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Abstract

We address the problem of coding for classical multiple-access channels (MACs) with the assistance
of non-signaling correlations between parties. It is well-known that non-signaling assistance does not
change the capacity of classical point-to-point channels. However, it was recently observed that one
can construct MACs from two-player non-local games while relating the winning probability of the
game to the capacity of the MAC. By considering games for which entanglement (a special kind of
non-signaling correlation) increases the winning probability (e.g., the Magic Square game), this shows
that for some speci�c kinds of channels, entanglement between the senders can increase the capacity.

In this work, we make several contributions towards understanding the capacity region for MACs
with the assistance of non-signaling correlations between the parties. We develop a linear program
computing the optimal success probability for coding over n copies of a MAC W with size growing
polynomially in n. Solving this linear program allows us to achieve inner bounds for MACs. Applying
this method to the binary adder channel, we show that using non-signaling assistance, the sum-rate
log2(72)

4 ' 1.5425 can be reached even with zero error, which beats the maximum sum-rate capacity
of 1.5 in the unassisted case. For noisy channels, where the zero-error non-signaling assisted capacity
region is trivial, we can use concatenated codes to obtain achievable points in the capacity region.
Applied to a noisy version of the binary adder channel, we show that non-signaling assistance still
improves the sum-rate capacity. Complementing these achievability results, we give an outer bound on
the non-signaling assisted capacity region that has the same expression as the unassisted region except
that the channel inputs are not required to be independent. Finally, we show that the capacity region
with non-signaling assistance shared only between each sender and the receiver independently is the
same as without assistance.

1 Introduction

Multiple-access channels (MACs for short) are one of the simplest models of network communication
settings, where two senders aim to transmit individual messages to one receiver. The capacity of such
channels has been entirely characterized by the seminal works by Liao [2] and Ahlswede [3] in terms of a
simple single-letter formula. From the point of view of quantum information, it is natural to ask whether
additional resources, such as quantum entanglement or more generally non-signaling correlations between
the parties, change the capacity region. A non-signaling correlation is a multipartite input-output box
shared between parties that, as the name suggests, cannot by itself be used to send information between
parties. However, non-signaling correlations such as the ones generated by measurements of entangled
quantum particles, can provide an advantage for various information processing tasks and nonlocal games.
The study of such correlations has given rise to the quantum information area known as nonlocality [4]. For
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example, in the context of channel coding, there exists classical point-to-point channels for which quantum
entanglement between the sender and the receiver can increase the optimal success probability for sending
one bit of information with a single use of the channel [5, 6]. However, a well-known result [7] states that
for classical point-to-point channels, entanglement and even more generally non-signaling correlations do
not change the capacity of the channel; see also [8, 6].

In the network setting, behavior is di�erent. Quek and Shor showed in [9] the existence of two-sender
two-receiver interference channels with gaps between their classical, quantum-entanglement assisted and
non-signaling assisted capacity regions. Following this result, Leditzky et al. [10] (see also [11]) showed that
quantum entanglement shared between the two senders of a MAC can strictly enlarge the capacity region.
This has been demonstrated through channels that are constructed from two-player non-local games, such
as the Magic Square game [12, 13, 14, 15], by translating known gaps between classical and quantum values
of games into MAC capacity gaps. Other instances of network channels for which entanglement increases
the capacity region were studied in [16, 17]. This raises the following natural question: Can non-signaling
correlations lead to signi�cant gains in capacity for natural MACs? Can we �nd a characterization of the
capacity region of the MAC when non-signaling resources between the parties are allowed?

Our Results We focus here on the MAC with two senders and we allow arbitrary tripartite non-signaling
correlations between the two senders and the receiver. This is the most optimistic setting, in the sense that
we only enforce the non-signaling constraints between the parties, and also the mathematically simplest
setting. Even if not all non-signaling correlations are feasible within quantum theory, the setting we study
here can be seen as a tractable and physically motivated outer approximation of what can be achieved
with quantum theory. In fact, the quantum set is notoriously complicated and deciding membership in
this set is not computable [18]. We note that very recently, Pereg et al. [19] found a multi-letter formula
for the capacity of MACs with quantum entanglement shared between the two senders. Unfortunately,
this characterization is very di�cult to evaluate for any �xed channel.

We denote by SNS(W,k1, k2) the success probability of the best non-signaling assisted (k1, k2)-code
for the MAC W . Contrary to the unassisted value that we denote S(W,k1, k2), SNS(W,k1, k2) can be
formulated as a linear program; see Proposition 3.1. Furthermore, using symmetries, we have developed a
linear program computing SNS for a �nite number of copies of a MAC W with a size growing polynomially
in the number of copies; see Theorem 3.10 and Corollary 3.11. Using this result, we describe a method to
derive inner bounds on the non-signaling assisted capacity region achievable with zero error; see Proposi-
tion 4.1. Applied to the binary adder channel, which maps (x1, x2) ∈ {0, 1}2 to x1+x2 ∈ {0, 1, 2}, we show
that the sum-rate log2(72)

4 ' 1.5425 can be reached with zero error, which beats the maximum classical
sum-rate capacity of 3

2 ; see Theorem 4.2. For noisy channels, where the zero-error non-signaling assisted
capacity region is trivial, we can use concatenated codes to obtain achievable points in the capacity region;
see Proposition 4.5. Applied to a noisy version of the binary adder channel, we show that non-signaling
assistance still improves the sum-rate capacity.

In order to �nd outer bounds, we de�ne a relaxed notion of non-signaling assistance and characterize its
capacity region by a single-letter expression, which is the same as the well-known expression for the capacity
of the MAC (see Theorem 2.2) except that the inputs X1 and X2 are not required to be independent; see
Theorem 5.5. This gives in particular an outer bound on the non-signaling assisted capacity region; see
Corollary 5.13. The main open problem that we leave is whether this outer bound on the non-signaling
capacity region is tight. We give an example of a channel for which the relaxed notion of non-signaling
assistance gives a strictly larger success probability than non-signaling assistance but we do not know if
such a gap can persist for the capacity region.

We also study the case where non-signaling assistance is shared only between each sender and the
receiver independently. Note that no assistance is shared between the senders. We show that this capacity
region is the same as the capacity region without any assistance; see Theorem 6.4 and Corollary 6.5.
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We note that a similar setting with independent entangled states between each sender and the receiver
was studied by Hsieh et al. [20]: a regularized characterization of the capacity region is obtained for any
quantum MAC in this setting. It is simple to show using their result that for a classical MAC, this type
of entanglement does not change the capacity region given in Theorem 2.2.

Organization In Section 2, we de�ne precisely the di�erent notions of MAC capacities: the classical
capacity (i.e. without any assistance) as well as the non-signaling assisted capacity. In Section 3, we
address computational complexity questions concerning the probability of success of the best classical
coding strategy and the best non-signaling strategy for a MAC. In Section 4, we develop numerical methods
to �nd inner bounds on non-signaling assisted capacity regions, and apply those to the binary adder channel
and a noisy variant. In Section 5, we de�ne our relaxation of non-signaling assistance, we characterize
its capacity region by a single-letter formula, and apply those to the binary adder channel. Finally, in
Section 6, we show that the capacity region with non-signaling assistance shared only between each sender
and the receiver independently is the same as without assistance.

2 Multiple Access Channels Capacities

2.1 Classical Capacities

Formally, a MAC W is a conditional probability distribution depending on two inputs in X1 and X2, and
an output in Y, so W := (W (y|x1x2))x1∈X1,x2∈X2,y∈Y such that W (y|x1x2) ≥ 0 and

∑
y∈YW (y|x1x2) = 1.

We will denote such a MAC by W : X1 × X2 → Y. The tensor product of two MACs W : X1 × X2 → Y
and W ′ : X ′1 × X ′2 → Y ′ is denoted by W ⊗ W ′ : (X1 × X ′1) × (X2 × X ′2) → Y × Y ′ and de�ned by
(W⊗W ′)(yy′|x1x′1x2x′2) :=W (y|x1x2)·W ′(y′|x′1x′2). We denote byW⊗n(yn|xn1xn2 ) :=

∏n
i=1W (yi|x1,ix2,i),

for yn := y1 . . . yn ∈ Yn, xn1 := x1,1 . . . x1,n ∈ X n1 and xn2 := x2,1 . . . x2,n ∈ X n2 . We will use the notation
[k] := {1, . . . , k}.

The coding problem for a MAC W : X1 × X2 → Y is the following: one wants to encode messages in
[k1] into X1 and messages in [k2] into X2 independently, which will be given as input to the channel W .
This results in a random output in Y, which one needs to decode back into the corresponding messages
in [k1] and [k2]. We will call e1 : [k1] → X1 the �rst encoder, e2 : [k2] → X2 the second encoder and
d : Y → [k1]× [k2] the decoder. This is depicted in Figure 2.1.

e1

W

e2

d

x1

x2

y

i1

i2

(j1, j2)

Figure 1: Coding for a MAC W .

We want to maximize over all encoders e1, e2 and decoders d the probability of successfully encoding
and decoding the messages through W , i.e. the probability that j1 = i1 and j2 = i2, given that the input
messages are taken uniformly in [k1] and [k2]. We call this quantity S(W,k1, k2), which is characterized
by the following optimization program:
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S(W,k1, k2) := maximize
e1,e2,d

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d(i1i2|y)

subject to
∑
x1∈X1

e1(x1|i1) = 1,∀i1 ∈ [k1]∑
x2∈X2

e2(x2|i2) = 1,∀i2 ∈ [k2]∑
j1∈[k1],j2∈[k2]

d(j1j2|y) = 1,∀y ∈ Y

e1(x1|i1), e2(x2|i2), d(j1j2|y) ≥ 0

(1)

Proof. One should note that we allow randomized encoders and decoders for generality reasons, al-
though the value of the program is not changed as it is convex. Besides that remark, let us name
I1, I2, J1, J2, X1, X2, Y the random variables corresponding to i1, i2, j1, j2, x1, x2, y in the coding and de-
coding process. Then, for given e1, e2, d and W , the objective value of the previous program is:

P (J1 = I1, J2 = I2) =
1

k1k2

∑
i1,i2

P (J1 = I1, J2 = I2|I1 = i1, I2 = i2)

=
1

k1k2

∑
i1,i2,x1,x2

e1(x1|i1)e2(x2|i2)P (J1 = i1, J2 = i2|I1 = i1, I2 = i2, X1 = x1, X2 = x2)

=
1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)P (J1 = i1, J2 = i2|I1 = i1, I2 = i2, X1 = x1, X2 = x2, Y = y)

=
1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d(i1, i2|y) .

Since MACs are more general than point-to-point channels (by de�ning W (y|x1x2) := Ŵ (y|x1) for Ŵ
a point-to-point channel and looking only at its �rst input), computing S(W,k1, k2) is NP-hard, and it is
even NP-hard to approximate S(W,k1, k2) within a better ratio than

(
1− e−1

)
, as a consequence of the

hardness result on S(W,k) shown in [6].
The (classical) capacity of a MAC, as de�ned for example in [21], can be reformulated in the following

way:

De�nition 2.1 (Capacity Region C(W ) of a MAC W ). A rate pair (R1, R2) is achievable if:

lim
n→+∞

S(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the (classical) capacity region C(W ) as the closure of the set of all achievable rate pairs.

The capacity region C(W ) is characterized by a single-letter formula:

Theorem 2.2 (Liao [2] and Ahlswede [3]). C(W ) is the closure of the convex hull of all rate pairs (R1, R2)
satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) ∈ X1×X2 following a product law PX1×PX2 , and Y ∈ Y the outcome ofW on inputs X1, X2.
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For the zero-error (classical) capacity, this leads to the following de�nition:

De�nition 2.3 (Zero-Error Capacity Region C0(W ) of a MAC W ). A rate pair (R1, R2) is achievable
with zero-error if:

∃n0 ∈ N∗,∀n ≥ n0,S(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the zero-error (classical) capacity region C0(W ) as the closure of the set of all achievable rate
pairs with zero-error.

We will also consider what we call the sum success probability Ssum(W,k1, k2), de�ned using
P(J1=I1)+P(J2=I2)

2
rather than P (J1 = I1, J2 = I2) as an objective value, which leads to the following optimization program:

Ssum(W,k1, k2) := maximize
e1,e2,d1,d2

1

2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y)

+
1

2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d2(i2|y)

subject to
∑
x1∈X1

e1(x1|i1) = 1,∀i1 ∈ [k1]∑
x2∈X2

e2(x2|i2) = 1,∀i2 ∈ [k2]∑
j1∈[k1]

d1(j1|y) = 1,∀y ∈ Y

∑
j2∈[k2]

d2(j2|y) = 1,∀y ∈ Y

e1(x1|i1), e2(x2|i2), d1(j1|y), d2(j2|y) ≥ 0

(2)

Note that we used independent decoders d1(j1|y), d2(j2|y) rather than a global d(j1j2|y) here. This
does not change the value of the optimization program. Indeed, since the program is convex, an optimal
solution can be found on the extremal points of the search space. Thus, if we had used the variable
d(j1j2|y), we could always take it to be a function d from Y to [k1] × [k2]. Taking d1, d2 as the �rst
and second coordinates of that function satis�es the equality d(j1j2|y) = d1(j1|y)d2(j2|y), and therefore,
the value of the program is the same in both cases. Note that it is also true for the program computing
S(W,k1, k2).

As for the usual (joint) success probability, we can de�ne its capacity region:

De�nition 2.4 (Sum-Capacity Region Csum(W ) of a MAC W ). A rate pair (R1, R2) is sum-achievable if:

lim
n→+∞

Ssum(W
⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the sum-capacity region Csum(W ) as the closure of the set of all sum-achievable rate pairs.

However, it turns out those two notions of success de�ne the same capacity region:

Proposition 2.5. C(W ) = Csum(W )

Proof. Let us focus on error probabilities rather than success ones. Call them respectively E(W,k1, k2) :=
1 − S(W,k1, k2) and Esum(W,k1, k2) := 1 − Ssum(W,k1, k2). Let us �x a solution e1, d1, e2, d2 of the
optimization program computing S(W,k1, k2). Let us remark �rst that:
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∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2) = k1k2 ,

thus, the value of the maximum error for those encoders and decoders is:

E(W,k1, k2, e1, d1, e2, d2) := 1− 1

k1k2

 ∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y)d2(i2|y)


=

1

k1k2

 ∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)−
∑

i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)d1(i1|y)d2(i2|y)


=

1

k1k2

 ∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2) [1− d1(i1|y)d2(i2|y)]

 .

(3)
Similarly, the value of the sum error for those encoder and decoders is:

Esum(W,k1, k2, e1, d1, e2, d2) := 1− 1

k1k2

 ∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)
d1(i1|y) + d2(i2|y)

2


=

1

k1k2

 ∑
i1,i2,x1,x2,y

W (y|x1x2)e1(x1|i1)e2(x2|i2)
[
1− d1(i1|y) + d2(i2|y)

2

] .

(4)
However, for x, y ∈ [0, 1], we have that:

1− xy ≥ max (1− x, 1− y) ≥ 1− x+ y

2
,

and:

1− xy ≤ (1− x) + (1− y) = 2

(
1− x+ y

2

)
.

This means that, for all e1, d1, e2, d2, we have:

Esum(W,k1, k2, e1, d1, e2, d2) ≤ E(W,k1, k2, e1, d1, e2, d2) ≤ 2Esum(W,k1, k2, e1, d1, e2, d2) ,

so, maximizing over all e1, d1, e2, d2, we get:

Esum(W,k1, k2) ≤ E(W,k1, k2) ≤ 2Esum(W,k1, k2) .

Thus, up to a multiplicative factor 2, the error is the same. In particular, when one of those errors
tends to zero, the other one tends to zero as well. This implies that the capacity regions are the same.

2.2 Non-Signaling Assisted Capacities

Three-party non-signaling assistance We now consider the case where the senders and the receiver
are given non-signaling assistance. This resource, which is a theoretical but easier to manipulate gen-
eralization of quantum entanglement, can be characterized as follows. A tripartite non-signaling box is
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described by a joint conditional probability distribution P (x1x2(j1j2)|i1i2y) such that the marginal from
any two parties is independent from the removed party's input, i.e., we have:

∀x2, j1, j2, i1, i2, y, i′1,
∑
x1

P (x1x2(j1j2)|i1i2y) =
∑
x1

P (x1x2(j1j2)|i′1i2y) ,

∀x1, j1, j2, i1, i2, y, i′2,
∑
x2

P (x1x2(j1j2)|i1i2y) =
∑
x2

P (x1x2(j1j2)|i1i′2y) ,

∀x1, x2, i1, i2, y, y′,
∑
j1,j2

P (x1x2(j1j2)|i1i2y) =
∑
j1,j2

P (x1x2(j1j2)|i1i2y′) .

(5)

This implies that one can consider for example P (x1x2|i1i2) since it does not depend on y, or even
P (x1|i1) since it does not depend on i2, y. Then, in our coding scenario, when the senders and the receiver
are given non-signaling assistance, it means that they share a tripartite non-signaling box, the behavior
of which is described by P . In this case, the expression e1(x1|i1)e2(x2|i2)d(j1j2|y) in (1) is replaced by
P (x1x2(j1j2)|i1i2y), as depicted in Figure 2.

e1 e2 d

i1 i2

(j1, j2)

W

x1
x2

y

P (x1x2(j1j2)|i1i2y)

i1 i2

(j1, j2)

W

x1
x2

y

Figure 2: A non-signaling box P replacing e1, e2 and d in the coding problem for the MAC W .

The cyclicity of Figure 2 is at �rst sight counter-intuitive. Note �rst that P being a non-signaling box
is completely independent from W : in particular, the variable y does not need to follow any law in the
de�nition of P being a non-signaling box. Therefore, the remaining ambiguity is the apparent need to
encode and decode at the same time. However, since P is a non-signaling box, we do not need to do both
at the same time. Indeed, ∀y, P (x1x2|i1i2) = P (x1x2|i1i2y) by the non-signaling property of P . Thus,
one can get the outputs x1, x2 on inputs i1, i2 without access to y, as that knowledge won't a�ect the laws
of x1, x2. Then y follows the law given by W given those x1, x2. Finally, given access to y, the decoding
process is described by:

P ((j1j2)|i1i2yx1x2) =
P (x1x2(j1j2)|i1i2y)
P (x1x2|i1i2y)

=
P (x1x2(j1j2)|i1i2y)

P (x1x2|i1i2)
,

so we recover globally P ((j1j2)|i1i2yx1x2)×P (x1x2|i1i2) = P (x1x2(j1j2)|i1i2y) the prescribed conditional
probability. The non-signaling condition ensures that it is possible to consider the conditional probabilities
of each party independently. This clari�es how one can e�ectively encode and then decode messages
through a non-signaling box.

As in the unassisted case, we want to maximize over all non-signaling box P the probability of suc-
cessfully encoding and decoding the messages through W , i.e. the probability that j1 = i1 and j2 = i2,
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given that the input messages are taken uniformly in [k1] and [k2]. We call this quantity SNS(W,k1, k2),
which is characterized by the following optimization program:

SNS(W,k1, k2) := maximize
P

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P (x1x2(i1i2)|i1i2y)

subject to
∑
x1

P (x1x2(j1j2)|i1i2y) =
∑
x1

P (x1x2(j1j2)|i′1i2y)∑
x2

P (x1x2(j1j2)|i1i2y) =
∑
x2

P (x1x2(j1j2)|i1i′2y)∑
j1,j2

P (x1x2(j1j2)|i1i2y) =
∑
j1,j2

P (x1x2(j1j2)|i1i2y′)∑
x1,x2,j1,j2

P (x1x2(j1j2)|i1i2y) = 1

P (x1x2(j1j2)|i1i2y) ≥ 0

(6)

Since it is given as a linear program, the complexity of computing SNS(W,k1, k2) is polynomial in
the number of variables and constraints (see for instance Section 7.1 of [22]), which is a polynomial in
|X1|, |X2|, |Y|, k1 and k2. Also, as it is easy to check that a classical strategy is a particular case of a
non-signaling assisted strategy, we have that SNS(W,k1, k2) ≥ S(W,k1, k2).

We have then the same de�nitions of capacity and zero-error capacity:

De�nition 2.6 (Non-Signaling Assisted Capacity Region CNS(W ) of a MAC W ). A rate pair (R1, R2) is
achievable with non-signaling assistance if:

lim
n→+∞

SNS(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the non-signaling assisted capacity region CNS(W ) as the closure of the set of all achievable rate
pairs with non-signaling assistance.

De�nition 2.7 (Zero-Error Non-Signaling Assisted Capacity Region CNS
0 (W ) of a MAC W ). A rate pair

(R1, R2) is achievable with zero-error and non-signaling assistance if:

∃n0 ∈ N∗,∀n ≥ n0, SNS(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne the zero-error non-signaling assisted capacity region CNS
0 (W ) as the closure of the set of all

achievable rate pairs with zero-error and non-signaling assistance.

Independent non-signaling assistance One can also consider the case where non-signaling assistance
is shared independently between the �rst sender and the receiver as well as between the second encoder
and the receiver, which we call independent non-signaling assistance. The precise scenario is depicted in
Figure 3:
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e1 d1 e2 d2

i1 i2

j1 j2

W

x1

x2

y

P 1(x1j1|i1y) P 2(x2j2|i2y)

i1 i2

j1 j2

W

x1

x2

y

Figure 3: Non-signaling boxes P 1, P 2 replacing e1, d1 and e2, d2 in the coding problem for the MAC W .

This leads to the following de�nition of the success probability SNSSR(W,k1, k2):

SNSSR(W,k1, k2) := maximize
P 1,P 2

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)P 2(x2i2|i2y)

subject to
∑
x1

P 1(x1j1|i1y) =
∑
x1

P 1(x1j1|i′1y)∑
j1

P 1(x1j1|i1y) =
∑
j1

P 1(x1j1|i1y′)∑
x1,j1

P 1(x1j1|i1y) = 1

∑
x2

P 2(x2j2|i2y) =
∑
x2

P 2(x2j2|i′2y)∑
j2

P 2(x2j2|i2y) =
∑
j2

P 2(x2j2|i2y′)∑
x2,j2

P 2(x2j2|i2y) = 1

P 1(x1j1|i1y), P 2(x2j2|i2y) ≥ 0

(7)
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As before, one can also consider the sum-success probability SNSSR
sum (W,k1, k2):

SNSSR
sum (W,k1, k2) := maximize

P 1,P 2

1

2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)
∑
j2

P 2(x2j2|i2y)

+
1

2k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 2(x2i2|i2y)
∑
j1

P 1(x1j1|i1y)

subject to
∑
x1

P 1(x1j1|i1y) =
∑
x1

P 1(x1j1|i′1y)∑
j1

P 1(x1j1|i1y) =
∑
j1

P 1(x1j1|i1y′)∑
x1,j1

P 1(x1j1|i1y) = 1

∑
x2

P 2(x2j2|i2y) =
∑
x2

P 2(x2j2|i′2y)∑
j2

P 2(x2j2|i2y) =
∑
j2

P 2(x2j2|i2y′)∑
x2,j2

P 2(x2j2|i2y) = 1

P 1(x1j1|i1y), P 2(x2j2|i2y) ≥ 0

(8)

De�nition 2.8 (Independent Non-Signaling Assisted Capacity (resp. Sum-Capacity) Region CNSSR(W )
(resp. CNSSR

sum (W )) of a MAC W ). A rate pair (R1, R2) is achievable (resp. sum-achievable) with indepen-
dent non-signaling assistance if:

lim
n→+∞

SNSSR(W⊗n, d2R1ne, d2R2ne) = 1 .

(resp. lim
n→+∞

SNSSR
sum (W⊗n, d2R1ne, d2R2ne) = 1 .)

We de�ne the independent non-signaling assisted capacity (resp. sum-capacity) region CNSSR(W ) (resp.
CNSSR
sum (W )) as the closure of the set of all achievable (resp. sum-achievable) rate pairs with independent
non-signaling assistance.

However, it turns out those two notions of success de�ne the same capacity region:

Proposition 2.9. CNSSR(W ) = CNSSR
sum (W )

Proof. Given non-signaling boxes P 1, P 2, the maximum success probability of encoding and decoding
correctly with those is given by:

SNSSR(W,k1, k2, P
1, P 2) :=

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)P 1(x1i1|i1y)P 2(x2i2|i2y) .

This should be compared to the sum success probability of encoding and decoding correctly with those,
which we call SNSSR

sum (W,k1, k2, P
1, P 2) and is equal to:

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
P 1(x1i1|i1y)

∑
j2
P 2(x2j2|i2y) + P 2(x2i2|i2y)

∑
j1
P 1(x1j1|i1y)

2
.
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Similarly to what was done in Proposition 2.5, we focus on error probabilities rather than success
probabilities. We have that:

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y) = 1 ,

so we get that ENSSR(W,k1, k2, P
1, P 2) is equal to:

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)

∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y)− P 1(x1i1|i1y)P 2(x2i2|i2y)

 ,

and thus:

ENSSR(W,k1, k2, P
1, P 2) =

∑
i1,i2,x1,x2,y

W (y|x1x2)
∑

(j1,j2)6=(i1,i2)

P 1(x1j1|i1y)P 2(x2j2|i2y) .

On the other hand, since:

∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y)− P 1(x1i1|i1y)
∑
j2

P 2(x2j2|i2y) =
∑

j1 6=i1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y) ,

and:

∑
j1,j2

P 1(x1j1|i1y)P 2(x2j2|i2y)− P 2(x2i2|i2y)
∑
j1

P 1(x1j1|i1y) =
∑

j1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) ,

we get that ENSSR
sum (W,k1, k2, P

1, P 2) is equal to:

1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)

[∑
j1 6=i1,j2 P

1(x1j1|i1y)P 2(x2j2|i2y) +
∑

j1,j2 6=i2 P
1(x1j1|i1y)P 2(x2j2|i2y)

2

]

=
1

k1k2

∑
i1,i2,x1,x2,y

W (y|x1x2)

 ∑
j1 6=i1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) +
∑

(j1,j2)∈S P
1(x1j1|i1y)P 2(x2j2|i2y)

2

 ,

(9)
with S := {(j1, i2) : j1 ∈ [k1]− {i1}} ∪ {(i1, j2) : j2 ∈ [k2]− {i2}}. However, we have that:

∑
j1 6=i1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) +
∑

(j1,j2)∈S P
1(x1j1|i1y)P 2(x2j2|i2y)

2

≤
∑

j1 6=i1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) +
∑

(j1,j2)∈S

P 1(x1j1|i1y)P 2(x2j2|i2y)

=
∑

(j1,j2)6=(i1,i2)

P 1(x1j1|i1y)P 2(x2j2|i2y)

≤ 2

 ∑
j1 6=i1,j2 6=i2

P 1(x1j1|i1y)P 2(x2j2|i2y) +
∑

(j1,j2)∈S P
1(x1j1|i1y)P 2(x2j2|i2y)

2

 .

(10)
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This implies that:

ENSSR
sum (W,k1, k2, P

1, P 2) ≤ ENSSR(W,k1, k2, P
1, P 2) ≤ 2ENSSR

sum (W,k1, k2, P
1, P 2) ,

and by maximizing over all P 1 and P 2:

ENSSR
sum (W,k1, k2) ≤ ENSSR(W,k1, k2) ≤ 2ENSSR

sum (W,k1, k2) .

Thus, as before, the capacity regions are the same.

3 Properties of Non-Signaling Assisted Codes

3.1 Symmetrization

One can prove an equivalent formulation of the linear program computing SNS(W,k1, k2) with a number
of variables and constraints polynomial in only |X1|, |X2| and |Y| and independent of k1 and k2:

Proposition 3.1. For a MAC W : X1 ×X2 → Y and k1, k2 ∈ N∗, we have:

SNS(W,k1, k2) = maximize
r,r1,r2,p

1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

subject to
∑
x1,x2

rx1,x2,y = 1∑
x1

r1x1,x2,y = k1
∑
x1

rx1,x2,y∑
x2

r2x1,x2,y = k2
∑
x2

rx1,x2,y∑
x1

px1,x2 = k1
∑
x1

r2x1,x2,y∑
x2

px1,x2 = k2
∑
x2

r1x1,x2,y

0 ≤ rx1,x2,y ≤ r1x1,x2,y, r
2
x1,x2,y ≤ px1,x2

px1,x2 − r1x1,x2,y − r
2
x1,x2,y + rx1,x2,y ≥ 0

(11)

Proof. One can check that given a solution of the original program, the following choice of variables is a
valid solution of the second program achieving the same objective value:

rx1,x2,y :=
∑
i1,i2

P (x1x2(i1i2)|i1i2y) , r1x1,x2,y :=
∑
j1,i1,i2

P (x1x2(j1i2)|i1i2y) ,

r2x1,x2,y :=
∑
j2,i1,i2

P (x1x2(i1j2)|i1i2y) , px1,x2 :=
∑

j1,j2,i1,i2

P (x1x2(j1j2)|i1i2y) .
(12)

Note that px1,x2 is well-de�ned since
∑

j1,j2,i1,i2
P (x1x2(j1j2)|i1i2y) is independent from y by since P is a

non-signaling box.
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For the other direction, given those variables, a non-signaling probability distribution P (x1x2(j1j2)|i1i2y)
achieving the same objective value is given by, for j1 6= i1 and j2 6= i2:

P (x1x2(i1i2)|i1i2y) :=
rx1,x2,y
k1k2

,

P (x1x2(j1i2)|i1i2y) :=
r1x1,x2,y − rx1,x2,y
k1k2(k1 − 1)

,

P (x1x2(i1j2)|i1i2y) :=
r2x1,x2,y − rx1,x2,y
k1k2(k2 − 1)

,

P (x1x2(j1j2)|i1i2y) :=
px1,x2 − r1x1,x2,y − r

2
x1,x2,y + rx1,x2,y

k1k2(k1 − 1)(k2 − 1)
.

(13)

This symmetrization can also be done for the program computing SNSSR
sum (W,k1, k2):

Proposition 3.2.

SNSSR
sum (W,k1, k2) = maximize

r1,r2,p1,p2

1

2k1k2

∑
x1,x2,y

W (y|x1x2)
(
p2x2r

1
x1,y + p1x1r

2
x2,y

)
=

1

2

[
1

k1

∑
x1,y

W 1
p2,k2

(y|x1)r1x1,y +
1

k2

∑
x2,y

W 2
p1,k1

(y|x2)r2x2,y

]

with W 1
p2,k2

(y|x1) :=
1

k2

∑
x2

W (y|x1x2)p2x2 ,W
2
p1,k1

(y|x2) :=
1

k1

∑
x1

W (y|x1x2)p1x1

subject to
∑
x1

r1x1,y = 1,
∑
x2

r2x2,y = 1∑
x1

p1x1 = k1,
∑
x2

p2x2 = k2

0 ≤ r1x1,y ≤ p
1
x1 , 0 ≤ r

2
x2,y ≤ p

2
x2

(14)

Proof. One can check that given a solution of the original program, the following choice of variables is a
valid solution of the second program achieving the same objective value:

r1x1,y :=
∑
i1

P 1(x1i1|i1y) , p1x1 :=
∑
j1,i1

P 1(x1j1|i1y) ,

r2x2,y :=
∑
i2

P 2(x2i2|i2y) , p2x2 :=
∑
j2,i2

P 2(x2j2|i2y) .
(15)

Note that p1x1 and p2x2 are well-de�ned since
∑

j1,i1
P 1(x1j1|i1y) and

∑
j2,i2

P 2(x2j2|i2y) are independent
from y since P 1 and P 2 are non-signaling boxes.

For the other direction, given those variables, non-signaling probability distributions P 1(x1j1|i1y) and
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P 2(x2j2|i2y) achieving the same objective value are given by, for j1 6= i1 and j2 6= i2:

P 1(x1i1|i1y) :=
r1x1,y
k1

,

P 1(x1j1|i1y) :=
p1x1,y − r

1
x1,y

k1(k1 − 1)
,

P 2(x2i2|i2y) :=
r2x2,y
k2

,

P 2(x2j2|i2y) :=
p2x2,y − r

2
x2,y

k2(k2 − 1)
.

(16)

3.2 Properties of SNS(W,k1, k2), CNS(W ) and CNS
0 (W )

De�nition 3.3. We say that a conditional probability distribution P (an|xn) de�ned on×n
i=1Ai××n

i=1Xi
is non-signaling if for all an, xn, x̂n, we have

∀i ∈ [n],
∑
âi

P (a1 . . . âi . . . an|x1 . . . xi . . . xn) =
∑
âi

P (a1 . . . âi . . . an|x1 . . . x̂i . . . xn) .

De�nition 3.4. Let P (an|xn) a conditional probability distribution de�ned on×n
i=1Ai ××n

i=1Xi and
P ′(a′n|x′n) de�ned on×n

i=1A
′
i ××n

i=1X
′
i . We de�ne P ⊗ P ′ the tensor product conditional probabil-

ity distribution de�ned on×n
i=1(Ai × A

′
i) ××n

i=1(Xi × X
′
i ) by (P ⊗ P ′) (a1a′1 . . . ana′n|x1x′1 . . . xnx′n) :=

P (an|xn) · P ′(a′n|x′n).

Lemma 3.5. If both P and P ′ are non-signaling, then P ⊗ P ′ is non-signaling.

Proof. Let an ∈×n
j=1Aj , a

′n ∈×n
j=1A

′
j , x

n ∈×n
j=1Xj , x

′n ∈×n
j=1X

′
j and x̂i ∈ Xi, x̂′i ∈ X ′i . Using the

fact that P, P ′ are non-signaling, we have:∑
âiâ′i

P (a1a
′
1 . . . âiâ

′
i . . . ana

′
n|x1x′1 . . . xix′i . . . xnx′n)

=
∑
âiâ′i

P (a1 . . . âi . . . an|x1 . . . xi . . . xn) · P ′(a′1 . . . â′i . . . a′n|x′1 . . . x′i . . . x′n)

=

∑
âi

P (a1 . . . âi . . . an|x1 . . . xi . . . xn)

 ·
∑

â′i

P ′(a′1 . . . â
′
i . . . a

′
n|x′1 . . . x′i . . . x′n)


=

∑
âi

P (a1 . . . âi . . . an|x1 . . . x̂i . . . xn)

 ·
∑

â′i

P ′(a′1 . . . â
′
i . . . a

′
n|x′1 . . . x̂′i . . . x′n)


=
∑
âiâ′i

(
P ⊗ P ′

)
(a1a

′
1 . . . âiâ

′
i . . . ana

′
n|x1x′1 . . . x̂ix̂′i . . . xnx′n) ,

(17)

so P ⊗ P ′ is non-signaling.

Proposition 3.6. For a MAC W : X1 ×X2 → Y and k1, k2 ∈ N∗, we have:

1. 1
k1k2
≤ SNS(W,k1, k2) ≤ 1.
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2. SNS(W,k1, k2) ≤ min
(
|X1|
k1
, |X2|
k2
, |Y|k1k2

)
.

3. If k′1 ≤ k1 and k′2 ≤ k2, then SNS(W,k′1, k
′
2) ≥ SNS(W,k1, k2).

4. For any MACW ′ : X ′1×X ′2 → Y ′ and k1, k2 ∈ N∗, we have SNS(W⊗W ′, k1k′1, k2k′2) ≥ SNS(W,k1, k2)·
SNS(W ′, k′1, k

′
2). In particular, for any positive integer n, SNS(W⊗n, kn1 , k

n
2 ) ≥

[
SNS(W,k1, k2)

]n
and

SNS(W ⊗W ′, k1, k2) ≥ SNS(W,k1, k2).

Proof. 1. Let us �rst show that SNS(W,k1, k2) ≥ 1
k1k2

. Take px1,x2 := k1k2
|X1||X2| , r

1
x1,x2,y :=

px1,x2
k2

,

r2x1,x2,y :=
px1,x2
k1

and rx1,x2,y :=
px1,x2
k1k2

= 1
|X1||X2| . One can easily check that it is indeed a valid

solution of the linear program computing SNS(W,k1, k2). Thus we have:

SNS(W,k1, k2) ≥
1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y =
1

k1k2

∑
x1,x2

1

|X1||X2|
∑
y

W (y|x1x2)

=
1

k1k2

∑
x1,x2

1

|X1||X2|
=

1

k1k2
.

(18)

Furthermore, in order to show that it is at most 1, let us consider an optimal solution of SNS(W,k1, k2).
We have:

SNS(W,k1, k2) =
1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y ≤
1

k1k2

∑
x1,x2,y

W (y|x1x2)px1,x2

=
1

k1k2

∑
x1,x2

px1,x2
∑
y

W (y|x1x2) =
1

k1k2

∑
x1,x2

px1,x2 = 1 ,

(19)

since
∑

x1,x2
px1,x2 = k1

∑
x1,x2

r2x1,x2,y = k1k2
∑

x1,x2
rx1,x2,y = k1k2.

2. First let us show that SNS(W,k1, k2) ≤ |X1|
k1

(the case SNS(W,k1, k2) ≤ |X2|
k2

is symmetric):

SNS(W,k1, k2) =
1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y ≤
1

k1k2

∑
x1,x2,y

W (y|x1x2)r2x1,x2,y

≤ 1

k1k2

∑
x2,y

∑
x′1

W (y|x′1x2)

 ·(∑
x1

r2x1,x2,y

)
since nonnegative terms.

=
1

k1k2

∑
x2,y

∑
x′1

W (y|x′1x2)

 ·( 1

k1

∑
x1

px1,x2

)

=
1

k21k2

∑
x1,x2

px1,x2
∑
x′1

(∑
y

W (y|x′1x2)

)
=
|X1|
k21k2

∑
x1,x2

px1,x2 =
|X1|
k1

.

(20)

Let us show now that SNS(W,k1, k2) ≤ |Y|
k1k2

:

SNS(W,k1, k2) =
1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y ≤
1

k1k2

∑
y

(
max
x1,x2

W (y|x1x2)
) ∑
x1,x2

rx1,x2,y

≤ 1

k1k2

∑
y

∑
x1,x2

rx1,x2,y =
|Y|
k1k2

.

(21)
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3. Let us assume that k′1 ≤ k1 and that k′2 = k2, since this latter case will follow by symmetry. Consider
an optimal solution of SNS(W,k1, k2) =

1
k1

∑
i1∈[k1] f(i1) with:

f(i1) :=
1

k2

∑
x1,x2,y,i2

W (y|x1x2)P (x1x2(i1i2)|i1i2y) ,

and P non-signaling. Let us consider S ∈ argmax
S′⊆[k1]:|S′|=k′1

∑
i1∈S′ f(i1). Then, by construction, we have

that 1
k′1

∑
i1∈S f(i1) ≥

1
k1

∑
i1∈[k1] f(i1) = SNS(W,k1, k2), since we have taken the average of the k′1

largest values of the sum.

Let us de�ne the strategy P ′ on the smallest set X1 ×X2 × (S × [k2])× S × [k2]× Y:

P ′(x1x2(j1j2)|i1i2y) := P (x1x2(j1j2)|i1i2y) + C(x1x2j2|i1i2y) ,

with C(x1x2j2|i1i2y) :=
1

k′1

∑
j′1∈[k1]−S

P (x1x2(j
′
1j2)|i1i2y) . (22)

P ′ is a correct conditional probability distribution. Indeed, it is nonnegative by construction, and
we have that:∑

x1,x2,j1∈S,j2

P ′(x1x2(j1j2)|i1i2y) =
∑

x1,x2,j1∈S,j2

P (x1x2(j1j2)|i1i2y) +
∑

x1,x2,j1∈S,j2

C(x1x2j2|i1i2y)

=
∑

x1,x2j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑

x1,x2,j2

∑
j1∈S

1

k′1

∑
j′1∈[k1]−S

P (x1x2(j
′
1j2)|i1i2y)

=
∑

x1,x2,j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑

x1,x2,j2

∑
j′1∈[k1]−S

P (x1x2(j
′
1j2)|i1i2y)

=
∑

x1,x2,j1,j2

P (x1x2(j1j2)|i1i2y) = 1 .

(23)

Let us show that P ′ is non-signaling:

(a) First with x1:∑
x1

P ′(x1x2(j1j2)|i1i2y) =
∑
x1

P (x1x2(j1j2)|i1i2y) +
∑
x1

C(x1x2j2|i1i2y)

=
∑
x1

P (x1x2(j1j2)|i1i2y) +
1

k′1

∑
j′1∈[k1]−S

∑
x1

P (x1x2(j
′
1j2)|i1i2y)

=
∑
x1

P (x1x2(j1j2)|i′1i2y) +
1

k′1

∑
j′1∈[k1]−S

∑
x1

P (x1x2(j
′
1j2)|i′1i2y)

since P is non-signaling.

=
∑
x1

P ′(x1x2(j1j2)|i′1i2y) .

(24)

16



(b) Then with x2:∑
x2

P ′(x1x2(j1j2)|i1i2y) =
∑
x2

P (x1x2(j1j2)|i1i2y) +
∑
x2

C(x1x2j2|i1i2y)

=
∑
x2

P (x1x2(j1j2)|i1i2y) +
1

k′1

∑
j′1∈[k1]−S

∑
x2

P (x1x2(j
′
1j2)|i1i2y)

=
∑
x2

P (x1x2(j1j2)|i1i′2y) +
1

k′1

∑
j′1∈[k1]−S

∑
x2

P (x1x2(j
′
1j2)|i1i′2y)

since P is non-signaling.

=
∑
x2

P ′(x1x2(j1j2)|i1i′2y) .

(25)

(c) Finally with (j1j2):∑
j1∈S,j2

P ′(x1x2(j1j2)|i1i2y) =
∑
j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑
j2

∑
j1∈S

C(x1x2j2|i1i2y)

=
∑
j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑
j2

∑
j1∈S

1

k′1

∑
j′1∈[k1]−S

P (x1x2(j
′
1j2)|i1i2y)

=
∑
j2

∑
j1∈S

P (x1x2(j1j2)|i1i2y) +
∑
j2

∑
j′1∈[k1]−S

P (x1x2(j
′
1j2)|i1i2y)

=
∑
j1,j2

P (x1x2(j1j2)|i1i2y)

=
∑
j1,j2

P (x1x2(j1j2)|i1i2y′) since P is non-signaling.

=
∑

j1∈S,j2

P ′(x1x2(j1j2)|i1i2y′) .

(26)

Thus P ′ is a correct solution of the program computing SNS(W,k′1, k2), and it leads to the value:

SNS(W,k′1, k2) ≥
1

k′1k2

∑
x1,x2,y,i1∈S,i2

W (y|x1x2)P ′(x1x2(i1i2)|i1i2y)

≥ 1

k′1k2

∑
x1,x2,y,i1∈S,i2

W (y|x1x2)P (x1x2(i1i2)|i1i2y)

=
1

k′1

∑
i1∈S

f(i1) ≥
1

k1

∑
i1∈[k1]

f(i1) = SNS(W,k1, k2) .

(27)

4. Consider optimal non-signaling probability distributions P and P ′ reaching respectively the values
SNS(W,k1, k2) and SNS(W ′, k′1, k

′
2). Then by Lemma 3.5, P ⊗ P ′ is a non-signaling probability

distribution on (X1 ×X ′1)× (X2 ×X ′2)× (([k1]× [k′1])× ([k2]× [k′2]))× ([k1]× [k′1])× ([k2]× [k′2])×
(Y × Y ′), which is trivially in bijection with (X1 ×X ′1) × (X2 ×X ′2) × ([k1k

′
1]× [k2k

′
2]) × [k1k

′
1] ×

[k2k
′
2] × (Y × Y ′). This gives a valid solution of the program computing SNS(W ⊗W ′, k1k′1, k2k′2).
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Thus, we get that SNS(W ⊗W ′, k1k′1, k2k′2) is larger than or equal to:∑
x1x′1,x2x

′
2,yy

′,i1i′1,i2i
′
2

(
W ⊗W ′

)
(yy′|x1x′1x2x′2)

(
P ⊗ P ′

)
(x1x

′
1x2x

′
2(i1i

′
1i2i

′
2)|i1i′1, i2i′2yy′)

=
∑

x1x′1,x2x
′
2,yy

′,i1i′1,i2i
′
2

(
W (y|x1x2) ·W ′(y′|x′1x′2)

) (
P (x1x2(i1i2)|i1i2y) · P ′(x′1x′2(i′1i′2)|i′1i′2y′)

)

=

 ∑
i1,i2,x1,x2,y

W (y|x1x2)P (x1x2(i1i2)|i1i2y)

 ·
 ∑
x′1,x

′
2,y
′,i′1,i

′
2

W ′(y′|x′1x′2)P ′(x′1x′2(i′1i′2)|i′1i′2y′)


= SNS(W,k1, k2) · SNS(W ′, k′1, k

′
2) .

(28)

In particular, applying this n times on the same MAC W gives the �rst corollary, and the second
one comes from the fact that SNS(W ⊗W ′, k1, k2) ≥ SNS(W,k1, k2) · SNS(W ′, 1, 1) = SNS(W,k1, k2),
since SNS(W ′, 1, 1) = 1 by the �rst property of Proposition 3.6.

Corollary 3.7. 1. CNS(W ) is convex.

2. If (R1, R2) is achievable with non-signaling assistance, then R1 ≤ log2 |X1|, R2 ≤ log2 |X2| and
R1 +R2 ≤ log2 |Y|.

3. If (R1, R2) is achievable with non-signaling assistance, then for all R′i ≤ Ri, (R′1, R
′
2) is achievable

with non-signaling assistance.

Proof. 1. Let (R1, R2) and (R̃1, R̃2), two pairs of rational rates achievable with non-signaling assistance
for W , ie:

SNS(W⊗n, d2R1ne, d2R2ne) →
n→+∞

1 and SNS(W⊗n, d2R̃1ne, d2R̃2ne) →
n→+∞

1 .

Let λ ∈ (0, 1) rational and de�ne Rλ,i := λ ·Ri+(1−λ) ·R̃i, let us show that (Rλ,1, Rλ,2) is achievable

with non-signaling assistance. Let us call respectively ki := 2Ri , k̃i := 2R̃i , kλ,i := 2Rλ,i = kλi · k
(1−λ)
i .

We have Rλ,in = λ ·Rin+(1−λ) ·R̃in = (λn) ·Ri+(1−λ)n ·R̃i. This is the idea of time-sharing : for
λn copies of the MAC, we use the strategy with rate (R1, R2) and for the (1−λ)n other copies of the
MAC, we use the strategy with rate (R̃1, R̃2). There exists some n such that λn, (1−λ)n, λnRi, (1−
λ)nR̃i are integers, since everything is rational. This implies that kλni , k̃

(1−λ)n
i , knλ,i are integers.

Thus, thanks to the fourth property of Proposition 3.6, we have:

SNS(W⊗n, knλ,1, k
n
λ,2) ≥ SNS(W⊗(λn), kλn1 , kλn2 ) · SNS(W⊗((1−λ)n), k̃

(1−λ)n
1 , k̃

(1−λ)n
2 )

→
n→+∞

1 · 1 = 1 .
(29)

Thus in particular, since we have SNS(W⊗n, knλ,1, k
n
λ,2) ≤ 1, we get that SNS(W⊗n, knλ,1, k

n
λ,2) →

n→+∞
1,

so (Rλ,1, Rλ,2) is achievable with non-signaling assistance. Finally, since CNS(W ) is de�ned as the
closure of achievable rates with non-signaling assistance, we get that CNS(W ) is convex.

2. By the second property of Proposition 3.6, we have that SNS(W⊗n, kn1 , k
n
2 ) ≤

|Xn1 |
kn1

. In particular, if

one takes R1 > log2 |X1|, then k1 > |X1| and we get that SNS(W⊗n, kn1 , k
n
2 ) ≤

(
|X1|
k1

)n
→

n→+∞
0, so
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R1 > log2 |X1| is not achievable with non-signaling assistance. Symmetrically, R2 > log2 |X2| is not
achievable with non-signaling assistance.

Furthermore, if one takes R1+R2 > log2 |Y|, then in particular k1k2 > |Y|, so by the second property
of Proposition 3.6, SNS(W⊗n, kn1 , k

n
2 ) ≤

|Yn|
kn1 k

n
2
=
(
|Y|
k1k2

)n
→

n→+∞
0. Thus, R1 + R2 > log2 |Y| is not

achievable with non-signaling assistance.

3. Since (R1, R2) is achievable with non-signaling assistance, we have SNS(W⊗n, d2nR1e, d2nR2e) →
n→+∞

1. But, for all positive integer n, we have that d2nR′1e ≤ d2nR1e and d2nR′2e ≤ d2nR2e, so by the third
property of Proposition 3.6, we have that SNS(W⊗n, d2nR′1e, d2nR′2e) ≥ SNS(W⊗n, d2nR1e, d2nR2e).
Thus SNS(W⊗n, d2nR′1e, d2nR′2e →

n→+∞
1 since it is upper bounded by 1, and so (R′1, R

′
2) is achievable

with non-signaling assistance.

Proposition 3.8. CNS
0 (W ) is the closure of the set of rate pairs (R1, R2) such that:

∃n ∈ N∗, SNS(W⊗n, d2R1ne, d2R2ne) = 1 .

Proof. It is clear that if (R1, R2) is such that ∃n0 ∈ N∗,∀n ≥ n0, S
NS(W⊗n, d2R1ne, d2R2ne) = 1, then in

particular ∃n ∈ N∗,SNS(W⊗n, d2R1ne, d2R2ne) = 1. So, CNS
0 (W ), which is the closure of the former rate

pairs, is in particular included in the closure of the latter rate pairs.
For the other inclusion, consider a rate pair (R1, R2) and let us assume that there exists some positive

integer n such that SNS(W⊗n, d2R1ne, d2R2ne) = 1. Let us show that for any (R′1, R
′
2) such that R′1 < R1

and R′2 < R2:
∃n0 ∈ N∗,∀n ≥ n0,SNS(W⊗n, d2R′1ne, d2R′2ne) = 1 ,

which is enough to conclude, since we consider only closure of such sets.
First, for all positive integer m, we have that SNS(W⊗nm, d2R1nme, d2R2nme) = 1. By the fourth prop-

erty of Proposition 3.6, we have that SNS((W⊗n)
⊗m

, d2R1nem, d2R2nem) ≥
[
SNS(W⊗n, d2R1ne, d2R2ne)

]m
=

1, so SNS((W⊗n)
⊗m

, d2R1nem, d2R2nem) = 1 since SNS(W,k1, k2) ≤ 1 by the �rst property of Proposi-
tion 3.6. But (W⊗n)⊗m =W⊗nm, and d2R1nem ≥ d2R1nme, d2R2nem ≥ d2R2nme, so by the third property
of Proposition 3.6, we have SNS(W⊗nm, d2R1nme, d2R2nme) ≥ 1, so SNS(W⊗nm, d2R1nme, d2R2nme) = 1.

Then, consider some r ∈ {0, . . . , n− 1}. By the fourth property of Proposition 3.6, we have that:

SNS(W⊗(nm+r), d2R1nme, d2R2nme) = SNS(W⊗nm ⊗W⊗r, d2R1nme, d2R2nme)
≥ SNS(W⊗nm, d2R1nme, d2R2nme) = 1 ,

(30)

so SNS(W⊗(nm+r), d2R1nme, d2R2nme) = 1. But d2R1nme = d2
R1nm
nm+r

(nm+r)e = d2
R1
1+δ

(nm+r)e with δ = r
nm ≤

1
m , and symmetrically d2R1nme = d2

R1
1+δ

(nm+r)e. Thus in particular, for all R′1 ≤ R1

1+ 1
m

and R′2 ≤ R2

1+ 1
m

, we

have that for all n′ ≥ nm, SNS(W⊗n
′
, d2R′1n′e, d2R′2n′e) = 1. So for any (R′1, R

′
2) such that R′1 < R1 and

R′2 < R2, there is large enough m such that R′1 ≤ R1

1+ 1
m

and R′2 ≤ R2

1+ 1
m

, and thus we get the expected

property on (R′1, R
′
2) for n0 := nm.

3.3 Linear Program with Reduced Size for Structured Channels

Although SNS(W,k1, k2) can be computed in polynomial time in W , k1 and k2, a channel of the form
W⊗n has exponential size in n. Thus, the linear program for SNS(W⊗n, k1, k2) grows exponentially with
n. However, using the invariance of W⊗n under permutations, one can �nd a much smaller linear program
computing SNS(W⊗n, k1, k2).
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De�nition 3.9. Let G a group acting on X1,X2,Y. We say that a MAC W : X1 × X2 → Y is invariant
under the action of G if:

∀g ∈ G,W (g · y|g · x1g · x2) =W (y|x1x2) .

In particular, for W⊗n : X n1 × X n2 → Yn, the symmetric group G := Sn acts in a natural way in any
set A raised to power n. So for σ ∈ Sn, we have that:

W⊗n(σ · yn|σ · xn1σ · xn2 ) =
n∏
i=1

W (yσ(i)|x1,σ(i)x2,σ(i)) =
n∏
i=1

W (yi|x1,ix2,i) =W⊗n(yn|xn1xn2 ) ,

and so W⊗n is invariant under the action of Sn.
Let Z := {X1,X2,Y,X1 ×Y,X2 ×Y,X1 ×X2,X1 ×X2 ×Y}. Let us call OG(A) the set of orbits of A

under the action of G. Then, one can �nd an equivalent smaller linear program for SNS(W,k1, k2):

Theorem 3.10. LetW : X1×X2 → Y a MAC invariant under the action of G. Let us name systematically
w ∈ OG(X1×X2×Y), u ∈ OG(X1×X2), u

1 ∈ OG(X1), u
2 ∈ OG(X2), v

1 ∈ OG(X1×Y), v2 ∈ OG(X2×Y), v ∈
OG(Y). We will also call zA the projection of z ∈ OG(B) on A, for A,B ∈ Z and A projection of B; note
that zA ∈ OG(A), since by de�nition of the action, the projection of an orbit is an orbit. Let us �nally
call W (w) := W (y|x1x2) for any (x1, x2, y) ∈ w, which is well-de�ned since W is invariant under G. We
have that SNS(W,k1, k2) is the solution of the following linear program:

SNS(W,k1, k2) = maximize
r,r1,r2,p

1

k1k2

∑
w∈OG(X1×X2×Y)

W (w)rw

subject to
∑

w:wY=v

rw = |v|, ∀v ∈ OG(Y)∑
w:wX2Y=v

2

r1w = k1
∑

w:wX2Y=v
2

rw, ∀v2 ∈ OG(X2 × Y)

∑
w:wX1Y=v

1

r2w = k2
∑

w:wX1Y=v
1

rw, ∀v1 ∈ OG(X1 × Y)

∑
u:uX2=v

2
X2

pu =
|v2X2
|

|v2|
k1

∑
w:wX2Y=v

2

r2w, ∀v2 ∈ OG(X2 × Y)

∑
u:uX1=v

1
X1

pu =
|v1X1
|

|v1|
k2

∑
w:wX1Y=v

1

r1w, ∀v1 ∈ OG(X1 × Y)

0 ≤ rw ≤ r1w, r2w ≤
|w|
|wX1X2 |

pwX1X2 , ∀w ∈ OG(X1 ×X2 × Y)

|w|
|wX1X2 |

pwX1X2 − r
1
w − r2w + rw ≥ 0, ∀w ∈ OG(X1 ×X2 × Y) .

(31)

Corollary 3.11. For a channel W : X1×X2 → Y, SNS(W⊗n, k1, k2) is the solution of a linear program of
size bounded by O

(
n|X1|·|X2|·|Y|−1

)
, thus it can be computed in polynomial time in n.

Proof. We use the linear program obtained in Theorem 3.10 with G := Sn acting on W⊗n as described
before. The number of variables and constraints is linear in the number of orbits of the action of Sn on
the di�erent sets A ∈ Z, where here Z = {X n1 ,X n2 ,Yn,X n1 ×Yn,X n2 ×Yn,X n1 ×X n2 ,X n1 ×X n2 ×Yn}. For
example, for A ∈ X n1 ×X n2 × Yn, we have that:

20



|OSn(X n1 ×X n2 × Yn)| =
(
n+ |X1||X2||Y| − 1

|X1||X2||Y| − 1

)
≤ (n+ |X1||X2||Y| − 1)|X1||X2||Y|−1 .

So the number of variables and constraints is O(n|X1|·|X2|·|Y|−1). Note also that all the numbers occur-
ring this linear program are integers or fractions of integers, with those integers ranging in [(|X1||X2||Y|)n],
thus of size O(n log(|X1||X2||Y|)). So the size of this linear program is bounded by O(n|X1|·|X2|·|Y|−1), and
thus SNS(W⊗n, k1, k2) can be computed in polynomial time in n; see for instance Section 7.1 of [22].

In order to prove Theorem 3.10, we will need several lemmas. For all of them, A and B will denote
�nite sets on which a group G is acting, and xG will denote the orbit of x under G:

Lemma 3.12. Let τ ∈ OG(A × B), and call ν := τA and µ := τB. For x ∈ ν, let us call Bx
τ :=

{y : (x, y) ∈ τ}. Then, |Bx
τ | = |Bx′

τ | =: cντ for any x, x′ ∈ ν, and furthermore, we have that cντ = |τ |
|ν| .

Symmetrically, the same occurs for Ayτ := {x : (x, y) ∈ τ} with y ∈ µ, where one gets that |Ayτ | = |Ay
′
τ | =:

cµτ = |τ |
|µ| for y, y

′ ∈ µ.

Proof. Let x, x′ ∈ ν. Thus there exists g ∈ G such that x′ = g · x. Let:

f : Bx
τ → Bx′

τ

y 7→ g · y .

First, f is well de�ned. Indeed, if y ∈ Bx
τ = {y : (x, y) ∈ τ}, then g · y ∈ {y : (g · x, y) ∈ τ} = Bx′

τ , since
τ ∈ OG(A × B). Let us show that f is injective. If g · y = g · y′, then g−1 · (g · y) = (g−1g) · y = y,
g−1 · (g · y′) = y′, so y = y′. Thus we get that |Bx

τ | ≤ |Bx′
τ |. By a symmetric argument with x′ replacing x

and g−1 replacing g, we get that |Bx′
τ | ≤ |Bx

τ |, and so |Bx
τ | = |Bx′

τ | =: cντ .
Furthermore, {Bx

τ }x∈ν is a partition of τ , so
∑

x∈ν |Bx
τ | = |ν|cντ = |τ |, and thus cντ = |τ |

|ν| .

Lemma 3.13. For any (x, y) ∈ A × B and v(x,y)G variable indexed by orbits of A × B, let us de�ne the
variable vx,y :=

v
(x,y)G

|(x,y)G| . We have:∑
x∈A

vx,y =
1

|yG|
∑

τ∈OG(A×B):τB=yG
vτ ,∀y ∈ B .

Proof. ∑
x∈A

vx,y =
∑

τ∈OG(A×B):τB=yG

∑
x∈A:(x,y)∈τ

vx,y

=
∑

τ∈OG(A×B):τB=yG

∑
x∈A:(x,y)∈τ

vτ
|τ |

since (x, y)G = τ

=
∑

τ∈OG(A×B):τB=yG
cy
G

τ

vτ
|τ |

by Lemma 3.12, since y ∈ τB

=
∑

τ∈OG(A×B):τB=yG

|τ |
|yG|

vτ
|τ |

=
1

|yG|
∑

τ∈OG(A×B):τB=yG
vτ .

(32)

Lemma 3.14. For any τ ∈ OG(A × B), µ ∈ OG(B) and vx,y variable indexed by elements of A × B, let
us de�ne vτ :=

∑
(x,y)∈τ vx,y. We have: ∑

τ∈OG(A×B):τB=µ

vτ =
∑
y∈µ

∑
x∈A

vx,y .
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Proof. ∑
τ∈OG(A×B):τB=µ

vτ =
∑

τ∈OG(A×B):τB=µ

∑
(x,y)∈τ

vx,y =
∑
y∈µ

∑
x∈A

vx,y .

Proof of Theorem 3.10. Let rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y, px1,x2 a feasible solution of the program de�ned in

Proposition 3.1, and call S := 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y its value. De�ne:

rw :=
∑

(x1,x2,y)∈w

rx1,x2,y , r1w :=
∑

(x1,x2,y)∈w

r1x1,x2,y ,

r2w :=
∑

(x1,x2,y)∈w

r2x1,x2,y , pu :=
∑

(x1,x2)∈u

px1,x2 .
(33)

Let us show that rw, r1w, r
2
w, pu is a feasible solution of the program de�ned in Theorem 3.10, and that its

value S∗ := 1
k1k2

∑
wW (w)rw = S.

First, we have S∗ = S. Indeed:

S∗ =
1

k1k2

∑
w

W (w)rw =
1

k1k2

∑
w

W (w)
∑

(x1,x2,y)∈w

rx1,x2,y

=
1

k1k2

∑
w

∑
(x1,x2,y)∈w

W (y|x1x2)rx1,x2,y since W (w) =W (y|x1x2) for all (x1, x2, y) ∈ w

=
1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y = S .

(34)

Then, all the constraints are satis�ed. Indeed, thanks to Lemma 3.14, we have for the �rst constraint:∑
w:wY=v

rw =
∑
y∈v

∑
x1,x2

rx1,x2,y =
∑
y∈v

1 = |v| .

For the second constraint (and symmetrically for the third constraint), we have:∑
w:wX2Y=v

2

r1w =
∑

(x2,y)∈v2

∑
x1

r1x1,x2,y =
∑

(x2,y)∈v2
k1
∑
x1

rx1,x2,y = k1
∑

w:wX2Y=v
2

rw .

For the fourth (and symmetrically for the �fth), we have:∑
w:wX2Y=v

2

r2w =
∑

(x2,y)∈v2

∑
x1

r2x1,x2,y =
∑

(x2,y)∈v2

1

k1

∑
x1

px1,x2 =
1

k1

∑
x2∈v2X2

∑
y:(x2,y)∈v2

∑
x1

px1,x2

=
1

k1

∑
x2∈v2X2

|v2|
|v2X2
|
∑
x1

px1,x2 thanks to Lemma 3.12

=
1

k1

|v2|
|v2X2
|

∑
u:uX2=v

2
X2

pu .

(35)

Finally for the last constraints, we only need to compute:
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∑
(x1,x2,y)∈w

px1,x2 =
∑

(x1,x2)∈wX1X2

∑
y:(x1,x2,y)∈w

px1,x2 =
∑

(x1,x2)∈wX1X2

|w|
|wX1X2 |

px1,x2 =
|w|
|wX1X2 |

pwX1X2 ,

which implies that the linear inequalities on px1,x2 , rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y get transposed respectively to

the values |w|
|wX1X2 |

pwX1X2 , rw, r
1
w, r

2
w. Indeed, for instance, one has for any x1, x2, y that px1,x2 − r1x1,x2,y −

r2x1,x2,y + rx1,x2,y ≥ 0. Thus for some orbit w:∑
(x1,x2,y)∈w

(
px1,x2 − r1x1,x2,y − r

2
x1,x2,y + rx1,x2,y

)
≥ 0 ,

and then |w|
|wX1X2 |

pwX1X2 − r
1
w − r2w + rw ≥ 0, which was what we wanted to show.

Now let us consider a feasible solution rw, r1w, r
2
w, pu of the program de�ned in Theorem 3.10, with a

value S∗ := 1
k1k2

∑
wW (w)rw. De�ne:

rx1,x2,y :=
r(x1,x2,y)G

|(x1, x2, y)G|
, r1x1,x2,y :=

r1
(x1,x2,y)G

|(x1, x2, y)G|
,

r2x1,x2,y :=
r2
(x1,x2,y)G

|(x1, x2, y)G|
, px1,x2 :=

p(x1,x2)G

|(x1, x2)G|
.

(36)

Let us show that rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y, px1,x2 is a feasible solution of the program de�ned in Propo-

sition 3.1, and that its value S := 1
k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y = S∗.
First we have S = S∗. Indeed:

S =
1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y =
1

k1k2

∑
x1,x2,y

W (y|x1x2)
r(x1,x2,y)G

|r(x1,x2,y)G |

=
1

k1k2

∑
w

∑
(x1,x2,y)∈w

W (y|x1x2)
rw
|w|

=
1

k1k2

∑
w

∑
(x1,x2,y)∈w

W (w)
rw
|w|

=
1

k1k2

∑
w

|w|W (w)
rw
|w|

=
1

k1k2

∑
w

W (w)rw = S∗ .

(37)

Then, all the constraints are satis�ed. Indeed, thanks to Lemma 3.13, we have for the �rst constraint:

∑
x1,x2

rx1,x2,y =
1

|yG|
∑

w:wY=yG

rw =
|yG|
|yG|

= 1 .

For the second constraint (and symmetrically for the third constraint), we have:∑
x1

r1x1,x2,y =
1

|(x2, y)G|
∑

w:wX2Y=(x2,y)G

r1w =
k1

|(x2, y)G|
∑

w:wX2Y=(x2,y)G

rw = k1
∑
x1

rx1,x2,y .
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For the fourth (and symmetrically for the �fth), we have:

∑
x1

r2x1,x2,y =
1

|(x2, y)G|
∑

w:wX2Y=(x2,y)G

r2w =
1

|(x2, y)G|
1

k1

|(x2, y)G|
|(x2, y)GX2

|
∑

u:uX2=(x2,y)GX2

pu

=
1

k1

1

|(x2, y)GX2
|

∑
u:uX2=(x2,y)GX2

pu =
1

k1

1

|xG2 |
∑

u:uX2=x
G
2

pu since (x2, y)
G
X2

= xG2

=
1

k1

∑
x1

px1,x2 .

(38)

Finally, to conclude with the last constraints, one has only to see that for any x1, x2, y:

|(x1, x2, y)G|
|(x1, x2, y)GX1X2

|
p(x1,x2,y)GX1X2

=
|(x1, x2, y)G|
|(x1, x2)G|

p(x1,x2)G = |(x1, x2, y)G|px1,x2 ,

which implies that the linear inequalities on |w|
|wX1X2 |

pwX1X2 , rw, r
1
w, r

2
w get transposed respectively to the

values px1,x2 , rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y. Indeed, for instance, one has for any w that |w|

|wX1X2 |
pwX1X2 − r

1
w −

r2w + rw ≥ 0. But for any (x1, x2, y) ∈ w, one has that rx1,x2,y = rw
|w| , r

1
x1,x2,y = r1w

|w| , r
2
x1,x2,y = r2w

|w| . Thanks

to the previous inequality, we have that px1,x2 =
pwX1X2
|wX1X2 |

, and thus:

px1,x2 − r1x1,x2,y − r
2
x1,x2,y + rx1,x2,y =

pwX1X2
|wX1X2 |

− r1w
|w|
− r2w
|w|

+
rw
|w|
≥ 0 ,

which was what we wanted to show.

4 Non-Signaling Achievability Bounds

4.1 Zero-Error Non-Signaling Assisted Achievable Rate Pairs

We will now present a numerical method to �nd e�ciently inner bounds on CNS
0 (W ). Thanks to Corol-

lary 3.11, we know how to decide in polynomial time in n, k1, k2 whether SNS(W⊗n, k1, k2) = 1. However,

by Proposition 3.8, if SNS(W⊗n, k1, k2) = 1, then we have that
(
log(k1)
n , log(k2)n

)
∈ CNS

0 (W ), which describes

a way of computing achievable points for that capacity region. More precisely, this leads to the following
result:

Proposition 4.1 (Inner Bounds on CNS
0 (W )). Let us de�ne the zero-error non-signaling assisted n-shots

capacity region CNS
0,≤n(W ) in the following way:

CNS
0,≤n(W ) :=

{(
log(k1)

n
,
log(k2)

n

)
: SNS(W⊗n, k1, k2) = 1

}
.

Then, we have that ∀n ∈ N, CNS
0,≤n(W ) ⊆ CNS

0 (W ), and that one can decide in polynomial time in n, k1, k2

if
(
log(k1)
n , log(k2)n

)
∈ CNS

0,≤n(W ).

This implies that we can �nd e�ciently achievable rate pairs for MACs.
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Application to the binary adder channel The binary adder channel WBAC is the following MAC:

∀x1, x2 ∈ {0, 1},∀y ∈ {0, 1, 2},WBAC(y|x1x2) := δy,x1+x2 .

Its classical capacity region C(WBAC) is well known and consists of all (R1, R2) such that R1 ≤ 1, R2 ≤
1, R1 + R2 ≤ 3

2 , as a consequence of Theorem 2.2. Its zero-error classical capacity C0(WBAC) is not yet
characterized. A lot of work has been done in �nding outer and inner bounds on this region [23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33]. To date, the best lower bound on the sum-rate capacity is log2(240/6) '
1.3178 [32].

Thanks to Proposition 4.1, we were able to compute the regions CNS
0,≤n(W ) for n going up to 7, which

led to Figure 4. The code can be found on GitHub. It uses Mosek linear programming solver [34].
Note that the linear program from Theorem 3.10 has still a large number of variables and constraints

although polynomial in n. Speci�cally, for n = 2, it has 244 variables and 480 constraints; for n = 3, it
has 1112 variables and 2054 constraints; for n = 7, it has 95592 variables and 162324 constraints; �nally,
for n = 8, it has 226911 variables and 383103 constraints.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

R1

R
2

C(WBAC)

Best Inner Bounds on C0(WBAC)

CNS
0,≤2(WBAC)

CNS
0,≤3(WBAC)

CNS
0,≤7(WBAC)

Figure 4: Capacity regions of the binary adder channelWBAC. The black dashed curve depicts the classical
capacity region C(WBAC), whereas the grey dashed curve shows the best known inner bound border on the
zero-error classical capacity region C0(WBAC), made from results by [32, 28, 27]; see [32] for a description
of this border. On the other hand, the continuous curves depict the best zero-error non-signaling assisted
achievable rate pairs for respectively 2, 3 and 7 copies of the binary adder channel.

The �rst noticeable result coming from these curves is that the zero-error non-signaling assisted sum-
rate capacity beats with only 7 copies the classical sum-rate capacity of 3

2 , even without a zero-error

constraint, with a value of 2 log2(42)
7 ' 1.5406, coming from the fact that SNS(W⊗7BAC, 42, 42) = 1 and Propo-

sition 3.8. This implies that CNS
0 (WBAC) has larger sum-rate pairs than C(WBAC), and that CNS(WBAC)

is strictly larger than C(WBAC). This sum-rate can even be increased up to log2(72)
4 ' 1.5425, since we
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have computed SNS(W⊗8BAC, 72, 72) = 1, which is the largest number of copies we have been able to man-
age with our e�cient version of the linear program from Theorem 3.10. This should be compared with
the upper bound on the non-signaling assisted sum-rate capacity coming from Proposition 5.6, which is
log2(3) ' 1.5850 for R1 = R2.

Another surprising property is the speed at which one obtains e�cient zero-error non-signaling assisted
codes compared to classical zero-error codes. Indeed, with only three copies of the binary adder channel,
one gets that SNS(W⊗3BAC, 4, 5) = 1, which corresponds to a sum-rate of 2+log2(5)

3 ' 1.4406, which already
largely beats the best known zero-error achieved sum-rate of log2(240/6) ' 1.3178 [32]. These results are
summarized in the following theorem:

Theorem 4.2. We have that
(
log2(72)

8 , log2(72)8

)
∈ CNS

0 (WBAC) but
(
log2(72)

8 , log2(72)8

)
6∈ C(WBAC), and as

a consequence, we have that C(WBAC) ( CNS(WBAC).

Proof. Since 28
log2(72)

8 = 72 and numerically SNS(W⊗8BAC, 72, 72) = 1 thanks to Corollary 3.11, we get that(
log2(72)

8 , log2(72)8

)
∈ CNS

0 (WBAC) by Proposition 3.8. However,
log2(72)

8 + log2(72)
8 > 3

2 so
(
log2(72)

8 , log2(72)8

)
6∈

C(WBAC) by Theorem 2.2 applied toWBAC. Since C(WBAC) ⊆ CNS(WBAC) and CNS
0 (WBAC) ⊆ CNS(WBAC),

we thus get that C(WBAC) ( CNS(WBAC).

4.2 Non-Signaling Assisted Achievable Rate Pairs with Non-Zero Error

We have analyzed the non-signaling assisted capacity region through zero-error strategies and applied it
to the BAC. However, if some noise is added to that channel, its zero-error non-signaling assisted capacity
region becomes trivial (see Proposition 4.6). Thus, the previous method fails to �nd signi�cant inner
bounds on the non-signaling assisted capacity region of noisy MACs.

In this section, we use concatenated codes to obtain achievable rate pairs, and apply it to a noisy
version of the BAC:

De�nition 4.3 (Concatenated Codes). Given a MAC W and a non-signaling assisted code P , de�ne
W [P ] : [k1]× [k2]→ [`] with W [P ](j|i1i2) :=

∑
x1,x2,y

W (y|x1x2)P (x1x2j|i1i2y):

P (x1x2j|i1i2y)

i1 i2

j

W

x1
x2

y

:=W [P ]

i1 i2

j
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Note that W [P ] is a MAC since W [P ](j|i1i2) ≥ 0 and:∑
j

W [P ](j|i1i2) =
∑

x1,x2,y

W (y|x1x2)
∑
j

P (x1x2j|i1i2y)

=
∑
x1,x2

(∑
y

W (y|x1x2)

)
P (x1x2|i1i2) since P is non-signaling

=
∑
x1,x2

P (x1x2|i1i2) = 1 .

(39)

The following proposition states that combining a classical code to a non-signaling strategy leads to
inner bounds on the non-signaling assisted capacity region of a MAC:

Proposition 4.4. If P is a non-signaling assisted code for the MACW , we have that C(W [P ]) ⊆ CNS(W ).

Proof. Let (R1, R2) ∈ C(W [P ]). Then, by de�nition, we have that:

lim
n→+∞

S(W [P ]⊗n, d2R1ne, d2R2ne) = 1 .

Let us �x ε > 0. For a large enough N , we have S(W [P ]⊗N , d2R1Ne, d2R2Ne) ≥ 1 − ε. Let us call
`1 := d2R1Ne and `2 := d2R2Ne. Thus, there exists encoders e1 : [`1]→ [k1], e2 : [`2]→ [k2] and a decoder
d : [`]→ [`1]× [`2] such that:

1

`1`2

∑
i1,i2,j

W [P ](j|i1i2)
∑

a1∈[`1],a2∈[`2]

e1(i1|a1)e2(i2|a2)d(a1a2|j) ≥ 1− ε .

In particular, we have:

1

`1`2

∑
x1,x2,y

W (y|x1x2)

 ∑
i1,i2,j,a1,a2

P (x1x2j|i1i2y)e1(i1|a1)e2(i2|a2)d(a1a2|j)

 ≥ 1− ε .

Let us de�ne P̂ (x1x2(b1b2)|a1a2y) :=
∑

i1,i2,j
P (x1x2j|i1i2y)e1(i1|a1)e2(i2|a2)d(b1b2|j). Then, one can

easily check that P̂ is non-signaling, and thus:

SNS(W⊗N , `1, `2) ≥
1

`1`2

∑
x1,x2,y

W (y|x1x2)
∑
a1,a2

P̂ (x1x2(a1, a2)|a1a2y) ≥ 1− ε .

This implies that lim
n→+∞

SNS(W⊗n, d2R1ne, d2R2ne) = 1, i.e. (R1, R2) ∈ CNS(W ).

Thanks to Proposition 4.4, we have for any non-signaling assisted code P , C(W⊗n[P ]) ⊆ CNS(W⊗n).
But if (R1, R2) ∈ CNS(W⊗n), we have that (R1

n ,
R2
n ) ∈ CNS(W ). Thus, applying Theorem 2.2 on W⊗n[P ]

leads to inner bounds on CNS(W ):

Proposition 4.5 (Inner Bounds on CNS(W )). For any number of copies n, number of inputs k1 ∈ [|X1|n]
and k2 ∈ [|X2|n], non-signaling assisted codes P on inputs in [k1], [k2] for W⊗n, and distributions q1, q2 on
[k1], [k2], we have that the following (R1, R2) are in CNS(W ):

R1 ≤
I(I1 : J |I2)

n
, R2 ≤

I(I2 : J |I1)
n

, R1 +R2 ≤
I((I1, I2) : J)

n
,

for (I1, I2) ∈ [k1] × [k2] following the product law q1 × q2, and J ∈ [`] the outcome of W⊗n[P ] on inputs
I1, I2. In particular, the corner points of this capacity region are given by:(

I(I1 : J |I2)
n

,
I(I2 : J)

n

)
and

(
I(I1 : J)

n
,
I(I2 : J |I1)

n

)
.
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Proof. The achievable region comes from the previous discussion. We just need to prove that the corner
points are of the given form. If R1 = I(I1:J |I2)

n , constraints on R2 and R1 + R2 leads to a maximum

R2 = min
(
I(I2:J |I1)

n , I((I1,I2):J)n − I(I1:J |I2)
n

)
. However, I((I1, I2) : J)− I(I1 : J |I2) = I(I2 : J) by the chain

rule. We only need to show that I(I2 : J) ≤ I(I2 : J |I1) and the proof will be complete, since the other
corner point is symmetric. We have:

I(I2 : J) = H(I2)−H(I2|J) = H(I2|I1)−H(I2|J) ≤ H(I2|I1)−H(I2|JI1) = I(I2 : J |I1) ,

the second equality coming from the fact that I1 and I2 are independent, and the inequality coming from
the fact that H(A|BC) ≤ H(A|B) for any A,B,C.

Application to the Noisy Binary Adder Channel We will now apply this strategy to a noisy
version of the BAC. We will consider �ip errors ε1, ε2 of inputs x1, x2 on WBAC, which leads to the
following de�nition of WBAC,ε1,ε2 :

∀y, x1, x2,WBAC,ε1,ε2(y|x1x2) := (1− ε1)(1− ε2)WBAC(y|x1x2)
+ ε1(1− ε2)WBAC(y|x1x2)
+ (1− ε1)ε2WBAC(y|x1x2)
+ ε1ε2WBAC(y|x1x2) .

(40)

First, let us note that the zero-error non-signaling assisted capacity region of WBAC,ε1,ε2 is trivial for
ε ∈ (0, 1):

Proposition 4.6. If ε1, ε2 ∈ (0, 1), then CNS
0 (WBAC,ε1,ε2) = {(0, 0)}.

Proof. If SNS(W⊗n, k1, k2) = 1, then ∀yn, xn1 , xn2 :W⊗n(yn|xn1xn2 ) > 0 =⇒ rxn1 ,xn2 ,yn = pxn1 ,xn2 . Indeed, we
have for an optimal p, r that:

SNS(W⊗n, k1, k2) =
1

k1k2

∑
xn1 ,x

n
2 ,y

n

W⊗n(yn|xn1xn2 )rxn1 ,xn2 ,yn ≤
1

k1k2

∑
xn1 ,x

n
2 ,y

n

W⊗n(yn|xn1xn2 )pxn1 ,xn2 = 1 ,

which implies the previous statement. But, for W⊗n
BAC,ε1,ε2

, one can easily check that for all yn, xn1 , x
n
2 ,

W⊗n(yn|xn1xn2 ) > 0 since ε1, ε2 ∈ (0, 1). Indeed, you just have to �ip the inputs to a valid preimage of the
output. Thus if SNS(W⊗n

BAC,ε1,ε2
, k1, k2) = 1, we have that ∀yn, xn1 , xn2 , rxn1 ,xn2 ,yn = pxn1 ,xn2 . In particular,

this implies that
∑

xn1 ,x
n
2
rxn1 ,xn2 ,yn =

∑
xn1 ,x

n
2
pxn1 ,xn2 , therefore 1 = k1k2, so k1 = 1 and k2 = 1. Thus

SNS(W⊗n, 2nR1 , 2nR2) = 1 implies that (R1, R2) = (0, 0).

We have then applied the numerical method described in Proposition 4.5 to WBAC,ε1,ε2 for the sym-
metric case ε1 = ε2 = ε := 10−3. Since it is hard to go through all non-signaling assisted codes P and
product distributions q1, q2, we have applied the heuristic of using non-signaling assisted codes obtained
while optimizing SNS(W⊗n, k1, k2) in the symmetrized linear program. We have combined them with
uniform q1, q2, as the form of those non-signaling assisted codes coming from our optimization program is
symmetric. We have evaluated the achievable corner points for all k1, k2 ≤ 2n for n ≤ 5 copies which led
to Figure 5:

Compared to the noiseless binary adder channel, we can �rst notice that the classical capacity region
is slightly smaller, with a classical sum-rate capacity of 1.478 at most. On the other hand, although the
zero-error non-signaling assisted capacity of WBAC,ε,ε is completely trivial, we have with our concatenated
codes strategy found signi�cant rate pairs achievable with non-signaling assistance. In particular, we
have reached a non-signaling assisted sum-rate capacity of 1.493 which beats the best classical sum-rate
capacity. Thus, it shows that non-signaling assistance can improve the capacity of the noisy binary adder
channel as well.
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Figure 5: Capacity regions of the noisy binary adder channelWBAC,ε,ε for ε = 10−3. The black dashed curve
depicts the classical capacity region C(WBAC,ε,ε) which was found numerically using Theorem 2.2. The
red point depicts the zero-error non-signaling assisted capacity region (Proposition 4.6). The blue curve
depicts achievable non-signaling assisted rates pairs obtained from C(W⊗5

BAC,ε,ε[P ]) through the numerical
method described in Proposition 4.5.

5 Relaxed Non-Signaling Assisted Capacity Region and Outer Bounds

A natural question that arises when studying the strength of non-signaling assistance is whether a result
similar to Theorem 2.2 can be found to describe by a single-letter formula the non-signaling assisted
capacity region of MACs. In particular, dropping the constraint that (X1, X2) is in product form in
Theorem 2.2 seems to be a particularly good candidate to characterize the non-signaling assisted capacity
region of MACs, as this looks quite similar to allowing correlations between parties.

We have not been able to show the equivalence between this region and the non-signaling assisted
capacity region; however, it turns out to be equivalent to the capacity region de�ned by a slight relaxation
of non-signaling assistance, which we call SNS(W,k1, k2). In particular, this will give us the best known
outer bound on the non-signaling capacity.
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De�nition 5.1.

SNS(W,k1, k2) := maximize
r,p

1

k1k2

∑
x1,x2,y

W (y|x1x2)rx1,x2,y

subject to
∑
x1,x2

rx1,x2,y ≤ 1∑
x1,x2

px1,x2 = k1k2∑
x1

px1,x2 ≥ k1
∑
x1

rx1,x2,y∑
x2

px1,x2 ≥ k2
∑
x2

rx1,x2,y

0 ≤ rx1,x2,y ≤ px1,x2

(41)

The following proposition shows that this is indeed a relaxation of the non-signaling constraint.

Proposition 5.2. SNS(W,k1, k2) ≤ SNS(W,k1, k2).

Proof. Let us take a solution (px1,x2 , rx1,x2,y, r
1
x1,x2,y, r

2
x1,x2,y)x1∈X1,x2∈X2,y∈Y of the linear program com-

puting SNS(W,k1, k2). Let us show that (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y is a solution of the linear program

computing SNS(W,k1, k2) with a same objective value, from which the proposition follows.
They have indeed the same value, since the de�nition which is the same for both programs depends

only on rx1,x2,y. Let us show that all constraints are satis�ed for (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y .
We have

∑
x1,x2

rx1,x2,y = 1 ≤ 1 so the �rst constraint is satis�ed. We have then that:∑
x1,x2

px1,x2 = k1
∑
x1,x2

r2x1,x2,y = k1k2
∑
x1,x2

rx1,x2,y = k1k2 ,

so the second constraint is satis�ed.
For the third constraint (and symmetrically the fourth constraint), we have:∑

x1

px1,x2 = k1
∑
x1

r2x1,x2,y ≥ k1
∑
x1

rx1,x2,y .

Finally, we have directly 0 ≤ rx1,x2,y ≤ px1,x2 , so the last constraint is satis�ed.

We can now introduce the relaxed non-signaling assisted capacity region CNS(W ):

De�nition 5.3 (CNS(W )). A rate pair (R1, R2) is achievable with relaxed non-signaling assistance if:

lim
n→+∞

SNS(W⊗n, d2R1ne, d2R2ne) = 1 .

We de�ne CNS(W ) as the closure of the convex hull of the set of all achievable rate pairs with relaxed
non-signaling assistance.

Remark. One could show as in the non-relaxed case that CNS(W ) is convex without taking the convex hull
in its de�nition.

A direct property that follows from this de�nition and Proposition 5.2 is the fact that the non-signaling
assisted capacity region is included in the relaxed non-signaling assisted capacity region.

Corollary 5.4. CNS(W ) ⊆ CNS(W ).
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We present now the main result of this section, the characterization of CNS(W ) by a single-letter
formula.

Theorem 5.5 (Characterization of CNS(W )). CNS(W ) is the closure of the convex hull of all rate pairs
(R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following some law PX1X2 on X1 ×X2, and Y ∈ Y the outcome of W on inputs X1, X2.

Remark. Note that the only di�erence with the classical capacity region of MACs in Theorem 2.2 is that
the joint distribution of X1 and X2 does not have any product form constraints here.

The proof of Theorem 5.5 will be divided in Proposition 5.12 (outer bound part) and Proposition 5.17
(achievability part). But �rst, let us apply these results to the binary adder channel.

Application to the Binary Adder Channel Let us determine the relaxed non-signaling assisted
capacity of the binary adder channel which will be plotted in Figure 6.

Proposition 5.6. CNS(WBAC) has the following description:

CNS(WBAC) =
⋃

q∈[ 12 ,
2
3 ]

{(R1, R2) : R1 ≤ h (q) , R2 ≤ h (q) , R1 +R2 ≤ q + h (q)} .

Remark. Note that for q = 1
2 , the bound becomes R1 ≤ 1, R2 ≤ 1, R1+R2 ≤ 3

2 and when q = 2
3 the bound

becomes R1 ≤ log2(3)− 2
3 , R2 ≤ log2(3)− 2

3 , R1 +R2 ≤ log2(3).

Proof. We use the characterization of CNS provided by Theorem 5.5.
Let us consider an arbitrary PX1X2 = (p00, p01, p10, p11). First, we have that I((X1, X2) : Y ) = H(Y )−

H(Y |X1X2) = H(Y ) since Y is a deterministic function of (X1, X2). Then, we have that I(X1 : Y |X2) =
H(Y |X2) − H(Y |X1X2) = H(Y |X2) for the same reason. Furthermore, given X2, Y is a deterministic
function of X1, so we have I(X1 : Y |X2) = H(Y |X2)−H(Y |X1X2) = H(X1|X2). Symmetrically we have
as well I(X2 : Y |X1) = H(X2|X1). In all:

CNS(WBAC) =
⋃

PX1X2

{(R1, R2) : R1 ≤ H(X1|X2), R2 ≤ H(X2|X1), R1 +R2 ≤ H(X1 +X2)}

Let us call B1(PX1X2) := H(X1|X2), B2(PX1X2) := H(X2|X1), B12(PX1X2) := H(X1 +X2) the three
bounds. Let us call PX1X2

= (p11, p10, p01, p00). One can notice that:

B1(PX1X2
) = H(X1|X2) = H(1−X1|1−X2) = H(X1|X2) = B1(PX1X2) ,

B2(PX1X2
) = H(1−X2|1−X1) = H(X2|X1) = B2(PX1X2) ,

B12(PX1X2
) = H(X1 +X2) = H(1−X1 + 1−X2)

= H(2− (X1 +X2)) = H(X1 +X2) = B12(PX1X2) .

(42)

Since B12(PX1X2) = H(X1 +X2) = H(p00, p11, p01 + p10), it is concave in PX1X2 as H is concave and
(p00, p11, p01 + p10) is linear in PX1X2 . Also, B1(PX1X2) = H(X1|X2) = −D(PX1X2 ||I ⊗ PX2) is concave
in PX1X2 as the divergence D is jointly convex and I ⊗ PX2 is linear in PX1X2 . By symmetry, B2(PX1X2)
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is as well concave in PX1X2 . Let us consider any of those three bounds, which we call B. We have by
concavity of B and the fact that B(PX1X2) = B(PX1X2

):

B(PX1X2) =
B(PX1X2) +B(PX1X2

)

2
≤ B

(
PX1X2 + PX̂1X̂2

2

)
= B

(
q

2
,
1− q
2

,
1− q
2

,
q

2

)
,

with q = p00 + p11. This holds for the three bounds at the same time, so we can restrict ourselves to

the distributions of the form
(
q
2 ,

1−q
2 , 1−q2 , q2

)
for some q ∈ [0, 1], i.e., PX1X2(0, 0) = PX1X2(1, 1) =

q
2 and

PX1X2(0, 1) = PX1X2(1, 0) =
1−q
2 .

We have PY (0) = PY (2) =
q
2 and PY (1) = 1− q, so:

B12(PX1X2) = H(Y ) = −q log
(q
2

)
− (1− q) log(1− q)

= −q (log(q)− 1)− (1− q) log(1− q)
= q + h (q) .

(43)

We have PX2(0) = PX1X2(0, 0) + PX1X2(1, 0) =
q
2 + 1−q

2 = 1
2 so PX2(1) =

1
2 . Thus:

B1(PX1X2) = H(X1|X2) =
1

2
H(X1|X2 = 0) +

1

2
H(X1|X2 = 1) .

We have PX1|X2=0(0) =
PX1X2

(0,0)

PX2
(0) = q so H(X1|X2 = 0) = h (q). On the other hand, we have

PX1|X2=1(1) =
PX1X2

(1,1)

PX2
(1) = q so we get as wellH(Y |X2 = 1) = h (q), and B1(PX1X2) = H(X1|X2) = h (q).

Symmetrically, we also get B2(PX1X2) = h (q). Therefore, we get that CNS(WBAC) is the closure of the
convex hull of: ⋃

q∈[0,1]

{(R1, R2) : R1 < h (q) , R2 < h (q) , R1 +R2 < q + h (q)} .

However this set is already convex, so we have:

CNS(WBAC) =
⋃

q∈[0,1]

{(R1, R2) : R1 ≤ h (q) , R2 ≤ h (q) , R1 +R2 ≤ q + h (q)} .

Finally, we can restrict ourselves to q ∈
[
1
2 ,

2
3

]
, since h is increasing from 0 to 1

2 (thus q 7→ q + h (q) as
well), and the fact that q 7→ q + h (q) achieves its maximum for q = 2

3 with 2
3 + h

(
2
3

)
= log2(3) and then

decreases (whereas h is decreasing from 1
2 to 1), which completes the proof.

As before, one can also de�ne a symmetrized version of the relaxed linear program computing the
value SNS(W⊗n, k1, k2) in polynomial time in n and compute the zero-error n-shots capacity region by
looking at the rates where SNS(W⊗n, k1, k2) = 1. We have computed this up to 7 copies of the binary
adder channel, which led to Figure 6:

The �rst noticeable result coming from these curves is that the values SNS and SNS di�er. While
the highest sum-rate of 2 log2(42)

7 ' 1.5406 is achieved on 7 copies of the binary adder channel with
zero-error and non-signaling assistance, coming from the fact that SNS(W⊗7BAC, 42, 42) = 1, we have that

SNS(W⊗7BAC, 44, 44) = 1 > SNS(W⊗7BAC, 44, 44) ' 0.9581 which implies that a sum-rate of 2 log2(44)
7 ' 1.5598

is achieved on 7 copies of the binary adder channel with zero-error and relaxed non-signaling assistance.
It also largely beats the best found sum-rate of log2(72)

4 ' 1.5425 achieved on 8 copies with the regular
version. However the fact that the non-signaling assisted capacity region is strictly contained in the relaxed
one is still open, as the same rates could potentially be achieved by the cost of using more copies of the
channel.
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Figure 6: Comparison of relaxed and regular non-signaling assisted capacity regions of the binary adder
channel. The black dashed curve depicts the classical capacity region C(WBAC), whereas the grey dotted
curve depicts the relaxed non-signaling assisted capacity region CNS(WBAC) as described in Proposition 5.6.
In particular, the curved corners are obtained by taking R1 = h(R2) for R2 ∈

[
1
2 ,

2
3

]
and symmetrically by

switching the roles played by R1 and R2. The continuous blue (respectively red) curve depicts the zero-
error (respectively relaxed) non-signaling assisted achievable rate pairs for 7 copies of the binary adder
channel.

5.1 Outer Bound Part of Theorem 5.5

In order to prove Proposition 5.12, we use a connection between hypothesis testing and relaxed non-
signaling assisted codes as established in [8] for point-to-point channels.

De�nition 5.7 (Hypothesis Testing). Given distributions P (0) and P (1) on the same space C, we de�ne
β1−ε(P

(0), P (1)) to be the minimum type II error
∑

r∈C TrP
(1)(r) that can be achieved by statistical tests

T which give a type I error no greater than ε, i.e.
∑

r∈C TrP
(0)(r) ≥ 1− ε.

In other words, we have that:

β1−ε(P
(0), P (1)) = minimize

Tr

∑
r∈C

TrP
(1)(r)

subject to
∑
r∈C

TrP
(0)(r) ≥ 1− ε

0 ≤ Tr ≤ 1 .

(44)

Lemma 5.8. For any relaxed non-signaling assisted code (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y with (k1, k2)
messages and a probability of success 1− ε, if PX1X2(x1, x2) =

px1,x2
k1k2

and Y ∈ Y is the outcome of W on
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inputs X1, X2, we have:

β1−ε
(
PX1X2Y , PX1X2 × PY |X2

)
≤ 1

k1

β1−ε
(
PX1X2Y , PX1X2 × PY |X1

)
≤ 1

k2

β1−ε (PX1X2Y , PX1X2 × PY ) ≤
1

k1k2
.

(45)

Remark. These three bounds are actually achieved with the same statistical test.

Proof. This result is a direct generalization of Theorem 9 in [8] for point-to-point channels, itself a gener-
alization of Theorem 27 in [35] without non-signaling assistance.

Let us name W0 := W and W1 a MAC yet to be de�ned. The coding strategy described by rx1,x2,y
and px1,x2 leads to a probability of success on channel i ∈ {0, 1} is given by:

1− εi =
1

k1k2

∑
x1,x2,y

rx1,x2,yWi(y|x1x2)

=
∑

x1,x2,y:px1,x2>0

rx1,x2,y
px1,x2

Wi(y|x1x2)
px1,x2
k1k2

since 0 ≤ rx1,x2,y ≤ px1,x2

=
∑

x1,x2,y

Tx1,x2,yWi(y|x1x2)
px1,x2
k1k2

,

(46)

with Tx1,x2,y :=
rx1,x2,y
px1,x2

if px1,x2 > 0, and Tx1,x2,y := 0 otherwise.

If now Y is the output of the channelWi, the joint distribution ofX1, X2, Y is given by P (i)
X1X2Y

(x1, x2, y) =

Wi(y|x1x2)PX1X2(x1, x2) =Wi(y|x1x2)
px1,x2
k1k2

.
On the other hand, we have that for all x1, x2, y, 0 ≤ Tx1,x2,y ≤ 1 since 0 ≤ rx1,x2,y ≤ px1,x2 . So we get

that:

1− εi =
∑

x1,x2,y

Tx1,x2,yP
(i)
X1X2Y

(x1, x2, y) .

Since
∑

x1,x2,y
Tx1,x2,yP

(0)
X1X2Y

(x1, x2, y) ≥ 1− ε0 and 0 ≤ Tx1,x2,y ≤ 1, we have:

β1−ε0(P
(0), P (1)) ≤

∑
x1,x2,y

Tx1,x2,yP
(1)
X1X2Y

(x1, x2, y) = 1− ε1 .

Let us now consider three general cases, depending on the fact that W1 does not depend on x1, x2
or both: W1(y|x1x2) := Q(1)(y|x2); W1(y|x1x2) := Q(2)(y|x1); W1(y|x1x2) := Q(0)(y). These will give
respectively the three bounds we want.

First, let us consider the case where W1(y|x1x2) := Q(1)(y|x2) (the second case where W1(y|x1x2) :=
Q(2)(y|x1) being symmetric), we have that:

1− ε1 =
∑

x1,x2,y

Tx1,x2,yQ
(1)(y|x2)

px1,x2
k1k2

=
1

k1k2

∑
x2,y

Q(1)(y|x2)
∑
x1

Tx1,x2,ypx1,x2

=
1

k1k2

∑
x2,y

Q(1)(y|x2)
∑
x1

rx1,x2,y ≤
1

k1k2

∑
x2,y

Q(1)(y|x2)
1

k1

∑
x1

px1,x2

=
1

k1

∑
x1,x2

px1,x2
k1k2

∑
y

Q(1)(y|x2) =
1

k1

∑
x1,x2

px1,x2
k1k2

=
1

k1
.

(47)
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For the third case, when W1(y|x1x2) := Q(0)(y), we have:

1− ε1 =
∑

x1,x2,y

Tx1,x2,yQ
(0)(y)

px1,x2
k1k2

=
1

k1k2

∑
y

Q(0)(y)
∑
x1,x2

Tx1,x2,ypx1,x2

=
1

k1k2

∑
y

Q(0)(y)
∑
x1,x2

rx1,x2,y ≤
1

k1k2

∑
y

Q(0)(y) =
1

k1k2
.

(48)

In those three cases, we have respectively P (1)
X1X2Y

= PX1X2 × Q
(1)
Y |X2

;PX1X2 × Q
(2)
Y |X1

;PX1X2 × Q
(0)
Y .

Specializing those cases with Q
(1)
Y |X2

:= PY |X2
;Q

(2)
Y |X1

:= PY |X1
;Q

(0)
Y := PY and using the fact that

β1−ε0
(
P (0), P (1)

)
≤ 1− ε1 concludes the proof.

Lemma 5.9. For any relaxed non-signaling assisted code (px1,x2 , rx1,x2,y)x1∈X1,x2∈X2,y∈Y with (k1, k2)
messages and a probability of success 1− ε, if PX1X2(x1, x2) =

px1,x2
k1k2

and Y ∈ Y is the outcome of W on
inputs X1, X2, we have:

log(k1) ≤
I(X1 : Y |X2) + h(ε)

1− ε
,

log(k2) ≤
I(X2 : Y |X1) + h(ε)

1− ε
,

log(k1) + log(k2) ≤
I((X1, X2) : Y ) + h(ε)

1− ε
.

(49)

Proof. Thanks to Lemma 5.8, with the fact that PX1X2 = PX1|X2
×PX2 = PX2|X1

×PX1 , we have already:

β1−ε
(
PX1X2Y ,

(
PX1|X2

× PY |X2

)
× PX2

)
≤ 1

k1

β1−ε
(
PX1X2Y ,

(
PX2|X1

× PY |X1

)
× PX1

)
≤ 1

k2

β1−ε (PX1X2Y , PX1X2 × PY ) ≤
1

k1k2

(50)

Following the steps of section G in [35], since any hypothesis test is a binary-output transformation,
by data-processing inequality for divergence, we have that:

d
(
1− ε||β1−ε

(
PX1X2Y ,

(
PX1|X2

× PY |X2

)
× PX2

))
= d

(
β1−ε (PX1X2Y , PX1X2Y ) ||β1−ε

(
PX1X2Y ,

(
PX1|X2

× PY |X2

)
× PX2

))
≤ D

(
PX1X2Y ||

(
PX1|X2

× PY |X2

)
× PX2

)
= I(X1 : Y |X2)

(51)

where the binary divergence d(a||b) := a log
(
a
b

)
+ (1 − a) log

(
1−a
1−b

)
and satis�es, d(a||b) ≥ −h(a) −

a log(b) and thus:

log

(
1

b

)
≤ d(a||b) + h(a)

a
=
d(a||b) + h(1− a)

a
,

This leads to:

log(k1) ≤
1

log
((
β1−ε

(
PX1X2Y ,

(
PX1|X2

× PY |X2

)
× PX2

))) ≤ I(X1 : Y |X2) + h(ε)

1− ε
.
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Similarly for the two other inequalities, since D
(
PX1X2Y ||

(
PX2|X1

× PY |X1

)
× PX1

)
= I(X2 : Y |X1)

and D (PX1X2Y ||PX1X2 × PY ) = I((X1, X2) : Y ), we get:

log(k1) ≤
I(X1 : Y |X2) + h(ε)

1− ε
,

log(k2) ≤
I(X2 : Y |X1) + h(ε)

1− ε
,

log(k1) + log(k2) ≤
I((X1, X2) : Y ) + h(ε)

1− ε
.

(52)

In order to show additivity of the outer bound, we use the following lemma.

Lemma 5.10. For any distribution PXn
1X

n
2
of (Xn

1 , X
n
2 ), if Y

n ∈ Yn is the outcome of Wn on inputs
Xn

1 , X
n
2 , we have:

I(Xn
1 : Y n|Xn

2 ) ≤
n∑
i=1

I(X1,i : Yi|X2,i)

I(Xn
2 : Y n|Xn

1 ) ≤
n∑
i=1

I(X2,i : Yi|X1,i)

I((Xn
1 , X

n
2 ) : Y

n) ≤
n∑
i=1

I((X1,i, X2,i) : Yi) .

(53)

Proof. Consider n copies of the MAC W . Let us write X1,−i := X1,1 . . . X1,i−1X1,i+1 . . . X1,n and Zn :=
Z1 . . . Zn. We have:

I(Xn
1 : Y n|Xn

2 ) = I(Xn
1 : Y n|Xn

2 )

=

n∑
i=1

I(Xn
1 : Yi|Xn

2 Y
i−1) by the chain rule

=
n∑
i=1

I(X1,i : Yi|Xn
2 Y

i−1) +
n∑
i=1

I(X1,−i : Yi|Xn
2 Y

i−1X1,i)

=
n∑
i=1

I(X1,i : Yi|Xn
2 Y

i−1) ,

(54)

where the last equality comes from Lemma 5.11. As a result,

I(Xn
1 : Y n|Xn

2 ) =
n∑
i=1

H(Yi|Xn
2 Y

i−1)−H(Yi|Xn
2 Y

i−1X1,i)

=

n∑
i=1

H(Yi|Xn
2 Y

i−1)−H(Yi|X2,iX1,i) since X2,−iY
i−1 → (X1,i, X2,i)→ Yi Markov chain.

≤
n∑
i=1

H(Yi|X2,i)−H(Yi|X2,iX1,i) =
n∑
i=1

I(X1,i : Yi|X2,i) .

(55)
Symmetrically by switching the roles of X1 and X2, we get the second part of Lemma 5.10.
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For the sum-rate case:

I((Xn
1 , X

n
2 ) : Y

n) =
n∑
i=1

I((Xn
1 , X

n
2 ) : Yi|Y i−1) by the chain rule

=
n∑
i=1

I((X1,i, X2,i) : Yi|Y i−1) +
n∑
i=1

I((X1,−i, X2,−i) : Yi|Y i−1X1,iX2,i)

=
n∑
i=1

I((X1,i, X2,i) : Yi|Y i−1) since (X1,−i, X2,−i)→ Y i−1X1,iX2,i → Yi Markov chain.

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|Y i−1X1,iX2,i)

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|X1,iX2,i) since Y
i−1 → (X1,i, X2,i)→ Yi Markov chain.

≤
n∑
i=1

H(Yi)−H(Yi|X2,iX1,i) =
n∑
i=1

I((X1,i, X2,i) : Yi) .

We next prove a technical lemma that was used in the previous proof.

Lemma 5.11. For any distribution PXn
1X

n
2
of (Xn

1 , X
n
2 ), if Y

n ∈ Yn is the outcome of Wn on inputs
Xn

1 , X
n
2 , we have:

I(X1,−i : Yi|X1,iX
n
2 Y

i−1) = 0 .

Proof. Let us show that, conditioned on any particular instance of X1,i = xi,1, X
n
2 = xn2 , Y

i−1
1 = yi−1,

X1,−i and Yi are independent.
We have:

P
(
Yi = yi|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
= P (Yi = yi|X1,i = xi,1, X2,i = x2,i) =W (yi|x1,ix2,i) ,

by de�nition of the law of Yi. On the other hand, we have that:

P (Xn
1 = xn1 , X

n
2 = xn2 , Y

n = yn) = P (Xn
1 = xn1 , X

n
2 = xn2 )

n∏
j=1

W (yj |x1,jx2,j) .

Thus, we have:

P
(
X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
=

∑
x1,−i,xn2 ,yi,...,yn

P (Xn
1 = xn1 , X

n
2 = xn2 )

n∏
j=1

W (yj |x1,jx2,j)

=
∑

x1,−i,xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

i−1∏
j=1

W (yj |x1,jx2,j)
n∏
j=i

∑
yj

W (yj |x1,jx2,j)


=

∑
x1,−i,xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

i−1∏
j=1

W (yj |x1,jx2,j) .

(56)

And then:

P
(
X1,−i = x1,−i|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
=

∑
xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

∏i−1
j=1W (yj |x1,jx2,j)∑

x1,−i,xn2
P (Xn

1 = xn1 , X
n
2 = xn2 )

∏i−1
j=1W (yj |x1,jx2,j)

.
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But:

P
(
X1,−i = x1,−i, Yi = yi|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
=

∑
xn2

P (Xn
1 = xn1 , X

n
2 = xn2 )

∏i
j=1W (yj |x1,jx2,j)∑

x1,−i,xn2
P (Xn

1 = xn1 , X
n
2 = xn2 )

∏i−1
j=1W (yj |x1,jx2,j)

= P
(
X1,−i = x1,−i|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
W (yi|x1,ix2,i)

= P
(
X1,−i = x1,−i|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
P
(
Yi = yi|X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1

)
.

(57)
Thus, conditioned on any particular instance of X1,i = xi,1, X

n
2 = xn2 , Y

i−1
1 = yi−1, X1,−i and Yi are

independent, and so I(X1,−i : Yi|X1,iX
n
2 Y

i−1) = 0.

Combining the previous results gives the desired outer bound.

Proposition 5.12 (Outer bound part of Theorem 5.5). If a rate pair is achievable with relaxed non-
signaling assistance then it is in the closure of the convex hull of all (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following some law PX1X2 on X1 ×X2, and Y ∈ Y the outcome of W on inputs X1, X2.

Proof. Consider (R1, R2) achievable with relaxed non-signaling assistance: we have a sequence of relaxed
non-signaling assisted codes for n copies of the MAC W with k1 = 2nR1 , k2 = 2nR2 messages and an error
probability εn →

n→+∞
0, along with associated distributions of Xn

1X
n
2 Y

n.

Thus combining Lemma 5.9 and Lemma 5.10, we have that:

R1 ≤
1

n

I(Xn
1 : Y n|Xn

2 ) + h(εn)

1− εn
≤ 1

n

∑n
i=1 I(X1,i : Yi|X2,i) + h(εn)

1− εn
,

R2 ≤
1

n

I(Xn
2 : Y n|Xn

1 ) + h(εn)

1− εn
≤ 1

n

∑n
i=1 I(X2,i : Yi|X1,i) + h(εn)

1− εn
,

R1 +R2 ≤
1

n

I((Xn
1 , X

n
2 ) : Y

n) + h(εn)

1− εn
≤ 1

n

∑n
i=1 I((X1,i, X2,i) : Yi) + h(εn)

1− εn
.

(58)

Then let us consider some random variable Q uniform on [n] and independent from (Xn
1 , X

n
2 , Y

n).
Then we can write:

n∑
i=1

I(X1,i : Yi|X2,i) =

n∑
i=1

I(X1,i : Yi|X2,i, Q = i) = nI(X1,Q : YQ|X2,Q, Q) .

Since YQ conditioned on X1,Q and X2,Q still follows the law of the MAC W (y|x1x2), we can take
X1 = X1,Q, X2 = X2,Q, and then the output of the channel Y satis�es Y = YQ, and thus we obtain:

R1 ≤
I(X1 : Y |X2, Q) + h(εn)

n

1− εn
.

Doing this similarly on the other conditional mutual informations, we get:
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R1 ≤
I(X1 : Y |X2, Q) + h(εn)

n

1− εn
,

R2 ≤
I(X2 : Y |X1, Q) + h(εn)

n

1− εn
,

R1 +R2 ≤
I((X1, X2) : Y |Q) + h(εn)

n

1− εn
.

(59)

By taking the limit as n goes to in�nity, since the limit of εn is 0, then the limit of h(εn)n is 0 as well
and we get that (R1, R2) must be in the set of rate pairs such that:

R1 ≤ I(X1 : Y |X2, Q) ,

R2 ≤ I(X2 : Y |X1, Q) ,

R1 +R2 ≤ I((X1, X2) : Y |Q) ,

(60)

for some uniform Q in a �nite set, (X1, X2) any joint law depending on Q, and Y the output of W on
inputs (X1, X2).

Finally, in order to show that this is the right region, one has only to see that the corner points of this
region, such as for instance (I(X1 : Y |Q), I(X2 : Y |X1, Q)), are �nite convex combination of the points
(I(X1 : Y |Q = q), I(X2 : Y |X1, Q = q)) which are all in the capacity region of the theorem by taking
(X1X2) ∼ PX1X2|Q=q. This implies that (R1, R2) is in the convex hull of that region, so we can drop the
random variable Q and the proof is completed.

The main consequence of that outer bound on the relaxed non-signaling assisted capacity region is
that it holds also for the non-signaling assisted capacity region thanks to Corollary 5.4:

Corollary 5.13 (Outer Bound on the Non-Signaling Assisted Capacity Region). If a rate pair is achievable
with non-signaling assistance, then it is in the closure of the convex hull of all (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,

for (X1, X2) following any law PX1X2 on X1 ×X2, and Y ∈ Y the outcome of W on inputs X1, X2.

5.2 Achievability Part of Theorem 5.5

In order to construct the relaxed non-signaling assisted code for achievability, we will need the notions
of jointly and conditional typical sets. We will consider the following typical sets de�ned in Chapter
2.5 of [36]: T nε (X1, X2, Y ), T nε (X1, X2), T nε (Y ), T nε (X1|xn2 ), T nε (X2|xn1 ), T nε (X1|xn2 , yn), T nε (X2|xn1 , yn),
T nε (X1, X2|yn). Recall that:

De�nition 5.14 (Typical set and conditional typical set). We have the following de�nitions:

1. T nε (X1, X2) := {(xn1 , xn2 ) : |π(x1, x2|xn1 , xn2 )− PX1X2(x1, x2)| ≤ εPX1X2(x1, x2) for all (x1, x2) ∈ X1 ×X2}
where π(x1, x2|xn1 , xn2 ) :=

|{i:(x1,i,x2,i)=(x1,x2)}|
n . This de�nition generalizes for any t-uple of variables.

2. ∀yn ∈ T nε (Y ), T nε (X1, X2|yn) := {(xn1 , xn2 ) : (xn1 , xn2 , yn) ∈ T nε (X1, X2, Y )}

A crucial property of such typical sets is the typical average lemma:
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Lemma 5.15 (Typical Average Lemma [36]). Let (xn1 , x
n
2 ) ∈ T nε (X1, X2). Then for any nonnegative

function g on X1 ×X2:

(1− ε)E[g(X1, X2)] ≤
1

n

n∑
i=1

g(x1,i, x2,i) ≤ (1 + ε)E[g(X1, X2)] .

In particular, with this tool, we can derive the following properties:

Lemma 5.16 (Properties of typical sets [36]). We have, among others, the following statements about
typical sets:

1. ∀(xn1 , xn2 ) ∈ T nε (X1, X2), 2
−n(1+ε)H(X1,X2) ≤ PXn

1X
n
2
(xn1 , x

n
2 ) ≤ 2−n(1−ε)H(X1,X2).

2. lim
n→+∞

P ((Xn
1 , X

n
2 ) ∈ T nε (X1, X2)) = 1.

3. |T nε (X1, X2)| ≤ 2n(1+ε)H(X1,X2).

4. For n su�ciently large, |T nε (X1, X2)| ≥ (1− ε)2n(1−ε)H(X1,X2).

5. If (xn1 , x
n
2 ) ∈ T nε (X1, X2) then xn1 ∈ T nε (X1) and xn2 ∈ T nε (X2).

6. ∀yn ∈ T nε (Y ), T nε (X1, X2|yn) ⊆ T nε (X1, X2).

7. ∀(xn1 , xn2 , yn) ∈ T nε (X1, X2, Y ), 2−n(1+ε)H(X1,X2|Y ) ≤ PXn
1X

n
2 Y

n(xn1 , x
n
2 |yn) ≤ 2−n(1−ε)H(X1,X2|Y ).

8. ∀yn ∈ T nε (Y ), |T nε (X1, X2|yn)| ≤ 2n(1+ε)H(X1,X2|Y ).

9. For ε′ < ε and n su�ciently large, we get ∀yn ∈ T nε′ (Y ), |T nε (X1, X2|yn)| ≥ (1− ε)2n(1−ε)H(X1,X2|Y ).

Proof. We reproduce the proof of the last statement here to emphasize on the fact that there is an n0 such
that for all n ≥ n0 and for all yn ∈ T nε′ (Y ), the property holds.

For any ε > ε′ > 0, let us show that there exists n such that we have:

∀yn ∈ T nε′ (Y ),P ((Xn
1 , X

n
2 , y

n) ∈ T nε (X1, X2, Y )) ≥ 1− ε ,

where Xn
1 , X

n
2 are drawn from the distribution PXn

1X
n
2 |Y n=yn . This will imply the statement. Indeed,

we have that:

P ((Xn
1 , X

n
2 , y

n) ∈ T nε (X1, X2, Y )) =
∑

(xn1 ,x
n
2 )∈T nε (X1,X2|yn)

PXn
1X

n
2 |Y n(x

n
1 , x

n
2 |yn)

≤ |T nε (X1, X2|yn)|2−n(1−ε)H(X1,X2|Y ) ,

(61)

since PXn
1X

n
2 |Y n(x

n
1 , x

n
2 |yn) ≤ 2−n(1−ε)H(X1,X2|Y ) as (xn1 , x

n
2 , y

n) ∈ T nε (X1, X2, Y ). Thus, we have that

|T nε (X1, X2|yn)| ≥ (1−ε)2n(1−ε)H(X1,X2|Y ). In order to prove our result, we take the proof in Appendix 2A
of [36]. We take yn ∈ T nε′ (Y) and (Xn

1 , X
n
2 ) ∼ PXn

1X
n
2 |Y n(x

n
1 , x

n
2 |yn) =

∏n
i=1 PX1X2|Y (x1,i, x2,i|yi). Applied

to our choice of variables, we have the following result :
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P ((Xn
1 , X

n
2 , y

n) /∈ T nε (X1, X2, Y ))

= P (∃(x1, x2, y) : |π(x1, x2, y|Xn
1 , X

n
2 , y

n)− PX1X2Y (x1, x2, y)| > εPX1X2Y (x1, x2, y))

≤
∑

x1,x2,y

P (|π(x1, x2, y|Xn
1 , X

n
2 , y

n)− PX1X2Y (x1, x2, y)| > εPX1X2Y (x1, x2, y)) by union bound,

=
∑

x1,x2,y

P
(∣∣∣∣π(x1, x2, y|Xn

1 , X
n
2 , y

n)

PX1X2Y (x1, x2, y)
− 1

∣∣∣∣ > ε

)
=
∑

x1,x2,y

P
(∣∣∣∣ π(x1, x2, y|Xn

1 , X
n
2 , y

n)

PX1X2|Y (x1, x2|y)π(y|yn)
π(y|yn)
PY (y)

− 1

∣∣∣∣ > ε

)
≤
∑

x1,x2,y

P
(
π(x1, x2, y|Xn

1 , X
n
2 , y

n)

π(y|yn)
>

1 + ε

1 + ε′
PX1X2|Y (x1, x2|y)

)
+
∑

x1,x2,y

P
(
π(x1, x2, y|Xn

1 , X
n
2 , y

n)

π(y|yn)
<

1− ε
1− ε′

PX1X2|Y (x1, x2|y)
)
,

(62)

since yn ∈ T nε′ (Y) and thus 1−ε′ ≤ π(y|yn)
PY (y) ≤ 1+ε′. However, since ε′ < ε, we have 1+ε

1+ε′ > 1 and 1−ε
1−ε′ < 1.

We will show that for all x1, x2, y with PY (y) > 0, we have π(x1,x2,y|Xn
1 ,X

n
2 ,y

n)
π(y|yn) →

n→+∞
PX1X2|Y (x1, x2|y) in

probability, with a convergence rate independent from yn ∈ T nε′ (Y ), which will be enough to conclude the
proof.

Let us �x some x1, x2, y with PY (y) > 0. Since yn ∈ T nε′ (Y ), we have in particular (1 − ε′)PY (y) ≤
π(y|yn) ≤ (1 + ε′)PY (y). Thus N := |{i : yi = y}| = nπ(y|yn) ≥ (1− ε′)PY (y)n. Then we have:

π(x1, x2, y|Xn
1 , X

n
2 , y

n)

π(y|yn)
=

1

N

∑
i∈S

Zi with Zi := 1(X1,i,X2,i)=(x1,x2) and S := {i : yi = y} .

Thus, all Zi with i ∈ S are independent and follow the same law:

Zi :=

{
1 with probability PX1X2|Y (x1, x2|y)
0 otherwise

Furthermore, we have E[Zi] = PX1X2|Y (x1, x2|y), and all Zi have the same variance σ2x1,x2|y < +∞
(depending only on X1, X2, Y, x1, x2, y). Thus we can apply Chebyshev inequality:

P

(∣∣∣∣∣ 1N ∑
i∈S

Zi − PX1X2|Y (x1, x2|y)

∣∣∣∣∣ ≥ η
)
≤
σ2x1,x2|y

Nη2
.

However, since N ≥ (1− ε′)PY (y)n, we get:

P
(∣∣∣∣π(x1, x2, y|Xn

1 , X
n
2 , y

n)

π(y|yn)
− PX1X2|Y (x1, x2|y)

∣∣∣∣ ≥ η) ≤ σ2x1,x2|y

η2(1− ε′)PY (y)n
→

n→+∞
0 .

Thus, we have π(x1,x2,y|Xn
1 ,X

n
2 ,y

n)
π(y|yn) →

n→+∞
PX1X2|Y (x1, x2|y) in probability with a convergence rate inde-

pendent from yn ∈ T nε′ (Y ).

Proposition 5.17 (Achievability part of Theorem 5.5). If a rate pair is in the closure of the convex hull
of (R1, R2) satisfying:

R1 < I(X1 : Y |X2) , R2 < I(X2 : Y |X1) , R1 +R2 < I((X1, X2) : Y ) ,
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for (X1, X2) following some law PX1X2 on X1 ×X2, and Y ∈ Y the outcome of W on inputs X1, X2, then
it is in CNS(W ).

Proof. Let us �x ε, ε′ ∈ (0, 1) such that ε′ < ε ≤ 1
2 . Let n ∈ N which will be chosen large enough during

the proof.
We consider n independent random variables (X1,iX2,iYi) ∼ PX1X2Y , with PX1X2Y (x1,i, x2,i, yi) =

W (yi|x1,ix2,i)PX1X2(x1,i, x2,i). We call PXn
1X

n
2 Y

n the law of their product. We have then PXn
1X

n
2
(xn1 , x

n
2 ) :=∏n

i=1 PX1X2(x1,i, x2,i). If Ŷ is the output of W⊗n on Xn
1X

n
2 , we have that:

PXn
1X

n
2 Ŷ

(xn1 , x
n
2 , y

n) =W⊗n(yn|xn1xn2 )PXn
1X

n
2
(xn1 , x

n
2 ) =W⊗n(yn|xn1xn2 )

n∏
i=1

PX1X2(x1,i, x2,i)

=
n∏
i=1

W (yi|x1,ix2,i)PX1X2(x1,i, x2,i) =
n∏
i=1

PX1X2Y (x1,i, x2,i, yi) .

(63)

Thus, Ŷ follows the product law of Yi, i.e. Ŷ = Y n.
Let us consider C1, C2, C3 some positive numbers independent from n and ε which we will de�ne later,

k1 = 2nR1 , k2 = 2nR2 integers with (R1, R2) positive rates such that:

R1 ≤ I(X1 : Y |X2)−
1

n
− C1ε ,

R2 ≤ I(X2 : Y |X1)−
1

n
− C2ε ,

R1 +R2 ≤ I((X1, X2) : Y )− 1

n
− C3ε .

(64)

We de�ne a solution of SNS(W⊗n, 2nR1 , 2nR2) in the following way:

pxn1 ,xn2 :=


2n(R1+R2)PXn1 X

n
2
(xn1 ,x

n
2 )∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

PXn1 X
n
2
(xn1 ,x

n
2 )

if (xn1 , x
n
2 ) ∈ T nε (X1, X2)

0 otherwise

and

rxn1 ,xn2 ,yn :=

{
pxn1 ,xn2 if (xn1 , x

n
2 , y

n) ∈ T nε′ (X1, X2, Y )

0 otherwise

By construction, the constraint 0 ≤ rxn1 ,xn2 ,yn ≤ pxn1 ,xn2 is satis�ed. We have also that:

∑
xn1 ,x

n
2

pxn1 ,xn2 =
∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

2n(R1+R2)PXn
1X

n
2
(xn1 , x

n
2 )∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

PXn
1X

n
2
(xn1 , x

n
2 )

= 2n(R1+R2) = k1k2 .

If (xn1 , x
n
2 , y

n) ∈ T nε′ (X1, X2, Y ), we have that (xn1 , x
n
2 ) ∈ T nε′ (X1, X2) ⊆ T nε (X1, X2), so in that case:

rxn1 ,xn2 ,yn =
2n(R1+R2)PXn

1X
n
2
(xn1 , x

n
2 )∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

PXn
1X

n
2
(xn1 , x

n
2 )

.

If yn 6∈ T nε′ (Y ), then for all (xn1 , x
n
2 ), (x

n
1 , x

n
2 , y

n) /∈ T nε′ (X1, X2, Y ), so
∑

xn1 ,x
n
2
rxn1 ,xn2 ,yn = 0 ≤ 1 in that

case.
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Otherwise, if yn ∈ T nε′ (Y ), then:

∑
xn1 ,x

n
2

rxn1 ,xn2 ,yn = 2n(R1+R2)

∑
(xn1 ,x

n
2 )∈T nε′ (X1,X2|yn) PXn

1X
n
2
(xn1 , x

n
2 )∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

PXn
1X

n
2
(xn1 , x

n
2 )

≤ 2n(R1+R2)

∑
(xn1 ,x

n
2 )∈T nε (X1,X2|yn) PXn

1X
n
2
(xn1 , x

n
2 )∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

PXn
1X

n
2
(xn1 , x

n
2 )

≤ 2n(R1+R2) 2
−n(1−ε)H(X1,X2)

2−n(1+ε)H(X1,X2)

|T nε (X1, X2|yn)|
|T nε (X1, X2)|

since (xn1 , x
n
2 ) ∈ T nε (X1, X2)

= 2n(R1+R2+2εH(X1,X2)) |T
n
ε (X1, X2|yn)|
|T nε (X1, X2)|

.

(65)

But |T nε (X1, X2|yn)| ≤ 2n(1+ε)H(X1,X2|Y ) and for a large enough n we have that |T nε (X1, X2)| ≥
(1− ε)2n(1−ε)H(X1,X2) ≥ 2n((1−ε)H(X1,X2)− 1

n), so in that case:

∑
xn1 ,x

n
2

rxn1 ,xn2 ,yn ≤ 2n(R1+R2+2εH(X1,X2)) 2n(1+ε)H(X1,X2|Y )

2n((1−ε)H(X1,X2)− 1
n)

= 2n(R1+R2−I(X1,X2:Y )+ 1
n
+C3ε) ≤ 1 ,

since I(X1, X2 : Y ) = H(X1, X2) − H(X1, X2|Y ) and R1 + R2 ≤ I(X1, X2 : Y ) − 1
n − C3ε, with

C3 := H(X1, X2|Y ) + 3H(X1, X2).
Let us focus on the constraint

∑
xn1
pxn1 ,xn2 ≥ k1

∑
xn1
rxn1 ,xn2 ,yn (the symmetric constraint

∑
xn2
pxn1 ,xn2 ≥

k2
∑

xn2
rxn1 ,xn2 ,yn will be achieved for symmetric reasons).

Let us �x (xn2 , y
n). If (xn2 , y

n) 6∈ T nε′ (X2, Y ), then for all xn1 , (xn1 , x
n
2 , y

n) 6∈ T nε′ (X1, X2, Y ), thus
rxn1 ,xn2 ,yn = 0 and the constraint is ful�lled. Let us assume that (xn2 , y

n) ∈ T nε′ (X2, Y ). Since rxn1 ,xn2 ,yn > 0
implies that (xn1 , x

n
2 , y

n) ∈ T nε′ (X1, X2, Y ), we have that:∑
xn1

rxn1 ,xn2 ,yn =
∑

xn1∈T nε′ (X1|xn2 ,yn)

rxn1 ,xn2 ,yn =
∑

xn1∈T nε′ (X1|xn2 ,yn)

pxn1 ,xn2 .

Thus:∑
xn1
pxn1 ,xn2

k1
∑

xn1
rxn1 ,xn2 ,yn

≥ 1

k1

∑
x1∈T nε (X1|xn2 )

PXn
1X

n
2
(xn1 , x

n
2 )∑

x1∈T nε′ (X1|xn2 ,yn)
PXn

1X
n
2
(xn1 , x

n
2 )
≥ 1

k1

∑
x1∈T nε (X1|xn2 )

PXn
1X

n
2
(xn1 , x

n
2 )∑

x1∈T nε (X1|xn2 ,yn)
PXn

1X
n
2
(xn1 , x

n
2 )

≥ 1

k1

2−n(1+ε)H(X1,X2)

2−n(1−ε)H(X1,X2)

|T nε (X1|xn2 )|
|T nε (X1|xn2 , yn)|

≥ 2n(−R1−2εH(X1,X2)) |T
n
ε (X1|xn2 )|

|T nε (X1|xn2 , yn)|
.

(66)

But|T nε (X1|xn2 , yn)| ≤ 2n(1+ε)H(X1|X2Y ) and for a large enough n we have ∀xn2 ∈ T nε′ (X2), |T nε (X1|xn2 )| ≥
(1−ε)2n(1−ε)H(X1|X2) ≥ 2n((1−ε)H(X1|X2)− 1

n), so we get with C1 := 2H(X1, X2)+H(X1|X2Y )+H(X1|X2)
(symmetrically C2 := 2H(X1, X2) +H(X2|X1Y ) +H(X2|X1)):∑

xn1
pxn1 ,xn2

k1
∑

xn1
rxn1 ,xn2 ,yn

≥ 2n(H(X1|X2)− 1
n
−H(X1|X2Y )−R1−C1ε) = 2n(I(X1:Y |X2)− 1

n
−C1ε−R1) ≥ 1 .

For a large enough n, all constraints are satis�ed, thus (pxn1 ,xn2 , rxn1 ,xn2 ,yn) is a valid solution. Then:
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SNS(W⊗n, 2nR1 , 2nR2) ≥ 1

2n(R1+R2)

∑
(xn1 ,x

n
2 ,y

n)∈T n
ε′ (X1,X2,Y )

W⊗n(yn|xn1xn2 )rxn1 ,xn2 ,yn

=
1

2n(R1+R2)

∑
(xn1 ,x

n
2 ,y

n)∈T n
ε′ (X1,X2,Y )

PXn
1X

n
2 Y

n(xn1 , x
n
2 , y

n)

PXn
1X

n
2
(xn1 , x

n
2 )

2n(R1+R2)PXn
1X

n
2
(xn1 , x

n
2 )∑

(xn1 ,x
n
2 )∈T nε (X1,X2)

PXn
1X

n
2
(xn1 , x

n
2 )

=

∑
(xn1 ,x

n
2 ,y

n)∈T n
ε′ (X1,X2,Y ) PXn

1X
n
2 Y

n(xn1 , x
n
2 , y

n)∑
(xn1 ,x

n
2 )∈T nε (X1,X2)

PXn
1X

n
2
(xn1 , x

n
2 )

→
n→+∞

1 ,

(67)

since typical sets cover asymptotically the whole probability mass. Thus, since SNS(W⊗n, 2nR1 , 2nR2) ≤
1, we get that SNS(W⊗n, 2nR1 , 2nR2) →

n→+∞
1. Thus for su�ciently large n we can achieve a rate pair

arbitrarily close to the outer bound. Finally, since CNS(W ) is closed and convex, a rate pair that is in the
closure of the convex hull of the initial region is also in CNS(W ), and thus the proof is completed.

6 Independent Non-Signaling Assisted Capacity Region

The goal of this section is to show that independent non-signaling assistance does not change the capacity
region of a MAC W , i.e. that CNSSR(W ) = C(W ). In order to prove this result, we will need some
properties in the one-sender one-receiver case from [6]. Speci�cally, let us �rst recall the de�nition of the
maximum success probability S(W,k) of transmitting k messages using the channel W :

S(W,k) := maximize
e,d

1

k

∑
i,x,y

W (y|x)e(x|i)d(i|y)

subject to
∑
x∈X

e(x|i) = 1,∀i ∈ [k]∑
j∈[k]

d(j|y) = 1, ∀y ∈ Y

e(x|i), d(j|y) ≥ 0

(68)

Then, the following characterization of S(W,k) can be derived:

Proposition 6.1 (Proposition 2.1 of [6]). S(W,k) = 1
k max
S⊆X:|S|≤k

fW (S) with fW (S) :=
∑

y∈Y maxx∈SW (y|x).

As in the MAC scenario, one can consider non-signaling assistance shared between the sender and the
receiver, which leads to the following maximum success probability SNS(W,k):

SNS(W,k) := maximize
P

1

k

∑
i,x,y

W (y|x)P (xi|iy)

subject to
∑
x

P (xj|iy) =
∑
x

P (xj|i′y)∑
j

P (xj|iy) =
∑
j

P (xj|iy′)

∑
x,j

P (xj|iy) = 1

P (xj|iy) ≥ 0

(69)
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A symmetrization can also be done to simplify the expression of the linear program de�ning SNS(W,k):

Proposition 6.2 (Appendix A of [6]).

SNS(W,k) = maximize
r,p

1

k

∑
x,y

W (y|x)rx,y

subject to
∑
x

rx,y = 1∑
x

px = k

0 ≤ rx,y ≤ px

(70)

Finally, the main tool we will use from [6] is the following random coding technique, which describes
how to �nd a classical code with a success probability close to the non-signaling assisted one:

Theorem 6.3 (Theorem 3.1 of [6]). Given a solution r, p of the program computing SNS(W,k), we have
that:

ES
[
fW (S)

`

]
≥ k

`

(
1−

(
1− 1

k

)`)
· 1
k

∑
x,y

W (y|x)rx,y,

for the multiset S obtained by choosing ` elements of X independently according to the distribution(px
k

)
x∈X .

We can now state our result on independent non-signaling assistance, which says that even in one-shot
scenarios, the success probability with and without that assistance are close:

Theorem 6.4. For any `1, k1, `2, k2:

min

(
k1
`1

(
1−

(
1− 1

k1

)`1)
,
k2
`2

(
1−

(
1− 1

k2

)`2))
SNSSR
sum (W,k1, k2) ≤ Ssum(W, `1, `2) .

In particular, this will imply that the capacity regions are the same:

Corollary 6.5. CNSSR(W ) = C(W ).

Proof. We will show that CNSSR
sum (W ) = Csum(W ), which is enough to conclude thanks to Proposition 2.5

and Proposition 2.9. We apply Theorem 6.4 on the MAC W⊗n.
Let us �x k1 = 2nR1 , k2 = 2nR2 and `1 = 2nR1

n , `2 =
2nR2

n . Since:

k

`

(
1−

(
1− 1

k

)`)
≥ k

`

(
1− e−

`
k

)
≥ 1− `

2k
,

and 1− `1
2k1

= 1− `2
2k2

= 1− 1
2n , we get:(

1− 1

2n

)
SNSSR
sum (W⊗n, 2nR1 , 2nR1) ≤ Ssum

(
W⊗n,

2nR1

n
,
2nR2

n

)
.

As 1− 1
2n tends to 1 when n tends to in�nity, we get that ∀ε > 0, ∃N ∈ N,∀n ≥ N :

(1− ε)SNSSR
sum (W⊗n, 2nR1 , 2nR1) ≤ Ssum(W

⊗n, 2n(R1− log(n)
n

), 2n(R2− log(n)
n

)) .
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Thus, if lim
n→+∞

SNSSR
sum (W⊗n, 2nR1 , 2nR1) = 1, we have that for all R′1 < R1 and R′2 < R2:

lim
n→+∞

Ssum(W
⊗n, 2nR

′
1 , 2nR

′
1) ≥ 1− ε .

Since this is true for all ε > 0, we get in fact that lim
n→+∞

Ssum(W
⊗n, 2nR

′
1 , 2nR

′
1) = 1. This implies

that CNSSR
sum (W ) ⊆ Csum(W ), and thus that the capacity regions are equal as the other inclusion is always

satis�ed.

In order to prove Theorem 6.4, we will need the following lemma:

Lemma 6.6. If S1, S2 are classical codes (i.e. multisets with elements in X1,X2) of size `1, `2:

Ssum(W, `1, `2) ≥
1

2

(
fW 1

S2,`2

(S1)

`1
+
fW 2

S1,`1

(S2)

`2

)
,

where W 1
S2,`2

is the channel de�ned by W 1
S2,`2

(y|x1) = 1
`2

∑`2
i2=1W (y|x1Si22 ) and similarly for W 2

S1,`1
.

Proof. Let us de�ne e1(x1|i1) := 1
S
i1
1 =x1

and e2(x2|i2) := 1
S
i2
2 =x2

. Then for �xed y, let us take jy1 ∈

argmaxi1{
∑`2

i2=1W (y|Si11 S
i2
2 )}, jy2 ∈ argmaxi2{

∑`1
i1=1W (y|Si11 S

i2
2 )} and then de�ne d(j1|y) := 1j1=j

y
1
,

d(j2|y) := 1j2=j
y
2
. We have then:

Ssum(W, `1, `2) ≥
1

`1`2

∑
i1,i2,x1,x2,y

W (y|x1x2)1Si11 =x1
1
S
i2
2 =x2

1i1=i
y
1
+ 1i2=i

y
2

2

=
1

`1`2

∑
i1,i2,y

W (y|Si11 S
i2
2 )

1i1=i
y
1
+ 1i2=i

y
2

2
=

1

`1`2

∑
y

1

2

(∑
i2

W (y|Si
y
1
1 S

i2
2 ) +

∑
i1

W (y|Si11 S
iy2
2 )

)

=
1

`1`2

∑
y

1

2

(
max
i1

∑
i2

W (y|Si11 S
i2
2 ) + max

i2

∑
i1

W (y|Si11 S
i2
2 )

)

=
1

2

∑ymaxi1

[
1
`2

∑
i2
W (y|Si11 S

i2
2 )
]

`1
+

∑
ymaxi2

[
1
`1

∑
i1
W (y|Si11 S

i2
2 )
]

`2


=

1

2

(∑
ymaxi1 W

1
S2,`2

(y|Si11 )

`1
+

∑
ymaxi2 W

2
S1,`1

(y|Si22 )

`2

)
=

1

2

(
fW 1

S2,`2

(S1)

`1
+
fW 2

S1,`1

(S2)

`2

)
.

(71)

We have now all the tools to prove Theorem 6.4:

Proof of Theorem 6.4. Let us consider an optimal solution r1, r2, p1, p2 of the program of Proposition 3.2
computing SNSSR

sum (W,k1, k2).
Let us �x some multiset S2 with elements in X2 of size `2. Note that r1 and p1 are a feasible solution

of the program of Proposition 6.2 computing SNS(W 1
S2,`2

, k1). As a result, we can apply Theorem 6.3 and
get the following statement. For the multiset S1 obtained by choosing `1 elements of X1 independently

according to the distribution

(
p1x1
k1

)
x1∈X1

, we have:
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ES1

[
fW 1

S2,`2

(S1)

`1

]
≥ k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
S2,`2(y|x1)r

1
x1,y .

Now, let S2 be the multiset obtained by choosing `2 elements of X2 independently according to the

distribution

(
p2x2
k2

)
x2∈X2

. We have:

ES2

[
1

k1

∑
x1,y

W 1
S2,`2(y|x1)r

1
x1,y

]
= ES2

[
1

k1

∑
x1,y

1

`2

`2∑
i2=1

W (y|x1Si22 )r1x1,y

]

=
1

`2

`2∑
i2=1

E
X
i2
2 ∼

p2x2
k2

[
1

k1

∑
x1,y

W (y|x1Xi2
2 )r1x1,y

]
= E

X2∼
p2x2
k2

[
1

k1

∑
x1,y

W (y|x1X2)r
1
x1,y

]

=
1

k1

∑
x1,x2,y

p2x2
k2
W (y|x1x2)r1x1,y =

1

k1

∑
x1,y

W 1
p2,k2

(y|x1)r1x1,y .

(72)

Thus in all, we have:

ES2

[
ES1

[
fW 1

S2,`2

(S1)

`1

]]
≥ ES2

[
k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
S2,`2(y|x1)r

1
x1,y

]

=
k1
`1

(
1−

(
1− 1

k1

)`1)
· ES2

[
1

k1

∑
x1,y

W 1
S2,`2(y|x1)r

1
x1,y

]

≥ k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
p2,k2

(y|x1)r1x1,y ,

(73)

and symmetrically for ES1

[
ES2

[
f
W2
S1,`1

(S2)

`2

]]
. Since there exists classical codes S∗1 , S

∗
2 such that:

1

2

fW 1
S∗2 ,`2

(S∗1)

`1
+
fW 2

S∗1 ,`1
(S∗2)

`2

 ≥ ES1,S2

[
1

2

(
fW 1

S2,`2

(S1)

`1
+
fW 2

S1,`1

(S2)

`2

)]
,

by applying Lemma 6.6, we get:

Ssum(W, `1, `2) ≥
1

2

fW 1
S∗2 ,`2

(S∗1)

`1
+
fW 2

S∗1 ,`1
(S∗2)

`2

 ≥ ES1,S2

[
1

2

(
fW 1

S2,`2

(S1)

`1
+
fW 2

S1,`1

(S2)

`2

)]

=
1

2

(
ES2

[
ES1

[
fW 1

S2,`2

(S1)

`1

]]
+ ES1

[
ES2

[
fW 2

S1,`1

(S2)

`2

]])

≥ 1

2

(
k1
`1

(
1−

(
1− 1

k1

)`1)
· 1
k1

∑
x1,y

W 1
p2(y|x1)r

1
x1,y +

k2
`2

(
1−

(
1− 1

k2

)`2)
· 1
k2

∑
x2,y

W 2
p1(y|x2)r

2
x2,y

)

≥ min

(
k1
`1

(
1−

(
1− 1

k1

)`1)
,
k2
`2

(
1−

(
1− 1

k2

)`2))
SNSSR
sum (W,k1, k2) .

(74)
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Remark. In the whole proof of Theorem 6.4, as well as the properties it depends on, we have never used
the fact that the output of the channel y was the same for both decoders d1 and d2. This implies that the
result also holds for interference channels, i.e. two-sender two-receiver channelsW (y1y2|x2x2). Speci�cally,
non-signaling assistance shared between the �rst sender and the �rst receiver and independently shared
between the second sender and the second receiver does not change the capacity region of interference
channels.

7 Conclusion

In this work, we have studied the impact of non-signaling assistance on the capacity of multiple-access
channels. We have developed an e�cient linear program computing the success probability of the best
non-signaling assisted code for a �nite number of copies of a multiple-access channel. In particular, this
gives lower bounds on the zero-error non-signaling assisted capacity of multiple-access channels. Applied
to the binary adder channel, these results were used to prove that a sum-rate of log2(72)

4 ' 1.5425 can be
reached with zero error, which beats the maximum classical sum-rate capacity of 3

2 . For noisy channels,
we have developed a technique giving lower bounds through the use of concatenated codes. Applied to the
noisy binary adder channel, this technique was used to show that non-signaling assistance still improves
the sum-rate capacity. We have also found an outer bound on the non-signaling assisted capacity region
through a relaxed notion of non-signaling assistance, whose capacity region was characterized by a single-
letter formula. Finally, we have shown that independent non-signaling assistance does not change the
capacity region.

Our results suggest that quantum entanglement may also increase the capacity of such channels. How-
ever, even for the binary adder channel, this question remains open. One could also ask if such e�cient
methods to compute the best non-signaling assisted codes can be extended to Gaussian multiple-access
channels. Finally, establishing a single-letter formula for the non-signaling assisted capacity of multiple-
access channels is the main open question left by this work. It remains open even for the binary adder
channel. Proving that non-signaling assistance and relaxed non-signaling assistance coincide asymptoti-
cally would directly answer this question and show that the capacity region is described in Theorem 5.5.
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