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Erratum to Completed Iwahori-Hecke algebra and parahoric Hecke algebras for Kac-Moody groups over local fields

We modify the definition of the completed Iwahori-Hecke algebra given in our previous article (J. Ec. Polytechnique 6, 79-118) and explain why the construction we gave earlier is not correct as such.

The goal of this erratum is to fix the construction of the completed Iwahori-Hecke algebra given in [AH19, Section 4.4], as the definition given there does not always provide an actual algebra (see Section 2 below). We define here an algebra that must be used instead. Consequently, the following modifications should be operated in [AH19] : the paragraph before [AH19, Proposition 4.33] is wrong and must be replaced by Section 3 below; Theorem 4.21, Corollary 4.23 and Theorem 4.30 of [AH19] are wrong as stated there and must respectively be replaced by Theorem 3.12, Corollary 3.13 and Theorem 3.14 below.

Introduction

Let G be a split Kac-Moody group (as defined by Tits in [START_REF] Tits | Uniqueness and presentation of Kac-Moody groups over fields[END_REF]) over a non-Archimedean local field K. Given a ring R containing Z and satisfying light technical conditions (as in [AH19, Remark 4.1]), Braverman-Kazdhan-Patnaik [START_REF] Braverman | The spherical Hecke algebra for affine Kac-Moody groups I[END_REF][START_REF] Braverman | Iwahori-Hecke algebras for p-adic loop groups[END_REF] and Bardy-Panse-Gaussent-Rousseau [START_REF] Gaussent | Spherical Hecke algebras for Kac-Moody groups over local fields[END_REF][START_REF] Bardy-Panse | Iwahori-Hecke algebras for Kac-Moody groups over local fields[END_REF] associated to G a spherical Hecke algebra H s and an Iwahori-Hecke algebra H, both defined over R. Fixing a maximal split torus T of G, and letting Y (resp. Y + ) be the cocharacter lattice (resp. its intersection with the Tits cone) and W v be the Weyl group of (G, T ), then these authors moreover proved the existence of a Satake isomorphism from

H s to R[[Y ]] W v , where R[[Y ]
] is the Looijenga algebra, which is a completion of the group algebra R[Y ] of Y over R (see [START_REF] Abdellatif | Completed Iwahori-Hecke algebras and parahoric Hecke algebras for Kac-Moody groups over local fields[END_REF]Definition 4.6] for its definition). A striking difference with the classical case of reductive groups is that for G non-reductive, this spherical Hecke algebra is not isomorphic to the center of the Iwahori-Hecke algebra H.

In [START_REF] Abdellatif | Completed Iwahori-Hecke algebras and parahoric Hecke algebras for Kac-Moody groups over local fields[END_REF], we announced the definition of a completed Iwahori-Hecke algebra H that contains H and whose center is isomorphic to R[[Y ]] W v , hence to H s [AH19, Theorem 4.30]. Nevertheless, the construction of H we gave in [AH19, Section 4.4, pages 94-100] is not correct as stated, since as such, H is actually not stable in general under the convolution product. Indeed, the product of two elements of H can lead to infinite coefficients, as will be seen below in Sections 2.1 and 2.2. This erratum corrects this mistake by defining a slightly different algebra H, contained in the vector space H, for a suitable convolution product (see Corollary 3.13). The main point is to use the correct notion of almost-finiteness in the definition of the support of the elements of the completed algebra. We check here that H contains H and that the center of H is isomorphic to R[[Y ]] W v , hence to H s (see Theorem 3.14), as aimed at first. Moreover note that this modified definition of the completed Iwahori-Hecke algebra suppresses the aforementioned gap between the reductive and non-reductive cases, as for G reductive, H is actually isomorphic to the classical Iwahori-Hecke algebra (see Proposition 3.17).

This erratum is organized as follows. In Section 2, we give two counter-examples to [AH19, Theorem 4.21]: one in the reductive case and one in the non-reductive case. Then we introduce the required modifications in the definition of the completed algebra to build H in Section 3. In particular, we explain in Section 3.3 how to adapt the content of [AH19, Section 4.4, pages 94-100] to prove that the center of

H is isomorphic to R[[Y ]] W v .
2 Two counter-examples to [START_REF] Abdellatif | Completed Iwahori-Hecke algebras and parahoric Hecke algebras for Kac-Moody groups over local fields[END_REF]Theorem 4.21] We keep the notation of [AH19, section 2]. Let us briefly recall that, as in [AH19, Section 2.1], given a root generating system S = (A, X, Y, (α) i∈I , (α

∨ i ) i∈I ), we set A := Y ⊗ R, let W v denote the Weyl group of S, Q ∨ := i∈I Zα ∨ i denote its coroot lattice, Q ∨ R,+ := i∈I R + α ∨ i and Q ∨ R = i∈I Rα ∨ i .
We then have H = λ∈Y + ,w∈W v RZ λ H w , where Z λ and H w are symbols that satisfy relations (BL1) to (BL4) of [AH19, Section 4.1, page 91]. The notion of support is defined in [START_REF] Abdellatif | Completed Iwahori-Hecke algebras and parahoric Hecke algebras for Kac-Moody groups over local fields[END_REF]Definition 4.11]. In this section, we give two examples of elements (a j ) j∈J , (b k ) k∈K in H that are summable in H in the sense of [START_REF] Abdellatif | Completed Iwahori-Hecke algebras and parahoric Hecke algebras for Kac-Moody groups over local fields[END_REF]Definition 4.20], but such that (a j * b k ) j∈J,k∈K is not summable: one is a reductive case (Section 2.1), the other one is an affine Kac-Moody case (Section 2.2). This prevents [AH19, Theorem 4.21] from being true as stated, and we explain in Section 2.3 why the problem stands in the notion of almost-finiteness initially used in the definition of H, and how to modify it to get a correct analogue of [AH19, Theorem 4.21].

A counter-exemple in the reductive case

Assume that the standard apartment A is associated with a Cartan matrix. Fix

λ ∈ Y = Y + and i ∈ I. For j ∈ N, set a j = Z λ-jα ∨ i H i and b j = Z λ-jα ∨ i . As λ -Nα ∨ i is almost finite, (a j ) j∈N and (b k ) k∈N are summable in H. Now let j, k ∈ N. By (BL4) (see [AH19, Section 4.1 page 91]), there exists c j,k ∈ R[[Y ]] such that a j * b k = Z λ+ri(λ)+(k-j)α ∨ i H i + c j,k .
This implies that

(λ + r i (λ) + (k -j)α ∨ i , r i ) ∈ supp(a j * b k ), hence (a j * b k ) (j,k)∈N 2
satisfies none of the conditions of [AH19, Definition 4.20], so it is not summable in H.

A counter-example in the non-reductive case

Assume now that A is associated with an indecomposable affine Kac-Moody matrix A. Let δ : A → R be the smallest positive imaginary root associated with A. Fix λ ∈ Y + such that δ(λ) > 0 and i ∈ I: then [AH19, Section 4.2.2, pages 92-93] ensures that λ -Nα ∨ i is an almost finite subset of Y + . For j ∈ N, set a j = Z λ-jα ∨ i H i and b j = Z λ-jα ∨ i : then the same process as in the reductive case (Section 2.1 above) shows that (a j * b k ) (j,k)∈N 2 satisfies none of the conditions of [AH19, Definition 4.20], hence is not summable in H, although both (a j ) and (b k ) are summable in H.

Position of the problem and modifications required

The definition of H given in [AH19, page 95] crucially relies on the notion of almost finiteness defined in [AH19, Definition 4.12]. The problem is that almost finiteness is not preserved by the action of W v on Y + : there can exist (depending on the Kac-Moody matrix A) an almost finite set E such that w.E is not almost finite, for some w ∈ W v . To fix this problem, we introduce in the next section a refined notion of almost-finiteness, namely the notion of W v -almost finiteness. Using this new notion, we define an algebra H through an analogous construction to the one done for H in [AH19, Section 4.4, pages 94-100]. We then explain why the results and proofs stated for H in [START_REF] Abdellatif | Completed Iwahori-Hecke algebras and parahoric Hecke algebras for Kac-Moody groups over local fields[END_REF] 

W v -almost finiteness and definition of H

The idea behind the use of the following refined notion of almost finiteness is that it is preserved by the action of W v .

Definition 3.1. Let u ∈ W v . • A subset E of Y + is u-almost finite if u.E is almost finite in the sense of [AH19, Definition 4.3]. • A subset E of Y + × W v is called u-almost finite if its projection on W v is finite and if its projection on Y + is u-almost finite (as a subset of Y + ). • A subset of Y + or of Y + × W v is W v -almost finite if it is u-almost finite for any u ∈ W v .
As in [AH19, page 95], we set B = λ∈Y + ,w∈W v R and for (λ, w) ∈ Y + × W v , we let Z λ H w denote the element whose coefficients are all equal to 0 apart from the coefficient indexed by (λ, w), which is equal to 1. This allows us to write a = (a λ,w ) (λ,w)∈Y + ×W v ∈ B as the formal linear combination a =

λ∈Y + ,w∈W v a λ,w Z λ H w . Also recall that any (ν, u) ∈ Y + ×W v is associated to a projection map π ν,u : B → R defined by π ν,u   u ′ ∈W v ,ν ′ ∈Y + c ν ′ ,u ′ Z ν ′ H u ′   := c ν,u for any c ν ′ ,u ′ Z ν ′ H u ′ ∈ B.
We can now define H as the set of elements of B with W v -almost finite support. To prove that H can be endowed with a convolution product * that turns it into an associative algebra containing H, we will basically follow the same steps as in [AH19, Section 4.4], replacing the almost finiteness condition by the W v -almost finiteness condition.

We let conv R (F ) denote the convex hull of any part F of A, and we set conv(E) := conv R (E) ∩ Y for any subset E of Y . Following [AH19, page 95], recall that for any part E of Y and any i ∈ I, we let

R i (E) = conv (E ∪ r i (E)) ⊂ E + Q ∨ and that, for any pair (λ, w) ∈ Y + × W v , we set R w (λ) := R i1 (R i2 (. . . (R i k ({λ}) . . .)) ,
where the union is taken over all the reduced writings r i1 r i2 . . . r i k of w. The next two results replace [AH19, Remark 4.13] and act as preparation for the proof of Lemma 3.4 below, which replaces [AH19, Lemma 4.15].

Lemma 3.2. For any (λ, w)

∈ Y + × W v , we have R w (λ) ⊂ conv({u.λ | u ∈ [1, w]}),
where

[1, w] := {u ∈ W v |u ≤ w} is defined as in [AH19, bottom of page 94].
Proof. We prove this result by induction on ℓ(w). If ℓ(w) = 0, there is nothing to prove, so let w ∈ W v be an element of length ℓ(w) ≥ 1 and assume by induction that the lemma holds for any element w ′ ∈ W v such that ℓ(w ′ ) < ℓ(w). Let µ ∈ R w (λ), then there exists i ∈ I such that w ′ := r i w satisfies w ′ < w and

µ ∈ R i (R w ′ (λ)) = conv (R w ′ (λ), r i R w ′ (λ)). As ℓ(w ′ ) < ℓ(w), we have R w ′ (λ) ⊂ conv({u.λ | u ∈ [1, w ′ ]}) by induction hypothesis. Since [Kum02, Corollary 1.3.19] ensures that {1, r i }.[1, w ′ ] ⊂ [1, w], we obtain that conv ({u.λ | u ∈ [1, w ′ ]}) ∪ r i .conv ({u.λ | u ∈ [1, w ′ ]}) ⊂ conv ({u.λ | u ∈ [1, w]}) .
Consequently, we get that

µ ∈ conv (R w ′ (E), r i .R w ′ (E)) ⊂ conv (conv ({u.λ | u ∈ [1, w ′ ]}) ∪ r i .conv ({u.λ | u ∈ [1, w ′ ]})) ⊂ conv (conv ({u.λ | u ∈ [1, w]})) = conv ({u.λ | u ∈ [1, w]}) . This proves that R w (λ) is contained in conv({u.λ | u ∈ [1, w]}), hence the lemma. Lemma 3.3. Let E be a W v -almost finite subset of Y + .
Then, for any pair (ν, w) 

∈ Y + × W v , the set {µ ∈ E | ν ∈ R w (µ)} is finite. Proof. Let E ⊂ Y + and (ν, w) ∈ Y + ×W v be
∀ u ∈ [1, w], ∀ µ ∈ u.E, ∃ λ ∈ F | µ ≤ Q ∨ λ . Set X := {µ ∈ E | ν ∈ R w (µ)
} and pick some µ ∈ X . As ν belongs to R w (µ), Lemma 3.2 implies the existence of

(t u ) u∈[1,w] ∈ [0, 1] [1,u] such that u∈[1,w] t u = 1 and ν = u∈[1,w] t u u.µ . For any u ∈ [1, w], choose λ(u) ∈ F such that u.µ ≤ Q ∨ λ(u) and write λ(u) -u.µ as i∈I n i (u)α ∨ i with n i (u)
∈ N for all i ∈ I. Then we have:

ν = u∈[1,w] t u u.µ = u∈[1,w] t u λ(u) - u∈[1,w], i∈I t u n i (u)α ∨ i . Set a(µ) := u∈[1,w] t u λ(u) ∈ conv R (F ) and q(µ) := u∈[1,w], i∈I t u n i (u)α ∨ i ∈ Q ∨ R,+ . Since F is finite, conv R (F ) is bounded. As q(µ) = a(µ) -ν lies in conv R (F ) -ν, the set {q(µ ′ ), µ ′ ∈ X } is bounded too. Moreover, as u∈[1,w] t u = 1, there exists u ′ ∈ [1, w] such that t u ′ ≥ 1 |[1,w]| . Letting f j (x) denote the j-th coordinate of x ∈ Q ∨ R in the basis (α ∨ i
) i∈I for all j ∈ J, we have:

∀ i ∈ I, f i (q(µ)) = u∈[1,w] t u n i (u) ≥ t u ′ n i (u ′ ) ≥ 0.
We hence obtain that:

∀ i ∈ I, 0 ≤ n i (u ′ ) ≤ sup µ ′ ∈X f i (q(µ ′ )) t u ′ ≤ sup µ ′ ∈X f i (q(µ ′ )) |[1, u]| .
Consequently, if we set N := max

i∈I sup µ ′ ∈X f i (q(µ ′ )) |[1, u]|
, then we have:

u ′ .µ ∈ λ(u ′ ) - i∈I 0, N α ∨ i ⊂ F - i∈I 0, N α ∨ i .
This proves that µ lies in

u∈[1,w] u -1 .(F - i∈I 0, N α ∨ i ), hence that X is contained in the finite set u∈[1,w] u -1 .(F - i∈I 0, N α ∨ i ),
which proves that X is finite too, as claimed.

The next lemma replaces [AH19, Lemma 4.15]: the only modification consists in replacing [1, w]w ′ by [1, w ′ ]w in the aforementioned statement. In particular, the proof follows the exact same lines as [AH19, page 96], hence we do not rewrite it here.

Lemma 3.4. For all w, w ′ ∈ W v and all λ ∈ Y ,

H w ′ * Z λ H w is in (ν,t)∈R w ′ (λ)×[1,w ′ ].w R.Z ν H t .
Using the definitions of supp W v and supp Y given by [AH19, Definition 4.11], one can straightforward deduce from Lemma 3.4 the following inclusions.

Lemma 3.5. For all a, b ∈ H, we have:

(1) supp Y (a * b) ⊂ supp Y (a) + w∈supp W v (a),λ∈supp Y (b) R w (λ); (2) supp W v (a * b) ⊂ v∈supp W v (a),w∈supp W v (b) [1, v].w.
Before we give the definition of summable families in H, we prove two more statements related to W valmost finiteness in Y + . Lemma 3.6. For any almost finite set E ⊂ Y + , conv(E) is also almost finite.

Proof. Let E ⊂ Y + be an almost finite set and let F be a finite set such that:

∀ λ ∈ E, ∃ µ ∈ F | λ ≤ Q ∨ µ .
Given λ ∈ conv(E), there exist n ∈ N, t 1 , . . . , t n ∈ [0, 1] and λ 1 , . . . , λ n ∈ E such that

n i=1 t i = 1 and n i=1 t i λ i = λ . For each index i ∈ 1, n , choose κ i ∈ F such that λ i ≤ Q ∨ κ i : then n i=1 t i κ i - n i=1 t i λ i ∈ i∈I R + α ∨ i . We can hence write n i=1 t i κ i - n i=1 t i λ i = i∈I x i α ∨ i for some nonnegative real numbers (x i ) i∈I . Now let (x ′ i ) ∈ [0, 1[ I be such that x i + x ′ i lies in N for all i ∈ I and set ν := i∈I (x i + x ′ i )α ∨ i + λ. Then we have ν ≥ Q ∨ λ and ν ∈ (conv R (F ) + i∈I [0, 1]α ∨ i ) ∩ Y . Since F is finite, (conv R (F ) + i∈I [0, 1]α ∨ i )
∩ Y is a finite set that can be taken as J in [AH19, Definition 4.3] for conv(E), and the lemma is proven.

Lemma 3.7. Let E be a W v -almost finite subset of Y + . Then, for any w ∈ W v , the set λ∈E R w (λ) is W v -almost finite. Proof. Let w ∈ W v . By Lemma 3.2, we have λ∈E R w (λ) ⊂ λ∈E conv({u.λ, u ∈ [1, w]}) ⊂ conv   u∈[1,w] u.E   . Let v ∈ W v . Since [1, w] is finite, the set v. u∈[1,w]
u.E is almost finite, hence Lemma 3.6 implies that v.conv

  u∈[1,w] u.E   = conv   v. u∈[1,w] u.E   is almost finite. This proves that conv   u∈[1,w] u.E   is v-
almost finite for any v ∈ W v , and the lemma is proven.

H is an associative algebra

This subsection contains the main modification of the paper, as it aims to prove that H is actually an associative algebra. To do this, we first need to introduce the correct definition of summable families, which is the counterpart of [AH19, Definition 4.20] for W v -almost finite sets.

Definition 3.8. A family (a j ) j∈J ∈ H J is summable in H when the two following properties hold:

(i) for any λ ∈ Y + , the set {j ∈ J | ∃w ∈ W v , π λ,w (a j ) ̸ = 0} is finite; (ii) the set j∈J supp(a j ) := j∈J {(λ, w) ∈ Y + × W v |π λ,w (a j ) ̸ = 0} is W v -almost finite.
Given a summable family (a j ) j∈J ∈ H J , we define j∈J a j ∈ H by the following formula:

j∈J a j := (λ,w)∈Y + ×W v a λ,w Z λ H w , with a λ,w := j∈J π λ,w (a j ) for all (λ, w) ∈ Y + × W v .
Lemma 3.9. For any almost finite subsets E, E ′ of Y + and any ρ ∈ Y + , the set

E ′′ := {λ ∈ E | ∃ ν ∈ E ′ , λ + ν = ρ} is finite.
Proof. By definition, there exists a finite set

F ⊂ Y + such that: ∀µ ∈ E ∪ E ′ , ∃ κ ∈ F | µ ≤ Q ∨ κ. Now let λ ∈ E ′′ and ν ∈ E ′ be such that λ + ν = ρ.
Then we have:

∃(κ, κ ′ ) ∈ F 2 | ρ -κ ′ ≤ Q ∨ λ ≤ Q ∨ κ
and the lemma follows.

The next lemma is the cornerstone that ensures that the convolution product on H is well-defined.

Lemma 3.10.

Let (a λ ), (b µ ) ∈ R Y + be such that {λ ∈ Y + |a λ ̸ = 0 or b λ ̸ = 0} is W v -almost finite. Then, for any w ∈ W v , (a λ b µ Z λ H w * Z µ ) (λ,µ)∈(Y + ) 2 is summable in H. Said differently, if λ∈Y + a λ Z λ H w , µ∈Y + b µ Z µ ∈ H, then λ∈Y + a λ Z λ H w *   µ∈Y + b µ Z µ   := λ,µ∈Y + a λ b µ Z λ H w * Z µ is a well-defined element of H. Proof. Set S a := {λ ∈ Y + | a λ ̸ = 0}, S b = {µ ∈ Y + | b µ ̸ = 0} and E = µ∈S b R w (µ). Note that E is almost finite by Lemma 3.7. Given µ ∈ Y + , Lemma 3.4 ensures the existence of (z v,ν µ ) ν∈Rw(µ),v∈[1,w] ∈ R Rw(µ)×[1,w] such that H w * Z µ = ν∈Rw(µ),v∈[1,w] z v,ν µ Z ν H v .
Let us fix v ∈ [1, w]. Given any λ, ρ ∈ Y + , we have

π ρ,v (a λ Z λ H w * b µ Z µ ) = ν∈Rw(µ) | λ+ν=ρ a λ b µ z v,ν µ . (1) 
Set

F 1 := λ ∈ Y + | ∃ µ ∈ Y + , π ρ,v (a λ Z λ H w * b µ Z µ ) ̸ = 0 ⊂ S a
and let λ ∈ F 1 . By equality (1), there exists ν ∈ E such that λ + ν = ρ. Since λ lies in S a , applying Lemma 3.9 to E and S a implies that F 1 is finite.

Fix now λ ∈ F 1 and set F 2 (λ) = {µ ∈ Y + | π ρ,v (a λ Z λ H w * b µ Z µ ) ̸ = 0} ⊂ S b . Given µ ∈ F 2 (λ), we know from equality (1) that ρ -λ ∈ R w (µ). As S b is W v -almost finite, Lemma 3.3 yields the finiteness of F 2 (λ),
hence the finiteness of

F v := {(λ, µ) ∈ (Y + ) 2 | π ρ,v (a λ b µ Z λ H w * Z µ ) ̸ = 0} = λ∈F1 F 2 (λ) .
Finally, we obtain that

{(λ, µ) ∈ (Y + ) 2 | ∃ v ∈ W v , π ρ,v (a λ b µ Z λ H w * Z µ ) ̸ = 0} = v∈[1,w] F v is finite, which proves that (a λ b µ Z λ H w * Z µ ) (λ,µ)∈(Y + ) 2 satisfies condition (i) of Definition 3.8. Now let λ, µ ∈ Y + .
Then equality (1) ensures that:

supp(a λ b µ Z λ H w * Z µ ) ⊂ (λ + R w (µ)) × [1, w] ⊂ (λ + E) × [1, w].
In particular, we have

(λ,µ)∈(Y + ) 2 supp(a λ b µ Z λ H w * Z µ ) ⊂ (S a + E) × [1, w].
As E is W v -almost finite, and as the sum of two

W v -almost finite sets is W v -almost finite, we obtain that (a λ b µ Z λ H w * Z µ ) (λ,µ)∈(Y +
) 2 satisfies condition (ii) of Definition 3.8, which ends the proof.

Lemma 3.11. For any summable family (a j ) j∈J ∈ ( H) J in H and any i ∈ I, the family (a j * H i ) j∈J is summable in H.

Proof. By definition, there exist a W v -almost finite subset E of Y + and a finite subset F of W v such that: ∀ j ∈ J, supp(a j ) ⊂ E × F . By (BL2) of [AH19, page 91], we get that

∀ j ∈ J, supp(a j * H i ) ⊂ E × (F ∪ F.r i ) , which proves that j∈J supp(a j * H i ) is W v -almost finite. Now let λ ∈ Y + , w ∈ W v and j ∈ J. By (BL2)
again, we know that π λ,w (a j * H i ) ̸ = 0 implies π λ,w (a j ) ̸ = 0 or π λ,wri (a j ) ̸ = 0. Since there are finitely many such j ∈ J, this completes the proof of the lemma.

The next statement replaces [AH19, Theorem 4.21] and its proof basically follows the same lines as the proof of [AH19, Theorem 4.21], replacing almost finiteness by W v -almost finiteness. Recall that the elements of H correspond to the elements of H with finite support.

Theorem 3.12. Let (a j ) j∈J ∈ (H)

J and (b k ) k∈J ∈ (H) K be two families that are both summable in H. Then Proof. For j ∈ J and k ∈ K, write a j :=

v∈W v a v,j * H v and b k := w∈W v b w,k * H w , with (a v,j ) j∈J ∈ R[[Y ]] J and (b w,k ) k∈K ∈ R[Y ]] K for any v, w ∈ W v . Given v, w ∈ W v , Lemma 3.10 ensures that (a v,j * H v * b w,k ) (j,k)∈J×K
is summable in H. By induction on ℓ(w) and using Lemma 3.11, we get that (a v,j * H v * b w,k * H w ) (j,k)∈J×K is summable in H. Moreover, as (a j ) and (b k ) are summable in H, there are at most finitely many v, w ∈ W v satisfying (a v,j ) j∈J ̸ = 0 and (b w,k ) k∈K ̸ = 0. Consequently, the family

(a j * b k ) (j,k)∈J×K is summable in H. Now, given any triple (u, v, µ) ∈ W v × W v × Y + , applying Lemma 3.4 to H u * Z µ H v gives a family (z u,v,µ ν,t ) (ν,t)∈Ru(µ)×[1,u].v of scalars that satisfy H u * Z µ H v = (ν,t)∈Ru(µ)×[1,u].v z u,v,µ ν,t Z ν H t .
For any pair (ρ, s) ∈ Y + × W v , we have

π ρ,s   (j,k)∈J×K a j * b k   = (λ,u),(µ,v)∈Y + ×W v ν∈Ru(µ) | λ+ν=ρ (j,k)∈J×K a j,λ,u b k,µ,v z u,v,µ ν,s = (λ,u),(µ,v)∈Y + ×W v ν∈Ru(µ) | λ+ν=ρ a λ,u b µ,v z u,v,µ v,s ,
where we set 

j∈J a j = (λ,u)∈Y + ×W v a λ,u Z λ H u and k∈K b k = (µ,v)∈Y + ×W v b µ,v Z µ H v ,
= (λ,v)∈Y + ×W v a λ,v Z λ H v ∈ H and b = (µ,w)∈Y + ×W v b µ,w Z µ H w ∈ H, we set a * b = (v,λ),(w,µ)∈Y + ×W v a λ,v b µ,w Z λ H v * Z µ H w ,
which is well-defined by Theorem 3.12. We can now formulate the statement that replaces [ 

The reductive case

Lemma 3.16. Assume that A is associated with a Cartan matrix A. Then a subset of Y + = Y is W v -almost finite if, and only if, it is finite.

Proof. Thanks to [AH19, Lemma 5.17], we may assume that i∈I ker α i = {0}. Let A 1 , . . . , A r denote the indecomposable components of A: then A = r i=1 A i , where A i is a realization of A i (as defined in [AH19, 5.4.1]) for all i ∈ 1, r . For i ∈ 1, r , we denote by W v i the Weyl group of A i , by Q ∨ i its coroot lattice and by Y i its cocharacter lattice, so that we have

W v = W v 1 × . . . × W v r , Q ∨ = r i=1 Q ∨ i and Y = r i=1 Y i .
Now let E be a W v -almost finite subset of Y . For w ∈ W v , set E w := E ∩ w.C v f . Since E is w -1almost finite, there exists a finite set F ⊂ Y such that: ∀ λ ∈ E, ∃µ ∈ F | λ ≤ Q ∨ µ . For i ∈ 1, r , set

Y ++ i := Y i ∩ C v f,i
, where C v f,i denotes the fundamental chamber of A i : then we know from [Kac94, Theorem 4.3] that Y ++ i ⊂ Q ∨ i,+ . Given λ = (λ 1 , . . . , λ r ) ∈ E w , let µ = (µ 1 , . . . , µ r ) ∈ F be such that λ ≤ Q ∨ µ. Then we have 0 ≤ Q ∨ i λ i ≤ Q ∨ i µ i for all i ∈ 1, r , hence E w must be finite. As W v is finite, we get that E is finite too, and the lemma is proven as the converse statement is straightforward.

Since H corresponds to the subspace of elements of H with finite support, we directly obtain the following result from Lemma 3.16, which states that H is just the usual Iwahori-Hecke algebra in the reductive case. This replaces the first paragraph of [AH19, Section 4.6.1, page 105].

Proposition 3.17. If A is associated with a Cartan matrix, then H = H.

(

  a j * b k ) (j,k)∈J×K is summable in H and(j,k)∈J×K a j * b k only depends on the two elements j∈J a j and k∈K b k of H.

  are now valid for H. Before going further, let us list precisely what modifications are actually done in this erratum. The statement and proof of [AH19, Theorem 4.21, Corollary 4.23 and Theorem 4.30] must be respectively replaced by the statement and proof of Theorem 3.12, Corollary 3.13 and Theorem 3.14 below.

⋆ The notion of almost finiteness defined in [AH19, Definition 4.12] must be replaced by the notion of W v -almost finiteness introduced in Definition 3.1 below to define H as we defined H but with the aforementioned replacement. ⋆ ⋆ The content of the paragraph before [AH19, Proposition 4.33], which explains what happens in the reductive case, must be replaced by Section 3.4 below. supported elements. It actually boils down to defining the right notion of almost-finiteness and checking that what we did in [AH19, Section 4] transposes in this setting to define an actual algebra H with the required properties.

  as in the statement. Applying the definition of almost finiteness [AH19, Definition 4.3] to u.E for any u ∈ [1, w] provides a finite set F ⊂ Y + such that :

  hence the theorem is proven. The mistake done in the former proof of [AH19, Theorem 4.20] is to implicitely assume that S Y = (b k ) is such that {λ ++ , λ ∈ S Y } is almost finite, which is not true in general, as shown by the counter-examples given in Section 2. As spotted by the referee, the same kind of subtlety underlies a mistake made by Looijenga in his seminal 1980 work [Loo80, (4.1), end of the first paragraph].For a

j∈J supp Y (a j ) ∪ k∈K supp Y

  Recall that the definition of the Looijenga algebra R[[Y ]] and its variants R[[Y ]] W v and R[[Y + ]] is given by [AH19, Definition 4.6]. Also, we proved in [AH19, Proposition 4.9] that R[[Y ]] W v is a subspace of R[[Y + ]].Now note that the latter can be seen as a subspace of B, so it makes sense to compare these algebras with the algebra H we built earlier.Givena ∈ R[[Y ]] W v ,we have supp(a) = supp Y (a) × {1}, with supp Y (a) being W v -invariant and almost finite, hence supp(a) is W v -almost finite. In particular, this implies that R[[Y ]] W v is contained in H. However, note that in general, R[[Y ]] may not be entirely contained in H, as can be seen for instance in Example 2.2. Replacing H by H in the proof of [AH19, Theorem 4.30] provides the following theorem, which replaces [AH19, Theorem 4.30]. Theorem 3.14. The center of the algebra H is Z ( H) = R[[Y ]] W v , hence is isomorphic to H s via the Satake isomorphism. Remark 3.15. By [AH19, Lemma 4.5], we know that if A is associated with an indefinite size 2 Kac-Moody matrix, then any subset of Y + is almost finite, hence any subset of Y + is W v -almost finite.

AH19, Corollary 4.23], providing the required structure on H. Its proof is the same as [AH19, Corollary 4.23], replacing [AH19, Theorem 4.21] by Theorem 3.12 above.

Corollary 3.13. The convolution product * equips H with the structure of an associative algebra over R that contains H as subspace of finitely supported elements.

3.3

The center of H is isomorphic to H s

The completed Iwahori-Hecke algebra HThe goal of this section is to build an algebra H that appears to be smaller than H (that is NOT always an algebra) whose center is (still) isomorphic to R[[Y ]] W v and that (still) contains H as the subalgebra of finitely
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