could ploidy levels could be assessed for all individuals. Upon collection, a piece of tissue was cut out from a spot that was free of algal and animal epiphytes and stored in silica gel. No specific treatments were carried out to remove bacteria from the tissue but we estimate the percentage of bacterial DNA after sequencing using the KAIJU software version 1.9.2 developed by Menzel et al., 2016 [33]. Total genomic DNA was extracted from 15 to 20 mg of dry tissue using the Nucleospin 96 plant kit (Macherey-Nagel, Germany). The extraction was performed according to the manufacturer's instructions except that samples were left in the PL1 lysis buffer at 65°C for 15 min rather than 30 min. The extracted DNA was eluted into 120 µl of the supplied elution buffer.

2.2. DNA library preparation, sequencing and assembly

 Two individuals of each species of seaweed (one per locality, except Quitao for *G. dura*) were used to construct the genomic libraries according to the methods described by Peterson et al [9] with the following modifications (Table 1). Double-digest restriction site associated DNA was generated with *Pst*I and *Hha*I (New England Biolabs, USA) restriction enzymes in a total reaction volume of 50µl using 300 ng of high-quality genomic DNA by incubating for 3 hours at 37°C (Fig S1). Adapter ligation was performed following the instructions of Peterson et al [9] with a unique P1 adaptor for each sample (Table 1) and ligation reactions were inactivated using NucleoMag NGS clean-up beads (Macherey-Nagel, Germany) with a final elution into 40µl of water. Individual PCR amplifications were carried out in 40µl reaction volumes containing 10 µl of Adapter-ligated DNA, 170 nM of 167 indexed primer mix at 10 µM, 200 µM of dNTPs (Thermo Fisher Scientific Inc., USA), 1X of Q5[®] Reaction Buffer, 1X of Q5® High GC Enhancer, 0.8 Unit of Q5® High-fidelity DNA Polymerase (New England Biolabs, USA). DNA amplifications were carried out in a Bio-Rad DNA Engine Peltier 170 Thermal Cycler using the following conditions: initial denaturation phase at 98 °C for 30 sec, followed 171 by 15 cycles of denaturation at 98 °C for 20 s, annealing at 60 °C for 30 sec, extension at 72 °C for 40 172 sec, and a final extension at 72 °C for 10 min. PCR products were purified with NucleoMag NGS clean-up beads (Macherey-Nagel, Germany) with a final elution in 40µl of water. The pooling was done before the size selection to generate two libraries with 6 samples each to obtain about 8 million reads per sample (Illumina performance specifications for Miseq v3 kits is between 22-25 million reads per run), Lib1 (*A. esculenta*, *P. littoralis* and *C. jubata*) and Lib2 (*G. dura*, *P. palmata* and *G. gracilis*). The Sage Science Pippin-Prep (sagescience.com) method was used to carry out the size selection to obtain the fragments of interest of between 350 and 550 bp (between 480 and 680 bp with the full library construction fragments). Size selection and quality of both libraries were checked using a Bioanalyzer and High Sensitivity DNA Chips (Agilent Technologies), and the final concentrations were estimated through quantitative PCR (qPCR) using a KAPA Library Quantification Kit (Roche Molecular Systems, Inc) and a LightCycler® 480 System (Roche Molecular Systems, Inc). Sequencing was performed in two runs on a MiSeq sequencer (Illumina, San Diego, CA, USA) using a Miseq Reagent Kit v3 600 cycles (2 x 300 paired-end reads) and libraries at 15pM mixed with 5% of Phix control v3 (Illumina, San Diego, CA, USA).

 To obtain clean, high-quality reads, we discarded low quality raw sequences with adapter 187 contamination or $N > 10\%$. We used STACKS software version 2.52 [34] to demultiplex the pooled samples based on a unique P1 adaptor (Table 1). Overlapping paired-end sequencing reads were assembled using the FLASH v1.2.11 software [35]; the minimum required overlap length between two reads to provide a confident overlap (m) was fifteen and the maximum overlap length expected in approximately 90% of read pairs (M) was three hundred. To construct the reference sequences, the dDocent pipeline version 2.8.7 [36] was run using default parameters and procedures as described in the user manual, except that percent clustering similarity was set at 95% for the reference assembly.

2.3. Microsatellite loci screening and primer design

 Microsatellite motifs were identified using the QDD pipeline program version 3.1.2 [37] and all reference sequences with sizes greater than 80 bp (PIPE1 in QDD) were used for detection. Both perfect and imperfect di-, tri-, tetra-, penta- and hexanucleotide motifs were targeted. Dinucleotide motifs with at least 4 repeats and longer motifs with at least 3 repeats were selected (PIPE1 in QDD). Reads with at least 95% identity were clustered as consensus sequences, while those that could not be grouped were classified as singletons using Blast+ [38] (PIPE2 in QDD). Primers were designed using the PRIMER v3.0 software [39]. Duplicate primers were removed and unique primers of the putative loci were retained. Primers were mainly selected according to the type and size of the microsatellite motif, including also the following criteria: primer length between 18 bp and 27 bp; 50 to 75% GC content; a distance greater than 20 bp between the primer motif and the repeated motif and amplicon sizes between 100 bp and 450 bp (PIPE3 in QDD). In order to test these primers cost-effectively for amplification, we reduced the number of selected microsatellite regions to 96 (the capacity of a microtiter plate) for each species by selecting the ones with the highest number of repeats for each motif category.

2.4. Amplification trials and levels of polymorphism of microsatellite loci

 For each species, positive amplification of 96 primer pairs was tested using DNA from 8 random individuals. Polymorphic level and genetic diversity characterization of the primer pairs that amplified positively were tested using between 35 and 48 individuals per species (Table 1 - Fig 1). 217 Amplifications were carried out in 10 µL reaction volume with 2 µL of DNA template diluted 1:100 and following the method of Guzinski et al. [40]. The PCR products labeled, with the four different colors, were pooled (24 pools in total) and diluted 1:10 with water. Next, 2 μL of the diluted PCR product pool was added to 10 μL of loading buffer made up of 0.5 μL of the SM594 size standard [41] and 9.5 μL of Hi-Di formamide, denatured at 95°C for 3 min, and run in an ABI 3130 XL capillary sequencer (Applied Biosystems, USA). Genotypes were scored manually in Genemapper version 4.0 (Applied Biosystems).

2.5. Genetic analyses

 The results obtained for the populations of diploid individuals were analyzed with the following software. Prior to the genetic analysis, we tested for null alleles using MICRO-CHECKER v2.2.3 [42]. GENEPOP v4.7.5 [43] was used to test for linkage disequilibrium (global test employing Fisher's method, the following Markov chain parameters were used: 100,000 for dememorization, 1000 batches and 50,000 iterations per batch). HIERFSTAT v0.5-10 R package [44] was used to obtain the number of observed alleles per locus (*Na*), observed heterozygosity (*Ho*), expected heterozygosity (*He*), the within-population deviation from Hardy-Weinberg equilibrium (*FIS*) and its significance per locus and for all loci (tested with a permutation test; based on 10,000 permutations). The Polymorphic information content (*PIC*) was calculated with CERVUS v3.0.7 [45].

 A modified analysis was used for the triploid individuals (*G. dura*): AUTOTET v1 software [46], a program for the population analysis of allotetraploid microsatellite data, was used for the genetic 238 analysis and F_{IS} index; its significance per locus and all loci (tested with a permutation test; based on 10,000 permutations) was determined using SPAGeDi v1.5d software [47]. The Polymorphic 240 information content (*PIC*) was calculated using "polysat" v.1.7 R package according to Clark and Jasieniuk [48].

 The number of distinct Multilocus Genotypes (*MLG*), the genotypic richness (*R*) and the Genotype 243 accumulation curves (based on 10,000 permutations) were obtained with the "poppr" v2.9.3 R package [49].

 Finally, to estimate the level of genetic differentiation between localities, pairwise *FST* [50] values were computed in HIERFSTAT v0.5-10 R package [44]. The significance of the comparisons was estimated by performing 10,000 bootstraps over loci, with the comparisons judged significant if the bootstrap-generated confidence intervals did not overlap zero.

3. Results

3.1. ddRAD sequencing and assembly

 The sequencing procedure generated a total of 64.6 million reads (6.3 to 14.4 million per species) for 255 the six studied species [51] (Table S1). The percentage of bacterial DNA in the reads was less than 5% with an average of 2.94% (Table S2). After editing/trimming, 377.7 Mb of high-quality sequences (41.9 to 111.4 Mb per species) were available, which were assembled into 1,351,981 contigs (134,653 to 400,288 contigs per species). We obtained an average contig length of 294.0 bp (217.2 to 406.4 bp per species), an average contig N50 size of 279.3 bp (173 to 407 bp per species) and an average GC content of 51.2% (49.9% to 53.8% per species) (Table S1).

3.2. Microsatellite loci development and characterization

 Among the 1,351,981 assembled contigs, a total of 30,636 microsatellite motifs were found in the six species (1,755 to 11,487 per species) using the QDD pipeline (Table S1). The microsatellite sequences contained 14,288 (46.6%) di-, 14,529 (47.4%) tri-, 861 (2.8%) tetra-, 481 (1.6%) penta- and 477 (1.6%) hexanucleotide motifs (Table S3). After choosing regions with flanking sequences of sufficient length and requiring a product size of between 100 and 450 bp, we obtained 15,443 primer pairs (752 to 6,592 per species – Table S1) corresponding to 7,327 (47.4%) di-, 6,997 (45.3%) tri-, 525 (3.4%) tetra-, 316 (2.0%) penta- and 278 (1.8%) hexanucleotide motifs (Table S3). A total of 576 primer pairs were tested for all species (96 primer pairs each, focusing on the ones with the highest number of repeats), 338 were amplified including 104 (30.7%) di-, 77 (22.7%) tri-, 63 (18.6%) tetra-, 67 (19.8%) penta- and 27 (7.9%) hexanucleotide motifs (Table S3). The 338 loci retained after the amplification tests (see Table S1 for details per species) were subsequently checked for level of polymorphism within the sample of 8 individuals per species. A total of 142 out of these 338 putative loci including 31 for *A. esculenta*, 28 for *P. littoralis*, 15 for *C. jubata*, 20 for *G. gracilis*, 28 for *G. dura* and 20 for *P. palmata* produced PCR products of the expected size, were polymorphic (Table S1) and corresponding to 54 (38.0%) di-, 28 (19.7%) tri-, 27 (19.0%) tetra-, 27 (19.0%) penta- and 6 (4.2%) hexanucleotide motifs (Table S2). Therefore, the rate of success for each of the five motif categories in terms of acquisition of polymorphic microsatellite was 33.5% for di-, 19.1% for tri-, 23.5% for tetra-, 26.0% for penta- and 12.2% for hexanucleotide repeats (Table S3).

-
- *3.3. Genetic diversity*
-

 All the loci analyzed in this study (142 microsatellites markers for 6 species) were selected for their amplification success and their polymorphism in each species. This allowed us to confirm the ploidy levels for all individuals in the 4 species for which ploidy levels were known prior to genotyping (i.e., *A. esculenta*, *P. littoralis*, *P. palmata* and *G. gracilis*). For *G. dura* and *C. jubata*, the ploidy level was determined after genotyping and triploid individuals were detected in *G. dura*. Data for the number of alleles, null allele frequency, genetic diversity indices and departure from random mating (*FIS*) are given in Table S4 for each species, locus and population. However, among the loci that correctly amplified, several markers (3 in *A. esculenta*, 10 in *P. littoralis*, 4 in *C. jubata*, 6 in *G. gracilis*, 7 in *G. dura* and 7 in *P. palmata*) were discarded because they appeared to be either monomorphic within populations, or because they showed a significant frequency of null alleles, or an extreme departure 295 from random mating suggesting non-Mendelian inheritance (F ^{*IS*} values > 0.6 or F ^{*IS*} values < -0.6). Overall, from our study, 28 markers appeared to be useful for *A. esculenta*, 18 for *P. littoralis*, 11 for *C. jubata*, 14 for *G. gracilis*, 21 for *G. dura* and 13 for *P. palmata* (corresponds to the markers in bold in the Table S4).

 The level of diversity was highly variable across species (Table S4). The mean number of alleles (*Na*) computed over all loci and populations (i.e. global, Table S4) was higher in the two brown seaweeds *A. esculenta* (6.7) and *P. littoralis* (8.0) compared to *C. jubata* (3.8), *G. gracilis* (3.4), *G. dura* (6.2) and *P. palmata* (5.7). However, this trend was not retrieved for the other estimate of gene diversity (*He*). The highest *He* value was observed in the red alga *G. dura* (0.758) and explained by fixed heterozygosity compared to all other species: the two brown seaweeds *A. esculenta* (0.535) and *P. littoralis* (0.496) and the three remaining red algae *C. jubata* (0.344), *G. gracilis* (0.412) and *P. palmata* (0.489). Finally, polymorphic information content (*PIC*) was higher for *P. littoralis* (0.678) and *G. dura* (0.725) compared to *A. esculenta* (0.532), *C. jubata* (0.335), *G. gracilis* (0.421), and *P. palmata* (0.478).

 Differences in the level of clonality were observed among species. No signal of clonality could be detected in *A. esculenta, P. littoralis, G. gracilis* and *P. palmata* as all multilocus genotypes (MLG) 311 were distinct $(n = MLG)$ and genotype richness (R) was maximum and equal to 1 (Table 2). In contrast, the number of multilocus genotypes (*MLG*) were not distinct in *G. dura* and *C. jubata* (*n* **>** *MLG)* and the mean values of genotypic richness (*R*) over populations were low: 0.378 and 0.848 respectively (Table 2). For these two partially clonal species, *FIS* values were significantly negative, revealing heterozygous excess, while for the four others sexually reproducing species, *FIS* values were not significantly different from 0, revealing random mating (Table 2). The genotype accumulation curves showed that between five and twelve loci were sufficient to differentiate all non-clonal individuals for each of the studied populations (Fig. 2).

 Finally, the pattern of genetic differentiation among populations was highly significant (P < 0.001) for all studied species (Table 2). However, the magnitude of *FST* values were very different among species ranging from 0.118 in *P. palmata* to 0.482 in *P. littoralis* (Table 2).

4. Discussion

 The development of NGS has improved our capacity to identify and develop microsatellite markers (for review see [52]). In particular, polymorphic loci in model and non-model, plant or animal, species can now be identified rapidly using ddRAD sequence data [10], [11], [53], [54]. The ddRADseq method [9] was largely developed during the last 10 years for population genetics studies in many organisms to search for SNPs and to decrease the cost of whole genome sequencing for genotyping. It is still the object of continuous innovations [55] like those we have developed for multiple seaweed species. However, even if several studies have developed ddRADseq methods for SNP discovery in seaweeds in recent years (firstly in the brown algal model *Ectocarpus* [56] and mostly in the kelp or large brown algal species *Undaria pinnatifida* [14]; *Saccharina latissima* [40]; *Ecklonia radiata* [57]; *Sargassum thunbergii* [58] and *Durvillaea antarctica* [59]), none of them was exploited to discover microsatellites because markers were already available.

 In this study, implementing the protocol developed by Mori et al. [11] with only two multiplexed libraries for the 6 species, we successfully developed around 20 microsatellite markers per species in different brown and red seaweeds of economic and ecological interest. This highly efficient method allows rapid identification of microsatellite motifs distributed throughout the genome, ultimately revealing polymorphic markers in the target species with an efficiency of about 25%. Interestingly, in *G. gracilis*, more than 50% of the microsatellite loci already identified using classical library cloning methods [60], [61] were found in this study confirming good coverage of the genome.

4.1. Characteristics of microsatellites between species

 Our data yielded ten times more microsatellite motifs in brown than in red seaweeds but this difference could not be clearly linked to their genome size (Table S1). However, for *Gracilaria* and *Calliblepharis*, it may be important to consider their small genome size for future development of microsatellite markers by, for example, adapting the coverage (e.g., sequencing 2 species per run instead of 3 or more).

 The occurrence and the frequency of different types of microsatellite motifs seem to be characteristic of a species, which can be distant or closely related [12], [62], [63]. In our study, the distribution of microsatellite marker repeats nucleotide types (di, tri, tetra, penta and hexanucleotide) was similar to that obtained for the red alga *G. lichenoides* [64]. Dinucleotide and trinucleotides repeats were found to be the most abundant motif, on average 46.6% and 47,4% respectively (Table S3), probably because short repeats are the starting point for subsequent extensions of Short Tandem Repeats (STRs) [65] which are the most variable type of DNA sequence in the genome [66]. The most common class of polymorphic marker contained dinucleotide motifs (35% - 40% of the polymorphic markers) for each species except for *A. esculenta* and *P. littoralis* for which polymorphic markers with tetranucleotide and pentanucleotide motifs were the most abundant, respectively (32.3% and 35.7% of the polymorphic markers respectively). In contrast to what was found for plants by Zhu *et al*. [63], hexanucleotide repeats in our study were the least abundant type of polymorphic markers. This could be due either to the phylogenetic distance between algae and land plants [63] or to an artefact related to the size of the fragments present in the ddRADseq libraries (partial genome vs complete genome) or to the types of restriction enzymes used for library construction.

 The consequent yields and largely sufficient genome coverage imply that the method used in this study could be extended to more than 6 species. Future studies should be conducted to find the adequate balance between numbers of species and genome coverage, accounting for genome structure and length.

4.2. New perspectives of using next-generation sequencing for population-level studies

 Several methods have been developed in many organisms to lower the cost and/or streamline next- generation sequencing for population-level studies [55]. Future developments for seaweeds will depend of many contingencies. With the need to develop knowledge on new species of seaweed to domesticate or to conserve in natural populations, only a few laboratories are developing approaches, depending on the means available for these studies. Large whole-genome sequencing efforts such as the Darwin tree of life in the UK, Atlasea in France and the ERGA (European Reference Genome Atlas) project at the EU level will offer new opportunities to enlarge the search for genetic markers for novel species. For the development of multiple PCR, synthesizing unique barcodes for each sample or even a subgroup of samples is expensive. Moreover, multi-, or single-level multiplexing and demultiplexing of samples can be cumbersome, time consuming, and costly. Therefore, approaches for targeted sequencing-based genetic screening such as the use of high multiplex PCR coupled to NGS (Hi-Plex, [67]) can be developed for only a few species of seaweeds and mainly models of economic importance [68].

4.3. Limited population genetics data could provide useful information on genetic diversity and reproductive systems

 The preliminary results of the population genetic analysis, even though they were carried out on a few populations, provided interesting information about the reproductive systems and diversity of the study species. Indeed, two of the four red algal species, *C. jubata* and *G. dura*, showed strong signatures of asexual reproduction (heterozygous excess, low genotypic richness, repeated multilocus genotypes). It is known that most Rhodophyta species are able to reproduce vegetatively either by thallus fragmentation or propagule dispersal [69], [70], [71], however, the significance of asexual reproduction in the field remains poorly known except for *Phymatolithon calcareum* (maerl beds) [72], cultivated *G. chilensis* in farms [73] and the introduced species *G. vermiculophylla* [74]. Our results for *C. jubata* suggest that this species partially undergoes natural fragmentation. Indeed, the rhizoids could play a central role in vegetative propagation [71], by detaching from the parent thallus to give a new individual. However, no field observations had been made until now. To our knowledge, our results confirm this hypothesis for the first time. In contrast, in the genus *Gracilaria*, such specialized organs have never been observed and vegetative multiplication occurs by spontaneous fragmentation of the thallus. Cuttings are routinely used to reproduce macroalgae in aquaculture [75]. However, cuttings are not generally capable of giving rise to a new perennial individual [27]. In both *G. chilensis* and *G. vermiculophylla* species for which there is strong evidence for asexual reproduction [73], [74], it was shown that vegetative fragmentation could be facilitated by farming practices (in *G. chilensis*) and explained rapid colonization during biological invasion (in *G. vermiculophylla*). In the case of *G. dura*, as the individuals are attached to rocks, the fragmentation hypothesis can be rejected. Instead, sexual reproduction could occur either by apomixis or apogamy, as observed in some triploid individuals of the red alga *Caloglossa leprieurii* [76]. Further investigation is therefore needed to better understand how and by what means this species reproduces asexually. The results obtained for *G. gracilis* and *P. littoralis*, confirmed that individuals reproduced sexually by outcrossing [77], [78]. Finally, our results suggested the occurrence of random mating systems in natural populations of *A. esculenta* and *P. palmata*.

 The genetic diversity observed in this study was of the same order of magnitude as that observed previously for the same or closely related species. Overall, genetic diversity tended to be higher in brown than in red algae, probably due to differences in their effective population sizes. For example, the genetic diversity indices found in *A. esculenta* (*He* = 0.505 and *He* = 0.566) was close to that recorded for other kelp beds from the same region *Saccharina latissima* (*He* = 0.549), *Laminaria digitata* (*He* = 0.534) and *Laminaria hyperborea* (*He* = 0.591) [79], [80]*.* In the filamentous alga *P. littoralis*, genetic diversity (*He* = 0.556) was slightly reduced compared with that found in a previous study (*He* = 0.608) maybe because we used cross-amplification of microsatellite markers from *Ectocarpus siliculosus* [78]. In *G. gracilis,* we studied the same population using 14 newly developed markers (GN2, located at Cape Gris Nez) that was genotyped 20 years ago using seven microsatellite markers. Lower genetic diversity values were observed in our study (*He* = 0.514 in 2001, [77] *vs He* = 0.464 in 2021, this study) suggesting that temporal changes could have happened in this population. Finally, these markers were used to estimate differentiation between populations (*FST*). Even though the scale of distance between populations varied greatly between species (from 50 to 2200 km), it was possible to detect significant genetic differentiation even between populations separated by distances of 50 km. Finally, in *Pylaiella* where the occurrence of two cryptic species along the French coast has been reported by Geoffroy et al. [78], the high values of genetic differentiation (*FST* close to 0.5) observed between the two studied populations suggest that they belong to different cryptic species.

5. Conclusion

 We were able to rapidly develop species-specific molecular markers for six phylogenetically distantly- related species of red and brown seaweeds with relatively low cost (in time and money). These markers are suitable for studying the diversity and genetic structure, and can also be used to detect and decipher clonality processes involved in the reproduction of these species. This work, which uses this rapid and inexpensive method, could facilitate evolutionary analyses in a wide variety of non-model taxa. The applications of these new species-specific genetic markers are numerous, such as breeding, selection and conservation programs, genetic resources studies, management of harvested stocks and monitoring of the origin of processed products. In addition, the use of ddRAD sequencing in the microsatellite development process still allows for the detection of SNPs with the generated data.

Acknowledgments

 We would like to thank J. Mark Cock and the three anonymous reviewers for their comments on the manuscript. This work benefited from the support of the French Government through the National Research Agency with regards to an investment expenditure program IDEALG (ANR-10-BTBR-04), the EU Horizon 2020 project GENIALG (Grant Agreement No 727892), the European Maritime and Fisheries Fund (EMFF) through the POLISTR project and Région Bretagne (PhD grant ARED Domdulse from ED227 Sorbonne-Université/MNHN to AB and FUI 23 project OCEACTIF from the French Ministry of Research to CD and PP). We are grateful to the Roscoff Bioinformatic platform (ABiMS) for bioinformatics support, to the Genomer platform, Biogenouest genomics and EMBRC France partner core facility for its technical support. The authors are deeply indebted to the Service Mer & Observation (SMO) of Roscoff, Alexandre Geoffroy and Dan Potin for sampling.

Ethical consent

 This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors read and approved the manuscript for the publication in *Algal Research*.

464

465 **Declaration of competing interest**

466 The authors declare that they have no conflicts of interest concerning the present article.

467

468 **Availability of data**

- 469 All data generated during this study are openly available in a Dryad Digital Repository
- 470 https://doi.org/10.5061/dryad.63xsj3v6w

References

- [1] Deplazes-Zemp, A. (2018). 'Genetic resources' an analysis of a multifaceted concept. *Biological Conservation*, *222*(April), 86–94.<https://doi.org/10.1016/j.biocon.2018.03.031>
- [2] Valero, M., Guillemin, M.-L., Destombe, C., Jacquemin, B., Gachon, C. M. M., Badis, Y., Buschmann, A. H., Camus, C., & Faugeron, S. (2017). Perspectives on domestication research for sustainable seaweed aquaculture. *Perspectives in Phycology*, *4*(1), 33–46. <https://doi.org/10.1127/pip/2017/0066>
- [3] Borja, A., Fontán, A., Muxika, I. (2019). Interactions between climatic variables and human pressures upon a macroalgae population: Implications for management. *Ocean & Coastal Management* 76 85e95. http://dx.doi.org/10.1016/j.ocecoaman.2013.02.023
- [4] Brakel, J., Sibonga, R. C., Dumilag, R. V., Montalescot, V., Campbell, I., Cottier-Cook, E. J., Ward, G., Le Masson, V., Liu, T., Msuya, F. E., Brodie, J., Lim, P.-E., & Gachon, C. M. M. (2021). Exploring, harnessing and conserving marine genetic resources towards a sustainable seaweed aquaculture. In *Plants, People, Planet*, 3, 337–349.<https://doi.org/10.1002/ppp3.10190>
- [5] Voermam, Sofie E., Llera, Eva, & Rico, José M. (2013). Climate driven changes in subtidal kelp forest communities in NW Spain. *Marine environmental research*, vol. 90, p. 119-127. <https://doi.org/10.1016/j.marenvres.2013.06.006>
- [6] Izquierdo, P., Rico, J. M., Taboada, F. G., González-Gil, R., & Arrontes, J. (2022). Characterization of marine heatwaves in the Cantabrian Sea, SW Bay of Biscay. *Estuarine, Coastal and Shelf Science*, 274, 107923.<https://doi.org/10.1016/j.ecss.2022.107923>
- [7] Wernberg, T., Coleman, M. A., Bennett, S., Thomsen, M. S., Tuya, F. and Kelaher, B. P. (2018). Genetic Diversity and Kelp Forest Vulnerability to Climatic Stress. *Sci. Rep*. 8, 1–8. <https://doi.org/10.1038/s41598-018-20009-9>
- [8] Butler, C. L., Lucieer, V. L., Wotherspoon, S. J., and Johnson, C. R. (2020). Multi-decadal decline in cover of giant kelp *Macrocystis pyrifera* at the southern limit of its Australian range. *Mar. Ecol. Prog. Ser*. 653, 1–18. https://doi.org/10.3354/meps13510
- [9] Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. *PLoS ONE*, *7*(5).<https://doi.org/10.1371/journal.pone.0037135>
- [10] Jansson, E., Taggart, J. B., Wehner, S., Dahle, G., Quintela, M., Mortensen, S., Kvamme, B. O., & Glover, K. A. (2016). Development of SNP and microsatellite markers for goldsinny wrasse (*Ctenolabrus rupestris*) from ddRAD sequencing data. *Conservation Genetics Resources*, *8*(3), 201– 206. https://doi.org/10.1007/s12686-016-0532-0
- [11] Mori, H., Ueno, S., Matsumoto, A., Uchiyama, K., Kamijo, T., Masaki, T., & Tsumura, Y. (2017). Isolation and characterization of microsatellite markers from the RAD sequence of two temperate liana species: *Euonymus fortunei* (Celastraceae) and *Schizophragma hydrangeoides* (Hydrangeaceae). *Silvae Genetica*, *66*(1), 40–42. https://doi.org/10.1515/sg-2017-0006
- [12] Mauger, S., Fouqueau, L., Avia, K., Reynes, L., Serrao, E. A., Neiva, J., & Valero, M. (2021). Development of tools to rapidly identify cryptic species and characterize their genetic diversity in different European kelp species. *Journal of Applied Phycology*, *33*(6), 4169–4186. <https://doi.org/10.1007/s10811-021-02613-x>
- [13] Hauser, S., Athrey, G., & Leberg, L. (2021). Waste not, want not: Microsatellites remain an economical and informative technology for conservation genetics. *Ecology and Evolution*, *11*, 15800– 15814. https://doi.org/10.1002/ece3.8250
- [14] Guzinski, J., Ballenghien, M., Daguin-Thiébaut, C., Lévêque, L., & Viard, F. (2018). Population genomics of the introduced and cultivated Pacific kelp *Undaria pinnatifida*: Marinas—not farms drive regional connectivity and establishment in natural rocky reefs. *Evolutionary Applications*, *11*(9), 1582–1597. https://doi.org/10.1111/eva.12647
- [15] Heiser, S., Amsler, C. D., & Krueger-Hadfield, S. A. (2023). Microsatellite locus development in the seaweed *Plocamium sp.. Antarctic Science*, 1–3[.https://doi.org/10.1017/s0954102022000475](https://doi.org/10.1017/s0954102022000475)
- [16] Heesch S., Cho GY., Peters AF., Le Corguillé G., Falentin C., Boutet G., Coëdel S., Jubin C., Samson G., Corre E., Coelho SM., Cock JM.. (2010). A sequence-tagged genetic map for the brown alga *Ectocarpus siliculosus* provides large-scale assembly of the genome sequence. *New Phytol*. 2010 Oct;188(1):42-51. doi: 10.1111/j.1469-8137.2010.03273.x.
- [17] Zhang, L., Peng, J., Li, X., Yanling L., Cuiju C., Hao W., Ruina W., Pingping T., & Yan L.. (2014). Development of 27 trinucleotide microsatellite markers for *Saccharina japonica* using next generation sequencing technology. *Conservation Genet Resour* 6, 341–344 (2014). <https://doi.org/10.1007/s12686-013-0089-0>
- [18] Akita, S., Koiwai, K., Hanyuda, T., Kato S., Nozaki R., Uchino T., Sakamoto T., Kondo H., Hirono I., & Fujita D. (2018). Development of 11 *Ecklonia radicosa*(Phaeophyceae, Laminariales) SSRs markers using next-generation sequencing and intra-genus amplification analysis. *J Appl Phycol* 30, 2111–2115 (2018). https://doi.org/10.1007/s10811-018-1406-5
- [19] Senan, S., Kizhakayil, D., Sasikumar, B., & Sheeja, T. E. (2014). Methods for Development of Microsatellite Markers: An Overview. In *Not Sci Biol* (Vol. 6, Issue 1). <https://doi.org/10.15835/nsb619199>
- [20] Ellis, J., Burke, J. (2007). EST-SSRs as a resource for population genetic analyses. *Heredity* 99, 125– 132 (2007). https://doi.org/10.1038/sj.hdy.6801001
- [21] Dayton, P. K. (1985). Ecology of Kelp Communities. *Ann. Rev. Ecol. Syst*, *16*, 215–260. https://doi.org/10.1146/annurev.es.16.110185.001243
- [22] Kim, J. K., Yarish, C., Hwang, E. K., Park, M., & Kim, Y. (2017). Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. In *Algae* (Vol. 32, Issue 1, pp. 1–13). *Korean Society of Phycology*. https://doi.org/10.4490/algae.2017.32.3.3
- [23] Mouritsen, O. G., Dawczynski, C., Duelund, L., Jahreis, G., Vetter, W., & Schröder, M. (2013). On the human consumption of the red seaweed dulse (*Palmaria palmata* (L.) Weber & Mohr). *Journal of Applied Phycology*, *25*(6), 1777–1791. https://doi.org/10.1007/s10811-013-0014-7
- [24] Afonso, S.; Arrobas, M.; Rodrigues, M.Â.(2021). Response of Hops to Algae-Based and Nutrient-Rich Foliar Sprays. *Agriculture* 2021, *11*, 798. https://doi.org/10.3390/agriculture11080798
- [25] Pereira, L., Gheda, S. F., & Ribeiro-Claro, P. J. A. (2013). Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries. *International Journal of Carbohydrate Chemistry*, *2013*, 1–7. https://doi.org/10.1155/2013/537202
- [26] Destombe, C., Valero, M., Vernet, P., Couvet, D. (1989). What controls haploid-diploid ratio in the red alga, *Gracilaria verrucosa*? *J Evol Biol*, 2(5), 317–338. [https://doi.org/10.1046/j.1420-](https://doi.org/10.1046/j.1420-9101.1989.2050317.x) [9101.1989.2050317.x](https://doi.org/10.1046/j.1420-9101.1989.2050317.x)
- [27] Kain(Jones), J. M., & Destombe, C. (1995). A review of the life history, reproduction and phenology of *Gracilaria*. *Journal of Applied Phycology*, *7*(3), 269–281.<https://doi.org/10.1007/BF00004001>
- [28] Hughes, J. S., & Otto, S.P. (1999). Ecology and the evolution of biphasic life cycles. *Am Nat* 154(3), 306–320.<https://www.jstor.org/stable/10.1086/303241>
- [29] Armisen, R. (1995). World-wide use and importance of *Gracilaria*. *Journal of Applied Phycology* 7: 231-243. https://doi.org/10.1007/BF00003998
- [30] Kerrison, P. D., Innes, M., Macleod, A., Mccormick, E., Elbourne, P. D., Stanley, M. S., Hughes, A. D., & Kelly, M. S. (2020). Comparing the effectiveness of twine- and binder-seeding in the Laminariales species *Alaria esculenta* and *Saccharina latissima*. *Journal of Applied Phycology*, *32*, 2173–2181. https://doi.org/10.1007/s10811-020-02069-5/Published
- [31] Grote, B. (2019). Recent developments in aquaculture of *Palmaria palmata* (Linnaeus) (Weber & Mohr 1805): cultivation and uses. *Reviews in Aquaculture*, *11*(1), 25–41. https://doi.org/10.1111/raq.12224
- [32] Araujo, G. S., Cotas, J., Morais, T., Leandro, A., García-Poza, S., Gonçalves, A. M. M., & Pereira, L. (2020). *Calliblepharis jubata* cultivation potential—a comparative study between controlled and semicontrolled aquaculture. *Applied Sciences (Switzerland)*, *10*(21), 1–12. <https://doi.org/10.3390/app10217553>
- [33] Menzel, P., Ng, K. & Krogh, A.. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. *Nat Commun* 7, 11257 (2016). https://doi.org/10.1038/ncomms11257
- [34] Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. and Cresko, W.A. (2013). Stacks: an analysis tool set for population genomics. *Mol Ecol*, 22: 3124-3140. https://doi.org/10.1111/mec.12354
- [35] Magoč T, Salzberg SL. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. *Bioinformatics*. 2011 Nov 1;27(21):2957-63. doi: 10.1093/bioinformatics/btr507.
- [36] Puritz, J. B., Hollenbeck, C. M., & Gold, J. R. (2014). dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. *PeerJ*, 2, e431. https://doi.org/10.7717/peerj.431
- [37] Meglécz, E., Pech, N., Gilles, A., Dubut, V., Hingamp, P., Trilles, A., Grenier, R., & Martin, J. F. (2014). QDD version 3.1: a user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate. *Molecular ecology resources*, 14(6), 1302–1313. https://doi.org/10.1111/1755-0998.12271
- [38] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. (2019). BLAST+: architecture and applications. *BMC Bioinformatics*. doi: 10.1186/1471-2105-10-421. PMID: 20003500; PMCID: PMC2803857.
- [39] Rozen S, Skaletsky H. (2000). Primer3 on the WWW for general users and for biologist programmers. *Methods Mol Biol*. doi: 10.1385/1-59259-192-2:365.
- [40] Guzinski J., Mauger S., Cock J. M., & Valero M. (2016). Characterization of newly developed expressed sequence tag-derived microsatellite markers revealed low genetic diversity within and low connectivity between European *Saccharina latissima* populations. *Journal of Applied Phycology*, *28*, 3057-3070. https://doi.org/10.1007/s10811-016-0806-7
- [41] Mauger, S., Couceiro L., Valero M. (2012). A simple and cost-effective method to synthesize an internal size standard amenable to use with a 5-dye system. *Prime Res Biotechnol* 2:40–46
- [42] Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. *Mol Ecol Notes* 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
- [43] Rousset F. (2008). GENEPOP'007: a complete re-implementation of the genepop software for Windows and Linux. *Mol Ecol Resour* 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
- [44] Goudet, J. (2005), hierfstat, a package for r to compute and test hierarchical F-statistics. *Molecular Ecology Notes*, 5: 184-186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
- [45] Marshall, T. C., Slate, J., Kruuk, L. E., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. *Molecular ecology*, 7(5), 639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
- [46] Thrall P.H., Young A. (2000). AUTOTET: a program for analysis of autotetraploid genotypic data. *J Hered*. 91(4):348-9. doi: 10.1093/jhered/91.4.348.
- [47] Hardy, O.J. and Vekemans, X. (2002). spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. *Molecular Ecology Notes*, 2: 618-620. [https://doi.org/10.1046/j.1471-8286.2002.00305.](https://doi.org/10.1046/j.1471-8286.2002.00305)
- [48] Clark, L.V. and Jasieniuk, M. (2011). polysat: an R package for polyploid microsatellite analysis. *Molecular Ecology Resources*, 11: 562-566. https://doi.org/10.1111/j.1755-0998.2011.02985.x
- [49] Kamvar ZN, Tabima JF, Grünwald NJ. (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* 2:e281 https://doi.org/10.7717/peerj.281
- [50] Weir, B. S., and C. Clark Cockerham. (1984). Estimating F-Statistics for the Analysis of Population *Structure. Evolution* 38, no. 6 (1984): 1358–70.<https://doi.org/10.2307/2408641>
- [dataset] [51] Mauger, Stéphane, ddRADseq data for Genetic resources of macroalgae: development of an efficient method using microsatellite markers in non-model organisms, *Dryad Data*, v1, (2023). <https://doi.org/10.5061/dryad.63xsj3v6w>
- [52] Hodel, R. G. J., Segovia-Salcedo, M. C., Landis, J. B., Crowl, A. A., Sun, M., Liu, X., Gitzendanner, M. A., Douglas, N. A., Germain-Aubrey, C. C., Chen, S., Soltis, D. E., & Soltis, P. S. (2016). The Report of My Death was an Exaggeration: A Review for Researchers Using Microsatellites in the 21st Century. *Applications in Plant Sciences*, *4*(6), 1600025. https://doi.org/10.3732/apps.1600025
- [53] Gandomkar, H., Pezhman Hosseini Shekarabi, S., Ali Abdolhay, H., Nazari, S., & Shamsaei Mehrjan, M. (2021). Characterization of Novel Genotyping-by-sequencing (GBS)-based Simple Sequence

Repeats (SSRs) and Their Application for Population Genomics of *Capoeta Aculeata* (Valenciennes, 1844). https://doi.org/10.21203/rs.3.rs-514326/v1

- [54] Taheri, S., Abdullah, T. L., Yusop, M. R., Hanafi, M. M., Sahebi, M., Azizi, P., & Shamshiri, R. R. (2018). Mining and development of novel SSR markers using Next Generation Sequencing (NGS) data in plants. In *Molecules* (Vol. 23, Issue 2). MDPI AG.<https://doi.org/10.3390/molecules23020399>
- [55] Magbanua, ZV., Hsu, C., Pechanova, O., Arick, M., Grover, CE., Peterson, DG. (2022). Innovations in double digest restriction-site associated DNA sequencing (ddRAD-Seq) method for more efficient SNP identification. *Anal Biochem*. 2023;662:115001. https://doi.org/10.1016/j.ab.2022.115001
- [56] Avia, K., Coelho, S., Montecinos, G., Cormier, A., Lerck, F., Mauger, S., Faugeron, S., Valero, M., Cock, J.M., Boudry, P. (2017). High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga *Ectocarpus*. *Sci Rep* 7, 43241 (2017). https://doi.org/10.1038/srep43241
- [57] Vranken, S., A. Scheben, J. Batley, T. Wernberg and M. A. Coleman. (2022). Genomic consequences and selection efficacy in sympatric sexual versus asexual kelps. *Frontiers in Marine Science* 9. <https://doi.org/10.3389/fmars.2022.921912>
- [58] Kobayashi, H., Y. Haino, T. Iwasaki, A. Tezuka, A. J. Nagano and S. Shimoda. (2018). ddRAD-seq based phylogeographic study of *Sargassum thunbergii* (Phaeophyceae, Heterokonta) around Japanese coast. *Marine Environmental Research* 140: 104-113. https://doi.org/10.1016/j.marenvres.2018.05.021
- [59] Vaux, F., C. I. Fraser, D. Craw, S. Read and J. M. Waters. (2023). Integrating kelp genomic analyses and geological data to reveal ancient earthquake impacts. *Journal of the Royal Society Interface* 20(202). <https://doi.org/10.1098/rsif.2023.0105>
- [60] Luo, H., Morchen, M., Engel, C. R., Destombe, C., Epplen, J. T., Epplen, C., Saumitou-Laprade, P., & Valero, M. (1999). Characterization of microsatellite markers in the red alga *Gracilaria gracilis*. In *Molecular Ecology* (Vol. 8, Issue 4, pp. 700–702). Blackwell Publishing Ltd. <https://doi.org/10.1046/j.1365-294x.1999.00879.x>
- [61] Wattier, C. R. Engel, P. Saumitou-Laprade, & M. Valero. (1998). Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence atthe dinucleotide locus Gv1CT in *Gracilaria gracilis*(Rhodophyta). *Molecular Ecology* , *7*, 1569–1573. https://doi.org/10.1046/j.1365-294x.1998.00477.x
- [62] Wang, X. T., Zhang, Y. J., Qiao, L., & Chen, B. (2019). Comparative analyses of simple sequence repeats (SSRs) in 23 mosquito species genomes: Identification, characterization and distribution (*Diptera: Culicidae*). *Insect Science*, *26*(4), 607–619.<https://doi.org/10.1111/1744-7917.12577>
- [63] Zhu, L., Wu, H., Li, H., Tang, H., Zhang, L., Xu, H., Jiao, F., Wang, N., & Yang, L. (2021). Short Tandem Repeats in plants: Genomic distribution and function prediction. *Electronic Journal of Biotechnology*, *50*, 37–44.<https://doi.org/10.1016/j.ejbt.2020.12.003>
- [64] Wang, W., Li, H., Lin, X., Yang, S., Wang, Z., & Fang, B. (2015). Transcriptome analysis identifies genes involved in adventitious branches formation of *Gracilaria lichenoides* in vitro. *Scientific reports*, 5(1), 17099. https://doi.org/10.1038/srep17099
- [65] Ellegren, H. (2004). Microsatellites: Simple sequences with complex evolution. In *Nature Reviews Genetics* (Vol. 5, Issue 6, pp. 435–445). https://doi.org/10.1038/nrg1348
- [66] Weber J. L.(1990). Informativeness of human (dC-dA)n · (dG-dT)n polymorphisms. *Genomics*. doi.org/10.1016/0888-7543(90)90195-Z.
- [67] Hammet, F., Mahmood, K., Green, T.R., Nguyen-Dumont, T., Southey, M.C., Buchanan, D.D., Lonie, A., Nathanson, K.L., Couch,F.J., Pope, B.J., Park D.J. (2019). Hi-Plex2: A simple and robust approach to targeted sequencing-based genetic screening. *Biotechniques*. https://doi.org/10.2144/btn-2019-0026
- [68] Besnard, A.L., Park, D.J., Pope, B.J., Hammet, F., Michon-Coudouel, S., Biget, M., Krueger-Hadfield, S.A., Mauger, S., Petit, J.E. (2023). Workflow for SNP genotyping using the Hi-Plex method V.2. *Protocols.io*. dx.doi.org/10.17504/protocols.io.8epv5jnnnl1b/v2
- [69] Dixon PS. (1965). Perennation, vegetative propagation and algal life histories, with special reference to *Asparagopsis* and other Rhodophyta. B*ot Gotheburg* 3:67–74
- [70] Hawkes, M. (1990). Reproductive strategies. In Cole, K. M. & R. G. Sheath (eds), Biology of Red Algae. *Cambridge University Press*, Cambridge: 455–476.
- [71] Cecere, E., Petrocelli, A., & Verlaque, M. (2011). Vegetative reproduction by multicellular propagules in Rhodophyta: An overview. In *Marine Ecology* (Vol. 32, Issue 4, pp. 419–437). <https://doi.org/10.1111/j.1439-0485.2011.00448.x>
- [72] Pardo, C., Guillemin, M. L., Peña, V., Bárbara, I., Valero, M., & Barreiro, R. (2019). Local coastal configuration rather than latitudinal gradient shape clonal diversity and genetic structure of *Phymatolithon calcareum* maerl beds in North European Atlantic. *Frontiers in Marine Science*, *6*(MAR). https://doi.org/10.3389/fmars.2019.00149
- [73] Guillemin, M. L., Faugeron, S., Destombe, C., Viard, F., Correa, J. A., & Valero, M. (2008). Genetic variation in wild and cultivated populations of the haploid- diploid red alga *Gracilaria chilensis*: How farming practices favor asexual reproduction and heterozygosity. *Evolution*, *62*(6), 1500–1519. <https://doi.org/10.1111/j.1558-5646.2008.00373.x>
- [74] Krueger-Hadfield, S. A., Kollars, N. M., Byers, J. E., Greig, T. W., Hammann, M., Murray, D. C., Murren, C. J., Strand, A. E., Terada, R., Weinberger, F., & Sotka, E. E. (2016). Invasion of novel habitats uncouples haplo-diplontic life cycles. *Molecular Ecology*, *25*(16), 3801–3816. <https://doi.org/10.1111/mec.13718>
- [75] Buschmann, A. H., Troell, M., & Kautsky, N. (2001). Integrated algal farming: a review. In *Cah. Biol.* Mar (Vol. 42).
- [76] Dudgeon, S., Kübler, J. E., West, J. A., Kamiya, M., & Krueger-Hadfield, S. A. (2017). Asexuality and the cryptic species problem. *Perspectives in Phycology*, *4*(1), 47–59. https://doi.org/10.1127/pip/2017/0070
- [77] Engel, C. R., Destombe, C., & Valero, M. (2004). Mating system and gene flow in the red seaweed *Gracilaria gracilis*: Effect of haploid-diploid life history and intertidal rocky shore landscape on finescale genetic structure. *Heredity*, *92*(4), 289–298. https://doi.org/10.1038/sj.hdy.6800407
- [78] Geoffroy, A., Mauger, S., de Jode, A., le Gall, L., & Destombe, C. (2015). Molecular evidence for the coexistence of two sibling species in *Pylaiella littoralis* (Ectocarpales, Phaeophyceae) along the Brittany coast. *Journal of Phycology*, *51*(3), 480–489.<https://doi.org/10.1111/jpy.12291>
- [79] Paulino, C., Neiva, J., Coelho, N. C., Aires, T., Marbà, N., Krause-Jensen, D., & Serrão, E. A. (2016). Characterization of 12 polymorphic microsatellite markers in the sugar kelp *Saccharina latissima. Journal of Applied Phycology*, *28*(5), 3071–3074. https://doi.org/10.1007/s10811-016-0811-x
- [80] Robuchon, M., le Gall, L., Mauger, S., & Valero, M. (2014). Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. *Molecular Ecology*, *23*(11), 2669–2685.<https://doi.org/10.1111/mec.12774>

Fig. 1 Workflow and experimental set-up used for microsatellite markers development using ddRADseq

Fig. 2 Accumulation curves of the genotypes of the 6 species based on 10,000 permutations with "poppr" v2.9.3 R package*.* Photo credits: © Destombe C. for *G. gracilis* and *G. dura*; © Baud A. for *A. esculenta* and *P. palmata*; © Thomas W. for *P. littoralis*.

Fig. S1 Agarose gel electrophoresis (1% w/v) of *Pst*I*/Hha*I restriction enzyme-digested algal DNA. Lane Pl, *Pylaella Littoralis*. Line Cj, *Calliblepharis jubata*. Line Gg, *Gracilaria gracilis*. Line Gd, *Gracilaria dura*. Line Pp, *Palmaria palmata*. Line Ae, *Alaria esculenta*. Line M, SmartLadder 200bp-10kb (Eurogentec, Seraing, Belgium).

Table 1 Geographical location of the populations used in the study, sample size (n), sexual phenotypes and barcodes used for ddRADseq.

Table 2 Mean genetic diversity among loci for the populations sampled for each the 6 species.

n Number of genotyped individuals.

nLOC Number of loci retained as suitable polymorphic markers (i.e., polymorphic, no-significant *Nf*, no-significant F*is* for no clonal species).

Na Means of number of alleles per locus.

A Standardized allelic richness for a common sample size of 8 individuals.

MLG Number of distinct Multilocus Genotypes.

R Genotypic richness (*G*-1) / (*N*-1) (Dorken and Eckert, 2001).

He Expected heterozygosity.

F*is* Inbreeding coefficient as defined by Weir and Cockerham (1984) calculated overall polymorphic loci, F*is* values significantly different from zero are shown with \$.

Loc Dist distance between two localities in km.

Fst Pairwise estimates of genetic differentiation obtained with HIERFSTAT (Goudet 2014) *, P < 0.001.

Table S1 Steps involved in the definition of microsatellite loci for each of the species studied.

Table S2 Percentage of bacterial DNA and algae DNA in ddRADseq reads.

Estimation of the percentage of bacterial DNA contamination in ddRADseq reads using the KAIJU software version 1.9.2 (Menzel et al., 2016).

Table S3 Steps involved in the selection of microsatellite markers, with the percentage of loci with specific motif types (Di-, Tri-, Tetra-, Penta- and Hexanucleotide) associated to each step.

Table S4 Technical information (primer sequence, dye) characteristics (repeat motif, observed size range) and polymorphism estimates (Nf, Na, Ho, He, F_{IS}, PIC) for microsatellites selected for this study for each of the six species.

Alaria esculenta

Pylaiella littoralis

Calliblepharis jubata

Gracilaria gracilis

Palmaria palmata

Gracilaria dura

n Number of genotyped individuals.

Nf Null allele frequency obtained with MICROCHECKER (Van Oosterhout et al. 2004), locus showing significant frequencies of null alleles are shown with *.

Na number of alleles per locus, *He* expected heterozygosity (Nei 1978), *Ho* observed heterozygosity obtained with HIERFSTAT (Goudet 2014) excepted *G.dura* obtained with AUTOTET (Thrall et al 2000).

Fis estimate of deviation from random mating obtained with HIERFSTAT (Goudet 2014) excepted G.dura obtained with SPAGeDi (Hardy, O. J. & X. Vekemans 2002). FIS values significantly different from zero are shown with \$.

PIC polymorphic information content obtained with CERVUS software (Marshall et al. 1998) excepted *G.dura* obtained with POLYSAT R package (Clark et al. 2011).

Locus retained as suitable polymorphic markers for future studies are shown in bold (i.e., polymorphic, no-significant *Nf*, no-significant *FIS*).

In italic the mean values over loci were calculated over locus retained as suitable polymorphic markers.