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Variational Inference for Longitudinal Data Using Normalizing Flows

Clément Chadebec 1 Stéphanie Allassonnière 1

Abstract
This paper introduces a new latent variable generative model able to handle high dimensional longitudinal data
and relying on variational inference. The time dependency between the observations of an input sequence is
modelled using normalizing flows over the associated latent variables. The proposed method can be used to
generate either fully synthetic longitudinal sequences or trajectories that are conditioned on several data in a
sequence and demonstrates good robustness properties to missing data. We test the model on 6 datasets of different
complexity and show that it can achieve better likelihood estimates than some competitors as well as more reliable
missing data imputation.1

1. Introduction
Longitudinal data are more than common in many application fields such a medicine e.g. for disease progression modelling
(Aghili et al., 2018; Zhao et al., 2021) or monitoring treatment response (Blackledge et al., 2014). They consist in the
observation of a given entity’s or individual’s evolution though time but contrary to time-series, the number of observations
of a single entity may be pretty small. Moreover, such data can be of high dimension (e.g. images) and we may only have
access to a reduce number of different entities (e.g. rare diseases follow-ups) leading to small databases and missing values
(e.g. a missing observation at a given time or loss in follow-up of a given entity). All of these aspects make these data
challenging to model.

Generative models such as Variational Autoencoders (VAEs) introduced in (Kingma & Welling, 2014; Rezende et al., 2014)
appeared to be powerful models to model distributions and would be an interesting choice to consider for longitudinal data.
Unfortunately, while they appear to be able to perform some disentanglement of the input data in their latent space (Higgins
et al., 2017; Burgess, 2018; Kim & Mnih, 2018; Chen et al., 2018b), they struggle to capture more complex correlations
such as time evolution for longitudinal data (Ramchandran et al., 2021). To address this limitation and improve the latent
representations of the input data, methods trying to account for the correlations of the data in the latent space of VAEs
(Sohn et al., 2015), proposing new prior distributions (Nalisnick et al., 2016; Sønderby et al., 2016; Dilokthanakul et al.,
2017; Tomczak & Welling, 2018; Razavi et al., 2020; Pang et al., 2020) or seeking to enhance the expressiveness of the
approximate posterior distribution (Salimans et al., 2015; Rezende & Mohamed, 2015) were proposed. With a specific
focus on temporal coherence, works introducing priors using Gaussian Processes were also introduced (Casale et al., 2018;
Fortuin et al., 2020; Ramchandran et al., 2021). Nonetheless, those models were mainly designed to perform missing data
imputation or for conditional settings and so are not well suited for unconditional sequence generation. Approaches relying
on neural ODE (NODE) (Chen et al., 2018c; Xu et al., 2021; Massaroli et al., 2020; Dupont et al., 2019), deep state models
(Rangapuram et al., 2018; Klushyn et al., 2021), latent RNN models (Chung et al., 2015; Serban et al., 2017) or latent SDE
(Tzen & Raginsky, 2019; Li et al., 2020) have also demonstrated promising results to model time dependent data and to
perform time series forecasting, interpolation or for classification purposes. Nonetheless, their applicability to the context of
unconditional high dimensional data generation remains poorly explored.

Focusing more specifically on medical applications, several works have analysed longitudinal data through the prism of
progression models using in particular mixed-effects models (Schiratti et al., 2015; Bône et al., 2018). In these approaches,

1Université Paris Cité, INRIA, Inserm, SU, Centre de Recherche des Cordeliers . Correspondence to: Clément Chadebec
<clement.chadebec@inria.fr>.

1A code is made available at https://github.com/clementchadebec/variational_inference_for_
longitudinal_data

ar
X

iv
:2

30
3.

14
22

0v
1 

 [
st

at
.M

L
] 

 2
4 

M
ar

 2
02

3

https://github.com/clementchadebec/variational_inference_for_longitudinal_data
https://github.com/clementchadebec/variational_inference_for_longitudinal_data


Variational Inference for Longitudinal Data Using Normalizing Flows

patients are assumed to follow a given trajectory that deviates from a reference curve that may, for example, represent
the average progression of a given disease. These approaches were then combined with dimensionality reduction using
autoencoders (Louis et al., 2019) or VAEs (Sauty & Durrleman, 2022). However, these methods remain limited to the
context of disease progression because they assume the existence of an intrinsic average trajectory from which each subject
deviates, which may no longer be a valid assumption for heterogeneous datasets.

In this paper, we take quite a different approach and propose the following contributions:

• We propose a new generative latent variable model imposing time dependency of the observations in an input sequence
using normalizing flows on the associated latent variables. A training procedure relying on variational inference is also
derived.

• We show that the model is capable of handling high dimensional longitudinal data and able to generate fully synthetic
sequences or trajectories conditioned on several input data.

• We discuss the modularity of the proposed model and show that it can benefit pretty easily from improvements available
in the variational inference literature.

• We show that the method achieves better likelihood estimates that competitors on benchmark datasets and can
outperform them for missing data imputation.

2. Background
In this section, we first recall some elements on variational inference and normalizing flows needed in the proposed method.

2.1. Variational Inference

Given observations x ∈ RD and associated latent variables z ∈ Rd with joint distribution p(x, z), variational inference
(Jordan et al., 1999) is a method that aims at approximating an untractable conditional distribution p(z|x) of the latent
variables given the observations using a family of parametrized distributions qφ(z|x) (Blei et al., 2017). The idea is to find
the set of parameters φ that minimises the Kullback-Leibler (KL) divergence between the approximate posterior and the true
one i.e. min

φ
KL(qφ(z|x)||p(z|x)). However, this objective is most of the time untractable since p(z|x) is unknown and so a

surrogate objective is optimised instead and obtained using Jensen’s inequality (Jordan et al., 1999):

log p(x) = log

∫
Rd
p(x, z)dz = logEqφ

[
p(x, z)

qφ(z|x)

]
≥ Eqφ log

[
p(x, z)

qφ(z|x)

]
. (1)

The right hand side of the equation is called the Evidence Lower BOund (ELBO) and one may notice that the difference
between the left hand side of the equation and the ELBO gives KL(qφ(z|x)||p(z|x)). Hence, maximising the ELBO amounts
to minimising the KL and so the ELBO is used as objective for the variational approximation.

2.2. Normalizing Flows

Normalizing flows are flexible models that can be used to transform simple probability densities into much complex
ones by re-coursing to sequences of invertible smooth mappings. They have, for instance, been proposed to enhance the
expressiveness of the approximate posterior distribution used in the context of variational inference in (Rezende & Mohamed,
2015). These models rely on the rule of change of variables such that if z ∈ Rd is a random variable that follows the
distribution q(z) and f : Rd → Rd is an invertible smooth function, then the random variable z′ = f(z) has a distribution
given by

q(z′) = q(z)

∣∣∣∣det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣−1 . (2)

In this setting, f is called a normalizing flow and so several flows can be composed to form a new flow g = fK◦fK−1◦· · ·◦f1
allowing to model richer distributions. In the context of variational inference, these flows can be parameterised as well and
so can be used to have access to enhanced approximate posterior distributions qφ(z|x) provided that the computation of
the det-Jacobian of the flows is tractable. Amongst the most widely known flows we can cite NICE (Dinh et al., 2014),
linear and planar flows (Rezende & Mohamed, 2015), RealNVP (Dinh et al., 2016), Masked Autoregressive Flows (MAF)
(Papamakarios et al., 2017) or Inverse Autoregressive Flows (IAF) (Kingma et al., 2016).
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Inference model Generative model

Figure 1: Proposed inference and generative models.

3. The Proposed Model
In this section, we propose a new generative latent variable model suited for longitudinal data.

3.1. Problem Setting

Let us define P as the number of entities observed through time. For each entity i ∈ {1, . . . , P}, we are given a sequence
of ti + 1 observations xi = (xi0, . . . , x

i
ti) such that xij ∈ X = RD, ∀j ∈ {0, . . . , ti}. Assuming that the sequence xi is

generated from an unknown distribution p, our goal is to infer p with a parametric model {pθ, θ ∈ Θ}.

3.2. The Probabilistic Model

Given an entity i ∈ {1, . . . , P} and a sequence of observation (xi0, . . . , x
i
ti), we assume that for each xij where j ∈

{0, . . . , ti}, there exists an associated latent variable zij ∈ Z = Rd involved in the generative process of the observation xij
such that xij ∼ pθ(xij |zij). One may further write the joint distribution pθ as follows:

pθ(x
i
0, · · · , xiti) =

∫
Z
pθ(x

i
0, · · · , xiti |z

i
j)p(z

i
j)dz

i
j , (3)

where p(zij) is a prior distribution over zij . An important point in this setting is that the observations xij are no longer
independent and so the joint likelihood is no longer factorisable. In this paper, we propose to model the time dependency of
the observations in an input sequence using the latent variables and normalizing flows as follows

zi0 ∼ p(zi0), zi1 = f1(zi0), . . . , ziti = fti(z
i
ti−1

) , (4)

where p is a simple prior distribution over zi0 (e.g. standard Gaussian) and fj are normalizing flows for any j ∈ {1, . . . , ti}.
The main idea is to assume that it is the distribution of the latent variables that evolves through time and we propose to
model this evolution using the flows. As such, the time dependency is imposed on the latent variables and not directly on the
observations. Note that the initial distribution can be chosen as complex as desired and that for any j ∈ {1, . . . , ti} we have
access to a tractable density for p(zij) using Eq. (2):

p(zij) = p(zi0)

j∏
l=1

∣∣∣∣∣det
∂fl
∂zil−1

∣∣∣∣∣
−1

. (5)

In addition, the relation between two latent variables zij and zik with j, k ∈ {0, . . . , ti} such that j < k is explicit and
completely deterministic since we have:

zik =©k
l=j+1fl(z

i
j) and zij =©j+1

l=k (fl)
−1(zik) . (6)

Hence, we can see that given a latent vector zij we can now retrieve the complete sequence (zi0, . . . , z
i
ti) using Eq. (6).

Assuming (xij)j∈{1,...,ti} are independent knowing (zi0, . . . , z
i
ti), the conditional distribution in Eq. (3) writes

pθ(x
i
0, · · · , xiti |z

i
j) =

ti∏
l=0

pθ(x
i
l|zij) =

ti∏
l=0

pθ(x
i
l|zil ) . (7)
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Algorithm 1 Training Procedure

Input: Observations (xi0, · · · , xiti)
while not converged do

Pick j ∈ {0, . . . , ti} randomly
zij ∼ qφ(·|xij)
for l = j + 1 to ti do
zil = fl(zl−1) {propagate in future}

end for
for l = j − 1 to 0 do
zil = (fl+1)−1(zl+1) {propagate in past}

end for

L = − 1
ti+1

ti∑
l=0

log pθ(x
i
l|zil ) + log qφ(zij |xij)− log p(zi0)−

j∑
l=1

log
∣∣∣ det ∂(fl)

−1

∂zil

∣∣∣
end while

Using Eq. (5) and Eq. (7) allows to derive another expression of the joint distribution of the observations:

pθ(x
i
0, · · · , xiti) =

∫
Z

ti∏
l=0

pθ(x
i
l|zil )p(zij)dzij . (8)

Since this integral is most of the time intractable, we propose to rely on variational inference (Jordan et al., 1999). We
indeed introduce a parametrized variational distribution qφ(zij |xij) such that we can obtain an unbiased estimate of the joint
likelihood:

Eqφ

[ ti∏
l=0

pθ(x
i
l|zil )p(zij)

qφ(zij |xij)

]
= pθ(x

i
0, · · · , xiti) .

(9)

Using Jensen’s inequality allows to derive a lower bound (ELBO) on the true objective i.e. the log joint likelihood :

log pθ(x
i
0, · · · , xiti) = logEqφ

[ ti∏
l=0

pθ(x
i
l|zil )p(zij)

qφ(zij |xij)

]
≥ Eqφ log

[ ti∏
l=0

pθ(x
i
l|zil )p(zij)

qφ(zij |xij)

]
,

≥ Eqφ log

ti∏
l=0

pθ(x
i
l|zil )−KL(qφ(zij |xij)|p(zij)) .

(10)

The graphical models for the proposed method can be found in Fig. 1. In practice and inspired from the VAE framework,
the variational distribution is chosen as a multivariate Gaussian distribution qφ(zij |xij) = N (zij ;µφ(xij),Σφ(xij)) for
j ∈ {0, . . . , ti} and where µφ and Σφ are given by neural networks and Σφ is chosen as a diagonal matrix. The conditional
distributions pθ(xij |zij) are chosen depending on the input data (e.g. multivariate Gaussians for RGB images) and p(zij) is
given by Eq. (5). To mitigate the impact of the sequence length on the ELBO in Eq. (10), we average the left hand side
term over the sequence length. This impedes the reconstruction term to over-weight the KL for long sequences. As for the
normalizing flows, in this paper, we use Inverse Autoregressive Flows (IAF) (Kingma et al., 2016) with MADE (Germain
et al., 2015) for the autoregressive networks since we need a tractable inverse. It should be noted that for such flows the
computation of the inverse is however sequential and its time proportional to the dimensionality of the latent variables due to
the autoregressive property of the flows. Nonetheless, in practice the dimension of the latent variables is often much smaller
than the dimensionality of the input data making this choice reasonable. We choose IAF over MAF (Papamakarios et al.,
2017) so that the generation of a synthetic sequence from the prior z0 ∼ p(z0) is fast since it does not require inverting the
flows. Finally, a pseudo code of the training algorithm is provided in Alg. 1 and an implementation using PyTorch (Paszke
et al., 2017) and based on (Chadebec et al., 2022b) is made available in the supplementary materials.

3.3. Dealing with Missing Data in the Sequence

In real-life applications, it is not rare to find sequences with missing observations (e.g. in medicine a loss of patient follow-up
or a patient not coming to a specific visit induces missing observations for the patient’s evolution). As explained above and
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Algorithm 2 Inference Procedure for Missing Observations

Input: A sequence (xij)j∈Oi with missing observations
for j ∈ Oi do
zij,j ∼ qφ(·|xij)
x̂ij,j ∼ pθ(·|zij,j)
for l = j + 1 to ti do
zil,j = fl(zl−1,j)

x̂il,j ∼ pθ(·|zil,j)
end for
for l = j − 1 to 0 do
zil,j = (fl+1)−1(zl+1,j)

x̂il,j ∼ pθ(·|zil,j)
end for

end for
jopt = arg max

j∈Oi

∑
l∈Oi

log pθ(x
i
l,j |zil,j)

return (x̂i0,jopt
, · · · , x̂iti,jopt

) {obtained with jopt}

shown in Alg. 1, during training we perform variational inference using only one element in the sequence. Thus, the training
can be modified pretty easily to handle such missing data in the input sequences and consists in only using the observed data.

Nonetheless, this can be seen as a weakness of the method at inference time. Let us indeed imagine that we are given a
sequence of 5 measure times (xi0, x

i
1, x

i
2, x

i
3, x

i
4) where only 3 are actually observed, say xi1, x

i
2 and xi4. In its current shape,

during inference, the method will choose an observation time j ∈ {1, 2, 4}, say j = 2, sample a latent variable associated to
observation xi2 using the approximate posterior qφ(·|xi2) and then generate a sequence (zil )l∈{0,...,4} using the learned flows.
This sequence is then used to sample a reconstructed sequence in the observations space using pθ(x|z). This is actually
sub-optimal since this would be equivalent to only have access to observation xi2 without benefiting from the information
provided by xi1 and xi4. In order to address this potential limitation of the model, we propose to generate a sequence (actually
we can generate an arbitrary number of sequences) for each index corresponding to an observed input data in the sequence
(i.e. {1, 2, 4} in the example) and keep the generated sequence achieving the highest likelihood on the observed data. In
other words, if we denote Oi the set of observed indices in the input sequence, we define the optimal index that should be
used to complete the sequence as follows:

jopt = arg max
j∈Oi

∑
l∈Oi

log pθ(x
i
l,j |zil,j) , (11)

where zil,j is the latent variable and xil,j the data generated at time l using index j. Alg. 2 shows the inference procedure.

3.4. Enhancing the Model

One interesting aspect of the model is that one may use improvements that have been proposed and proved useful in the
literature related to variational inference and VAEs to enhance several part of the model independently.

Improving the prior Even-though, a simple distribution such as a standard Gaussian appeared to work well in practice, a
smarter choice in the prior distribution may result in an enhanced data generation or better likelihood estimates (Hoffman &
Johnson, 2016). As such, richer priors (Nalisnick et al., 2016; Dilokthanakul et al., 2017) or priors that are learned (Chen
et al., 2016; Razavi et al., 2020; Pang et al., 2020; Aneja et al., 2020) can be easily plugged into our model. We show in the
experiments section how changing the prior from a standard Gaussian to a VAMP prior (Tomczak & Welling, 2018) can
influence the results.

Improving the variational bound Following (Rezende & Mohamed, 2015) insights, another way to improve the expres-
siveness of the model and ideally achieve a tighter ELBO consists in enriching the potentially too simplistic parameterised
variational distribution qφ(z|x) using flows. This improvement can be easily integrated within our framework as well. In
the experiments section, we also propose a variant model where the posterior distributions are enriched using IAF flows as
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proposed in (Kingma et al., 2016). Methods proposing to use MCMC sampling steps with learned Markov kernels (Salimans
et al., 2015) or relying on Hamiltonian dynamics (Caterini et al., 2018; Chadebec et al., 2022a) could also be envisioned but
are not tested in combination with our model due to the strong computation burden they imply.

4. Related Works
Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) share some aspects with our method.
First, they try to maximise the likelihood of a set of data using a variational approach. Second, they try to take advantage of
the flexibility a latent space provides by mapping potentially high dimensional input data into a lower dimensional space.
However, they assume that the input data are independent and so are the latent variables. This impedes the model to capture
the potentially complex time dependency that exists with longitudinal data.

There exist however some works on VAEs that are worth citing since they stress the flexibility offered by considering a latent
space. In particular, they motivated our idea to impose the time dependency over the latent variables and not directly on the
observations. First, several papers argued that the latent space of the VAE can reveal representative and interpretable features
through its ability to perform disentanglement (Higgins et al., 2017; Burgess, 2018; Korkinof et al., 2018; Chen et al.,
2018b). Studying the latent space with a geometric point of view, other works showed that this latent space can actually be
modelled with a specific geometry (e.g. hyper-sphere, Poincaré Disk, Riemannian manifold) (Davidson et al., 2018; Falorsi
et al., 2018; Mathieu et al., 2019; Kalatzis et al., 2020; Chadebec et al., 2022a) or that a Riemannian geometry can naturally
arise in the latent space (Arvanitidis et al., 2018; Chen et al., 2018a; Shao et al., 2018; Chadebec & Allassonnière, 2022).
Finally, another way to enhance the representation capability of the model that was proposed in the literature consists in
increasing the expressiveness of the variational posterior distribution using MCMC sampling (Salimans et al., 2015) or
normalizing flows (Rezende & Mohamed, 2015).

Arguing that VAEs still fail to capture complex correlations, there were some proposals in the literature trying to constraint
the model to account for these correlations in the latent space. For instance, the conditional VAE (Sohn et al., 2015) feeds
auxiliary variables directly to the encoder and decoder networks but fails to model the evolution of a given subject through
time. Gaussian processes that are a powerful tool for time series (Seeger, 2004; Roberts et al., 2013) were also proposed
as prior for the VAE (Casale et al., 2018; Fortuin et al., 2020) to account for the temporal structure across the samples.
(Ramchandran et al., 2021) enriched these models with the inclusion of covariates different from time using a multi-output
additive Gaussian process prior.

Also closely related to our method are approaches involving neural ordinary differential equations (NODE) that see the
forward pass of a residual network as solving an ODE (Chen et al., 2018c), an approach that was for instance extended in
(Dupont et al., 2019; Rubanova et al., 2019; Massaroli et al., 2020). In particular, the latent neural ODE model proposed
in (Chen et al., 2018c) defines a generative model by assuming that the initial state latent variable follows a given prior
distribution and a latent trajectory is then obtained by solving an ODE. The model also relies on variational inference but
considers an approximate posterior conditioned on the entire input sequence leading to very different latent representations
when compared to our method. The idea was further enriched in (Rubanova et al., 2019) to handle irregularly-sampled
time series and extended to SDE in (Chung et al., 2015; Serban et al., 2017). However, these models were rarely used on
high dimensional sequences such as images while the method we propose appears well suited for such type of data. We
can nonetheless cite (Kanaa et al., 2021; Park et al., 2021) but that only validated their method on simple databases and
(Yildiz et al., 2019) that proposed to optimize a complex loss function and to rely on adversarial training making the training
procedure tricky. Moreover, these works were mainly designed for conditional generation (prediction of future time points
or interpolation), while the usability of these methods for unconditional generation remains to be proven.

Modelling longitudinal data and trying to understand the underlying evolution dynamic is something that has also been quite
studied under the prism of disease progression modelling (Jedynak et al., 2012; Fonteijn et al., 2012). In such literature,
mixed-effect models (Laird & Ware, 1982) that parameterise a patient’s evolution as a deviation from a reference trajectory
have become more and more popular (Diggle et al., 2002; Singer et al., 2003). First applied on Euclidean data (Bernal-Rusiel
et al., 2013), they were then extended with a Riemannian geometry viewpoint (Schiratti et al., 2015; Singh et al., 2016;
Koval et al., 2017; Bône et al., 2018) or combined with dimensionality reduction (Louis et al., 2019; Sauty & Durrleman,
2022). Despite being adapted to model disease progression, it is unclear how these models would apply to datasets where
there is no clear average evolution.

Finally, deep learning based methods relying on recurrent neural networks are also worth citing as they revealed useful for
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Table 1: Negative log joint likelihood divided by the sequence length computed on an independent test set with 5 independent
runs and 100 importance samples.

MODEL STARMEN ROTMNIST COLORMNIST 3D CHAIRS SPRITES

VAE 3781.82 ± 0.01 741.03 ± 0.00 2179.88 ± 0.00 11359.39 ± 0.02 11313.38 ± 0.00
VAMP 3780.99 ± 0.01 740.82 ± 0.00 2179.60 ± 0.00 11361.01 ± 0.02 11313.43 ± 0.00
TVAE (0) 3806.26 ± 0.07 748.18 ± 0.00 2185.40 ± 0.00 11419.32 ± 0.11 11332.09 ± 0.01
TVAE (SHORT) 3782.39 ± 0.05 744.07 ± 0.00 2175.54 ± 0.00 11373.76 ± 0.07 11318.96 ± 0.01
TVAE (PART) 3780.75 ± 0.05 739.53 ± 0.00 2174.19 ± 0.00 11364.21 ± 0.18 11308.40 ± 0.01
TVAE (HALF) 3777.57 ± 0.07 745.55 ± 0.00 2173.58 ± 0.00 11363.27 ± 0.12 11305.62 ± 0.01
BUBBLEVAE 3780.46 ± 0.07 742.66 ± 0.00 2174.74 ± 0.00 11369.59 ± 0.19 11310.69 ± 0.01
GPVAE (CAUCHY) 3780.36 ± 0.03 740.05 ± 0.00 2177.21 ± 0.00 11367.43 ± 0.02 11309.11 ± 0.01
GPVAE (RBF) 3787.80 ± 0.03 745.58 ± 0.00 2187.15 ± 0.00 11390.33 ± 0.04 11315.68 ± 0.01
GPVAE (DIFFUSION) 3780.96 ± 0.01 740.26 ± 0.00 2178.63 ± 0.00 11359.21 ± 0.00 11312.50 ± 0.00
GPVAE - MATERN 3779.29 ± 0.02 739.68 ± 0.00 2176.63 ± 0.00 11360.36 ± 0.03 11309.90 ± 0.00

OURS (N ) 3773.23 ± 0.17 735.71 ± 0.00 2173.16 ± 0.05 11362.00 ± 0.62 11301.51 ± 0.04
OURS (VAMP) 3772.91 ± 0.16 736.15 ± 0.00 2173.00 ± 0.05 11364.73 ± 0.51 11301.30 ± 0.02
OURS (IAF) 3773.01 ± 0.17 735.27 ± 0.01 2172.85 ± 0.05 11359.48 ± 0.67 11301.97 ± 0.02

time varying data (Pearlmutter, 1989). To cite a few, GRUI-GAN (Luo et al., 2018) and BRITS (Cao et al., 2018) were
proposed with the aim of handling missing data but with the drawback of relying on adversarial training for the first one and
not being generative for the second. (Chung et al., 2015) proposed a combination of VAE and RNN for structured sequential
data but there exists no clear way how the model would handle missing data.

5. Experiments
In this section, we validate the proposed method through series of experiments. We place ourselves in the context of
high-dimensional data (images) and so set d� D (i.e. the latent variables live in a much lower-dimensional latent space
when compared to the input images size). In line with the VAE framework, the inference network providing the parameters
of the variational distribution qφ(z|x) can then be interpreted as an encoder and the generative model pθ(x|z) as a decoder.
Note that neither the encoder nor the decoder depend on time. First, we show that the proposed model is able to achieve
better joint likelihood estimates than several models proposed in the literature on 5 datasets. Then, we show that the method
is also able to impute missing data (and features) and compare its performances in term of reconstruction with benchmark
models. Finally, we evaluate the ability of the proposed model to generate relevant conditioned and fully synthetic sequences.
We also conduct in Appendix E an ablation study stressing the influence of the flows, latent space dimension and prior
complexity and discuss the relevance of Eq. (11) for missing data imputation in Appendix F.

5.1. Data

For these experiments, we consider 5 different databases that mimic longitudinal datasets. The first one is a synthetic
longitudinal dataset composed of 1,000, 64x64 images of starmen raising their left arm and generated according to the
diffeomorphic model of (Bône et al., 2018). The second one consists of 8 evenly separated rotations applied to the MNIST
database (LeCun, 1998) from 0 to 360 degrees, we call it rotMNIST. In addition to these two toy datasets, we also consider
more challenging ones. The third one called colorMNIST is created using the approach of (Keller & Welling, 2021). It
consists of sequences of colored MNIST digits that can undergo three distinct types of transformations: color change (from
turquoise to yellow), scale change or rotations. It is important to note that for this database, the time dynamic cannot be
fully recovered from a single image since it can correspond to different transformations. For instance, a starting turquoise 6
can either change of color or undergo a change in scale. The fourth database is created using the 3d chairs dataset (Aubry
et al., 2014) consisting of 3D CAD chair models and considering as input sequences, 11 evenly separated rotations of a chair
(from 0 to 360◦). Finally, we use the sprites dataset (Li & Mandt, 2018) consisting of 64x64 RGB images of characters
performing actions such as dancing or walking. Find more details about the datasets, potential pre-processing steps and
some examples of the training sequences in Appendix. A.
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Figure 2: Mean Square Error (MSE) on the test data for different proportions of missing observations (0.2 to 0.7) and
missing pixels (0.2 to 0.6) in the input train, validation and test sequences for the starmen (top) and sprites (bottom) datasets.
The proposed model appears very robust to incomplete sequences thanks to the flows-based structure.

5.2. Likelihood Estimation

First, we compare the proposed model and two of its variants (using either a VAMP prior or IAF flows to enrich the posterior
approximation) to a vanilla VAE (Kingma & Ba, 2014), a VAE with a VAMP prior (Tomczak & Welling, 2018) and models
incorporating temporal coherence such as the BubbleVAE (Hyvärinen et al., 2004) or the Topographic VAE (TVAE) (Keller
& Welling, 2021). For the latter, we consider several models with different temporal coherence length L: TVAE (0) i.e.
no temporal coherence, TVAE (short) i.e. L ≈ 1

8 of the input sequence length S, TVAE (part) where L ≈ 1
4S and TVAE

(half) with L = 1
2S, i.e. the model takes into account the full sequence. We also compare our model to a VAE using a

Gaussian Process as prior (GPVAE) proposed in (Fortuin et al., 2020). For this model, we consider several GP kernels (RBF,
Cauchy, diffusion and matern). We use the 5 datasets presented in the previous section and train all the models on a train
set, keep the best model on a validation set and compute the negative log joint-likelihood on an independent test set using
100 importance samples in a similar fashion as (Burda et al., 2016). We train the models for 200 epochs for sprites and
rotMNIST, 250 for colorMNIST and 400 for starmen and chairs with a latent dimension set to 16 for all datasets but for the
3d chairs dataset where it is set to 32. Any other relevant piece of information about training configurations is provided
in Appendix D. We show in Table 1, the mean and standard deviation of the negative log joint likelihood obtained with 5
independent runs. For all datasets, the model is able to either compete or outperform the competitors. Moreover, as expected,
using a richer prior (VAMP) or enriching the expressiveness of the variational posterior with flows (IAF) leads most of the
time to a better likelihood estimation. This is an encouraging aspect since it shows that the model can be improved pretty
easily using independent bricks available in the variational inference literature.

5.3. Missing Data Imputation

The second experiment that we conduct consists in assessing the robustness of the model when it faces missing data and
test its ability to impute missing values. To do so we consider 2 databases: starmen and sprites; and randomly remove
observations in input sequences with probability 0.2, 0.4, 0.6 and 0.7. To challenge the model in the context of missing



Variational Inference for Longitudinal Data Using Normalizing Flows

(a) (b) (a) (b)

Figure 3: Conditionally generated trajectories (greyed are unseen data). Left: 5 generated sequences using the same input
image. For each trajectory, 5 latent variables are drawn from the posterior distribution qφ(z|x), passed trough the flows and
decoded using pθ(x|x). In a), the model is able to produce possible evolutions (changes of color or scale) for the dataset
considered. Right: Generated sequences using each seen data in the input sequence. The generated sequences are ranked as
they maximise the likelihood on the seen data according to Eq. (11) (best at the top).

Figure 4: Generated sequences using the proposed model. Latent variables are sampled from the prior distribution (taken as
a standard Gaussian in this example) and propagated through the flows according to Eq. (4). The obtained latent sequences
are then decoded using the conditional distribution pθ(x|z) to create the image sequences.

features, we also create sequences with missing observations (randomly removed with probability 0.5) and missing pixels in
the observed images (randomly removed with probability 0.2, 0.4 and 0.6). All the models are trained with the same masks
and are optimised using an objective computed only on the seen pixels. The charts in Fig. 2 show the Mean Square Error
(MSE) obtained on an independent test set. In all scenarios, the proposed model outperforms the TVAEs, BubbleVAEs and
GPVAEs and appears as expected quite robust to missing observations in the input sequences. This is made possible thanks
to the training structure that uses only one seen observation to perform variational inference.

In Fig. 3, we also show some conditional generations obtained with the proposed model on the colorMNIST dataset. At
the top, we show 5 generated trajectories using 2 different images. In each case, we draw 5 random latent variables from
the corresponding variational posterior qφ(z|x). They are then passed through the flows according to Eq. (4) leading to 5
sequences and finally decoded using pθ(x|z). In a), the model is able to produce a range of possible evolutions (changes of
color or scale) that are plausible given the dataset considered. This is a very important property of the model since thanks to
the variational posterior distribution it can generate an infinite number of possible trajectories from a single observation.
Moreover, we see that the model is clearly able to keep the shape coherence all along the trajectory. At the bottom, we show
the sequences obtained by using each image available in the sequence (not greyed). We rank the generated trajectories as
they maximise the likelihood on the seen data (i.e. according to Eq. (11)). This experiment shows how the model can benefit
from the information available in the sequence despite only using one image to generate. In practice, one may generate as
many trajectories as desired for each image available in the sequence (and not just one as in this example) and chose the one
that maximises Eq. (11). As a conclusion, these experiments show that even-though the relation between the latent variables
of a sequence is deterministic, the stochasticity in the conditionally generated sequences arises from the sampling from the
variational posterior that is able to capture the modularity of the data.
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Table 2: FID (lower is better) computed on an independent test set with the same number of generated samples as available
in the test set.

MODEL COLORMNIST SPRITES

VAE 29.79 53.37
VAMP 33.92 59.85
GPVAE 31.93 56.74
OURS (N ) 28.62 44.82
OURS (VAMP) 25.07 40.23
OURS (IAF) 28.14 41.81

5.4. Unconditional Sequence Generation

In this section, we evaluate the ability of the proposed model to generate relevant fully synthetic trajectories. For this
experiment, we first compute the Frechet Inception Distance (FID) (Heusel et al., 2017) on the colorMNIST and sprites
datasets. The FID is computed by generating the same number of images as available in an independent test set: 21,312 for
sprites (2,664 sequences of 8 time steps) and 120,000 for colorMNIST. Note that in this setting the FID does not account
for the temporal coherence between the generated samples within a sequence. As shown in Table 2, the proposed model
achieves the lowest FID (lower is better). The fact that it is able to outperform a VAE or a VAMP-VAE shows that the
temporal coherence constraint imposed by the flows does not affect the quality of the generated images. Moreover, we see
the influence of using a more complex prior or enriching the variational approximation on the generative capability of the
model that can achieve better FIDs. Finally, we show generated samples for the 3d chairs, starmen, sprites, colorMNIST and
the Radboud Faces Database consisting of 67 individuals displaying different emotions (Langner et al., 2010). For the latter
dataset, we create sequences of 4 time steps corresponding to the emotions: anger, happiness, sadness and surprise; and
down-sample the images so they are of size 64x64. We show 4 generated sequences for each dataset in Fig. 4. Thanks to the
flow-based structure, the model is able to generate relevant sequences that clearly keep a temporal consistency. Additional
samples can be found in Appendix B and small movies in the supplementary materials. We also show that the proposed
model does not simply memorise the training samples by showing the closest training sequence to the generated ones in
Fig. 5 and Appendix C.

6. Conclusion
In this paper, we introduced a new generative model for longitudinal data that relies on variational inference and normalizing
flows. It proved able to generate relevant fully synthetic sequences and to propose plausible trajectories when conditioned
on one or several seen samples in an input sequence. We also discussed and showed that our model can benefit from
improvements proposed in the variational inference literature. In particular, we proposed two variants of our model using
either a more complex prior or a more flexible variational posterior using flows. These independent enhancements revealed
particularly useful for likelihood estimation and unconditional generations. Moreover, the proposed model demonstrated
quite a good robustness to missing data and showed to be useful for missing data imputation. Nonetheless, a potential
weakness of the model is that the flow-based structure makes it discrete. Furthermore, we acknowledge that the deterministic
aspect induced by the choice of normalizing flows to account for time dependency in the latent space can be seen as a
limitation to the expressiveness of the model. In particular, future work may involve stochastic trajectories in a spirit
similar to latent SDEs, which would add to the expressiveness of the model. Nevertheless, such determinism in trajectories
combined with the proposed training scheme may also benefit the posterior variational distributions that are constrained to
be sufficiently expressive to capture the stochasticity of the trajectories.
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Figure 5: Closest train sequences (train) to the generated ones (gen.). See more examples in Appendix C.
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A. The Data
In this section, we display some training samples for each dataset used in the paper. We recall that the first one shown in
Fig. 6a is a synthetic longitudinal dataset composed of 1,000, 64x64 images of starmen raising their left arm and generated
according to the diffeomorphic model of (Bône et al., 2018). The second one shown in Fig. 6b consists of 8 evenly separated
rotations applied to the MNIST database (LeCun, 1998) from 0 to 360 degrees. The third one called colorMNIST is created
using the approach of (Keller & Welling, 2021). It consists of sequences of colored MNIST digits that can undergo three
distinct types of transformations: color change (from turquoise to yellow), scale change or rotations and is presented in
Fig. 6c. It is important to note that for this database, the time dynamic cannot be fully recovered from a single image since
it can correspond to different transformations. For instance, a starting turquoise 6 can either change of color or undergo
a change in scale as shown on line 2 and 3 of Fig. 6c. The fourth database is created using the 3d chairs dataset (Aubry
et al., 2014) consisting of 3D CAD chair models and considering as input sequences, 11 evenly separated rotations of a
chair (from 0 to 360◦). Some samples are displayed in Fig. 6e. We also use the sprites dataset (Li & Mandt, 2018) shown in
Fig. 6f that consists of 64x64 RGB images of characters performing actions such as dancing or walking. Finally, we also
consider the Radboud Faces Database consisting of 67 individuals expressing different emotions (Langner et al., 2010). For
this dataset, we create sequences of 4 time steps corresponding to the emotions: anger, happiness, sadness and surprise; and
down-sample the images so they are of size 64x64 as shown in Fig. 6d.

(a) Starmen (b) rotMNIST

(c) colorMNIST (d) Faces

(e) 3d chairs (f) Sprites

Figure 6: 5 training sequences for each dataset considered in the paper.
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B. Some More Generations
In this section, we show 20 additional generated sequences for the starmen dataset in Fig. 7, the colorMNIST dataset in
Fig. 8, the sprites data in Fig. 9, the faces dataset in Fig. 10 and the chairs dataset in Fig. 11. This experiment shows the
diversity of the generated trajectories as well as their relevance.

Figure 7: 20 sequences generated by our model trained on the starmen dataset.
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Figure 8: 20 sequences generated by our model trained on the colorMNIST dataset.
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Figure 9: 20 sequences generated by our model trained on the sprites dataset.



Variational Inference for Longitudinal Data Using Normalizing Flows

Figure 10: 20 sequences generated by our model trained on the faces dataset.



Variational Inference for Longitudinal Data Using Normalizing Flows

Figure 11: 20 sequences generated by our model trained on the chairs dataset.
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C. Exploring Overfitting
In this section, we show that the proposed model generates unseen sequences by comparing 4 generated trajectories to
the closest one in the train set (using L2 norm). For each dataset, we see that the generated sequence is different from the
training data. For instance, for the starmen, the individual has a different shape while for the sprites, the individual has
different pants, hair or top’s color.

Gen

Train

Gen.

Train

(a)

Gen.

Train

Gen.

Train

(b)

Gen.

Train

Gen.

Train

(c)

Gen.

Train

(d)

Figure 12: Closest train sequences (train) to the generated ones (gen.) using our model trained on (a) the sprites, (b) starmen,
(c) 3d chairs and (d) faces datasets.
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D. Experimental Details
In this section, we detail all the relevant parameters we used for the experiments. The datasets presented in Appendix A are
first split into a train set, a validation set and a test set as shown in Table 3. We train the models for 200 epochs for sprites
and rotMNIST, 250 for colorMNIST and 400 for starmen and chairs with a latent dimension set to 16 for all datasets but for
the chairs dataset where it is set to 32. We select the model achieving the lowest validation loss in each case. We use the
Adam optimiser (Kingma & Ba, 2014) with a starting learning rate of 10−3 together with schedulers reducing the learning
rate by a factor 0.5 at epoch 50, 100, 125 and 150 for starmen, by a factor 10−4 at epoch 50, 75, 100, 125 and 150 for
rotMNIST, by a factor 10−4 at epoch 50, 100, 150 and 200 for colorMNIST, by a factor 0.5 at epoch 150, 200, 250, 300
and 350 for 3d chairs and a factor 0.5 at epoch 50, 100, 125 and 150 for sprites. For the faces dataset we use a scheduler
multiplying the learning rate by 10−6 every 2,000 epochs and train the model for 10,000 epochs. We use a batch of size 128
for rotMNIST, colorMNIST and faces and 64 otherwise. For the proposed model, we also use 10 warm-up epochs where we
train it like a VAE to stabilise the encoder and decoder networks and ease the learning of the flows. This hyper-parameter
does not influence much the performances as shown in Appendix E. The flows are implemented using (Chadebec et al.,
2022b) and are composed of 2 IAF blocks using 3-layer MADE (Germain et al., 2015) with 128 hidden units. For the
variants of our model, we use 500 components in the VAMP prior and IAF flows are composed of 3 IAF transformations
using 2-layer MADE with 128 hidden units. All models are trained on a single 32-GB V100 GPU and the FID metrics are
computed using the implementation of https://github.com/mseitzer/pytorch-fid. Finally, we provide the
neural networks we use in Table 4. For faces we use the same networks as for sprites dataset.

DATASETS TRAIN VALIDATION TEST

Starmen 700 200 100
rotMNIST 9,000 1,000 10,000
colorMNIST 48,000 12,000 10,000
sprites 8,000 1,000 2,664
3d chairs 1,000 200 193

Table 3: Number of sequences considered in the Train/Val/Test splits used in the experiments.

DATASET STARMEN ROTMNIST COLORMNIST 3D CHAIRS SPRITES

INPUT DIMENSION (1, 64, 64) (1, 28, 28), (3, 28, 28) (3, 64, 64) (3, 64, 64)

CONV2D(1, 16, 4, 2) LINEAR(1024) LINEAR(1024) CONV2D(3, 16, 4, 2) CONV2D(3, 16, 4, 2)
CONV2D(16, 32, 4, 2) RELU RELU CONV2D(16, 32, 4, 2) CONV2D(16, 32, 4, 2)

LEAKYRELU LINEAR(256) LINEAR(256) LEAKYRELU LEAKYRELU
INFERENCE CONV2D(32, 64, 3, 2) RELU RELU CONV2D(32, 64, 3, 2) CONV2D(32, 64, 3, 2)
NETWORK LEAKYRELU LINEAR(2X16)∗ LINEAR(2X16)∗ LEAKYRELU LEAKYRELU

CONV2D(64, 128, 3, 2) - - CONV2D(64, 128, 3, 2) CONV2D(64, 128, 3, 2)
LEAKYRELU - - LEAKYRELU LEAKYRELU
6 RESBLOCKS - - 6 RESBLOCKS 6 RESBLOCKS

LINEAR (2048, 2X16)∗ - - LINEAR (2048, 2X32)∗ LINEAR (2048, 2X16)∗

INPUT DIMENSION 16 16 16 32 16

LINEAR(2048) LINEAR(256) LINEAR(256) LINEAR(2048) LINEAR(2048)
CONVT(128, 3, 2) RELU RELU CONVT(128, 3, 2) CONVT(128, 3, 2)

6 RESBLOCKS LINEAR(1024) LINEAR(1024) 6 RESBLOCKS 6 RESBLOCKS
CONVT(64, 5, 2) RELU RELU CONVT(64, 5, 2) CONVT(64, 5, 2)

GENERATIVE LEAKYRELU LINEAR(784) LINEAR(2352) LEAKYRELU LEAKYRELU
NETWORK CONVT(32, 5, 2) SIGMOID SIGMOID CONVT(32, 5, 2) CONVT(32, 5, 2)

LEAKYRELU - - LEAKYRELU LEAKYRELU
CONVT(16, 4, 2) - - CONVT(16, 4, 2) CONVT(16, 4, 2)

LEAKYRELU - - LEAKYRELU LEAKYRELU
CONVT(1, 4, 2) - - CONVT(3, 4, 2) CONVT(3, 4, 2)

*LAYER OUTPUTTING THE MEAN AND COVARIANCE OF THE VARIATIONAL POSTERIOR qφ

Table 4: Neural networks architectures used in the experiments and keep the same for all the models in the benchmarks. The
ResBlocks use 2 convolution layers with kernel of size 3 and 1, 32 channels and stride 1.

https://github.com/mseitzer/pytorch-fid
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E. Ablation Study
In this section, we present an ablation study of the proposed model where we study the influence of the flow complexity,
the latent space dimension, the number of warm-up steps (when the model is trained as a VAE) and the prior complexity.
We see in Table 5 and Table 6 that neither the choice in the flows nor the number of warm-up steps influence much the
resulting likelihoods. Table 7 shows that as expected choosing a too small latent space dimension is detrimental to the model
performance. Finally, Table 8 shows the influence of the prior complexity (number of components used in the VAMP prior).
As expected, increasing the complexity of the prior allows achieving better likelihood estimates.

IAF MADE STARMEN SPRITESBLOCKS LAYERS

1 3 3774.79 ± 0.19 11302.90 ± 0.02
2 1 3773.31 ± 0.15 11302.25 ± 0.03
2 2 3774.35 ± 0.17 11301.49 ± 0.04
2 3 3773.23 ± 0.18 11301.51 ± 0.04
2 4 3773.45 ± 0.12 11302.23 ± 0.03
2 5 3773.88 ± 0.17 11301.47 ± 0.02
3 3 3773.13 ± 0.10 11302.92 ± 0.03
4 3 3774.12 ± 0.15 11301.05 ± 0.05

Table 5: Influence of the flow complexity

WARMUP STARMEN SPRITES

2 3773.73 ± 0.10 11301.59 ± 0.02
5 3773.49 ± 0.10 11301.15 ± 0.03

10 3773.23 ± 0.18 11301.51 ± 0.04
20 3774.03 ± 0.10 11302.28 ± 0.03
50 3773.42 ± 0.11 11301.32 ± 0.08

100 3772.44 ± 0.12 11302.40 ± 0.06

Table 6: Influence of the warmup steps

WARMUP STARMEN SPRITES

2 3817.92 ± 0.20 11346.92 ± 0.09
8 3774.20 ± 0.19 11303.18 ± 0.02

16 3773.23 ± 0.18 11301.51 ± 0.04
32 3773.16 ± 0.16 11302.23 ± 0.02
64 3773.22 ± 0.13 11301.79 ± 0.02

Table 7: Influence of the latent dimension

VAMP STARMEN SPRITESCOMPONENTS

10 3773.55 ± 0.07 11302.82 ± 0.04
50 3772.71 ± 0.15 11301.26 ± 0.02

100 3772.89 ± 0.16 11302.07 ± 0.03
200 3772.66 ± 0.22 11302.03 ± 0.03
500 3772.91 ± 0.02 11301.30 ± 0.02

Table 8: Influence to the prior complexity
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F. Influence of Eq. (11) on Missing Data Imputation
In this appendix, we demonstrate empirically the relevance of the method proposed in Section 3.3 to handle missing
observations at inference time. We recall that it consists in drawing one (or several) latent variables from the posterior
associated to each data point observed in an input sequence (See Alg. 2). The latent variables are then propagated though
the flows and sequences are generated in the observation space using the conditional distribution pθ(x|z). Using Eq. (11),
we propose to keep the trajectory achieving the highest likelihood on the observed data. This allows to benefit from all the
information observed in the sequence. In Fig. 13, we show the Mean Square Error (MSE) on the missing pixels only for the
starmen dataset (top) and sprites dataset (bottom). We keep the same setting as presented in the paper and remove some
data in the input sequences with probability 0.2, 0.4, 0.6 and 0.7 or create sequences with missing observations (randomly
removed with probability 0.5) and missing pixels in the observed images (randomly removed with probability 0.2, 0.4 and
0.6). Results obtained with the naive method that consists in using only one randomly chosen data point in the sequence to
reconstruct the full sequence as done during training (see Alg. 1) are presented by the slightly transparent bars while results
obtained using the method proposed in Section 3.3 are shown by the solid bars. In this example, we generate one trajectory
per observed data point and keep the one achieving the highest likelihood according to Eq. (11). These graphs show the
relevance of this method that allows achieving lower MSE in each scenario. Moreover, it allows to decrease significantly the
standard deviation (represented by the black bar) leading to a more reliable missing data imputation.
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Figure 13: Mean Square Error (MSE) on missing pixels only of the test data for different proportions of missing observations
(0.2 to 0.7) and missing pixels (0.2 to 0.6) in the input train, validation and test sequences for the starmen (top) and sprites
(bottom) datasets. Slightly transparent bars represent the naive method (consisting in using only one randomly chosen data
point in the sequence to reconstruct the full sequence as done during training) while solid bars show the results obtained
using the method proposed in Section 3.3.


