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are hyperheuristics [16] that show good results and adapt to
the problems they encounter. Our own work has also looked at
predicting solver performance by analyzing the problem [7].

In most cases, state-of-the-art solvers use a fixed configu-
ration, and some users might assume that that configuration
is the optimal one. Nevertheless, some papers show that other
configurations offer better results. For instance, Song et al. [15]
showed that a local search method for CB-CTT [13] can
increase its performance by slightly modifying the operator
selection process. In particular, they changed the roulette
wheel probabilities that select the next operator. This change
may seem small but is significant nonetheless.

There exist a number of configurators to find new promising
configurations, such as ParamILS [8] or irace [10]. One of their
main advantages is to automate the search for new configura-
tions. They have already been used to tune new methods that
are efficient on timetabling problems [17]. Some methods are
dedicated to comparing two configurations, highlighting the
most relevant parameters [5].

In this paper, we focus on the Hybrid Local Search
(HLS) method, which was the winner of ITC 2007 for the
Curriculum-Based Course Timetabling (CB-CTT) problem
[13] and remains the state-of-the-art solver for this prob-
lem [3]. The HLS method comprises three main algorithmic
components: Hill Climbing, Great Deluge, and Simulated
Annealing, and utilizes five different neighborhood operators.

We use irace [10], a configurator, to provide us with new
configurations for HLS by training on over 3 000 recently
proposed synthetic instances [3]. These configurations vary ac-
cording to parameters controlling the neighborhood operators
and the global structure of the algorithm. In particular, we do
not assume, as has been done before, that all the components
of HLS are required and allow each of them to be toggled
on or off, in addition to changing the values of its numeric
parameters.

The new algorithm variants are tested on real-world in-
stances to evaluate their performance. Using statistical tests,
we obtain the ranks of each method. Our results clearly show
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I. INTRODUCTION

Timetabling is a common problem for all universities in
the world. This field h as a n a ctive r esearch c ommunity due
notably to events such as the International Timetabling Com-
petition (ITC) organized by the EURO Working Group on
Automated Timetabling and the associated PATAT conference.
Some editions of the competition formalize a problem, as
in ITC 2007 with the Curriculum-Based Course Timetabling
(CB-CTT) problem [14] that we consider in this paper.

These complex problems require significant computation
time if exact methods are employed. Thus, the preferred
solvers are often metaheuristics that offer reasonably good
results in a relatively short time [1]. There are several types
among the most effective heuristics, including genetic algo-
rithms, local search [13], and hybrids [2]. New articles also 
focus on more complex methods in terms of structure: these



that the state-of-the-art HLS solver can be outperformed as
one might expect when tuned with irace . In particular and
more surprisingly, because we introduced the possibility to
deactivate each main algorithmic component, simpler versions
of the method emerge as viable competitors to HLS , including
one that only consists of the Great Deluge algorithm. This is
especially interesting in light of recent papers [3], [15] that
build upon HLS as the de facto state-of-the-art method, and
shows that there is room for improvement of the method.

We analyze each configuration to determine the optimal
structures that emerge. The paper focuses on these new
configurations by comparing them with baselines. We in-
vestigate why some configurations do not have the same
performances while they differ only in one parameter, that
might be considered as minor. Our work attempts to show
that it is be relevant to use parameters that expose and allow
for changes in the structure of the solver even before tuning
more precise numerical parameters. That provides important
information on how to build a new solver. Finally, we use
ablation analysis [5] to analyze each partial configuration
between two configurations to highlight the local importance
of the parameters.

The paper is organized as follows: Section II presents our
problem; Section III introduces instance sets, and the way
they have been selected; Section IV-A presents the Hybrid
Local Search solver and its initial structure; we detail different
parameters available for our study in Section IV-B; we develop
our experimental protocol in Section V; Section VI presents
the new configurations and their performance comparing to
two known methods. Finally, Section VII concludes the paper
and outlines the potential for future research.

II. CURRICULUM-BASED COURSE TIMETABLING

The International Timetabling Competition 2007 proposed
a CB-CTT benchmark that included 21 different instances.
These represent real-world problems from the University of
Udine. Moreover, ITC 2007 formalized aspects of CB-CTT,
now used in the literature.

The main characteristic of this problem is the use of the
notion of “curriculum”. CB-CTT does not consider each
student individually. In the CB-CTT system, a student chooses
a curriculum, which corresponds to a training course and
includes a set of Courses. The notion of curriculum simplifies
the problem for the solver as it reduces the number of
conflicts by grouping students with similar behaviors. Courses
correspond to a subject taught by a single teacher with a set
number of lectures. A course can belong to several curricula.
In this case, all the students in those curricula will attend the
same lectures of this course. Most CB-CTT problems take
place over a week, with the number of days varying between
4 to 7, depending on the specific instance. Each day is divided
into time slots or periods, with a lecture typically lasting one
period.

A CB-CTT solution consists of scheduling lectures in times-
lots and available rooms following hard and soft constraints.
Hard constraints must always be respected. A timetable is

said to be feasible when all the hard constraints are met. For
example, one hard constraint forbids one teacher from teaching
two lectures at once. On the contrary, soft constraints can be
violated. The violations of each soft constraint are represented
as a function to minimize.

The objective function to optimize for Curriculum-Based
Course Timetabling is a weighted sum of the soft constraint
violations:

f(s) =

4∑
i=1

SoftConstraintsi(s) ∗ ωi (1)

s represents a timetabling solution. The weights, as used
for ITC 2007, are set to 1, 5, 2, and 1 for ω1, ω2, ω3 and
ω4 respectively. SoftConstraintsi(s) represents the number of
violations for the soft constraints listed below.

1) RoomCapacity: One violation for each student without
a seat during one timeslot.

2) MinWorkingDays: A course has lectures that should be
scheduled within a minimum number of days.

3) CurriculumCompactness: A student should have always
two consecutive lectures before a gap.

4) RoomStability: Lectures of a course should be in the
same room; one violation for every extra room used.

III. INSTANCE SET

Instances of the Curriculum-Based-Course Timetabling
problem used in our experiments come from a recent article
proposed by de Coster et al. [3]. These instances are of two
classes: real-world and generated. The real-world instances
correspond to the real problems of several universities. This
set includes the initial benchmarks of 21 instances provided
by ITC 2007. Once we remove the problems where no initial
solution can be constructed in a reasonable time (5 minutes),
77 instances remain. The second set corresponds to the gener-
ated data, i.e. instances generated by a model simulating real-
world problem behavior. [3] details the generation process.
Preliminary results have shown that an important part of these
instances is infeasible. So we use these results to remove the
impossible instances and keep almost 3 000 artificial instances.
These generated instances are used by the irace configurator
in our work.
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Fig. 1: PCA projection of instance sets.



Figure 1 shows the spatial distribution of the instances when
plotted in a two-dimensional space. Principle Component
Analysis (PCA) is used for dimensionality reduction and is
applied on the descriptive data of the instances (i.e., the
number of rooms, professors, . . . ). This shows that the artificial
data, our training set, are similar to the real-world instances
and fill the gaps between them. Furthermore Figure 1 shows
the two subsets among the test data real-world instances: the
original ITC instances and the newer ones from [3]. These do
not have the same distribution.

IV. HLS FRAMEWORK

A. HLS Description

The major event that formalized the Curriculum-Based
Course Timetabling problem was ITC 2007 and especially its
competition. The winning solver of this event was a Hybrid
Local Search (HLS) proposed by Müller [13]. HLS is still
the state-of-the-art method of the literature to solve the CB-
CTT instances [3]. Moreover, it also competes in recent ITC
editions on variants of the University Course timetabling prob-
lem [11]. HLS is split into two independent phases: the first
one constructs an initial solution, namely the constructor [12].
Then the second one, called the solver, optimizes and improves
results until a time limit is reached. The remainder of the paper
focuses on the optimization phase.

Fig. 2: Composition of HLS method.

HLS sequentially executes three heuristics and loops until
the termination criterion is reached, for specifically, a maximal
runtime (Figure 2). Hill Climbing is first applied, followed
by Great Deluge [4] and finally Simulated Annealing [9]
ends the sequence. These heuristics are neighborhood-based
methods that use neighborhood operators to build a set of
candidate solutions for each current solution. In HLS, five
neighborhood operators are used. First, there are two simple

operators TimeMove (Op1) and RoomMove (Op2). Each one
randomly selects a lecture from the timetable and TimeMove
selects also a timeslot and RoomMove a room. Then, the
operator reschedules the lecture with the second item, timeslot
or room chosen. If there is a conflict, another random item is
selected. RsMove (Op3) and MwMove (Op4) are considered as
specific constraint operators. Each one changes the timetable
to decrease the number of violations of a specific constraint.
For example, MwMove selects a course whose lectures are not
well distributed, i.e., it does not respect the minimum number
of different days. Then, it performs several TimeMoves to
make sure that there are no more violations. Finally, the fifth
operator is the LMove (Op5). It selects one lecture, a timeslot,
and a room at random. Then it schedules the chosen lecture in
the timeslot and the room. If there is a conflict, LMove swaps
the other conflicting lecture.

The three neighborhood-based heuristics used in HLS are
tunable. The strategic components and the parameter values of
the original HLS have been fixed manually and experimentally
to give good performance on the initial 21 instances presented
during the competition ITC 2007. Even on the other instances
of the literature (see Section III), HLS remains the best solver
for the CB-CTT. In this paper, we are interested to see
if the strategic components and parameters are well tuned.
Therefore, we will describe each neighborhood-based heuristic
in order to highlight the main components and parameters to
give a general framework of HLS. We limit this study keeping
the same sequential order of the three heuristics, namely HC,
GD and SA; but we add a mechanism to activate or not each
heuristic during the execution of the HLS framework.

Moreover, the definition of the neighborhood is shared
by the three heuristics. In HLS, the five operators are used
together. We allow each operator to be activated or not across
the three heuristics.

Hill Climbing is executed until a number of successive
candidate solutions without improvement has been visited
controlled by the parameter IterHC set to 50 000 in the
original HLS. Moreover, in the implementation of HLS, better
(strictly or equivalent) neighboring solutions are accepted dur-
ing the neighborhood exploration phase. We add an activation
mechanism NeutralStrict to give the possibility of only
accepting the strictly better neighboring solutions.

Great Deluge accepts all candidate solutions below an upper
bound that decreases as the search progresses following a
cooling schedule fixed to 1 − 1/(7 × 106). Great Deluge is
stopped when the value of the upper bound is below that of the
lower bound. As soon as Great Deluge starts, the bounds are
computed using an upper bound rate (UpperBoundRate)
and a lower bound rate corresponding to a percentage of the
current solution fitness. In HLS, these rates are set to 1.15 for
the upper bound and 0.95 for the lower bound meaning that it
accepts candidate solutions until 15 % of degradation at worst.
If no improvement occurs during an iteration the upper bound
is raised by a power factor for the next iteration.

Simulated Annealing uses a cooling schedule controlled
with a CoolingRate set to 0.82. As for HC, SA is executed



until a number of successive candidate solutions without
improvement has been visited. This number is controlled by
the Reheat Coeff set to 7 in the original HLS. SA presents
many other parameters linked to the temperature that have
been experimentally set. However, in preliminary experiments,
we observed that SA was mostly deactivated in the best
configurations provided by the configurator.

B. HLS Parameters

Group Parameter Value

Neighborhood
Operators

Op1 (TimeMove) Boolean
Op2 (RoomMove) Boolean

Op3 (RsMove) Boolean
Op4 (MwMove) Boolean
Op5 (LMove) Boolean

Hill
Climbing

HC Boolean
NeutralStrict Boolean

IterHC (104; 5 · 104; 105)

Great
Deluge

GD Boolean
UpperBoundRate (1.10; 1.15; 1.50; 2)

Simulated
Annealing

SA Boolean
Reheat Coeff (1; 7; 14)

TABLE I: Parameters set

Table I lists the 12 parameters we have extracted for this
work and their ranges. They are classified into 4 groups: the
neighborhood operators and one group per heuristic. Each
neighborhood operator and each heuristic can been activated
(1) or not (0), so it is managed with a boolean value. If a
heuristic is deactivated, HLS then moves to the next heuristic
activated heuristic. Note that a security function prevents from
deactivating all heuristics together. In addition, the parameter
NeutralStrict that controlled the criterion acceptance
during the neighborhood exploration is a Boolean value where
0 means that equivalent neighbors are accepted while 1 means
that only strictly better neighbors are accepted. The other
parameters are numerical. In order to control the size of the
configuration space, we decided for this first study to limit
the possible values. For each parameter, we allow at least
one smaller and one larger value than the value set in the
original HLS. Finally, the configuration space contains 2 449
configurations.

V. EXPERIMENTAL PROTOCOL

In the previous section, we gave a detailed description
of the HLS framework starting from an initial solution to
provide an optimized solution. Our goal is to investigate if
specific configurations of HLS can improve the performance
of the original HLS on the 77 real-world instances used in the
literature (see Section III). In order to find these specific con-
figurations, a configurator is run over the configuration space
presented in Table I. The process of automatic configuration
needs training instances independent of ones used to evaluate
the final performance of the configurations. In Section III,
we identified about 3 000 artificial instances that have been

synthetically generated from the real-world instances which
make them good candidates for the training. For both real-
world and artificial instances, we applied the construction
heuristic of the original HLS [13] to build and obtain solutions
that will be used as initial solutions of the optimization
process.

In this paper, we choose irace [10] to be the automatic
algorithm configurator. irace implements an iterated racing
procedure and uses statistical tests to identify the best config-
uration from the configuration space. It starts the first iteration
with sampled configurations and runs them on some instances
(often equal to five). At the end of the iteration, it eliminates
the statistically dominated configurations. Then, for the next
iterations, it generates new configurations derived from those
selected in the previous iteration. irace iterates these processes
until its allocated budget is reached.

For our experiments, we give to irace a budget of 2 000
runs using artificial instances. One run corresponds to one
execution of one configuration on one instance. The total
number of possible configurations is equal to 2 449 and takes
into account the conditional values between the parameters.
The configuration corresponding to the original HLS (see
Table II) is given to irace for the first iteration. When the
budget is reached, irace provided elite configurations that are
statistically equivalent on the training instances used. We keep
five of these elite configurations to validate the performance
on the test instances. The original configuration and the five
elites are executed 30 times with different seeds on each of
77 real-world instances The performance is the best solution
reached for each run after 5 minutes. All performance runs
are performed on an Intel(R) Xeon(R),W3520 @ 2.67GHz
processor.

VI. RESULTS

The primary objective of our study is to determine if it
is possible to create a solver that performs better than the
original HLS using the five top elite configurations returned
by irace. In this section, we present and analyze the five elites
and we compare their performance with the original HLS
configuration.

A. Analysis of Configurations

Table II reports the values of the parameters of the five
elites configurations. The “Method” column lists all the con-
figurations, including the original HLS and gives an insight of
which neighborhood-based heuristics are activated. The five
next columns correspond to the neighborhood operators and
whether they are activated or not (1 for activated, 0 for not).
Then, three columns concern the Hill Climbing phase. The
next two columns are about the Great Deluge component.
The remaining columns are about the Simulated Annealing
component. In order to reduce the potential noise, we have
launched several irace runs with the same parameters but
different seeds. We obtained the same configuration structures.
Only some small parameters varied and the order of the
configurations. We selected the most frequent one.



Method Op1 Op2 Op3 Op4 Op5 HC Neutral0Strict1 IterHC GD UpperBoundRate SA Reheat Coeff

original HLS 1 1 1 1 1 1 0 50,000 1 1.15 1 7

C1 (GD) 1 1 1 0 1 0 NA NA 1 2 0 NA
C2 (HC+GD) 1 1 1 0 1 1 0 50,000 1 1.50 0 NA
C3 (HC+GD) 1 1 1 0 1 1 0 10,000 1 1.50 0 NA

C4 (GD) 1 1 1 0 1 0 NA NA 1 1.50 0 NA
C5 (HC+GD) 1 1 0 0 1 1 0 10,000 1 2 0 NA

TABLE II: Parameter values of the original HLS and the five elites.

A first take-away result is that non of the elite configu-
rations returned by irace features all three algorithmic com-
ponents of HLS and, actually, Simulated Annealing is never
chosen. This result is in contrast to the observations made
by Feutrier et al. [6]. This paper considers that Simulated
Annealing has a positive impact on performance. Moreover,
Table II underlines that only Great Deluge with a strong
perturbation is always privileged by irace. Indeed, all the
proposed configurations use 1.5 or 2, the two largest values
for the GD UpperboundRate parameter. Great Deluge is
a heuristic which, like Simulated Annealing, accepts non-
improving solutions if they have a fitness lower than a
bound. The latter decreases during the iterations. The larger
the UpperboundRate, the more time the Great Deluge
takes and the more tolerant it is of large perturbations. That
represents a clue to understand what makes better solvers, but
should not be considered only individually. That may be due
to several combined effects.

The original HLS uses all the operators. The elites ac-
tivate all operators except Op4 which corresponds to the
MinWorkDaysMove. It focuses on a subpart of a timetable that
violates one constraint and generates only improving solutions
regarding this constraint. It is thus more complex than others.
Operators Op1, 2, and 3 are like random kicks. We hypothesize
that this operator is slower because of the complexity of its
task. Indeed, it must find the lectures of a course scheduled on
the same day and place them on different days. It may seem
more efficient to perform a succession of simple random kicks.

B. Analysis by Fitness Scores
The result of the experiments of the configurations execu-

tions on the test set is an array of data with 77 real-world in-
stances, 6 solvers (original HLS and the 5 elites), and 30 seeds,
corresponding to 13 860 fitness scores. In order to exploit these
data and compare the performance globally, we normalized the
fitness scores by real-world instance using a Min-Max scaling
method. In this subsection, we will compare the configurations,
the original one and the five elites, according to their fitness
scores. Then in the next subsection, we will focus the analysis
on the computed ranks to re-rank the configurations in order
to reduce outlier behaviors.

Figure 3, 4 and 5 show the distributions of normalized
fitness scores of the configurations, respectively over all,
ITC, and newly added instances. The elites C1, C2, C3, and
C4 seem to perform better than the original HLS and the
elite C5. Moreover, these first four configurations seems to
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Fig. 3: Distribution Fitness Scaled per configuration over all
instances.
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instances.
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Fig. 5: Distribution Fitness Scaled per configuration over New
real-world instances.

give a more stable performance than the others. In order to
rigorously compare the configurations, we calculate the ranks
of the methods following the procedure below. We first use
a Friedman statistical test, with a significance level of 0.05,
to check that the distributions of the normalized fitness scores
for each method are different. The Friedman test obtains a
p-value < 2.2 × 10−16, which means there is a statistical
difference in global performance between configurations. This
test only tells that a difference is present. To obtain actual
ranks, we proceed as follows. The mean of scaled fitness
values for each solving method is computed in order to sort
configurations by ascending order of mean fitness. Recall
that CB-CTT is a minimization problem, so we look for the
lowest values. The sorted algorithms are compared using a
Wilcoxon test (also known as the Mann-Whitney test) to check



for actual statistical difference. Again a significance level of
0.05 is used. The first ordered configuration (the one with
the best mean) is ranked 1 and is statistically compared with
the following ordered configurations until the Wilcoxon test
rejects the equality hypothesis for one configuration. Then,
this configuration is ranked 2 and the previous ones are
ranked 1. Then, we test the configuration ranked 2 with the
ordered configurations that follow. The procedure is detailed
in Algorithm 1. Table III reports the ranks calculated for each
configuration. The activated heuristics are specified between
parentheses.

Algorithm 1 Ranking Procedure

1: rank ← 1
2: index ref ← 1
3: methods←list of methods sorted by mean fitness
4: rank list[methods[1]]← rank
5: for index in index ref + 1 to |methods| do
6: method1← methods[index ref ]
7: method2← methods[index]
8: result←Wilcoxon.test(method1,method2)
9: if result : methods are not equivalent then

10: rank ← rank + 1
11: index ref ← index
12: end if
13: rank list[method2]← rank
14: end for
15: return rank list

Instance
Set HLS HC GD SA C1 C2 C3 C4 C5

All 4 6 2 6 1 3 3 1 5
ITC 4 5 2 3 1 3 2 1 4
New 3 4 1 5 1 2 2 1 4

TABLE III: Ranks on Normalized Fitness values.

Table III (line All) confirms that elite configurations C1, C2,
C3 and C4 outperform the other two. Moreover, C1 and C4 are
the elites that give the best performance to solve real-world
instances. We can remark that the order of elites given by
irace is not confirmed here. This is due to a difference between
training and test instances. However, the main important result
here is that it is possible with fine-tuning to find configurations
of HLS that better perform than the original one. To support
this conclusion, we compute the frequencies of the ranks of
each configuration. Figure 6 shows the computed frequencies.
If we focus on HLS ranks, we see that it is outperformed by
at least one other configuration on 42 instances (77− 35).

Table III also provides the rank if we separate the real-
world instances into ones from the ITC 2007 competition and
the others (called New). The ranks are globally the same, but,
surprisingly, HLS gets better performance on the new instances
even though it was manually tuned on the ITC ones.

We notice that elite configurations C1 and C4, the best
ones, do not have a Hill-Climbing phase. The three other

C3 C4 C5

SA C1 C2

HLS HC GD

2 4 6 2 4 6 2 4 6

0

20

40

60

0

20

40

60

0

20

40

60

F
re
qu
en
cy

Fig. 6: Frequency of Rank by Config.

configurations use a relatively quick HC according to their
value of IterHC, and all of them use neutral acceptance.

C. Analysis by Ranks

The disadvantage of considering the normalized fitness
values across all instances is that it does not take into account
the behavior w.r.t. each instance. In this section, we consider
the per-instance rank in order to use instance-level information.
To do so, we repeat the ranking procedure, one instance at a
time, using the raw fitness scores.

The goal is to better assess whether a variant is really
efficient on a subset of instances and just intermediate on
others. We first analyze the distribution of per-instance ranks.
Figure 7, 8, and 9 show these distributions for each configura-
tion, respectively over all instances, ITC instances, and newly
added real-world instances. They show similar behavior. The
first four elites and the original HLS have a median rank equal
to 1. If we analyze the raw data, there are many real-world
instances where the configurations are equivalent, especially
on the easier instances.
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Fig. 7: Value of Ranking by Method over all real-world
Instances.
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Fig. 8: Value of Ranking by Method over ITC real-world
Instances.
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Fig. 9: Value of Ranking by Method over New real-world
Instances.

We observe three main different behaviors. The first con-
cerns C5. Its wider boxplot and median at 2 indicate worst per-
formance than the other variants and match the rank obtained
on the normalized fitness values. Original HLS, together with
C2 and C3 have the same boxplots. However, this does not
mean that the ranks are distributed in the same way, only that
they share the same summary statistics. The two best variants
are C1 and C4, both only use Great Deluge.

These distributions of per-instance ranks seem to match to a
certain extent the results obtained on the ranks of normalized
fitness values. To further the observations from the analysis
of Figure 7, we use a ranking method on the sum of ranks
per instance by each solver. In addition, we explicitly isolate
the ITC 2007 instances from the rest, to see whether HLS
performs better on this subset of instances it was originally
designed to solve.

Instance
Set HLS HC GD SA C1 C2 C3 C4 C5

All 6 9 3 8 2 5 4 1 7
ITC 8 9 3 6 2 5 4 1 7
New 6 9 3 8 2 5 4 1 7

TABLE IV: Global Ranks on the ranks per instance.

Table IV shows the ranking of each method considering
ranks per instance. The ranking is also performed on sub-
groups of instances. The first subset, named ITC, includes the
initial CB-CTT benchmark consisting of 21 instances from the
University of Udine. The “New” group contains the remaining
newer real-world instances.

The new ranks provide additional information to comple-
ment the boxplots and previous ranks. With this approach, the
HLS, C2, and C3 are not considered as statistically similar.
Indeed, HLS is ranked worse than four of the five elites con-
figurations proposed by irace, all of which are algorithmically
simpler.

D. Ablation

Ablation analysis [5] is a method used to study the effect
of changing specific parameters of a solver on its overall
performance. The ablation analysis takes a set of instances
to test several configurations. Moreover, this process needs
two initial configurations. A starting configuration and a target
configuration. The method will test a part of the configura-
tions that are between these two initial configurations. The

algorithm tests the starting configuration, here HLS, on the
given instances, here the real-world, test set. During the first
iteration, the method generates new configurations based on
the HLS default configuration, the starting method. But these
configurations have one parameter value that differs from the
starting configuration, that value is set to the same value
as in the target. After the performance tests, statistical tests
determine the best of the new configurations. The improvement
or degradation compared to the previous starting configura-
tion is memorized. On the next iteration, the new starting
configuration is the one that is considered the best in the
previous iteration. So, on the second iteration, the starting
configuration is a configuration that has the same parameters
as HLS except for one whose value is equal to the target.
The program generates new configurations similar in terms of
parameters to this new starting configuration except for one of
them. The iterations continue until the target configuration is
obtained again. At the end of the analysis, we get information
about the change of values and parameters that allowed us to
go from HLS to the best configuration.

Here we consider C1 as the target. Indeed, we keep C1, and
not C4, because it is the most efficient according to irace on
the train set. Anyway, C1 and C4 are very close as detailed
previously.

Ablation analysis highlights the most important parameters
and their values to improve performance. In this paper, ablation
analysis takes the set of instances called All in the previous
section, which contains all of the 77 real-world instances.
The ablation compares two solvers that both have a Great
Deluge phase, which is why this parameter is not studied
by the algorithm. We previously highlighted that the best
configurations all activate this feature.
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Fig. 10: Mean configuration cost computed by the ablation
analysis.

Figure 10 shows the order in which the parameters were
changed. This is equivalent to giving an order of importance
for these two configurations. Furthermore Figure 10 gives the
average scaled cost gain on the 77 real-world instances.

The ablation method shows that the most improving change
of value from HLS is to set the UpperBoundRate to 2.
That means increasing the power of perturbation of the Great
Deluge phase contributes to the efficiency of GD. Additional
runs showed that setting UpperBoundRate to 1.43 would
increase performance in the case of C4 configuration.

The second most important feature highlighted by ablation
is MwMove, which corresponds to the activation of the Min-



WorkingDays Move operator, Section IV-B. Ablation results
conclude that the improvement due to the activation of this
operator is less significant than for UpperBoundRate. How-
ever, it is still significant compared to the other two. That fact
validates our analysis in the previous section. This operator
must slow down the solver a lot or not be efficient enough to
be worth it. The importance of deactivating SA is finally min-
imal. In Section IV-B SA, was like MinWorkingDays move,
always deactivated. And yet, these are not the most important
parameters, i.e. chosen first. So there may be combinations
of parameters where SA and GD are effective. This would
require further experimentation to ascertain.

The last parameter chosen by ablation is HC. That means
Hill Climbing has no concrete impact on the performance
when changing HLS to C1. Ablation results advise setting this
parameter to 1. Moreover, it considers that if HC is deactivated
that decreases the performance of the solver. However, our
performance tests say that variants with HC are worse than
GD only.

In summary, the ablation analysis showed that
UpperBoundRate was the most important parameter
in the success of C1 and C4. That offers the opportunity
to work in the future on SA and HC, and their parameters.
Consequently, these features become significantly important
in this kind of study.

VII. CONCLUSION

In this paper, we work on the Curriculum-Based
Course Timetabling problem, a variant of university course
timetabling problems. We consider as a starting point a state-
of-the-art method, Hybrid Local Search. First, we propose
parameters whose changes create new configurations. Unlike
the papers that have examined this solver, some parameters
are focused on changing the structure of HLS. They disable
entire heuristics. We also let more classical numerical pa-
rameters alter the behavior of the search, such as modulat-
ing the length of the optimization. Some parameters disable
neighborhood operators. An automatic algorithm configurator,
irace, returns five elite configurations using HLS as starting
point. After a performance analysis on the 77 real-world
instances of our test set, the first observation is that some
configurations are better than HLS. Indeed, irace produces
only one configuration that is worse than HLS. The two best
configurations, as identified by statistical tests, both consist
only of Great Deluge. That means that, in order to obtain
better configurations, irace removed heuristics to propose a
simpler method. Moreover, analysis of the chosen parameters
shows that all the configurations are simpler than HLS, by
removing SA essentially. Our work shows that the performance
is increased while removing heuristics from HLS. That im-
provement is due to a combination of parameters. For example,
the presence of some neighborhood operators is important:
RoomStabilityMove. Finally, the ablation analysis emphasizes
the importance of the choice of parameter values. Ablation
determines which parameters allow increasing the performance
of the configurations from HLS to C1. That shows us that it

is not SA that is most important but the power of the GD
perturbation. It does not seem from this analysis that SA is
the most important to disable. Thus, the Great Deluge seems to
be an efficient solver for the CB-CTT. Future work will focus
on improving this solver. We intend to add new parameters
to abstract from the limitations stated in this paper. At the
same time, we will expand the range of existing variables, to
continuous instead of discrete domains, to get a clearer idea of
the optimal configuration. Consequently, we will use a higher
budget for irace. Moreover, a deeper study of the combinations
of parameter values is required to fully understand the factors
at play.
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