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Abstract

We modify the definition of the completed Iwahori-Hecke algebra given in our previous article (J. Ec.
Polytechnique 6, 79–118) and explain why the construction we gave earlier is not correct as such.

The goal of this erratum is to fix the construction of the completed Iwahori-Hecke algebra given in [AH19,
Section 4.4], as the definition given there does not always provide an actual algebra (see Section 2 below).
We define here an algebra that must be used instead. Consequently, the following modifications should
be operated in [AH19] : the paragraph before [AH19, Proposition 4.33] is wrong and must be replaced by
Section 3 below; Theorem 4.21, Corollary 4.23 and Theorem 4.30 of [AH19] are wrong as stated there and
must respectively be replaced by Theorem 3.12, Corollary 3.13 and Theorem 3.14 below.

1 Introduction
Let G be a split Kac-Moody group (as defined by Tits in [Tit87]) over a non-Archimedean local field K.
Given a ring R containing Z and satisfying light technical conditions (as in [AH19, Remark 4.1]), Braverman-
Kazdhan-Patnaik [BK11, BKP16] and Bardy–Panse-Gaussent-Rousseau [GR14, BPGR16] associated to G
a spherical Hecke algebra Hs and an Iwahori-Hecke algebra H, both defined over R. Fixing a maximal
split torus T of G, and letting Y (resp. Y +) be the cocharacter lattice (resp. its intersection with the Tits
cone) and W v be the Weyl group of (G,T ), then these authors moreover proved the existence of a Satake
isomorphism from Hs to R[[Y ]]W

v

, where R[[Y ]] is the Looijenga algebra, which is a completion of the group
algebra R[Y ] of Y over R (see [AH19, Definition 4.6] for its definition). A striking difference with the classical
case of reductive groups is that for G non-reductive, this spherical Hecke algebra is not isomorphic to the
center of the Iwahori-Hecke algebra H.

In [AH19], we announced the definition of a completed Iwahori-Hecke algebra Ĥ that contains H and
whose center is isomorphic to R[[Y ]]W

v

, hence to Hs [AH19, Theorem 4.30]. Nevertheless, the construction
of Ĥ we gave in [AH19, Section 4.4, pages 94-100] is not correct as stated, since as such, Ĥ is actually
not stable in general under the convolution product. Indeed, the product of two elements of Ĥ can lead
to infinite coefficients, as will be seen below in Sections 2.1 and 2.2. This erratum corrects this mistake by
defining a slightly different algebra H̃, contained in the vector space Ĥ, for a suitable convolution product
(see Corollary 3.13). The main point is to use the correct notion of almost-finiteness in the definition of the
support of the elements of the completed algebra. We check here that H̃ contains H and that the center of
H̃ is isomorphic to R[[Y ]]W

v

, hence to Hs (see Theorem 3.14), as aimed at first. Moreover note that this
modified definition of the completed Iwahori-Hecke algebra suppresses the aforementioned gap between the
reductive and non-reductive cases, as for G reductive, H̃ is actually isomorphic to the classical Iwahori-Hecke
algebra (see Proposition 3.17).

This erratum is organized as follows. In Section 2, we give two counter-examples to [AH19, Theorem 4.21]:
one in the reductive case and one in the non-reductive case. Then we introduce the required modifications
in the definition of the completed algebra to build H̃ in Section 3. In particular, we explain in Section 3.3
how to adapt the content of [AH19, Section 4.4, pages 94-100] to prove that the center of H̃ is isomorphic to
R[[Y ]]W

v

.

Acknowledgements We thank the referees for their valuable comments and suggestions.

1



2 Two counter-examples to [AH19, Theorem 4.21]
We keep the notation of [AH19, section 2]. Let us briefly recall that, as in [AH19, Section 2.1], given a root
generating system S = (A,X, Y, (α)i∈I , (α

∨
i )i∈I), we set A := Y ⊗ R, let W v denote the Weyl group of S,

Q∨ :=
⊕
i∈I

Zα∨
i denote its coroot lattice, Q∨

R,+ :=
⊕

i∈I R+α
∨
i and Q∨

R =
⊕

i∈I Rα∨
i .

We then have H =
⊕

λ∈Y +,w∈Wv RZλHw, where Zλ and Hw are symbols that satisfy relations (BL1)
to (BL4) of [AH19, Section 4.1, page 91]. The notion of support is defined in [AH19, Definition 4.11]. In
this section, we give two examples of elements (aj)j∈J , (bk)k∈K in H that are summable in Ĥ in the sense
of [AH19, Definition 4.20], but such that (aj ∗ bk)j∈J,k∈K is not summable: one is a reductive case (Section
2.1), the other one is an affine Kac-Moody case (Section 2.2). This prevents [AH19, Theorem 4.21] from
being true as stated, and we explain in Section 2.3 why the problem stands in the notion of almost-finiteness
initially used in the definition of Ĥ, and how to modify it to get a correct analogue of [AH19, Theorem 4.21].

2.1 A counter-exemple in the reductive case
Assume that the standard apartment A is associated with a Cartan matrix. Fix λ ∈ Y = Y + and i ∈ I. For
j ∈ N, set aj = Zλ−jα∨

i Hi and bj = Zλ−jα∨
i . As λ−Nα∨

i is almost finite, (aj)j∈N and (bk)k∈N are summable
in Ĥ. Now let j, k ∈ N. By (BL4) (see [AH19, Section 4.1 page 91]), there exists cj,k ∈ R[[Y ]] such that

aj ∗ bk = Zλ+ri(λ)+(k−j)α∨
i Hi + cj,k .

This implies that (λ + ri(λ) + (k − j)α∨
i , ri) ∈ supp(aj ∗ bk), hence (aj ∗ bk)(j,k)∈N2 satisfies none of the

conditions of [AH19, Definition 4.20], so it is not summable in Ĥ.

2.2 A counter-example in the non-reductive case
Assume now that A is associated with an indecomposable affine Kac-Moody matrix A. Let δ : A → R be
the smallest positive imaginary root associated with A. Fix λ ∈ Y + such that δ(λ) > 0 and i ∈ I: then
[AH19, Section 4.2.2, pages 92-93] ensures that λ − Nα∨

i is an almost finite subset of Y +. For j ∈ N, set
aj = Zλ−jα∨

i Hi and bj = Zλ−jα∨
i : then the same process as in the reductive case (Section 2.1 above) shows

that (aj ∗ bk)(j,k)∈N2 satisfies none of the conditions of [AH19, Definition 4.20], hence is not summable in Ĥ,
although both (aj) and (bk) are summable in Ĥ.

2.3 Position of the problem and modifications required

The definition of Ĥ given in [AH19, page 95] crucially relies on the notion of almost finiteness defined in
[AH19, Definition 4.12]. The problem is that almost finiteness is not preserved by the action of W v on
Y +: there can exist (depending on the Kac-Moody matrix A) an almost finite set E such that w.E is not
almost finite, for some w ∈ W v. To fix this problem, we introduce in the next section a refined notion of
almost-finiteness, namely the notion of W v-almost finiteness. Using this new notion, we define an algebra
H̃ through an analogous construction to the one done for Ĥ in [AH19, Section 4.4, pages 94-100]. We then
explain why the results and proofs stated for Ĥ in [AH19] are now valid for H̃.

Before going further, let us list precisely what modifications are actually done in this erratum.

⋆ The notion of almost finiteness defined in [AH19, Definition 4.12] must be replaced by the notion of
W v-almost finiteness introduced in Definition 3.1 below to define H̃ as we defined Ĥ but with the
aforementioned replacement.

⋆ The statement and proof of [AH19, Theorem 4.21, Corollary 4.23 and Theorem 4.30] must be respec-
tively replaced by the statement and proof of Theorem 3.12, Corollary 3.13 and Theorem 3.14 below.

⋆ The content of the paragraph before [AH19, Proposition 4.33], which explains what happens in the
reductive case, must be replaced by Section 3.4 below.

3 The completed Iwahori-Hecke algebra H̃
The goal of this section is to build an algebra H̃ that appears to be smaller than Ĥ (that is NOT always an
algebra) whose center is (still) isomorphic to R[[Y ]]W

v

and that (still) contains H as the subalgebra of finitely
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supported elements. It actually boils down to defining the right notion of almost-finiteness and checking that
what we did in [AH19, Section 4] transposes in this setting to define an actual algebra H̃ with the required
properties.

3.1 W v-almost finiteness and definition of H̃
The idea behind the use of the following refined notion of almost finiteness is that it is preserved by the
action of W v.

Definition 3.1. Let u ∈ W v.

• A subset E of Y + is u-almost finite if u.E is almost finite in the sense of [AH19, Definition 4.3].

• A subset E of Y + ×W v is called u-almost finite if its projection on W v is finite and if its projection
on Y + is u-almost finite (as a subset of Y +).

• A subset of Y + or of Y + ×W v is W v-almost finite if it is u-almost finite for any u ∈ W v.

As in [AH19, page 95], we set B =
∏

λ∈Y +,w∈Wv R and for (λ,w) ∈ Y + × W v, we let ZλHw denote
the element whose coefficients are all equal to 0 apart from the coefficient indexed by (λ,w), which is
equal to 1. This allows us to write a = (aλ,w)(λ,w)∈Y +×Wv ∈ B as the formal linear combination a =∑
λ∈Y +,w∈Wv

aλ,wZ
λHw. Also recall that any (ν, u) ∈ Y +×W v is associated to a projection map πν,u : B → R

defined by

πν,u

 ∑
u′∈Wv,ν′∈Y +

cν′,u′Zν′
Hu′

 := cν,u

for any
∑

cν′,u′Zν′
Hu′ ∈ B.

We can now define H̃ as the set of elements of B with W v-almost finite support. To prove that H̃ can be
endowed with a convolution product ∗ that turns it into an associative algebra containing H, we will basically
follow the same steps as in [AH19, Section 4.4], replacing the almost finiteness condition by the W v-almost
finiteness condition.

We let convR(F ) denote the convex hull of any part F of A, and we set conv(E) := convR(E) ∩ Y for
any subset E of Y . Following [AH19, page 95], recall that for any part E of Y and any i ∈ I, we let
Ri(E) = conv (E ∪ ri(E)) ⊂ E +Q∨ and that, for any pair (λ,w) ∈ Y + ×W v, we set

Rw(λ) :=
⋃

Ri1 (Ri2 (. . . (Rik({λ}) . . .)) ,

where the union is taken over all the reduced writings ri1ri2 . . . rik of w. The next two results replace [AH19,
Remark 4.13] and act as preparation for the proof of Lemma 3.4 below, which replaces [AH19, Lemma 4.15].

Lemma 3.2. For any (λ,w) ∈ Y + ×W v, we have

Rw(λ) ⊂ conv({u.λ | u ∈ [1, w]}),

where [1, w] := {u ∈ W v |u ≤ w} is defined as in [AH19, bottom of page 94].

Proof. We prove this result by induction on ℓ(w). If ℓ(w) = 0, there is nothing to prove, so let w ∈ W v

be an element of length ℓ(w) ≥ 1 and assume by induction that the lemma holds for any element w′ ∈ W v

such that ℓ(w′) < ℓ(w). Let µ ∈ Rw(λ), then there exists i ∈ I such that w′ := riw satisfies w′ < w and
µ ∈ Ri (Rw′(λ)) = conv (Rw′(λ), riRw′(λ)). As ℓ(w′) < ℓ(w), we have Rw′(λ) ⊂ conv({u.λ | u ∈ [1, w′]}) by
induction hypothesis. Since [Kum02, Corollary 1.3.19] ensures that {1, ri}.[1, w′] ⊂ [1, w], we obtain that

conv ({u.λ | u ∈ [1, w′]}) ∪ ri.conv ({u.λ | u ∈ [1, w′]}) ⊂ conv ({u.λ | u ∈ [1, w]}) .

Consequently, we get that

µ ∈ conv (Rw′(E), ri.Rw′(E)) ⊂ conv (conv ({u.λ | u ∈ [1, w′]}) ∪ ri.conv ({u.λ | u ∈ [1, w′]}))
⊂ conv (conv ({u.λ | u ∈ [1, w]})) = conv ({u.λ | u ∈ [1, w]}) .

This proves that Rw(λ) is contained in conv({u.λ | u ∈ [1, w]}), hence the lemma.
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Lemma 3.3. Let E be a W v-almost finite subset of Y +.
Then, for any pair (ν, w) ∈ Y + ×W v, the set {µ ∈ E | ν ∈ Rw(µ)} is finite.

Proof. Let E ⊂ Y + and (ν, w) ∈ Y +×W v be as in the statement. Applying the definition of almost finiteness
[AH19, Definition 4.3] to u.E for any u ∈ [1, w] provides a finite set F ⊂ Y + such that :

∀ u ∈ [1, w], ∀ µ ∈ u.E, ∃ λ ∈ F | µ ≤Q∨ λ .

Set X := {µ ∈ E | ν ∈ Rw(µ)} and pick some µ ∈ X . As ν belongs to Rw(µ), Lemma 3.2 implies the
existence of (tu)u∈[1,w] ∈ [0, 1][1,u] such that∑

u∈[1,w]

tu = 1 and ν =
∑

u∈[1,w]

tuu.µ .

For any u ∈ [1, w], choose λ(u) ∈ F such that u.µ ≤Q∨ λ(u) and write λ(u) − u.µ as
∑
i∈I

ni(u)α
∨
i with

ni(u) ∈ N for all i ∈ I. Then we have:

ν =
∑

u∈[1,w]

tuu.µ =
∑

u∈[1,w]

tuλ(u)−
∑

u∈[1,w], i∈I

tuni(u)α
∨
i .

Set a(µ) :=
∑

u∈[1,w]

tuλ(u) ∈ convR(F ) and q(µ) :=
∑

u∈[1,w], i∈I

tuni(u)α
∨
i ∈ Q∨

R,+. Since F is finite, convR(F )

is bounded. As q(µ) = a(µ)− ν lies in convR(F )− ν, the set {q(µ′), µ′ ∈ X} is bounded too. Moreover, as∑
u∈[1,w] tu = 1, there exists u′ ∈ [1, w] such that tu′ ≥ 1

|[1,w]| . Letting fj(x) denote the j-th coordinate of
x ∈ Q∨

R in the basis (α∨
i )i∈I for all j ∈ J , we have:

∀ i ∈ I, fi (q(µ)) =
∑

u∈[1,w]

tuni(u) ≥ tu′ni(u
′) ≥ 0.

We hence obtain that:

∀ i ∈ I, 0 ≤ ni(u
′) ≤

sup
µ′∈X

fi (q(µ
′))

tu′
≤

sup
µ′∈X

fi (q(µ
′))

|[1, u]|
.

Consequently, if we set N := max
i∈I

supµ′∈X fi (q(µ
′))

|[1, u]|
, then we have:

u′.µ ∈ λ(u′)−
∑
i∈I

J0, NKα∨
i ⊂ F −

∑
i∈I

J0, NKα∨
i .

This proves that µ lies in
⋃

u∈[1,w]

u−1.(F−
∑
i∈I

J0, NKα∨
i ), hence that X is contained in the finite set

⋃
u∈[1,w]

u−1.(F−∑
i∈I

J0, NKα∨
i ), which proves that X is finite too, as claimed.

The next lemma replaces [AH19, Lemma 4.15]: the only modification consists in replacing [1, w]w′ by
[1, w′]w in the aforementioned statement. In particular, the proof follows the exact same lines as [AH19, page
96], hence we do not rewrite it here.

Lemma 3.4. For all w,w′ ∈ W v and all λ ∈ Y , Hw′ ∗ ZλHw is in
⊕

(ν,t)∈Rw′ (λ)×[1,w′].w

R.ZνHt.

Using the definitions of suppWv and suppY given by [AH19, Definition 4.11], one can straightforward
deduce from Lemma 3.4 the following inclusions.

Lemma 3.5. For all a, b ∈ H, we have:

(1) suppY (a ∗ b) ⊂ suppY (a) +
⋃

w∈suppWv (a),λ∈suppY (b)

Rw(λ);

(2) suppWv (a ∗ b) ⊂
⋃

v∈suppWv (a),w∈suppWv (b)

[1, v].w.
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Before we give the definition of summable families in H̃, we prove two more statements related to W v-
almost finiteness in Y +.

Lemma 3.6. For any almost finite set E ⊂ Y +, conv(E) is also almost finite.

Proof. Let E ⊂ Y + be an almost finite set and let F be a finite set such that:

∀ λ ∈ E, ∃ µ ∈ F | λ ≤Q∨ µ .

Given λ ∈ conv(E), there exist n ∈ N, t1, . . . , tn ∈ [0, 1] and λ1, . . . , λn ∈ E such that

n∑
i=1

ti = 1 and
n∑

i=1

tiλi = λ .

For each index i ∈ J1, nK, choose κi ∈ F such that λi ≤Q∨ κi: then
n∑

i=1

tiκi −
n∑

i=1

tiλi ∈
⊕
i∈I

R+α
∨
i . We can

hence write
n∑

i=1

tiκi −
n∑

i=1

tiλi =
∑
i∈I

xiα
∨
i for some nonnegative real numbers (xi)i∈I . Now let (x′

i) ∈ [0, 1[I

be such that xi + x′
i lies in N for all i ∈ I and set ν :=

∑
i∈I

(xi + x′
i)α

∨
i + λ. Then we have ν ≥Q∨ λ and

ν ∈ (convR(F ) +
⊕
i∈I

[0, 1]α∨
i ) ∩ Y . Since F is finite, (convR(F ) +

⊕
i∈I

[0, 1]α∨
i ) ∩ Y is a finite set that can be

taken as J in [AH19, Definition 4.3] for conv(E), and the lemma is proven.

Lemma 3.7. Let E be a W v-almost finite subset of Y +. Then, for any w ∈ W v, the set
⋃
λ∈E

Rw(λ) is

W v-almost finite.

Proof. Let w ∈ W v. By Lemma 3.2, we have

⋃
λ∈E

Rw(λ) ⊂
⋃
λ∈E

conv({u.λ, u ∈ [1, w]}) ⊂ conv

 ⋃
u∈[1,w]

u.E

 .

Let v ∈ W v. Since [1, w] is finite, the set v.
⋃

u∈[1,w]

u.E is almost finite, hence Lemma 3.6 implies that

v.conv

 ⋃
u∈[1,w]

u.E

 = conv

v.
⋃

u∈[1,w]

u.E

 is almost finite. This proves that conv

 ⋃
u∈[1,w]

u.E

 is v-

almost finite for any v ∈ W v, and the lemma is proven.

3.2 H̃ is an associative algebra

This subsection contains the main modification of the paper, as it aims to prove that H̃ is actually an
associative algebra. To do this, we first need to introduce the correct definition of summable families, which
is the counterpart of [AH19, Definition 4.20] for W v-almost finite sets.

Definition 3.8. A family (aj)j∈J ∈
(
H̃
)J

is summable in H̃ when the two following properties hold:

(i) for any λ ∈ Y +, the set {j ∈ J | ∃w ∈ W v, πλ,w(aj) ̸= 0} is finite;

(ii) the set
⋃
j∈J

supp(aj) :=
⋃
j∈J

{(λ,w) ∈ Y + ×W v|πλ,w(aj) ̸= 0} is W v-almost finite.

Given a summable family (aj)j∈J ∈
(
H̃
)J

, we define
∑
j∈J

aj ∈ H̃ by the following formula:

∑
j∈J

aj :=
∑

(λ,w)∈Y +×Wv

aλ,wZ
λHw , with aλ,w :=

∑
j∈J

πλ,w(aj) for all (λ,w) ∈ Y + ×W v .
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Lemma 3.9. For any almost finite subsets E,E′ of Y + and any ρ ∈ Y +, the set

E′′ := {λ ∈ E | ∃ ν ∈ E′, λ+ ν = ρ}

is finite.

Proof. By definition, there exists a finite set F ⊂ Y + such that: ∀µ ∈ E ∪ E′, ∃ κ ∈ F | µ ≤Q∨ κ. Now let
λ ∈ E′′ and ν ∈ E′ be such that λ+ ν = ρ. Then we have:

∃(κ, κ′) ∈ F 2 | ρ− κ′ ≤Q∨ λ ≤Q∨ κ

and the lemma follows.

The next lemma is the cornerstone that ensures that the convolution product on H̃ is well-defined.

Lemma 3.10. Let (aλ), (bµ) ∈ RY +

be such that {λ ∈ Y + |aλ ̸= 0 or bλ ̸= 0} is W v-almost finite. Then, for
any w ∈ W v, (aλbµZλHw ∗Zµ)(λ,µ)∈(Y +)2 is summable in H̃. Said differently, if

∑
λ∈Y +

aλZ
λHw,

∑
µ∈Y +

bµZ
µ ∈

H̃, then ( ∑
λ∈Y +

aλZ
λHw

)
∗

 ∑
µ∈Y +

bµZ
µ

 :=
∑

λ,µ∈Y +

aλbµZ
λHw ∗ Zµ

is a well-defined element of H̃.

Proof. Set Sa := {λ ∈ Y + | aλ ̸= 0}, Sb = {µ ∈ Y + | bµ ̸= 0} and E =
⋃

µ∈Sb

Rw(µ). Note that E is almost

finite by Lemma 3.7.
Given µ ∈ Y +, Lemma 3.4 ensures the existence of (zv,νµ )ν∈Rw(µ),v∈[1,w] ∈ RRw(µ)×[1,w] such that

Hw ∗ Zµ =
∑

ν∈Rw(µ),v∈[1,w]

zv,νµ ZνHv .

Let us fix v ∈ [1, w]. Given any λ, ρ ∈ Y +, we have

πρ,v(aλZ
λHw ∗ bµZµ) =

∑
ν∈Rw(µ) | λ+ν=ρ

aλbµz
v,ν
µ . (1)

Set F1 :=
{
λ ∈ Y + | ∃ µ ∈ Y +, πρ,v(aλZ

λHw ∗ bµZµ) ̸= 0
}
⊂ Sa and let λ ∈ F1. By equality (1), there exists

ν ∈ E such that λ+ ν = ρ. Since λ lies in Sa, applying Lemma 3.9 to E and Sa implies that F1 is finite.
Fix now λ ∈ F1 and set F2(λ) = {µ ∈ Y + | πρ,v(aλZ

λHw ∗ bµZ
µ) ̸= 0} ⊂ Sb. Given µ ∈ F2(λ), we know

from equality (1) that ρ − λ ∈ Rw(µ). As Sb is W v-almost finite, Lemma 3.3 yields the finiteness of F2(λ),
hence the finiteness of

Fv := {(λ, µ) ∈ (Y +)2 | πρ,v(aλbµZ
λHw ∗ Zµ) ̸= 0} =

⋃
λ∈F1

F2(λ) .

Finally, we obtain that

{(λ, µ) ∈ (Y +)2 | ∃ v ∈ W v, πρ,v(aλbµZ
λHw ∗ Zµ) ̸= 0} =

⋃
v∈[1,w]

Fv

is finite, which proves that (aλbµZ
λHw ∗ Zµ)(λ,µ)∈(Y +)2 satisfies condition (i) of Definition 3.8.

Now let λ, µ ∈ Y +. Then equality (1) ensures that:

supp(aλbµZ
λHw ∗ Zµ) ⊂ (λ+Rw(µ))× [1, w] ⊂ (λ+ E)× [1, w].

In particular, we have ⋃
(λ,µ)∈(Y +)2

supp(aλbµZ
λHw ∗ Zµ) ⊂ (Sa + E)× [1, w].

As E is W v-almost finite, and as the sum of two W v-almost finite sets is W v-almost finite, we obtain that
(aλbµZ

λHw ∗ Zµ)(λ,µ)∈(Y +)2 satisfies condition (ii) of Definition 3.8, which ends the proof.
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Lemma 3.11. For any summable family (aj)j∈J ∈ (H̃)J in H̃ and any i ∈ I, the family (aj ∗ Hi)j∈J is
summable in H̃.

Proof. By definition, there exist a W v-almost finite subset E of Y + and a finite subset F of W v such that:
∀ j ∈ J, supp(aj) ⊂ E × F . By (BL2) of [AH19, page 91], we get that

∀ j ∈ J, supp(aj ∗Hi) ⊂ E × (F ∪ F.ri) ,

which proves that
⋃
j∈J

supp(aj ∗ Hi) is W v-almost finite. Now let λ ∈ Y +, w ∈ W v and j ∈ J . By (BL2)

again, we know that πλ,w(aj ∗Hi) ̸= 0 implies πλ,w(aj) ̸= 0 or πλ,wri(aj) ̸= 0. Since there are finitely many
such j ∈ J , this completes the proof of the lemma.

The next statement replaces [AH19, Theorem 4.21] and its proof basically follows the same lines as the
proof of [AH19, Theorem 4.21], replacing almost finiteness by W v-almost finiteness. Recall that the elements
of H correspond to the elements of H̃ with finite support.

Theorem 3.12. Let (aj)j∈J ∈ (H)
J and (bk)k∈J ∈ (H)

K be two families that are both summable in H̃. Then
(aj ∗ bk)(j,k)∈J×K is summable in H̃ and

∑
(j,k)∈J×K

aj ∗ bk only depends on the two elements
∑
j∈J

aj and
∑
k∈K

bk

of H̃.

Proof. For j ∈ J and k ∈ K, write aj :=
∑

v∈Wv

av,j∗Hv and bk :=
∑

w∈Wv

bw,k∗Hw, with (av,j)j∈J ∈ R[[Y ]]J and

(bw,k)k∈K ∈ R[Y ]]K for any v, w ∈ W v. Given v, w ∈ W v, Lemma 3.10 ensures that (av,j ∗Hv ∗bw,k)(j,k)∈J×K

is summable in H̃. By induction on ℓ(w) and using Lemma 3.11, we get that (av,j ∗Hv ∗ bw,k ∗Hw)(j,k)∈J×K

is summable in H̃. Moreover, as (aj) and (bk) are summable in H̃, there are at most finitely many v, w ∈ W v

satisfying (av,j)j∈J ̸= 0 and (bw,k)k∈K ̸= 0. Consequently, the family (aj ∗ bk)(j,k)∈J×K is summable in H̃.
Now, given any triple (u, v, µ) ∈ W v × W v × Y +, applying Lemma 3.4 to Hu ∗ ZµHv gives a family
(zu,v,µν,t )(ν,t)∈Ru(µ)×[1,u].v of scalars that satisfy Hu ∗ ZµHv =

∑
(ν,t)∈Ru(µ)×[1,u].v

zu,v,µν,t ZνHt.

For any pair (ρ, s) ∈ Y + ×W v, we have

πρ,s

 ∑
(j,k)∈J×K

aj ∗ bk

 =
∑

(λ,u),(µ,v)∈Y +×Wv

∑
ν∈Ru(µ) | λ+ν=ρ

∑
(j,k)∈J×K

aj,λ,ubk,µ,vz
u,v,µ
ν,s

=
∑

(λ,u),(µ,v)∈Y +×Wv

∑
ν∈Ru(µ) | λ+ν=ρ

aλ,ubµ,vz
u,v,µ
v,s ,

where we set
∑
j∈J

aj =
∑

(λ,u)∈Y +×Wv

aλ,uZ
λHu and

∑
k∈K

bk =
∑

(µ,v)∈Y +×Wv

bµ,vZ
µHv, hence the theorem is

proven.

The mistake done in the former proof of [AH19, Theorem 4.20] is to implicitely assume that SY =⋃
j∈J

suppY (aj) ∪
⋃
k∈K

suppY (bk) is such that {λ++, λ ∈ SY } is almost finite, which is not true in general,

as shown by the counter-examples given in Section 2. As spotted by the referee, the same kind of subtlety
underlies a mistake made by Looijenga in his seminal 1980 work [Loo80, (4.1), end of the first paragraph].

For a =
∑

(λ,v)∈Y +×Wv aλ,vZ
λHv ∈ H̃ and b =

∑
(µ,w)∈Y +×Wv bµ,wZ

µHw ∈ H̃, we set

a ∗ b =
∑

(v,λ),(w,µ)∈Y +×Wv

aλ,vbµ,wZ
λHv ∗ ZµHw,

which is well-defined by Theorem 3.12. We can now formulate the statement that replaces [AH19, Corollary
4.23], providing the required structure on H̃. Its proof is the same as [AH19, Corollary 4.23], replacing [AH19,
Theorem 4.21] by Theorem 3.12 above.

Corollary 3.13. The convolution product ∗ equips H̃ with the structure of an associative algebra over R
that contains H as subspace of finitely supported elements.
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3.3 The center of H̃ is isomorphic to Hs

Recall that the definition of the Looijenga algebra R[[Y ]] and its variants R[[Y ]]W
v

and R[[Y +]] is given by
[AH19, Definition 4.6]. Also, we proved in [AH19, Proposition 4.9] that R[[Y ]]W

v

is a subspace of R[[Y +]].
Now note that the latter can be seen as a subspace of B, so it makes sense to compare these algebras with
the algebra H̃ we built earlier.

Given a ∈ R[[Y ]]W
v

, we have supp(a) = suppY (a) × {1}, with suppY (a) being W v-invariant and almost
finite, hence supp(a) is W v-almost finite. In particular, this implies that R[[Y ]]W

v

is contained in H̃. However,
note that in general, R[[Y ]] may not be entirely contained in H̃, as can be seen for instance in Example 2.2.

Replacing Ĥ by H̃ in the proof of [AH19, Theorem 4.30] provides the following theorem, which replaces
[AH19, Theorem 4.30].

Theorem 3.14. The center of the algebra H̃ is Z (H̃) = R[[Y ]]W
v

, hence is isomorphic to Hs via the Satake
isomorphism.

Remark 3.15. By [AH19, Lemma 4.5], we know that if A is associated with an indefinite size 2 Kac-Moody
matrix, then any subset of Y + is almost finite, hence any subset of Y + is W v-almost finite.

3.4 The reductive case
Lemma 3.16. Assume that A is associated with a Cartan matrix A. Then a subset of Y + = Y is W v-almost
finite if, and only if, it is finite.

Proof. Thanks to [AH19, Lemma 5.17], we may assume that
⋂
i∈I

kerαi = {0}. Let A1, . . . , Ar denote the

indecomposable components of A: then A =
⊕r

i=1 Ai, where Ai is a realization of Ai (as defined in [AH19,
5.4.1]) for all i ∈ J1, rK. For i ∈ J1, rK, we denote by W v

i the Weyl group of Ai, by Q∨
i its coroot lattice and

by Yi its cocharacter lattice, so that we have W v = W v
1 × . . .×W v

r , Q∨ =

r⊕
i=1

Q∨
i and Y =

r⊕
i=1

Yi.

Now let E be a W v-almost finite subset of Y . For w ∈ W v, set Ew := E ∩ w.Cv
f . Since E is w−1-

almost finite, there exists a finite set F ⊂ Y such that: ∀ λ ∈ E,∃µ ∈ F | λ ≤Q∨µ. For i ∈ J1, rK, set
Y ++
i := Yi ∩ Cv

f,i, where Cv
f,i denotes the fundamental chamber of Ai: then we know from [Kac94, Theorem

4.3] that Y ++
i ⊂ Q∨

i,+. Given λ = (λ1, . . . , λr) ∈ Ew, let µ = (µ1, . . . , µr) ∈ F be such that λ ≤Q∨ µ. Then
we have 0 ≤Q∨

i
λi ≤Q∨

i
µi for all i ∈ J1, rK, hence Ew must be finite. As W v is finite, we get that E is finite

too, and the lemma is proven as the converse statement is straightforward.

Since H corresponds to the subspace of elements of H̃ with finite support, we directly obtain the following
result from Lemma 3.16, which states that H̃ is just the usual Iwahori-Hecke algebra in the reductive case.
This replaces the first paragraph of [AH19, Section 4.6.1, page 105].

Proposition 3.17. If A is associated with a Cartan matrix, then H̃ = H.
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