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Introduction

Historically, the first example of non-associative algebraic structure that have been studied are Lie algebras. They were introduced by Sophus Lie in the 1870's as an algebraic structure on the tangent space of Lie group, and were generalized on the vector fields of any manifold. Although the commutator of an associative algebra is a Lie bracket, this particular example of Lie algebra never come from a structure of associative algebra on the vector fields. However, it is well known that a flat torsion-free connection on a manifold induce a pre-Lie algebra (or left-symmetric algebra) structure on the vector fields such that the commutator is the usual Lie bracket on the vector fields [START_REF] Burde | Left-symmetric algebras, or pre-Lie algebras in geometry and physics[END_REF]. This example may hint that pre-Lie algebras are a bit "more natural" than associative algebras when studying Lie algebras. The case of manifold with two flat torsion-free connections appears in [START_REF] Bridgeland | Geometry from donaldson-thomas invariants[END_REF] with the notion of Joyce structure. In the case of a manifold with two flat torsion-free connections, the algebraic structure on the vector fields is richer than a pre-Lie algebra. Indeed each connections give a pre-Lie product and the commutator of those pre-Lie product is the usual Lie bracket on the vector fields. Hence we get an algebra with two pre-Lie products sharing the same Lie bracket. If one uses the language of operads to talk about algebraic structures, the operad corresponding to algebras with two pre-Lie products sharing the same Lie bracket is 2 Lie PreLie, this is the fibered coproduct of two copies of PreLie over Lie, i.e. the colimit of the cospan PreLie ← Lie → PreLie in the category of algebraic operads. The notion of fiber coproduct is analogous to the notion of amalgamated sum in group theory. The morphism Lie → PreLie used to defined this coproduct corresponds to the fact that the operator [a, b] = abba make every pre-Lie algebra into a Lie algebra. Computations show that dimensions of the low arity components of 2 Lie PreLie coincides with the number of rooted Greg trees A005264 in the OEIS [START_REF] Oeis | The On-Line Encyclopedia of Integer Sequences[END_REF]. A rooted Greg tree is a rooted tree with black and white vertices such that white vertices are distinguished (e.g. numbered), black vertices are undistinguished and each black vertex has at least two children. This raises the question if the underlying species of 2 Lie PreLie is the species of rooted Greg trees. It is known that the operads Lie and PreLie share agreeable algebraic properties, indeed they are binary quadratic Koszul operads [START_REF] Loday | Algebraic Operads[END_REF] and [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], they have the Nielsen-Schreier property, which means that any subalgebra of a free Lie (resp. pre-Lie) algebra is free [START_REF] Širšov | Subalgebras of free Lie algebras[END_REF], [START_REF] Witt | Die Unterringe der freien Lieschen Ringe[END_REF] and [START_REF] Dotsenko | An effective criterion for Nielsen-Schreier varieties[END_REF], moreover PreLie is free over Lie as a left and right module [START_REF] Foissy | Finite-dimensional comodules over the Hopf algebra of rootedtrees[END_REF], [START_REF] Dotsenko | Endofunctors and Poincaré-Birkhoff-Witt theorems[END_REF] (and not as a bimodule). It is natural to ask if 2 Lie PreLie shares those properties. Before we summarize the main results of this paper, remark that the operad 2 Lie PreLie can naturally be generalized to n Lie PreLie for any n ∈ N. The operad n Lie PreLie is the fibered coproduct of n copies of PreLie over Lie. This operad encode algebras with n pre-Lie products that share a common Lie bracket. Thi paper is organized as follows, we begin by recalling some general facts about operads and more particularly about the operads Lie and PreLie in Section 1. We then give an explicit description of the operadic structure on the rooted trees from [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF] in a way that will make it easier to generalize. In the next section, we generalize this construction to a larger class of trees, the rooted Greg trees, introducing a naive operadic structure on them, the operad Greg. Unfortunately, this newly defined operad is not isomorphic 2 with l.(1 2) = -l. The operad PreLie is the operad encoding pre-Lie algebras. It is generated by a binary operation x satisfying the pre-Lie identity. A presentation of this operad is given by:

PreLie = F(x)/ (x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).(2 3)
As stated above, we will make an extensive use of the notion of Gröbner basis over operads which relies on the notion of shuffle operad and shuffle trees. We refer the reader to [START_REF] Bremner | Algebraic Operads: An Algorithmic Companion[END_REF] for more details. The main goal of working with shuffle operads is to put a compatible order on the monomials of the free operad to latter define Gröbner basis. It is quite clear that actions of symmetric groups prevent any hope of such order. Hence the actions of symmetric groups are disposed of when considering shuffle operads, which explain the need of a notation for x.(1 2), let us write x.(1 2) = y. One need to be careful with the notation since several "type" of trees will be used in this article. Shuffle trees are used to write Gröbner basis. Other trees such that rooted trees and rooted Greg trees are used to describe in combinatorial way the underlying species of the operads. Definition 1.1. A shuffle tree on an alphabet χ is a rooted planar tree such that:

• Internal vertices are labeled by elements of χ and have as many children as the arity of their label (in our case it is always 2).

• Leaves are labeled by different integers of {1, . . . , n}, with n the number of leaves.

• The numbering of the leaves must satisfy the local increasing condition:

The numbering of the leaves is extended to the internal vertices such that each vertex receives the smallest number of its children.

The local increasing condition is that for each internal vertex, the numbering of its children is increasing from left to right.

Let us write the pre-Lie relation with shuffle trees:

  1 2 3 x x -1 2 3 x x   -   1 3 2 x x -1 2 3 x y   It is a classical result that Lie is a sub-operad of PreLie by the inclusion l → x -y.
The operad encoding two pre-Lie products sharing a Lie bracket is the colimit of the cospan PreLie ← Lie → PreLie in the category of operads, it is the coproduct of two copies of PreLie fibered over Lie. We note it 2 Lie PreLie. A presentation of this operad is given by:

2 Lie PreLie = F(x 1 , x 2 )/ (x 1 • 1 x 1 -x 1 • 2 x 1 ) -(x 1 • 1 x 1 -x 1 • 2 x 1 ).(2 3) ; (x 2 • 1 x 2 -x 2 • 2 x 2 ) -(x 2 • 1 x 2 -x 2 • 2 x 2 ).(2 3) ; (x 1 -x 2 ) -(x 1 -x 2 ).(1 2)
with the notation x 1 .(1 2) = y 1 and x 2 .(1 2) = y 2 . This presentation is not quadratic, indeed the last relation is linear, a quadratic presentation will be given in Section 4. However, this presentation is enough to compute the first dimensions aritywise of this operad either by hand or with a computer using the Haskell calculator written by Dotsenko and Heijltjes [START_REF] Dotsenko | Operadic Gröbner bases calculator[END_REF].

Arity 1 2 3 4 5 • • • n dim(Lie(n)) 1 1 2 6 24 • • • (n -1)! dim(PreLie(n)) 1 2 9 64 625 • • • n n-1 dim 2 Lie PreLie(n) 1 3 22 262 ? ? ?
One may recognize in the last line the first terms of the sequence of the number of rooted Greg trees with n white vertices A005264 in [START_REF] Oeis | The On-Line Encyclopedia of Integer Sequences[END_REF]. A rooted Greg tree is a rooted tree with black an white vertices such that the black vertices have at least two children. This lead to the natural questions:

• Is the sequence of the aritywise dimensions of 2 Lie PreLie the sequence of the number of rooted Greg trees?

• Are they the same species?

• Is there a combinatorial interpretation of the operad 2 Lie PreLie using rooted Greg trees? In this article we answer positively to those questions and show that the operad 2 Lie PreLie have agreeable algebraic properties namely is binary, quadratic, Koszul, free as a left PreLie-module, free as a right PreLie-module and has the Nielsen-Schreier property. The last tree properties are freeness properties that will be discussed in Section 6.

Operad structure on rooted trees

Let us give a full construction of the operad structure on rooted trees defined by Chapoton and Livernet in [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], in order to generalize it on rooted Greg trees. Definition 2.1. A rooted tree is a connected non-empty non-oriented graph without cycle with a distinguished vertex called the root. Let I ⊂ N be finite, vertices are in bijection with I. The action of the symmetric group is given by the permutation of the labels. When drawing rooted trees, root will be at the bottom and leaves at the top.

For S a rooted tree, v a vertex of S, the forest F S = {S 1 , . . . , S k } the forest of the children of v and B the rooted tree below v. Let us introduce the following notation:

S = • • • v S 1 S k B = v F S B
We use circles to represent vertices, triangles to represent trees or forests and double edge to represent that each trees of the forest F S is grafted to v.

Definition 2.2. Let S and T be two rooted trees labeled over disjoint sets and V (S) the set of vertices of S, let S T be the fall product of T over S defined by:

S T = v∈V (S) v T F S B
For readability sake, let us omit the sums, the tree B and the forest F S:

S T = v T Example 2.1. Let compute (R S)
T to grasp the definition of the fall product. Let v r and v r be generic vertices of R and v s a generic vertex of S.

(R S) T = v s v r T + v r v r S T + v r S T
Here S fall of the vertex v r of R, then either T fall on a vertex of S, or T fall on another vertex v r of R, or T fall on the vertex v r of R.

The dotted edge represent a path between the two vertices that may be longer than one edge. The dotted edge is horizontal if the two vertices can be one below the other, one above the other or neither of them.

Proposition 2.3. The fall product is pre-Lie.

Proof. We have computed (R S) T , moreover we have:

R (S T ) = v s v r T Hence (R S) T -R (S T
) is symmetric in S and T . Hence the fall product is pre-Lie.

Remark 2.2. The fall product allow us graft a rooted tree T over another rooted tree S on all possible vertices of S. However as we can see in the above computation, a naive composition of the fall product is not enough to make several trees fall on the same tree. Indeed, when computing (R S) T , we have that S fall on R, but T can either fall on S or on R. the solution is to use the symmetric brace products.

The symmetric brace products were first introduced by Lada and Markl in [START_REF] Lada | Symmetric brace algebras[END_REF] and the following formula to get the symmetric brace products from a pre-Lie product was given by Oudom and Guin in [START_REF] Oudom | On the Lie enveloping algebra of a pre-Lie algebra[END_REF]:

• Br(S) = S • Br(S; T ) = S T • Br(S; T 1 , . . . , T n+1 ) = Br(S; T 1 , . . . , T n ) T n+1 -n i=1 Br(S; T 1 , . . . , T i T n+1 , . . . , T n ) The symmetric brace product Br(S; T 1 , . . . , T n ) is the sum of all possible ways to graft the trees T 1 , . . . , T n on vertices of S. It is symmetric in the T i 's. For F T = {T 1 , . . . , T n }, we will write Br(S; F T ).

Let us recall from [START_REF] Loday | Algebraic Operads[END_REF]Definition 5.3.7] that an operad structure on a species can be given by a collection of operations • i of arity 2, the partial compositions satisfying the sequential and parallel composition axioms. Let us define those operations on rooted trees using the symmetric brace products. Definition 2.4. Let T and S be two rooted trees, let i be a label of a vertex of T and v this vertex.

T = v F T B
Let consider U = Br(S; F T ), then the partial composition • i is defined by:

T • i S = B v U
The children of v fall on S, then the result of this symmetric brace product is grafted on v, and finally the vertex v is removed. This is exactly the insertion of S in T at the vertex v, with all the children of v falling on S. Although this construction is not exactly the construction detailed in [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF], it is equivalent to it. Hence those partial compositions satisfy the sequential and parallel composition axioms.

Remark 2.3. When defining partial compositions on a species P , we define

• i : P(A {i}) ⊗ P(B) → P(A B),
where A and B are disjoint sets.

It is equivalent to the definition with • i : P(n) ⊗ P(m) → P(n + m -1) which involves some renumbering.

Let us recall the following result:

Theorem 2.1. [6, Theorem 1.9] Let RT be the species of rooted trees. The operad (RT , {• i }) with the partial compositions defined as above is isomorphic to the operad PreLie. Moreover the isomorphism is 1 2 → x with x the generator of PreLie.

Rooted Greg trees and the Greg operad

Greg trees were introduced by Greg [START_REF] Greg | The Calculus of Variants: An Essay on Textual Criticism[END_REF] and Maas [START_REF] Maas | Textual Criticism[END_REF] in order to state a combinatorial problem arising from textual criticism, which was solved by Flight in [START_REF] Flight | How many stemmata?[END_REF].

Definition 3.1. A rooted Greg tree T is a rooted tree with two colors of vertices black and white such that:

• the white vertices in bijection with I a finite set of labels, the number of white vertices is the arity of T ;

• the black vertices are unlabeled and have at least two children, the number of black vertices is the weight of T .

Let us introduce the following notation:

• W V (T ) is the set of white vertices of T , BV (T ) the set of black vertices of T and V (T ) the set of vertices of T .

• G k (n) is the set of Greg trees of arity n with white vertices labeled by {1, . . . , n} and weight k.

• G(n) is the set of Greg trees of arity n with white vertices labeled by {1, . . . , n}.

• G k (n) is the vector space spanned by G k (n) and G(n) the vector space spanned by G(n), and G the species of Greg trees.

The action of the symmetric group on rooted Greg trees is the natural one permuting the labels of the white vertices. Remark 3.1. The condition that the black vertices have at least two children ensure that G(n) is finite.

Another important fact is that (G 0 (n)) n∈N is the species of rooted trees. Hence in order to define an operad structure on the rooted Greg trees, one may try to mimic and generalize the construction on rooted trees of [START_REF] Chapoton | Pre-Lie algebras and the rooted trees operad[END_REF].

Proposition 3.2. Let f G (t) be the exponential generating series of G. Then f G (t) is the inverse under composition of (2t + 1) exp(-t) -1.
Let us naively generalize the construction described in the last section to the rooted Greg trees. Definition 2.2 of the fall product is the same, it is straightforward to check that it is a pre-Lie product on G. Definition 2.4 of partial compositions is also the same. However, one may want to check that it satisfies the sequential and parallel composition axioms stated in [START_REF] Loday | Algebraic Operads[END_REF]Definition 5.3.7].

Proposition 3.3. The partial compositions on G satisfies the sequential and parallel composition axioms.

Proof. Parallel composition axiom:

Let us compute (T • i S) • j R in the case where i and j are the labels v i and v j which are white vertex of T . Let us write T the following way:

T = T 0 F T (i) v i v j F T (j)
Applying the definition of the partial composition, we get:

(T • i S) • j R = T = T 0 U v i v j V = (T • j R) • i S
with U = Br(S; F T (i) ) and V = Br(R; F T (j) ).

The parallel axiom is verified.

Sequential composition axiom: Let us compute T • i (S • j R) in the case where i is the label of v i a white vertex of T and j is the label of v j a white vertex of S. Let us write:

T = T 0 F T v i and S = S 0 F S v j
Then we have:

T S = T 0 U 0 F U F T k+1 v j v i With F S = (S 1 , . . . , S k ), F U = (U 1 , . . . , U k ), U l = Br(S l ; F T l )
and F T = k+1 l=0 F T l for every possible such decomposition of F T in (possibly empty) sub-forest.

(T S) R = T 0 U 0 v i v j V With V = Br(R; F U ∪ F T k+1 ).
Let us compute T (S R):

(T S) R = T 0 U 0 v i v j W
With W = Br(Br(R; F S); F T 1 ) and U 0 = Br(S 0 ; F T 0 ), and F T = F T 0 F T 1 for every possible such decomposition of F T in (possibly empty) sub-forest. To conclude, one need to remark that V = W . Indeed, in the definition of W , the forest F S fall on R, then F T 1 fall on the result; and in the definition of V , some trees of F T 1 fall on some trees of F S and the resulting forest fall on R. Those two operations give the same result.

Definition 3.4. Let Greg be the operad (G, {• i }). Let us note x = 1 2 y = 1 2 g = 1 2
We know from Section 2 that x verify the pre-Lie relation. Let us introduce the following notation:

x n = • • • 1 2 n g n = • • • 1 n Example 3.2. Let us compute x • 1 g.
Because of the renumbering that we have been ignoring, we have to compute

1 3 • 1 1 2 . 1 3 • 1 1 2 = 1 2 3 + 1 2 3 + 1 2 3 Hence we have x • 1 g -(g • 1 x).(2 3) -g • 2 x = 1 2 3 .
One may recognize the Leibniz rule in the left hand side of the equation. Moreover since the right hand side is symmetric, we have [START_REF] Bridgeland | Geometry from donaldson-thomas invariants[END_REF]. Let us call this relation the Greg relation.

x • 1 g -(g • 1 x).(2 3) -g • 2 x = (x • 1 g -(g • 1 x).(2 3) -g • 2 x).( 2 
Remark 3.3. The element g 3 encodes the failure to verify of Leibniz's rule in the operad Greg, the same as the element x 3 encodes the failure to verify of the associativity relation.

Proposition 3.5. The operad Greg is binary.

Proof. Let P(x, y, g) be the sub operad of Greg generated by x ,y and g. We have to show that P(x, y, g) = Greg. Let us proof it by recurrence on the arity. Base case: By definition P(x, y, g)(2) = Greg(2). Induction step: Let n ≥ 2 and suppose that P(x, y, g)(k) = Greg(k) for all k ≤ n. We have to show that P(x, y, g)(n + 1) = Greg(n + 1). Computing x • 1 x n and x • 1 c n show that x n+1 ∈ P(x, y, g)(n + 1) and c n+1 ∈ P(x, y, g)(n + 1).

Since we can obtain any rooted Greg trees by inductively composing corollas in the leaves of smaller trees, we have Greg(n + 1) = P(x, y, g)(n + 1).

Hence by recurrence, P(x, y, g) = Greg.

We want to prove that Greg is quadratic to get a quadratic presentation. In order to do so, we will introduce a quadratic operad Greg , show that Greg is Koszul and use the information given on its dimensions of components to show that Greg is isomorphic to Greg. Definition 3.6. Let Greg be the quotient of the free operad generated by x and g such that x has no symmetry and g.( 12) = g, by the following relations:

• (x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).(2 3) • (x • 1 g -(g • 1 x).(2 3) -g • 2 x) -(x • 1 g -(g • 1 x).(2 3) -g • 2 x).(2 3)
The first relation is the pre-Lie relation and the second one is the Greg relation. Since Greg is binary and those relations are satisfied in Greg, we have a surjective morphism of operads Greg Greg.

Remark 3.4. From this definition and using the formalism of shuffle operads that will be recall in a brief moment, it would already by possible to prove that Greg is Koszul. However, the dimensions of components of its Koszul dual are much simpler, hence we will compute and work with the Koszul dual of Greg .

Definition 3.7. Let (Greg ) ! be the quotient of the free operad generated by x * and g * such that x * has no symmetry and g * .( 12) = -g * , by the following relations:

x * • 1 x * -x * • 2 x * ; x * • 1 x * -(x * • 1 x * ).( 2 3 
)

x * • 1 g * -g * • 2 x * ; x * • 1 g * -(g * • 1 x * ).( 2 3 
)

x * • 1 g * + (x * • 1 g * ).(1 2 3) + (x * • 1 g * ).(1 3 2)
x * • 2 g * ; g * • 1 g * This is the Koszul dual of Greg . The explicit method to compute a presentation of the Koszul dual of a binary operad is detailed in [START_REF] Loday | Algebraic Operads[END_REF]Subsection 7.6]. The two first relation are associativity and permutativity. This operad is not a set operad because of the last three relations. Let us give an example of (Greg ) ! -algebra that allows us show that dim((Greg ) ! (4)) ≥ 7. Definition 3.8. Let χ be a finite alphabet and W(χ) be the span of finite words on χ with the following extra decorations: either one letter is pointed with a dot, or there is a arrow from one letter to an other. Let W (χ) be the quotient of W(χ) by the following relations, letters commute with each other (the dot and the arrow follow the letter), reverting the arrow change the sign and abcv = cbav + acbv for any a, b, c ∈ χ and v a finite word. Because of the letters commute, let us write the elements of W (χ) with the pointed letter (or arrowed letters) at the start. Let x and g product on W (χ) defined by:

• ȧv x ḃw = ȧvbw • abv x ċw = abvcw • ȧv g ḃw = abvw
and all other cases give 0. Proposition 3.9. The algebra (W (χ), x , g ) is a (Greg ) ! -algebra generated by χ.

Proof. Indeed, ȧv = ȧ x w with w the word v with a dot on a letter (let us say the first one for example) and abv = ( ȧ g ḃ) x w so (W (χ), x , g ) it is generated by χ.

The product g is skew-symmetric, indeed ȧ g ḃ = ab = ba =ba = -ḃ g ȧ. The 7 relations of (Greg ) ! are easily checked. Proposition 3.10. We have dim((Greg ) ! (4)) ≥ 7.

Proof. Let A = W ({a, b, c, d}). Let us compute the dimension of Mult(A(4)) the multilinear part of A(4). Let us write words of Mult(A(4)) such that the arrow always start from a to the second letter and aside from that, the letter are in the lexicographic order.

The rewriting rule βγα → αγβαβγ is confluent.

Indeed, cdab = bdac -bcad = ( adbc -abcd) -( acbd -abcd) = adbc -acbd.
Hence Mult(A(4)) is spanned by the words ȧbcd, a ḃcd, ab ċd, abc ḋ, abcd, acbd and adbc. Since A is a (Greg ) ! -algebra on 4 generators, dim((Greg ) ! (4)) ≥ dim(Mult(A(4))) = 7.

Remark 3.5. The algebra (W (χ), x , g ) is in fact the free (Greg ) ! -algebra generated by χ.

Let us use the formalism of shuffle operads to write down a Gröbner basis of (Greg ) ! . Operadic monomials will be written as shuffle trees. However one need not to confuse them with Greg trees. For further information on shuffle operads, see [START_REF] Bremner | Algebraic Operads: An Algorithmic Companion[END_REF]. A quick introduction on shuffle trees has been given in the first section see 1.1. Writing the relations of (Greg ) ! using shuffle trees is a good exercise to familiarize ourselves with shuffle trees, and to be careful not to confuse them with the species of rooted trees or rooted Greg trees. Since the actions of the symmetric groups are disposed of when working with shuffle operads, let us note y * = x * .(1 2).

Example 3.6. Let us rewrite the relations of (Greg ) ! and the elements of there orbit as shuffle trees. Because of the local increasing condition, y * is needed although it can be expressed in in (Greg ) ! with x * . We get 25 relations, they are written in Figure 2.

From those computations, the only missing ingredient to get a Gröbner basis is a monomial order. We will consider the tree following orders:

• the degree-lexicographic permutation order with x * > y * > g * ;

• the permutation reverse-degree-lexicographic order with g * > y * > x * ;

• and the reverse-degree-lexicographic permutation order with x * > y * > g * .

Those orders are defined in [START_REF] Bremner | Algebraic Operads: An Algorithmic Companion[END_REF] for any presentation of shuffle operads. Using a monomial order on a set of relations, one get a terminating rewriting system.

• the degree-lexicographic permutation order with x * > y * > g * give Figure 3;

• the permutation reverse-degree-lexicographic order with g * > y * > x * give Figure 4;

• and the reverse-degree-lexicographic permutation order with x * > y * > g * give Figure 5.

Proposition 3.11. The rewriting systems displayed in Figure 3, Figure 4 and Figure 5 are confluent. (They are in fact Gröbner bases.) Proof. To proof this fact one have two choices either checking the confluence of the critical monomials (294 cases to check for Figure 3), or remarking that there are 7 normal forms in arity 4 for each rewriting system and because dim((Greg ) ! (4)) ≥ 7, no new relations can appear. Since we have a monomial order and that rewriting rules are quadratic in a binary operad, checking arity 4 is enough. Proposition 3.12. We have that dim((Greg ) ! (n)) = 2n -1 for all n ≥ 1, hence its exponential generating series is (2t -1) exp(t) + 1.

Proof. It suffice to count the normal forms of a rewriting system for example Figure 3. Let n ≥ 2 and count the number of normal forms in arity n. Those are right combs with at most one g * , with all the x * above the g * and the y * , and all the y * below the g * and the x * . Hence the normal forms are determined by the number of occurrences x * and g * , and have either zero or one occurrences g * . If there is no g * , then one can have from 0 to n -1 occurrences of x * . If there is one g * , then one can have from 0 to n -2 occurrences of x * . Hence the number of normal forms in arity n is 2n -1.

Theorem 3.1. The operad Greg is Koszul.

Proof. We have a quadratic Gröbner basis for (Greg ) ! , hence (Greg ) ! is Koszul, hence Greg is Koszul.

Theorem 3.2. The exponential generating series of the operad Greg is the inverse under composition of (2t + 1) exp(-t) -1. Hence Greg is isomorphic to Greg.

Proof. We know that for a Koszul operad P, then f P (f P ! (-t)) = -t. Hence we get the exponential generating series of the operad Greg . Since we have a surjective morphism from Greg to Greg and that they have the same exponential generating series, the morphism is an isomorphism.

Corollary 3.3. The operad Greg is binary, quadratic and Koszul.

Generalization of the Greg operad

We have studied the operad Greg, however we have not yet relate this operad to 2 Lie PreLie. In fact, we shall know establish a much more general result about the operad m+1

Lie PreLie. Proposition 4.1. The operad m+1

Lie PreLie is isomorphic to the operad F(x, c 1 , . . . , c m )/ R , with x without symmetry, c k .(1 2) = c k and R the relations:

(pre-Lie) (x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).( 2 3) 
(diff pre-Lie) (x • 1 c k -(c k • 1 x).( 2 
3) -c k • 2 x) -(x • 1 c k -(c k • 1 x).( 2 
3) -c k • 2 x).( 2 3) 
+ i,j|max(i,j)=k (c i • 1 c j -(c i • 1 c j ).( 2 

3))

Proof. We already know the following presentation: m+1 Lie PreLie F(x 1 , . . . , x m+1 )/ R with x k without symmetries and R the relations:

(pre-Lie k) (x k • 1 x k -x k • 2 x k ) -(x k • 1 x k -x k • 2 x k ).( 2 3) 
(share) (x k -x k+1 ) -(x k -x k+1 ).( 1 2 
)

Let c k = x k -x k+1 , then c k = c k .( 1 
2
) is equivalent to Relation (share). Let x = x 1 . We have that

x k+1 = x + k i=1 c i . Hence R is equivalent to: (x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).( 2 
3)+ k i=1 ((x • 1 c i -x • 2 c i ) -(x • 1 c i -x • 2 c i ).(2 3) + (c i • 1 x -c i • 2 x) -(c i • 1 x -c i • 2 x).( 2 
3))+ k i=1 k j=1 ((c i • 1 c j -c i • 2 c j ) -(c i • 1 c j -c i • 2 c j ).(2 3)),
which is equal to:

(x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).( 2 
3)+ k i=1 (x • 1 c i -(x • 1 c i ).(2 3) + (c i • 1 x -c i • 2 x) -(c i • 1 x -c i • 2 x).( 2 
3))+ k i=1 k j=1 (c i • 1 c j -(c i • 1 c j ).( 2 

3))

Finally, if we subtract consecutive relations; we obtain

x • 1 c k -(x • 1 c k ).( 2 
3) + (c i • 1 x -c k • 2 x) -(c k • 1 x -c k • 2 x).( 2 
3)+ i,j|max(i,j)=k (c i • 1 c j -(c i • 1 c j ).(2 3)),
which is the the intended relation.

This quadratic presentation very much look like the presentation of the operad Greg. The operad 2 Lie PreLie is not isomorphic to Greg, however one may wonder if the operad 2 Lie PreLie is a deformation of Greg. We shall now show that it is indeed the case.

Let C = (V, ∆) with V be a vector space of finite dimension n and ∆ a coassociative cocomutative coproduct on V . Definition 4.2. The vector space of rooted Greg trees over

V is G V k (m) = τ ∈G k (m) V ⊗BV (τ )
. It has a basis of rooted Greg trees whose black vertices are labelled by a basis of Let us define the product ∆ by:

V . Let G V (m) = k G V k (m) and G V = m G V (m).
S ∆ T = v∈V (S) c v T F S B + v∈BV (S) F S (1) F S (2) =F S c v (1) c v (2) T F S (2) F S (1)

B

For readability sake, let us write:

S ∆ T = c v T + c v (1) c v (2) 
T Proposition 4.4. The deformed fall product ∆ is pre-Lie.

Proof. The proof is the tedious computation of (R ∆ S) ∆ T -R ∆ (S ∆ T ). The computation of (R ∆ S) ∆ T is done in Figure 6; r, r and s are labels of vertices of R and S respectively. The boxed terms are the terms of R ∆ (S ∆ T ). Using the coassociativity and cocomutativity of ∆, we get that (R ∆ S) ∆ T -R ∆ (S ∆ T ) is symmetric in S and T . Hence the deformed fall product ∆ is pre-Lie. Remark 4.1. One may remark that cocomutativity is stronger than the needed condition, indeed the weaker needed condition is that r (1) ⊗ r (2) ⊗ r (3) = r (1) ⊗ r (3) ⊗ r (2) using Sweedler notation, which is known as the copermutativity property.

The symmetric brace product Br ∆ associated to ∆ is also defined by the following formula:

Br ∆ (S; T 1 , . . . , T n+1 ) = Br ∆ (S; T 1 , . . . , T n ) ∆ T n+1 - n i=1 Br ∆ (S; T 1 , . . . , T i ∆ T n+1 , . . . , T n )
Same as Br, Br ∆ is symmetric in the T i 's.

Definition 4.5. The partial compositions • ∆ i are defined the same way as in Definition 2.4 by:

T • ∆ i S = B v U With U = Br ∆ (S; F T ).
Proposition 4.6. The partial compositions • ∆ i satisfied the sequential composition and parallel composition axioms.

The proof is the same as the one of Proposition 3.3.

Definition 4.7. With C = (V, ∆), let Greg C be the operad (G V , {• ∆ i }).
Let (e 1 , . . . , e n ) be a basis of V and :

x n = • • • 1 2 n g k n = • • • 1 n e k
Let x = x 2 and g k = g k 2 . Proposition 4.8. The operad Greg C is binary and satisfy the following relations:

(pre-Lie) (x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).( 2 3 
)

(greg ∆) (x • 1 g k -(g k • 1 x).( 2 
3) -g k • 2 x) -(x • 1 g k -(g k • 1 x).( 2 
3) -g k • 2 x).( 2 3) 
+ (g k (1) • 1 g k (2) -(g k (1) • 1 g k (2) ).( 2 

3))

With g k (1) and g k (2) defined by ∆ by the identification of V with the span of the generators g k .

Proof. Let us compute x • 1 g k :

1 3 • 1 1 2 e k = 1 2 3 e k + 1 2 3 e k + 1 2 3 e k + 1 2 3 e k (1) 
e k

(2)

+ 1 2 3 e k (1) e k (2) 
This show that the operad Greg C satisfy Relation greg ∆. Let P(x, y, g 1 , . . . , g n ) be the sub operad of Greg C generated by x, y and g 1 , . . . , g n . We have to show that P(x, y, g 1 , . . . , g n ) = Greg C . Let us proof it by recurrence on the arity. Base case: By definition P(x, y, g 1 , . . . , g n )(2) = Greg C (2). Induction step: Let m ≥ 2 and suppose that P(x, y, g 1 , . . . , g n )(k) = Greg C (k) for all k ≤ m.

We have to show that P(x, y, g 1 , . . . , g n )(m + 1) = Greg C (m + 1). Computing x• 1 x m and x• 1 g k m show that x m+1 ∈ P(x, y, g)(m+1) and g k m+1 ∈ P(x, y, g)(m+1). Since we can obtain any rooted Greg trees by inductively composing corollas in the leaves of smaller trees, we have Greg C (m + 1) = P(x, y, g 1 , . . . , g n )(m + 1). Hence by recurrence, P(x, y, g 1 , . . . , g n ) = Greg C .

Koszul dual and Koszulness

Let us use the same strategy as in the previous section to prove that the operad Greg C is Koszul. Definition 5.1. Let G C the operad defined by generators and relations as follows: x is a generator without symmetries, gk are symmetric generators such that:

(x • 1 x -x • 2 x) -(x • 1 x -x • 2 x).(2 3) (x • 1 gk -(g k • 1 x).(2 3) -gk • 2 x) -(x • 1 gk -(g k • 1 x).(2 3) -gk • 2 x).( 2 3) 
+ (g k (1) • 1 gk (2) -(g k (1) • 1 gk (2) ).( 2 

3))

With gk (1) and gk (2) defined by ∆ by the identification of V with the span of the generators gk . Let C * = (V * , µ) the linear dual of C. This is a commutative algebra of dimension n. Definition 5.2. Let (G C ) ! the operad defined by generators and relations as follows: x * is a generator without symmetries, g k * are symmetric generators such that:

x * • 1 x * -x * • 2 x * ; x * • 1 x * -(x * • 1 x * ).( 2 3 
) Proof. Indeed, ȧv = ȧ x w with w the word v with a dot on a letter (let us say the first one for example) and i abv = ( ȧ g i ḃ) x w so (W (χ), x , { g i }) it is generated by χ.

x * • 1 g k * -g k * • 2 x * ; x * • 1 g k * -(g k * • 1 x * ).(2 3) x * • 1 g k * + (x * • 1 g k * ).(1 2 3) + (x * • 1 g k * ).(1 3 2) x * • 2 g k
The product g is skew-symmetric since ȧ g i ḃ = i ab = i ba = - i ba = -ḃ g i ȧ.
The 7 relations of (G C ) ! are easily checked. Proposition 5.5. We have dim((G C ) ! (4)) ≥ 4 + 3n.

Proof. Let A = W ({a, b, c, d}). Let us compute the dimension of Mult(A(4)) the multilinear part of A(4). Let us write words of Mult(A( 4)) such that the arrow always start from a to the second letter and aside from that, the letter are in the lexicographic order.

The rewriting rule

i βγα → i αγβ - i αβγ is confluent. Indeed, i cdab = i bdac - i bcad = ( i adbc - i abcd) -( i acbd - i abcd) = i adbc - i acbd.
Hence Mult(A(4)) is spanned by the words ȧbcd, a ḃcd, ab ċd, abc ḋ, Let us consider the tree following orders to get Gröbner bases:

• the degree-lexicographic permutation order with x * > y * > g * give Figure 7; • the weighted permutation reverse-degree-lexicographic order with g * > y * > x * and g * of degree 1 give Figure 8;

• and the reverse-degree-lexicographic permutation order with x * > y * > g * give Figure 9.

Proposition 5.6. The rewriting systems displayed in Figure 7, Figure 8 and Figure 9 are confluent.

(They are in fact Gröbner bases.)

Proof. As in Proposition 3.11, remarking that there are 4 + 3m normal forms in arity 4 for each rewriting system and that dim((G C ) ! (4)) ≥ 4 + 3n is enough.

Since we have a monomial order and that rewriting rules are quadratic in a binary operad, checking arity 4 is enough.

Proposition 5.7. We have that dim((G C ) ! (m)) = (n+1)m-n for all m ≥ 1, hence its exponential generating series is ((n + 1)tn) exp(t) + n.

Proof. It suffice to count the normal forms of a rewriting system for example Proof. We have a quadratic Gröbner basis for

(G C ) ! , hence (G C ) ! is Koszul, hence G C is Koszul.
Proposition 5.8. The exponential generating series of Greg C verifies:

f Greg C = t exp(f Greg C ) + n(exp(f Greg C ) -f Greg C -1)
Proof. An inspection of the species G V which is the species of rooted Greg trees such that the black vertices are labelled by {e 1 , . . . , e n } show that:

G V = X • E(G V ) + nE ≥2 (G V )
With the usual notation of species, X is the singleton species, E is the species of sets and E ≥2 is the species of sets with at least two elements. The above equation means that a rooted Greg tree is either a white vertex and a set of rooted Greg trees connected to it, or a black vertex labelled by e k (so n possibility) and a set of a least 2 rooted Greg trees connected to it. Since G V is the underlying species of Greg C , we have that:

f Greg C = t exp(f Greg C ) + n(exp(f Greg C ) -f Greg C -1)
Remark 5.2. We can recover the recursive formula enumerating the rooted Greg trees from [15, Proposition 2.1] by resolving a differential equation:

We have h = ((n + 1)t + n) exp(-t) -n. Hence d 1 h = -((n + 1)t -1) exp(-t) and d 2 h = (t + 1) exp(-t) -1. Hence (z + 2)h + d 1 h -(z + 1) 2 d 2 h = 1 Let f be such that h(f (t, n), n) = h • (f, id) = t. We have that d 1 h • (f, id).d 1 f = 1 and d 1 h • (f, id).d 2 f + d 2 h • (f, id) = 0, hence: ((z + 2)t -1)d 1 f + (z + 1) 2 d 2 f = -1 Let f (t, n) = g k (n)
k! t k with g k polynomials in n, we get the following recursive relation:

• g 1 (n) = 1 • g k+1 (n) = (n + 2)kg k (n) + (n + 1) 2 g k (n) Theorem 5.2. The operad G C is isomorphic to Greg C .
Proof. We know that dim((G C ) ! (m)) = (n + 1)mn, hence its exponential generating series is

f (G C ) ! = ((n + 1)t -n) exp(t) + n. Let h(t, n) = -f (G C ) ! (-t) = ((n + 1)t + n) exp(-t) -n, since G C is Koszul, we know that h(f G C (t, n), n) = t. Hence: t = ((n + 1)f G C + n) exp(-f G C ) -n Hence: f G C = t exp(f G C ) + n(exp(f G C ) -f G C -1) Which show that f G C = f Greg C .
Since we have a surjective morphism from G C to Greg C and equality of dimensions of components, we have that G C is isomorphic to Greg C . Corollary 5.3. The operad Greg C is binary, quadratic and Koszul. Definition 5.9. Let Greg n be the operad Greg (V,0) , with 0 the trivial coproduct on V .

Corollary 5.4. The operad n+1

Lie PreLie is isomorphic to Greg (V,∆max) with:

∆ max : e k → i,j| max(i,j)=k e i ⊗ e j

Moreover n+1

Lie PreLie is filtered by the grading of the rooted Greg trees by the number of black vertices. The associated graded operad is Greg n .

Corollary 5.5. The operad n+1

Lie PreLie is Koszul. Remark 5.3. This fact is not a direct consequence of the definition of m+1

Lie PreLie as a coproduct. Indeed, the fiber coproduct of two Koszul operads P and Q over a Koszul operad R is not necessarily Koszul. Take for instance the operads 2 Lie Ass and 2 Lie Poiss are not Koszul which can be check by comparing the exponential generating series of those operads and of their Koszul dual. Worst, freeness as right R-modules of P and Q does not solve the issue as shown by the example 2 Lie Poiss. It seems that freeness as left modules solve this issue. Indeed for instance, the operads 2 Com Poiss and 2

Com Zinb are Koszul. However, the author does not know how to prove that left freeness ensure that Koszulness is preserved. Left and right freeness are defined at the very beginning of the next section.

Nielsen-Schreier and freeness properties

We have seen that Greg C is Koszul using quadratic Gröbner basis. However, one Gröbner basis was enough the show this fact. Three different Gröbner bases were computed with particular normal forms. Indeed, Theorems from Dotsenko [START_REF] Dotsenko | Freeness theorems for operads via Gröbner bases[END_REF] and Dotsenko and Umirbaev [START_REF] Dotsenko | An effective criterion for Nielsen-Schreier varieties[END_REF] allow to show some freeness properties using Gröbner bases. Let us recall those freeness properties and show that they hold for Greg C .

Let P an operad. A left module L over P is a species L with a morphism P • L → L satisfying the usual axioms. A right module R over P is a species R with a morphism R • P → R satisfying the usual axioms. A bimodule over P is a left and right module over P such that the two structures commute. Let Q be an operad such that we have a morphism of operads P → Q, then Q has a canonical structure of a left and a right module over P. (It has in fact a structure of bimodule over P.) A left module L (resp. right module R) over P is said to be free if L (resp. R) is isomorphic to P • X (resp. X • P) for some species X and that the module structure is given by the operadic composition in P. In this context, the • is the plethysm of species, which can be interpreted as the composition of Schur functors. We refer to [START_REF] Bergeron | Combinatorial Species and Tree-like Structures[END_REF] for more details on the plethysm of species.

Let F(E)/(R) and F(E F )/(R S) be presentations of the operads P and Q respectively, such that R S is a Gröbner basis for some monomial order and R is a Gröbner basis once the monomial order restricted to R. Let recall the following theorems: Theorem 6.1 (left freeness version). [START_REF] Dotsenko | Freeness theorems for operads via Gröbner bases[END_REF]Theorem 4] Assume that the root of the leading terms of S are elements of F . Then Q is free as left P-module. Theorem 6.2 (right freeness version). [START_REF] Dotsenko | Freeness theorems for operads via Gröbner bases[END_REF]Theorem 4] Assume that the vertices such that each children is a leaf, of the leading terms of S are elements of F . Then Q is free as right P-module.

Let C be a coassociative cocomutative coalgebra and C a subcoalgebra of C. Corollary 6.3. The operad Greg C is free as left and as a right Greg C -module (and not as a bimodule).

Proof. By reversing the order, one can go from a Gröbner basis of an operad to a Gröbner basis of its Koszul dual which exchange the leading terms and the normal forms. Hence Gröbner basis from Figure 8 witness the left freeness and Gröbner basis from Figure 9 witness the right freeness.

Corollary 6.4. The operad n+1

Lie PreLie is free as left and as a right n Lie PreLie-module (and not as a bimodule).

Let us now define the Nielsen-Schreier property. Definition 6.1. An operad P has the Nielsen-Schreier property if the subalgebra of any free Palgebra is free.

Let us recall the following theorem: Theorem 6.5. [START_REF] Dotsenko | An effective criterion for Nielsen-Schreier varieties[END_REF]Theorem 4.1] Let P an operad and E a set of generator of P satisfying the following conditions:

• P admit a Gröbner basis for the reverse path lexicographic ordering such for each leading terms, the smallest leaf is directly connected to the root.

• P admit a Gröbner basis such that each leading terms is a left comb such that the smallest leaf and the second smallest leaf are directly connected to the same vertex.

Then P has the Nielsen-Schreier property.

Corollary 6.6. The operad Greg C has the Nielsen-Schreier property.

Proof. The Gröbner basis from Figure 7 witness the first condition and the Gröbner basis from Figure 8 witness the second condition.

Corollary 6.7. The operad n Lie PreLie has the Nielsen-Schreier property.

Explicit computation of the generators

Let us compute the explicit generators of n+1 Lie PreLie as a left n Lie PreLie-module. To do so, let us mimic the proof of Dotsenko [START_REF] Dotsenko | Fine structures inside the prelie operad revisited[END_REF].

A structure of cyclic operad on an operad P is given by an action of S n+1 on P(n) compatible with the operadic structure. This is equivalently given by an action of τ = (1, 2, . . . , n + 1) on P(n) verifying:

• τ (µ • i ν) = τ (µ) • i+1 ν for i < m with m the arity of µ • i ν; • τ (µ • m ν) = τ (ν) • 1 τ (µ).
It is known that Lie is a cyclic operad, CycLie is the species under this cyclic operad so as vector space we have Lie(k) = CycLie(k + 1). In the particular case of CycLie, the action of τ is given by τ (l) = l. Let us introduce the following notation, x is the generator of PreLie without symmetries, x = µ+l with µ symmetric and l skew-symmetric. Then l is the generator of the suboperad Lie of PreLie and µ is magmatic.

We want to prove that n+1

Lie PreLie n Lie PreLie • F( F(n) (CycLie)) with F the free operad functor, F the reduced free operad functor such that F(X ) = F(X ) ⊕ X and F(n) the n-th iteration of F.

Let us recall the following theorem from [START_REF] Dotsenko | Fine structures inside the prelie operad revisited[END_REF]: • Y is isomorphic to CycLie as species;

• Let P(Y) the suboperad of PreLie generated by Y, then P(Y) is free;

• The left Lie-submodule of PreLie generated by P(Y) is free and coincide with PreLie.

Let us use the exact same technic as the one used in [START_REF] Dotsenko | Fine structures inside the prelie operad revisited[END_REF] to explicitly compute the generators of n+1 Lie PreLie as a left n Lie PreLie-module. The idea is the following, we introduce some explicit generators of n+1

Lie PreLie as a left Liemodule and as a left n Lie PreLie-module. We then define a bunch of surjective morphisms of species involving those generators. We then compute the dimensions of the species involved to show that the morphisms are isomorphisms. We then conclude that the generators we introduced freely generate n+1

Lie PreLie. Let Y n the subspecies of n+1

Lie PreLie generated by the

(c n • 2 a) • 1 b such that a, b ∈ n Lie PreLie. Let X n the subspecies of Y n generated by the x = (c n • 2 a) • 1 b with a, b ∈ Lie. Let P(Y n ) the suboperad of n+1
Lie PreLie generated by Y n . And let Z n the species inductively defined by Let define the following filtration on Lie • Z n : Definition 7.1. Let define the weight of an element of F(Y k ) as the usual weight in free operad, which is the number of generators needed in the composition. Then we define inductively the weight of an element γ(z, f 1 , . . . , f k ) of Z n with z ∈ Z n-1 and f i ∈ F(Y n ) as the total sum of the weight of those elements. For an element α = γ(l, z 1 , . . . , z r ) of Lie • Z n such that z i ∈ Z n of weight w i and l ∈ Lie of arity r, let w = r + w i be the weight of α. We define the filtration by α ∈ F w (Lie • Z n ) with w the weight of α. Proposition 7.2. This filtration is compatible with the Lie-bimodule structure. (It is in fact a filtration by infinitesimal Lie-bimodule.)

Z 0 = F(Y 0 ) and Z n+1 = Z n • F(Y n+1
Proof. Indeed, we have that l(F p (Lie

• Z n ), F q (Lie • Z n )) ⊆ F p+q (Lie • Z n ) and F p (Lie • Z n ) • Lie ⊆ F p (Lie • Z n ).

Hence this filtration induces a filtration on n+1

Lie PreLie by the surjective morphism of Liebimodule of the previous lemma. Lemma 7.2. We have a surjective morphism of species from CycLie to X n .

Proof. Let us compute Relation (diff pre-Lie) with x = µ + l. We get:

(l • 1 c n -(c n • 1 l).(2 3) -c n • 2 l) -(l • 1 c n -(c n • 1 l).(2 3) -c n • 2 l).(2 3) (µ • 1 c n -(c n • 1 µ).( 2 
3) -c n • 2 µ) -(µ • 1 c n -(c n • 1 µ).( 2 
3) -c n • 2 µ).( 2 3) 
+ i,j|max(i,j)=n (c i • 1 c j -(c i • 1 c j ).( 2 

3))

Let us rewrite it a bit:

2 × (c n • 2 l) + (c n • 1 l).( 2 
3) -(c n • 1 l) = l • 1 c n -(l • 1 c n ).(2 3)+ (µ • 1 c n -(c n • 1 µ).(2 3)) -(µ • 1 c n -(c n • 1 µ).(2 3)).(2 3) + i,j|max(i,j)=n (c i • 1 c j -(c i • 1 c j ).( 2 

3))

Let us remark that element of the left hand side are in F 2 n+1

Lie PreLie and elements of the right hand side are in F 3 n+1

Lie PreLie. Indeed at the left hand side, we have composition of the identity (arity 1) with elements of F(Y n ) having exactly one occurrences of an element of {µ, c 1 , . . . , c n }, hence degree 2. At the right hand side, we have either composition of l (arity 2) with elements of F(Y n ) having exactly one occurrences of an element of {µ, c 1 , . . . , c n }, hence degree 3; or composition the identity (arity 1) with elements of F(Y n ) having exactly two occurrences of an element of {µ, c 1 , . . . , c n }, hence degree 3. 

* g * -→ 0 ; 1 3 2 g * g * -→ 0 ; 1 2 3 g * g * -→ 0 1 2 3 x * g * -→ 0 ; 1 3 2 y * g * -→ 0 ; 1 2 3 y * g * -→ 0 1 3 2 g * y * -→ -1 2 3 y * g * ; 1 2 3 g * y * -→ 1 2 3 y * g * ; 1 3 2 g * x * -→ 1 2 3 g * x * 1 2 3 x * g * -→ 1 2 3 g * x * ; 1 2 3 y * x * -→ 1 2 3 y * y * ; 1 3 2 x * y * -→ 1 2 3 y * y * 1 3 2 y * x * -→ 1 2 3 y * x * ; 1 2 3 x * y * -→ 1 2 3 y * x * ; 1 3 2 x * x * -→ 1 2 3 x * x * 1 
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 1 Figure 1: Greg trees of arity n = 2

Definition 4 . 3 .B

 43 Let us define the deformed fall product ∆ on G V . Let S and T be two rooted Greg trees over V , and reuse the notation of Section 2. For v a vertex of S, the forest F S = {S 1 , . . . , S k } the forest of the children of v , B the rooted tree below v and c v the label of v. Let us write: For v a black vertex and c v its label, let us write c v (1) ⊗ c v (2) = ∆(c v ) using the Sweedler notation.

Definition 5 . 3 .Proposition 5 . 4 .

 5354 Let χ be a finite alphabet and W C (χ) be the span of finite words on χ with the following extra decorations: either one letter is pointed with a dot or there is a arrow from one letter to an other, the arrow is linearly labeled by V * . Let us write i instead of e * i and i.j instead of µ(e * i ,e * j ) . Let W C (χ) be the quotient of W C (χ) by the following relations, letters commute with each other (the dot and the arrow follow the letter), reverting the arrow change the sign and i abcv = i cbav+ i acbv for any a, b, c ∈ χ and v a finite word. Because of the letters commute, let us write the elements of W (χ) with the pointed letter (or arrowed letters) at the start. Let x and g i product on W (χ) defined by: • ȧv x ḃw = ȧvbw • i abv x ċw = i abvcw • ȧv g i ḃw = i abvw • i abv g j ċw = i.j abvcw and all other cases give 0. The algebra (W C (χ), x , { g i }) is a (G C ) ! -algebra generated by χ.

  Since A is a (G C ) ! -algebra on 4 generators, dim((G C ) ! (4)) ≥ dim(Mult(A(4))) = 4 + 3n.Remark 5.1. The algebra (W (χ), x , { g i }) is in fact the free (G C ) ! -algebra generated by χ.

Figure 7 .Theorem 5 . 1 .

 751 Let m ≥ 2 and count the number of normal forms in arity m. Those are right combs with at most one g k * , with all the x * above the g k * and the y * , and all the y * below the g k * and the x * . Hence the normal forms are determined by the number of occurrences x * and g k * , and have either zero or one occurrences g k * . If there is no g k * , then one can have from 0 to m -1 occurrences of x * . If there is one g k * , then one can have from 0 to m -2 occurrences of x * and n choice for the g k * that appear. Hence the number of normal forms in arity m is m + n(m -1) = (n + 1)mn. The operad G C is Koszul.

Theorem 7 . 1 .

 71 Let Y be the subspecies of PreLie such that y ∈ Y if and only if y = (µ • 2 a) • 1 b with a, b ∈ Lie. Then:

Figure 3 :

 3 Figure 3: The "dlp" rewriting system for (Greg ) ! 1 2
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 4567 Figure 4: The "prdl" rewriting system for (Greg ) ! 1 2

  ). We have a surjective morphism of Lie-bimodule from Lie • Z n to n+1 Lie PreLie. Proof. Since Y k is a subspecies of n+1 Lie PreLie, we have a morphism of species from F(Y k ) to n+1 Lie PreLie. Hence we have a morphism from Z n to n+1 Lie PreLie. Since Lie is a suboperad of n+1 Lie PreLie, we have a morphism of left Lie-module from Lie • F(Y k ) to n+1 Lie PreLie. This is a morphism of right Lie-module since each F(Y k ) is a right Lie-module. Moreover this morphism is surjective since l, µ, c 1 , . . . , c n are in Lie • Z n and are generators of

	Lemma 7.1.

n+1

Lie PreLie.
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Let us consider gr F X n the graded species associated to the restriction of the filtration F of X n . As species we have that gr F X n is isomorphic to X n . Moreover in gr F X n , the above relation give:

Let us denote r this relation and compute 1 3 (r + r.(1 3)):

We get:

This relation allows us to define a morphism of species from CycLie to gr F X n by sending ĩd → c n and l → (c n • 2 l), with ĩd and l the identity and the Lie bracket of CycLie. Indeed we have an

This morphism is surjective since gr F X n is a right Lie-module generated by c n . Hence we have a surjective morphism of species from CycLie to X n .

Lemma 7.3. We have a surjective morphism of species from

Lie PreLie, we have l i such that:

with l i ∈ Lie and α (i,j) ∈ Z n-1 .

Let β = γ(c n , l 1 , . . . , l k ), we have β ∈ X n , hence γ(c n , y 1 , . . . , y k ) is in the image of

Let us summarize the morphisms of species we have:

PreLie

One last ingredient is needed: the equality of dimensions of the components to show that those morphisms are in fact isomorphisms.

Proposition 7.3. Let S a species, f S (t) its exponential generating series. Then

where rev t is the inverse of the composition in the argument t and f F ( F (n) (S)) the exponential generating series of F( Fn (S)).

Proof. For a species S with exponential generating series f S (t), the exponential generating series f F (S) (t, z) of F(S) is given by f F (S) (t, z) is the inverse of tzf S (t) for the composition in the argument t, hence we have f F (S) (t, z) = rev t (tzf S (t)). Hence the exponential generating series of

The exponential generating series f F (S) (t, z) and f F (S) (t, z) have two arguments, the first one t count the arity of the elements and the second one z count the number of generators of the elements in the free operad. Since z count the number of generators of the elements in the free operad, dividing by z allows us to count the number of compositions of generators. Hence the exponential generating series of

) is equal to the exponential generating series of n+1

Lie PreLie. Proof. Let us compute the exponential generating series of F( F(n) (CycLie)). The exponential generating series of CycLie is well known to be (1t) ln(1t) + t, indeed its dimensions are (n -2)!. Hence the exponential generating series of

We have already computed the exponential generating series of n+1 Lie PreLie in Proposition 5.8 which is

And the exponential generating series of n+1

Lie PreLie is

It suffice to show that h((n + 1)gnf ) = f . Let us compute:

which concludes the proof.

We can state and prove the generalization of the previous theorem:

Theorem 7.2. We have:

1. The species X n is isomorphic to CycLie as a species.

2. The species Y n is isomorphic to F(n) (CycLie) as species;

3. The suboperad P(Y n ) of n+1 Lie PreLie generated by Y n is free; 4. The left n Lie PreLie-submodule of n+1 Lie PreLie generated by P(Y n ) is free and coincide with n+1

Lie PreLie.

The species

as species;

The left Lie-submodule of n+1

Lie PreLie generated by Z n is free and coincide with the Liemodule n+1

Lie PreLie. Proof. Let us prove this theorem by induction on n. The base case is the theorem from [START_REF] Dotsenko | Fine structures inside the prelie operad revisited[END_REF]. From the previous lemmas we have

Those surjective morphisms are isomorphisms by equality of dimensions. This show that:

1. The species X n is isomorphic to CycLie;

2. The species Y n is isomorphic to F(n) (CycLie);

The species

And the left n

Lie PreLie as left n Lie PreLie-module, they are isomorphic as left Lie-module. Hence Lie • Z n is isomorphic to n+1

Lie PreLie as left Lie-module, in particular the left Lie-submodule generated by Z n is free and coincide with n+1 Lie PreLie.

Remark 7.1. This proof can be adapted to show that Greg n Greg n-1 • F( F(n) (CycLie)).

The operad n+1

Lie PreLie is also free as a right n Lie PreLie-module. It could be interesting to compute explicit generator in this case. 

Appendix