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Multiple-Access Channel Coding with Non-Signaling Correlations

We address the problem of coding for classical multiple-access channels (MACs) with the assistance of non-signaling correlations between parties. It is well-known that non-signaling assistance does not change the capacity of classical point-to-point channels. However, it was recently observed that one can construct MACs from two-player non-local games while relating the winning probability of the game to the capacity of the MAC. By considering games for which entanglement (a special kind of non-signaling correlation) increases the winning probability (e.g., the Magic Square game), this shows that for some specic kinds of channels, entanglement between the senders can increase the capacity.

In this work, we make several contributions towards understanding the capacity region for MACs with the assistance of non-signaling correlations between the parties. We develop a linear program computing the optimal success probability for coding over n copies of a MAC W with size growing polynomially in n. Solving this linear program allows us to achieve inner bounds for MACs. Applying this method to the binary adder channel, we show that using non-signaling assistance, the sum-rate log 2 (72) 4

1.5425 can be reached even with zero error, which beats the maximum sum-rate capacity of 1.5 in the unassisted case. For noisy channels, where the zero-error non-signaling assisted capacity region is trivial, we can use concatenated codes to obtain achievable points in the capacity region. Applied to a noisy version of the binary adder channel, we show that non-signaling assistance still improves the sum-rate capacity. Complementing these achievability results, we give an outer bound on the non-signaling assisted capacity region that has the same expression as the unassisted region except that the channel inputs are not required to be independent. Finally, we show that the capacity region with non-signaling assistance shared only between each sender and the receiver independently is the same as without assistance.

Introduction

Multiple-access channels (MACs for short) are one of the simplest models of network communication settings, where two senders aim to transmit individual messages to one receiver. The capacity of such channels has been entirely characterized by the seminal works by Liao [START_REF] Herng | Multiple access channels[END_REF] and Ahlswede [START_REF] Ahlswede | Multi-way communication channels[END_REF] in terms of a simple single-letter formula. From the point of view of quantum information, it is natural to ask whether additional resources, such as quantum entanglement or more generally non-signaling correlations between the parties, change the capacity region. A non-signaling correlation is a multipartite input-output box shared between parties that, as the name suggests, cannot by itself be used to send information between parties. However, non-signaling correlations such as the ones generated by measurements of entangled quantum particles, can provide an advantage for various information processing tasks and nonlocal games.

The study of such correlations has given rise to the quantum information area known as nonlocality [START_REF] Brunner | Bell nonlocality[END_REF]. For

We note that a similar setting with independent entangled states between each sender and the receiver was studied by Hsieh et al. [START_REF] Hsieh | Entanglement-assisted capacity of quantum multiple-access channels[END_REF]: a regularized characterization of the capacity region is obtained for any quantum MAC in this setting. It is simple to show using their result that for a classical MAC, this type of entanglement does not change the capacity region given in Theorem 2.2.

Organization In Section 2, we dene precisely the dierent notions of MAC capacities: the classical capacity (i.e. without any assistance) as well as the non-signaling assisted capacity. In Section 3, we address computational complexity questions concerning the probability of success of the best classical coding strategy and the best non-signaling strategy for a MAC. In Section 4, we develop numerical methods to nd inner bounds on non-signaling assisted capacity regions, and apply those to the binary adder channel and a noisy variant. In Section 5, we dene our relaxation of non-signaling assistance, we characterize its capacity region by a single-letter formula, and apply those to the binary adder channel. Finally, in Section 6, we show that the capacity region with non-signaling assistance shared only between each sender and the receiver independently is the same as without assistance.

2 Multiple Access Channels Capacities

Classical Capacities

Formally, a MAC W is a conditional probability distribution depending on two inputs in X 1 and X 2 , and an output in Y, so W := (W (y|x 1 x 2 )) x 1 ∈X 1 ,x 2 ∈X 2 ,y∈Y such that W (y|x 1 x 2 ) ≥ 0 and y∈Y W (y|x 1 x 2 ) = 1.

We will denote such a MAC by W : X 1 × X 2 → Y. The tensor product of two MACs W :

X 1 × X 2 → Y and W : X 1 × X 2 → Y is denoted by W ⊗ W : (X 1 × X 1 ) × (X 2 × X 2 )
→ Y × Y and dened by (W ⊗W )(yy |x 1 x 1 x 2 x 2 ) := W (y|x 1 x 2 )•W (y |x 1 x 2 ). We denote by W ⊗n (y n |x n 1 x n 2 ) := n i=1 W (y i |x 1,i x 2,i ), for y n := y 1 . . . y n ∈ Y n , x n 1 := x 1,1 . . . x 1,n ∈ X n 1 and x n 2 := x 2,1 . . . x 2,n ∈ X n 2 . We will use the notation [k] := {1, . . . , k}.

The coding problem for a MAC W : X 1 × X 2 → Y is the following: one wants to encode messages in [k 1 ] into X 1 and messages in [k 2 ] into X 2 independently, which will be given as input to the channel W . This results in a random output in Y, which one needs to decode back into the corresponding messages in [k 1 ] and [k 2 ]. We will call e 1 : [k 1 ] → X 1 the rst encoder, e 2 : [k 2 ] → X 2 the second encoder and

d : Y → [k 1 ] × [k 2 ]
the decoder. This is depicted in Figure 2.1. We want to maximize over all encoders e 1 , e 2 and decoders d the probability of successfully encoding and decoding the messages through W , i.e. the probability that j 1 = i 1 and j 2 = i 2 , given that the input messages are taken uniformly in [k 1 ] and [k 2 ]. We call this quantity S(W, k 1 , k 2 ), which is characterized by the following optimization program:

e 1 W e 2 d x 1 x 2 y i 1 i 2 (j 1 , j 2 )
S(W, k 1 , k 2 ) := maximize e 1 ,e 2 ,d 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y
W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )d(i 1 i 2 |y) subject to

x 1 ∈X 1 e 1 (x 1 |i 1 ) = 1, ∀i 1 ∈ [k 1 ] x 2 ∈X 2 e 2 (x 2 |i 2 ) = 1, ∀i 2 ∈ [k 2 ] j 1 ∈[k 1 ],j 2 ∈[k 2 ]
d(j 1 j 2 |y) = 1, ∀y ∈ Y e 1 (x 1 |i 1 ), e 2 (x 2 |i 2 ), d(j 1 j 2 |y) ≥ 0

Proof. One should note that we allow randomized encoders and decoders for generality reasons, although the value of the program is not changed as it is convex. Besides that remark, let us name I 1 , I 2 , J 1 , J 2 , X 1 , X 2 , Y the random variables corresponding to i 1 , i 2 , j 1 , j 2 , x 1 , x 2 , y in the coding and decoding process. Then, for given e 1 , e 2 , d and W , the objective value of the previous program is:

P (J 1 = I 1 , J 2 = I 2 ) = 1 k 1 k 2 i 1 ,i 2 P (J 1 = I 1 , J 2 = I 2 |I 1 = i 1 , I 2 = i 2 ) = 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )P (J 1 = i 1 , J 2 = i 2 |I 1 = i 1 , I 2 = i 2 , X 1 = x 1 , X 2 = x 2 ) = 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y
W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )P (J

1 = i 1 , J 2 = i 2 |I 1 = i 1 , I 2 = i 2 , X 1 = x 1 , X 2 = x 2 , Y = y) = 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y
W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )d(i 1 , i 2 |y) .

Since MACs are more general than point-to-point channels (by dening W (y|x 1 x 2 ) := Ŵ (y|x 1 ) for Ŵ a point-to-point channel and looking only at its rst input), computing S(W, k 1 , k 2 ) is NP-hard, and it is even NP-hard to approximate S(W, k 1 , k 2 ) within a better ratio than 1 -e -1 , as a consequence of the hardness result on S(W, k) shown in [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF].

The (classical) capacity of a MAC, as dened for example in [START_REF] Cover | Elements of Information Theory[END_REF], can be reformulated in the following way: Denition 2.1 (Capacity Region C(W ) of a MAC W ). A rate pair (R 1 , R 2 ) is achievable if:

lim n→+∞ S(W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the (classical) capacity region C(W ) as the closure of the set of all achievable rate pairs. The capacity region C(W ) is characterized by a single-letter formula: Theorem 2.2 (Liao [START_REF] Herng | Multiple access channels[END_REF] and Ahlswede [START_REF] Ahlswede | Multi-way communication channels[END_REF]). C(W ) is the closure of the convex hull of all rate pairs (R 1 , R 2 )

satisfying: R 1 < I(X 1 : Y |X 2 ) , R 2 < I(X 2 : Y |X 1 ) , R 1 + R 2 < I((X 1 , X 2 ) : Y ) ,
for (X 1 , X 2 ) ∈ X 1 × X 2 following a product law P X 1 × P X 2 , and Y ∈ Y the outcome of W on inputs X 1 , X 2 . 

Note that we used independent decoders d 1 (j 1 |y), d 2 (j 2 |y) rather than a global d(j 1 j 2 |y) here. This does not change the value of the optimization program. Indeed, since the program is convex, an optimal solution can be found on the extremal points of the search space. Thus, if we had used the variable d(j 1 j 2 |y), we could always take it to be a function

d from Y to [k 1 ] × [k 2 ].
Taking d 1 , d 2 as the rst and second coordinates of that function satises the equality d(j 1 j 2 |y) = d 1 (j 1 |y)d 2 (j 2 |y), and therefore, the value of the program is the same in both cases. Note that it is also true for the program computing

S(W, k 1 , k 2 ).
As for the usual (joint) success probability, we can dene its capacity region:

Denition 2.4 (Sum-Capacity Region C sum (W ) of a MAC W ). A rate pair (R 1 , R 2 ) is sum-achievable if: lim n→+∞ S sum (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the sum-capacity region C sum (W ) as the closure of the set of all sum-achievable rate pairs. However, it turns out those two notions of success dene the same capacity region:

Proposition 2.5.

C(W ) = C sum (W )
Proof. Let us focus on error probabilities rather than success ones. Call them respectively

E(W, k 1 , k 2 ) := 1 -S(W, k 1 , k 2 ) and E sum (W, k 1 , k 2 ) := 1 -S sum (W, k 1 , k 2 ).
Let us x a solution e 1 , d 1 , e 2 , d 2 of the optimization program computing S(W, k 1 , k 2 ). Let us remark rst that:

i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 ) = k 1 k 2 ,
thus, the value of the maximum error for those encoders and decoders is:

E(W, k 1 , k 2 , e 1 , d 1 , e 2 , d 2 ) := 1 - 1 k 1 k 2   i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )d 1 (i 1 |y)d 2 (i 2 |y)   = 1 k 1 k 2   i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 ) - i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )d 1 (i 1 |y)d 2 (i 2 |y)   = 1 k 1 k 2   i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 ) [1 -d 1 (i 1 |y)d 2 (i 2 |y)]   .
(3) Similarly, the value of the sum error for those encoder and decoders is:

E sum (W, k 1 , k 2 , e 1 , d 1 , e 2 , d 2 ) := 1 - 1 k 1 k 2   i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 ) d 1 (i 1 |y) + d 2 (i 2 |y) 2   = 1 k 1 k 2   i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 ) 1 - d 1 (i 1 |y) + d 2 (i 2 |y) 2   .
(4) However, for x, y ∈ [0, 1], we have that:

1 -xy ≥ max (1 -x, 1 -y) ≥ 1 - x + y 2 ,
and:

1 -xy ≤ (1 -x) + (1 -y) = 2 1 - x + y 2 .
This means that, for all e 1 , d 1 , e 2 , d 2 , we have:

E sum (W, k 1 , k 2 , e 1 , d 1 , e 2 , d 2 ) ≤ E(W, k 1 , k 2 , e 1 , d 1 , e 2 , d 2 ) ≤ 2E sum (W, k 1 , k 2 , e 1 , d 1 , e 2 , d 2 )
, so, maximizing over all e 1 , d 1 , e 2 , d 2 , we get:

E sum (W, k 1 , k 2 ) ≤ E(W, k 1 , k 2 ) ≤ 2E sum (W, k 1 , k 2 ) .
Thus, up to a multiplicative factor 2, the error is the same. In particular, when one of those errors tends to zero, the other one tends to zero as well. This implies that the capacity regions are the same.

2.2

Non-Signaling Assisted Capacities Three-party non-signaling assistance We now consider the case where the senders and the receiver are given non-signaling assistance. This resource, which is a theoretical but easier to manipulate generalization of quantum entanglement, can be characterized as follows. A tripartite non-signaling box is described by a joint conditional probability distribution P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) such that the marginal from any two parties is independent from the removed party's input, i.e., we have:

∀x 2 , j 1 , j 2 , i 1 , i 2 , y, i 1 , x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) , ∀x 1 , j 1 , j 2 , i 1 , i 2 , y, i 2 , x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) , ∀x 1 , x 2 , i 1 , i 2 , y, y , j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) . (5) 
This implies that one can consider for example P (x 1 x 2 |i 1 i 2 ) since it does not depend on y, or even P (x 1 |i 1 ) since it does not depend on i 2 , y. Then, in our coding scenario, when the senders and the receiver are given non-signaling assistance, it means that they share a tripartite non-signaling box, the behavior of which is described by P . In this case, the expression e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )d(j 1 j 2 |y) in ( 1) is replaced by P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y), as depicted in Figure 2. The cyclicity of Figure 2 is at rst sight counter-intuitive. Note rst that P being a non-signaling box is completely independent from W : in particular, the variable y does not need to follow any law in the denition of P being a non-signaling box. Therefore, the remaining ambiguity is the apparent need to encode and decode at the same time. However, since P is a non-signaling box, we do not need to do both at the same time. Indeed, ∀y, P (x 1 x 2 |i 1 i 2 ) = P (x 1 x 2 |i 1 i 2 y) by the non-signaling property of P . Thus, one can get the outputs x 1 , x 2 on inputs i 1 , i 2 without access to y, as that knowledge won't aect the laws of x 1 , x 2 . Then y follows the law given by W given those x 1 , x 2 . Finally, given access to y, the decoding process is described by:

e 1 e 2 d i 1 i 2 (j 1 , j 2 ) W x 1 x 2 y P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) i 1 i 2 (j 1 , j 2 ) W x 1 x 2 y
P ((j 1 j 2 )|i 1 i 2 yx 1 x 2 ) = P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) P (x 1 x 2 |i 1 i 2 y) = P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) P (x 1 x 2 |i 1 i 2 ) ,
so we recover globally P ((j

1 j 2 )|i 1 i 2 yx 1 x 2 ) × P (x 1 x 2 |i 1 i 2 ) = P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y
) the prescribed conditional probability. The non-signaling condition ensures that it is possible to consider the conditional probabilities of each party independently. This claries how one can eectively encode and then decode messages through a non-signaling box.

As in the unassisted case, we want to maximize over all non-signaling box P the probability of successfully encoding and decoding the messages through W , i.e. the probability that j 1 = i 1 and j 2 = i 2 , given that the input messages are taken uniformly in [k 1 ] and [k 2 ]. We call this quantity S NS (W, k 1 , k 2 ), which is characterized by the following optimization program:

S NS (W, k 1 , k 2 ) := maximize P 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y)
subject to

x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) x 1 ,x 2 ,j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) ≥ 0 (6) 
Since it is given as a linear program, the complexity of computing S NS (W, k 1 , k 2 ) is polynomial in the number of variables and constraints (see for instance Section 7.1 of [START_REF] Gärtner | Understanding and using linear programming[END_REF]), which is a polynomial in |X 1 |, |X 2 |, |Y|, k 1 and k 2 . Also, as it is easy to check that a classical strategy is a particular case of a non-signaling assisted strategy, we have that

S NS (W, k 1 , k 2 ) ≥ S(W, k 1 , k 2 ).
We have then the same denitions of capacity and zero-error capacity:

Denition 2.6 (Non-Signaling Assisted Capacity Region C NS (W ) of a MAC W ). A rate pair (R 1 , R 2 ) is
achievable with non-signaling assistance if:

lim n→+∞ S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the non-signaling assisted capacity region C NS (W ) as the closure of the set of all achievable rate pairs with non-signaling assistance.

Denition 2.7 (Zero-Error Non-Signaling Assisted Capacity Region C NS 0 (W ) of a MAC W ). A rate pair (R 1 , R 2 ) is achievable with zero-error and non-signaling assistance if:

∃n 0 ∈ N * , ∀n ≥ n 0 , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the zero-error non-signaling assisted capacity region C NS 0 (W ) as the closure of the set of all achievable rate pairs with zero-error and non-signaling assistance.

Independent non-signaling assistance One can also consider the case where non-signaling assistance is shared independently between the rst sender and the receiver as well as between the second encoder and the receiver, which we call independent non-signaling assistance. The precise scenario is depicted in Figure 3: This leads to the following denition of the success probability S NS SR (W, k 1 , k 2 ):

e 1 d 1 e 2 d 2 i 1 i 2 j 1 j 2 W x 1 x 2 y P 1 (x 1 j 1 |i 1 y) P 2 (x 2 j 2 |i 2 y) i 1 i 2 j 1 j 2 W x 1 x 2 y
S NS SR (W, k 1 , k 2 ) := maximize P 1 ,P 2 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )P 1 (x 1 i 1 |i 1 y)P 2 (x 2 i 2 |i 2 y)
subject to

x 1 P 1 (x 1 j 1 |i 1 y) = x 1 P 1 (x 1 j 1 |i 1 y) j 1 P 1 (x 1 j 1 |i 1 y) = j 1 P 1 (x 1 j 1 |i 1 y ) x 1 ,j 1 P 1 (x 1 j 1 |i 1 y) = 1 x 2 P 2 (x 2 j 2 |i 2 y) = x 2 P 2 (x 2 j 2 |i 2 y) j 2 P 2 (x 2 j 2 |i 2 y) = j 2 P 2 (x 2 j 2 |i 2 y ) x 2 ,j 2 P 2 (x 2 j 2 |i 2 y) = 1 P 1 (x 1 j 1 |i 1 y), P 2 (x 2 j 2 |i 2 y) ≥ 0 (7) 
As before, one can also consider the sum-success probability S NS SR sum (W, k 1 , k 2 ):

S NS SR sum (W, k 1 , k 2 ) := maximize P 1 ,P 2 1 2k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )P 1 (x 1 i 1 |i 1 y) j 2 P 2 (x 2 j 2 |i 2 y) + 1 2k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )P 2 (x 2 i 2 |i 2 y) j 1 P 1 (x 1 j 1 |i 1 y)
subject to

x 1 P 1 (x 1 j 1 |i 1 y) = x 1 P 1 (x 1 j 1 |i 1 y) j 1 P 1 (x 1 j 1 |i 1 y) = j 1 P 1 (x 1 j 1 |i 1 y ) x 1 ,j 1 P 1 (x 1 j 1 |i 1 y) = 1 x 2 P 2 (x 2 j 2 |i 2 y) = x 2 P 2 (x 2 j 2 |i 2 y) j 2 P 2 (x 2 j 2 |i 2 y) = j 2 P 2 (x 2 j 2 |i 2 y ) x 2 ,j 2 P 2 (x 2 j 2 |i 2 y) = 1 P 1 (x 1 j 1 |i 1 y), P 2 (x 2 j 2 |i 2 y) ≥ 0 (8) 
Denition 2.8 (Independent Non-Signaling Assisted Capacity (resp. Sum-Capacity) Region C NS SR (W )

(resp. C NS SR sum (W )) of a MAC W ). A rate pair (R 1 , R 2
) is achievable (resp. sum-achievable) with indepen- dent non-signaling assistance if:

lim n→+∞ S NS SR (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 . (resp. lim n→+∞ S NS SR sum (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .)
We dene the independent non-signaling assisted capacity (resp. sum-capacity) region C NS SR (W ) (resp. C NS SR sum (W )) as the closure of the set of all achievable (resp. sum-achievable) rate pairs with independent non-signaling assistance.

However, it turns out those two notions of success dene the same capacity region: Proposition 2.9.

C NS SR (W ) = C NS SR sum (W )
Proof. Given non-signaling boxes P 1 , P 2 , the maximum success probability of encoding and decoding correctly with those is given by:

S NS SR (W, k 1 , k 2 , P 1 , P 2 ) := 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )P 1 (x 1 i 1 |i 1 y)P 2 (x 2 i 2 |i 2 y) .
This should be compared to the sum success probability of encoding and decoding correctly with those, which we call S NS SR sum (W, k 1 , k 2 , P 1 , P 2 ) and is equal to:

1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 ) P 1 (x 1 i 1 |i 1 y) j 2 P 2 (x 2 j 2 |i 2 y) + P 2 (x 2 i 2 |i 2 y) j 1 P 1 (x 1 j 1 |i 1 y) 2 .
Similarly to what was done in Proposition 2.5, we focus on error probabilities rather than success probabilities. We have that:

1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 ) j 1 ,j 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) = 1 ,
so we get that E NS SR (W, k 1 , k 2 , P 1 , P 2 ) is equal to:

1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )   j 1 ,j 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) -P 1 (x 1 i 1 |i 1 y)P 2 (x 2 i 2 |i 2 y)   ,
and thus:

E NS SR (W, k 1 , k 2 , P 1 , P 2 ) = i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 ) (j 1 ,j 2 ) =(i 1 ,i 2 ) P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) .
On the other hand, since:

j 1 ,j 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) -P 1 (x 1 i 1 |i 1 y) j 2 P 2 (x 2 j 2 |i 2 y) = j 1 =i 1 ,j 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) ,
and:

j 1 ,j 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) -P 2 (x 2 i 2 |i 2 y) j 1 P 1 (x 1 j 1 |i 1 y) = j 1 ,j 2 =i 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) ,
we get that E NS SR sum (W, k 1 , k 2 , P 1 , P 2 ) is equal to:

1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 ) j 1 =i 1 ,j 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) + j 1 ,j 2 =i 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) 2 = 1 k 1 k 2 i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )   j 1 =i 1 ,j 2 =i 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) + (j 1 ,j 2 )∈S P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) 2   , (9) with 
S := {(j 1 , i 2 ) : j 1 ∈ [k 1 ] -{i 1 }} ∪ {(i 1 , j 2 ) : j 2 ∈ [k 2 ] -{i 2 }}
. However, we have that:

j 1 =i 1 ,j 2 =i 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) + (j 1 ,j 2 )∈S P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) 2 ≤ j 1 =i 1 ,j 2 =i 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) + (j 1 ,j 2 )∈S P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) = (j 1 ,j 2 ) =(i 1 ,i 2 ) P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) ≤ 2   j 1 =i 1 ,j 2 =i 2 P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) + (j 1 ,j 2 )∈S P 1 (x 1 j 1 |i 1 y)P 2 (x 2 j 2 |i 2 y) 2   . (10) 
This implies that:

E NS SR sum (W, k 1 , k 2 , P 1 , P 2 ) ≤ E NS SR (W, k 1 , k 2 , P 1 , P 2 ) ≤ 2E NS SR sum (W, k 1 , k 2 , P 1 , P 2 ) ,
and by maximizing over all P 1 and P 2 :

E NS SR sum (W, k 1 , k 2 ) ≤ E NS SR (W, k 1 , k 2 ) ≤ 2E NS SR sum (W, k 1 , k 2 ) .
Thus, as before, the capacity regions are the same. Proposition 3.1. For a MAC W :

X 1 × X 2 → Y and k 1 , k 2 ∈ N * , we have: S NS (W, k 1 , k 2 ) = maximize r,r 1 ,r 2 ,p 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y subject to x 1 ,x 2 r x 1 ,x 2 ,y = 1 x 1 r 1 x 1 ,x 2 ,y = k 1 x 1 r x 1 ,x 2 ,y x 2 r 2 x 1 ,x 2 ,y = k 2 x 2 r x 1 ,x 2 ,y x 1 p x 1 ,x 2 = k 1 x 1 r 2 x 1 ,x 2 ,y x 2 p x 1 ,x 2 = k 2 x 2 r 1 x 1 ,x 2 ,y 0 ≤ r x 1 ,x 2 ,y ≤ r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y ≤ p x 1 ,x 2 p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y ≥ 0 (11) 
Proof. One can check that given a solution of the original program, the following choice of variables is a valid solution of the second program achieving the same objective value:

r x 1 ,x 2 ,y := i 1 ,i 2 P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) , r 1 x 1 ,x 2 ,y := j 1 ,i 1 ,i 2 P (x 1 x 2 (j 1 i 2 )|i 1 i 2 y) , r 2 x 1 ,x 2 ,y := j 2 ,i 1 ,i 2 P (x 1 x 2 (i 1 j 2 )|i 1 i 2 y) , p x 1 ,x 2 := j 1 ,j 2 ,i 1 ,i 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (12) 
Note that p x 1 ,x 2 is well-dened since j 1 ,j 2 ,i 1 ,i 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) is independent from y by since P is a non-signaling box.

For the other direction, given those variables, a non-signaling probability distribution P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) achieving the same objective value is given by, for j 1 = i 1 and j 2 = i 2 :

P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) := r x 1 ,x 2 ,y k 1 k 2 , P (x 1 x 2 (j 1 i 2 )|i 1 i 2 y) := r 1 x 1 ,x 2 ,y -r x 1 ,x 2 ,y k 1 k 2 (k 1 -1) , P (x 1 x 2 (i 1 j 2 )|i 1 i 2 y) := r 2 x 1 ,x 2 ,y -r x 1 ,x 2 ,y k 1 k 2 (k 2 -1) , P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) := p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y k 1 k 2 (k 1 -1)(k 2 -1)
.

(
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This symmetrization can also be done for the program computing

S NS SR sum (W, k 1 , k 2 ): Proposition 3.2. S NS SR sum (W, k 1 , k 2 ) = maximize r 1 ,r 2 ,p 1 ,p 2 1 2k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 ) p 2 x 2 r 1 x 1 ,y + p 1 x 1 r 2 x 2 ,y = 1 2 1 k 1 x 1 ,y W 1 p 2 ,k 2 (y|x 1 )r 1 x 1 ,y + 1 k 2 x 2 ,y W 2 p 1 ,k 1 (y|x 2 )r 2 x 2 ,y with W 1 p 2 ,k 2 (y|x 1 ) := 1 k 2 x 2 W (y|x 1 x 2 )p 2 x 2 , W 2 p 1 ,k 1 (y|x 2 ) := 1 k 1 x 1 W (y|x 1 x 2 )p 1 x 1 subject to x 1 r 1 x 1 ,y = 1, x 2 r 2 x 2 ,y = 1 x 1 p 1 x 1 = k 1 , x 2 p 2 x 2 = k 2 0 ≤ r 1 x 1 ,y ≤ p 1 x 1 , 0 ≤ r 2 x 2 ,y ≤ p 2 x 2 (14) 
Proof. One can check that given a solution of the original program, the following choice of variables is a valid solution of the second program achieving the same objective value:

r 1 x 1 ,y := i 1 P 1 (x 1 i 1 |i 1 y) , p 1 x 1 := j 1 ,i 1 P 1 (x 1 j 1 |i 1 y) , r 2 x 2 ,y := i 2 P 2 (x 2 i 2 |i 2 y) , p 2 x 2 := j 2 ,i 2 P 2 (x 2 j 2 |i 2 y) . (15) 
Note that p 1 x 1 and p 2 x 2 are well-dened since j 1 ,i 1 P 1 (x 1 j 1 |i 1 y) and j 2 ,i 2 P 2 (x 2 j 2 |i 2 y) are independent from y since P 1 and P 2 are non-signaling boxes.

For the other direction, given those variables, non-signaling probability distributions P 1 (x 1 j 1 |i 1 y) and P 2 (x 2 j 2 |i 2 y) achieving the same objective value are given by, for j 1 = i 1 and j 2 = i 2 :

P 1 (x 1 i 1 |i 1 y) := r 1 x 1 ,y k 1 , P 1 (x 1 j 1 |i 1 y) := p 1 x 1 ,y -r 1 x 1 ,y k 1 (k 1 -1) , P 2 (x 2 i 2 |i 2 y) := r 2 x 2 ,y k 2 , P 2 (x 2 j 2 |i 2 y) := p 2 x 2 ,y -r 2 x 2 ,y k 2 (k 2 -1) . ( 16 
) 3.2 Properties of S NS (W, k 1 , k 2 ), C NS (W ) and C NS 0 (W )
Denition 3.3. We say that a conditional probability distribution P (a

n |x n ) dened on × n i=1 A i × × n i=1 X i is non-signaling if for all a n , x n , xn , we have ∀i ∈ [n], âi P (a 1 . . . âi . . . a n |x 1 . . . x i . . . x n ) = âi P (a 1 . . . âi . . . a n |x 1 . . . xi . . . x n ) . Denition 3.4. Let P (a n |x n ) a conditional probability distribution dened on × n i=1 A i × × n i=1 X i and P (a n |x n ) dened on × n i=1 A i × × n i=1 X i .
We dene P ⊗ P the tensor product conditional probabil-

ity distribution dened on × n i=1 (A i × A i ) × × n i=1 (X i × X i ) by (P ⊗ P ) (a 1 a 1 . . . a n a n |x 1 x 1 . . . x n x n ) := P (a n |x n ) • P (a n |x n ).
Lemma 3.5. If both P and P are non-signaling, then P ⊗ P is non-signaling.

Proof. Let a n ∈ × n j=1 A j , a n ∈ × n j=1 A j , x n ∈ × n j=1 X j , x n ∈ × n j=1 X j and xi ∈ X i , x i ∈ X i .
Using the fact that P, P are non-signaling, we have:

âi â i P (a 1 a 1 . . . âi â i . . . a n a n |x 1 x 1 . . . x i x i . . . x n x n ) = âi â i P (a 1 . . . âi . . . a n |x 1 . . . x i . . . x n ) • P (a 1 . . . â i . . . a n |x 1 . . . x i . . . x n ) =   âi P (a 1 . . . âi . . . a n |x 1 . . . x i . . . x n )   •   â i P (a 1 . . . â i . . . a n |x 1 . . . x i . . . x n )   =   âi P (a 1 . . . âi . . . a n |x 1 . . . xi . . . x n )   •   â i P (a 1 . . . â i . . . a n |x 1 . . . x i . . . x n )   = âi â i P ⊗ P (a 1 a 1 . . . âi â i . . . a n a n |x 1 x 1 . . . xi x i . . . x n x n ) , (17) 
so P ⊗ P is non-signaling. Proposition 3.6. For a MAC W :

X 1 × X 2 → Y and k 1 , k 2 ∈ N * , we have: 1. 1 k 1 k 2 ≤ S NS (W, k 1 , k 2 ) ≤ 1. 2. S NS (W, k 1 , k 2 ) ≤ min |X 1 | k 1 , |X 2 | k 2 , |Y| k 1 k 2 . 3. If k 1 ≤ k 1 and k 2 ≤ k 2 , then S NS (W, k 1 , k 2 ) ≥ S NS (W, k 1 , k 2 ).

For any MAC

W : X 1 ×X 2 → Y and k 1 , k 2 ∈ N * , we have S NS (W ⊗W , k 1 k 1 , k 2 k 2 ) ≥ S NS (W, k 1 , k 2 )• S NS (W , k 1 , k 2 ).
In particular, for any positive integer n,

S NS (W ⊗n , k n 1 , k n 2 ) ≥ S NS (W, k 1 , k 2 ) n and S NS (W ⊗ W , k 1 , k 2 ) ≥ S NS (W, k 1 , k 2 ).
Proof.

1. Let us rst show that

S NS (W, k 1 , k 2 ) ≥ 1 k 1 k 2 . Take p x 1 ,x 2 := k 1 k 2 |X 1 ||X 2 | , r 1 x 1 ,x 2 ,y := px 1 ,x 2 k 2 , r 2 x 1 ,x 2 ,y := px 1 ,x 2 k 1 and r x 1 ,x 2 ,y := px 1 ,x 2 k 1 k 2 = 1 |X 1 ||X 2 |
. One can easily check that it is indeed a valid solution of the linear program computing S NS (W, k 1 , k 2 ). Thus we have:

S NS (W, k 1 , k 2 ) ≥ 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = 1 k 1 k 2 x 1 ,x 2 1 |X 1 ||X 2 | y W (y|x 1 x 2 ) = 1 k 1 k 2 x 1 ,x 2 1 |X 1 ||X 2 | = 1 k 1 k 2 . (18) 
Furthermore, in order to show that it is at most 1, let us consider an optimal solution of S NS (W, k 1 , k 2 ).

We have:

S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )p x 1 ,x 2 = 1 k 1 k 2 x 1 ,x 2 p x 1 ,x 2 y W (y|x 1 x 2 ) = 1 k 1 k 2 x 1 ,x 2 p x 1 ,x 2 = 1 , (19) 
since x 1 ,x 2 p x 1 ,x 2 = k 1 x 1 ,x 2 r 2 x 1 ,x 2 ,y = k 1 k 2 x 1 ,x 2 r x 1 ,x 2 ,y = k 1 k 2 .

First let us show that

S NS (W, k 1 , k 2 ) ≤ |X 1 | k 1 (the case S NS (W, k 1 , k 2 ) ≤ |X 2 | k 2 is symmetric): S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r 2 x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 2 ,y   x 1 W (y|x 1 x 2 )   • x 1 r 2 x 1 ,x 2 ,y since nonnegative terms. = 1 k 1 k 2 x 2 ,y   x 1 W (y|x 1 x 2 )   • 1 k 1 x 1 p x 1 ,x 2 = 1 k 2 1 k 2 x 1 ,x 2 p x 1 ,x 2 x 1 y W (y|x 1 x 2 ) = |X 1 | k 2 1 k 2 x 1 ,x 2 p x 1 ,x 2 = |X 1 | k 1 . (20) 
Let us show now that

S NS (W, k 1 , k 2 ) ≤ |Y| k 1 k 2 : S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y ≤ 1 k 1 k 2 y max x 1 ,x 2 W (y|x 1 x 2 ) x 1 ,x 2 r x 1 ,x 2 ,y ≤ 1 k 1 k 2 y x 1 ,x 2 r x 1 ,x 2 ,y = |Y| k 1 k 2 . ( 21 
)
3. Let us assume that k 1 ≤ k 1 and that k 2 = k 2 , since this latter case will follow by symmetry. Consider an optimal solution of S NS (W,

k 1 , k 2 ) = 1 k 1 i 1 ∈[k 1 ] f (i 1 ) with: f (i 1 ) := 1 k 2 x 1 ,x 2 ,y,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) ,
and P non-signaling. Let us consider S ∈ argmax

S ⊆[k 1 ]:|S |=k 1 i 1 ∈S f (i 1 )
. Then, by construction, we have that 1

k 1 i 1 ∈S f (i 1 ) ≥ 1 k 1 i 1 ∈[k 1 ] f (i 1 ) = S NS (W, k 1 , k 2 )
, since we have taken the average of the k 1 largest values of the sum.

Let us dene the strategy P on the smallest set

X 1 × X 2 × (S × [k 2 ]) × S × [k 2 ] × Y: P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) := P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + C(x 1 x 2 j 2 |i 1 i 2 y) , with C(x 1 x 2 j 2 |i 1 i 2 y) := 1 k 1 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (22) 
P is a correct conditional probability distribution. Indeed, it is nonnegative by construction, and we have that:

x 1 ,x 2 ,j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 ,x 2 ,j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 ,x 2 ,j 1 ∈S,j 2 C(x 1 x 2 j 2 |i 1 i 2 y) = x 1 ,x 2 j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 ,x 2 ,j 2 j 1 ∈S 1 k 1 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 ,x 2 ,j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 ,x 2 ,j 2 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 ,x 2 ,j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = 1 . (23) 
Let us show that P is non-signaling:

(a) First with x 1 :

x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 C(x 1 x 2 j 2 |i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) since P is non-signaling. = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (24) 
(b) Then with x 2 :

x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 2 C(x 1 x 2 j 2 |i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) since P is non-signaling. = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (25) 
(c) Finally with (j 1 j 2 ):

j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + j 2 j 1 ∈S C(x 1 x 2 j 2 |i 1 i 2 y) = j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + j 2 j 1 ∈S 1 k 1 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + j 2 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) since P is non-signaling. = j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) . (26) 
Thus P is a correct solution of the program computing S NS (W, k 1 , k 2 ), and it leads to the value:

S NS (W, k 1 , k 2 ) ≥ 1 k 1 k 2 x 1 ,x 2 ,y,i 1 ∈S,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) ≥ 1 k 1 k 2 x 1 ,x 2 ,y,i 1 ∈S,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) = 1 k 1 i 1 ∈S f (i 1 ) ≥ 1 k 1 i 1 ∈[k 1 ] f (i 1 ) = S NS (W, k 1 , k 2 ) . (27) 
4. Consider optimal non-signaling probability distributions P and P reaching respectively the values S NS (W, k 1 , k 2 ) and S NS (W , k 1 , k 2 ). Then by Lemma 3.5, P ⊗ P is a non-signaling probability distribution on

(X 1 × X 1 ) × (X 2 × X 2 ) × (([k 1 ] × [k 1 ]) × ([k 2 ] × [k 2 ])) × ([k 1 ] × [k 1 ]) × ([k 2 ] × [k 2 ]) × (Y × Y ), which is trivially in bijection with (X 1 × X 1 ) × (X 2 × X 2 ) × ([k 1 k 1 ] × [k 2 k 2 ]) × [k 1 k 1 ] × [k 2 k 2 ] × (Y × Y ). This gives a valid solution of the program computing S NS (W ⊗ W , k 1 k 1 , k 2 k 2 ).
Thus, we get that S NS (W ⊗ W , k 1 k 1 , k 2 k 2 ) is larger than or equal to:

x 1 x 1 ,x 2 x 2 ,yy ,i 1 i 1 ,i 2 i 2 W ⊗ W (yy |x 1 x 1 x 2 x 2 ) P ⊗ P (x 1 x 1 x 2 x 2 (i 1 i 1 i 2 i 2 )|i 1 i 1 , i 2 i 2 yy ) = x 1 x 1 ,x 2 x 2 ,yy ,i 1 i 1 ,i 2 i 2 W (y|x 1 x 2 ) • W (y |x 1 x 2 ) P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) • P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y ) =   i 1 ,i 2 ,x 1 ,x 2 ,y W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y)   •   x 1 ,x 2 ,y ,i 1 ,i 2 W (y |x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y )   = S NS (W, k 1 , k 2 ) • S NS (W , k 1 , k 2 ) . (28) 
In particular, applying this n times on the same MAC W gives the rst corollary, and the second one comes from the fact that

S NS (W ⊗ W , k 1 , k 2 ) ≥ S NS (W, k 1 , k 2 ) • S NS (W , 1, 1) = S NS (W, k 1 , k 2 ),
since S NS (W , 1, 1) = 1 by the rst property of Proposition 3.6.

Corollary 3.7. 1.

C NS (W ) is convex. 2. If (R 1 , R 2 ) is achievable with non-signaling assistance, then R 1 ≤ log 2 |X 1 |, R 2 ≤ log 2 |X 2 | and R 1 + R 2 ≤ log 2 |Y|. 3. If (R 1 , R 2 ) is achievable with non-signaling assistance, then for all R i ≤ R i , (R 1 , R 2 )
is achievable with non-signaling assistance.

Proof.

1. Let (R 1 , R 2 ) and ( R1 , R2 ), two pairs of rational rates achievable with non-signaling assistance for W , ie:

S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) → n→+∞ 1 and S NS (W ⊗n , 2 R1 n , 2 R2 n ) → n→+∞ 1 . Let λ ∈ (0, 1) rational and dene R λ,i := λ•R i +(1-λ)• Ri , let us show that (R λ,1 , R λ,2
) is achievable with non-signaling assistance. Let us call respectively

k i := 2 R i , ki := 2 Ri , k λ,i := 2 R λ,i = k λ i • k (1-λ) i . We have R λ,i n = λ • R i n + (1 -λ) • Ri n = (λn) • R i + (1 -λ)n • Ri
. This is the idea of time-sharing : for λn copies of the MAC, we use the strategy with rate (R 1 , R 2 ) and for the (1 -λ)n other copies of the MAC, we use the strategy with rate ( R1 , R2 ). There exists some n such that λn, (1 -λ)n, λnR i , (1λ)n Ri are integers, since everything is rational. This implies that k λn i , k(1-λ)n i , k n λ,i are integers. Thus, thanks to the fourth property of Proposition 3.6, we have:

S NS (W ⊗n , k n λ,1 , k n λ,2 ) ≥ S NS (W ⊗(λn) , k λn 1 , k λn 2 ) • S NS (W ⊗((1-λ)n) , k(1-λ)n 1 , k(1-λ)n 2 ) → n→+∞ 1 • 1 = 1 . ( 29 
)
Thus in particular, since we have

S NS (W ⊗n , k n λ,1 , k n λ,2 ) ≤ 1, we get that S NS (W ⊗n , k n λ,1 , k n λ,2 ) → n→+∞ 1, so (R λ,1 , R λ,2
) is achievable with non-signaling assistance. Finally, since C NS (W ) is dened as the closure of achievable rates with non-signaling assistance, we get that C NS (W ) is convex.

2. By the second property of Proposition 3.6, we have that 

S NS (W ⊗n , k n 1 , k n 2 ) ≤ |X n 1 | k n 1 . In particular, if one takes R 1 > log 2 |X 1 |, then k 1 > |X 1 | and we get that S NS (W ⊗n , k n 1 , k n 2 ) ≤ |X 1 | k 1 n → n→+∞ 0, so R 1 > log 2 |X 1 |
, k n 1 , k n 2 ) ≤ |Y n | k n 1 k n 2 = |Y| k 1 k 2 n → n→+∞ 0. Thus, R 1 + R 2 >
∃n ∈ N * , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 . Proof. It is clear that if (R 1 , R 2 ) is such that ∃n 0 ∈ N * , ∀n ≥ n 0 , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1, then in particular ∃n ∈ N * , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1. So, C NS 0 (W )
, which is the closure of the former rate pairs, is in particular included in the closure of the latter rate pairs.

For the other inclusion, consider a rate pair (R 1 , R 2 ) and let us assume that there exists some positive integer n such that

S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1. Let us show that for any (R 1 , R 2 ) such that R 1 < R 1 and R 2 < R 2 : ∃n 0 ∈ N * , ∀n ≥ n 0 , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 ,
which is enough to conclude, since we consider only closure of such sets.

First, for all positive integer m, we have that S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) = 1. By the fourth property of Proposition 3.6, we have that

S NS ((W ⊗n ) ⊗m , 2 R 1 n m , 2 R 2 n m ) ≥ S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) m = 1, so S NS ((W ⊗n ) ⊗m , 2 R 1 n m , 2 R 2 n m ) = 1 since S NS (W, k 1 , k 2 ) ≤ 1 by the rst property of Proposi- tion 3.6. But (W ⊗n ) ⊗m = W ⊗nm , and 2 R 1 n m ≥ 2 R 1 nm , 2 R 2 n m ≥ 2 R 2 nm
, so by the third property of Proposition 3.6, we have

S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) ≥ 1, so S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) = 1.
Then, consider some r ∈ {0, . . . , n -1}. By the fourth property of Proposition 3.6, we have that:

S NS (W ⊗(nm+r) , 2 R 1 nm , 2 R 2 nm ) = S NS (W ⊗nm ⊗ W ⊗r , 2 R 1 nm , 2 R 2 nm ) ≥ S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) = 1 , (30) 
so

S NS (W ⊗(nm+r) , 2 R 1 nm , 2 R 2 nm ) = 1. But 2 R 1 nm = 2 R 1 nm nm+r (nm+r) = 2 R 1 1+δ (nm+r) with δ = r nm ≤ 1 m , and symmetrically 2 R 1 nm = 2 R 1 1+δ (nm+r) . Thus in particular, for all R 1 ≤ R 1 1+ 1 m and R 2 ≤ R 2 1+ 1 m , we have that for all n ≥ nm, S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1. So for any (R 1 , R 2 ) such that R 1 < R 1 and R 2 < R 2 , there is large enough m such that R 1 ≤ R 1 1+ 1 m and R 2 ≤ R 2 1+ 1 m
, and thus we get the expected property on (R 1 , R 2 ) for n 0 := nm.

Linear Program with Reduced Size for Structured Channels

Although S NS (W, k 1 , k 2 ) can be computed in polynomial time in W , k 1 and k 2 , a channel of the form W ⊗n has exponential size in n. Thus, the linear program for S NS (W ⊗n , k 1 , k 2 ) grows exponentially with n. However, using the invariance of W ⊗n under permutations, one can nd a much smaller linear program computing S NS (W ⊗n , k 1 , k 2 ).

Denition 3.9. Let G a group acting on X 1 , X 2 , Y. We say that a MAC W :

X 1 × X 2 → Y is invariant under the action of G if: ∀g ∈ G, W (g • y|g • x 1 g • x 2 ) = W (y|x 1 x 2 ) .
In particular, for W ⊗n : X n 1 × X n 2 → Y n , the symmetric group G := S n acts in a natural way in any set A raised to power n. So for σ ∈ S n , we have that:

W ⊗n (σ • y n |σ • x n 1 σ • x n 2 ) = n i=1 W (y σ(i) |x 1,σ(i) x 2,σ(i) ) = n i=1 W (y i |x 1,i x 2,i ) = W ⊗n (y n |x n 1 x n 2 ) ,
and so W ⊗n is invariant under the action of S n .

Let 

Z := {X 1 , X 2 , Y, X 1 × Y, X 2 × Y, X 1 × X 2 , X 1 × X 2 × Y}. Let us call O G (A)
∈ O G (X 1 ×X 2 ×Y), u ∈ O G (X 1 ×X 2 ), u 1 ∈ O G (X 1 ), u 2 ∈ O G (X 2 ), v 1 ∈ O G (X 1 ×Y), v 2 ∈ O G (X 2 ×Y), v ∈ O G (Y).
We will also call z A the projection of z ∈ O G (B) on A, for A, B ∈ Z and A projection of B; note that z A ∈ O G (A), since by denition of the action, the projection of an orbit is an orbit. Let us nally call W (w) := W (y|x 1 x 2 ) for any (x 1 , x 2 , y) ∈ w, which is well-dened since W is invariant under G. We have that S NS (W, k 1 , k 2 ) is the solution of the following linear program:

S NS (W, k 1 , k 2 ) = maximize r,r 1 ,r 2 ,p 1 k 1 k 2 w∈O G (X 1 ×X 2 ×Y) W (w)r w subject to w:w Y =v r w = |v|, ∀v ∈ O G (Y) w:w X 2 Y =v 2 r 1 w = k 1 w:w X 2 Y =v 2 r w , ∀v 2 ∈ O G (X 2 × Y) w:w X 1 Y =v 1 r 2 w = k 2 w:w X 1 Y =v 1 r w , ∀v 1 ∈ O G (X 1 × Y) u:u X 2 =v 2 X 2 p u = |v 2 X 2 | |v 2 | k 1 w:w X 2 Y =v 2 r 2 w , ∀v 2 ∈ O G (X 2 × Y) u:u X 1 =v 1 X 1 p u = |v 1 X 1 | |v 1 | k 2 w:w X 1 Y =v 1 r 1 w , ∀v 1 ∈ O G (X 1 × Y) 0 ≤ r w ≤ r 1 w , r 2 w ≤ |w| |w X 1 X 2 | p w X 1 X 2 , ∀w ∈ O G (X 1 × X 2 × Y) |w| |w X 1 X 2 | p w X 1 X 2 -r 1 w -r 2 w + r w ≥ 0, ∀w ∈ O G (X 1 × X 2 × Y) . (31) 
Corollary 3.11. For a channel W :

X 1 × X 2 → Y, S NS (W ⊗n , k 1 , k 2 ) is the solution of a linear program of size bounded by O n |X 1 |•|X 2 |•|Y|-1
, thus it can be computed in polynomial time in n.

Proof. We use the linear program obtained in Theorem 3.10 with G := S n acting on W ⊗n as described before. The number of variables and constraints is linear in the number of orbits of the action of S n on the dierent sets A ∈ Z, where here 

Z = {X n 1 , X n 2 , Y n , X n 1 × Y n , X n 2 × Y n , X n 1 × X n 2 , X n 1 × X n 2 × Y n }. For example, for A ∈ X n 1 × X n 2 × Y n , we have that: |O Sn (X n 1 × X n 2 × Y n )| = n + |X 1 ||X 2 ||Y| -1 |X 1 ||X 2 ||Y| -1 ≤ (n + |X 1 ||X 2 ||Y| -1) |X 1 ||X 2 ||Y|-1 .

So the number of variables and constraints is

O(n |X 1 |•|X 2 |•|Y|-1
(n |X 1 |•|X 2 |•|Y|-1
), and thus S NS (W ⊗n , k 1 , k 2 ) can be computed in polynomial time in n; see for instance Section 7.1 of [START_REF] Gärtner | Understanding and using linear programming[END_REF].

In order to prove Theorem 3.10, we will need several lemmas. For all of them, A and B will denote nite sets on which a group G is acting, and x G will denote the orbit of x under G: |(x,y) G | . We have:

f : B x τ → B x τ y → g • y . First, f is well dened. Indeed, if y ∈ B x τ = {y : (x, y) ∈ τ }, then g • y ∈ {y : (g • x, y) ∈ τ } = B x τ , since τ ∈ O G (A × B). Let us show that f is injective. If g • y = g • y , then g -1 • (g • y) = (g -1 g) • y = y, g -1 • (g • y ) = y ,
x∈A v x,y = 1 |y G | τ ∈O G (A×B):τ B =y G v τ , ∀y ∈ B . Proof. x∈A v x,y = τ ∈O G (A×B):τ B =y G x∈A:(x,y)∈τ v x,y = τ ∈O G (A×B):τ B =y G x∈A:(x,y)∈τ v τ |τ | since (x, y) G = τ = τ ∈O G (A×B):τ B =y G c y G τ v τ |τ | by Lemma 3.12, since y ∈ τ B = τ ∈O G (A×B):τ B =y G |τ | |y G | v τ |τ | = 1 |y G | τ ∈O G (A×B):τ B =y G v τ . ( 32 
)
Lemma 3.14. For any τ ∈ O G (A × B), µ ∈ O G (B) and v x,y variable indexed by elements of A × B, let us dene v τ := (x,y)∈τ v x,y . We have:

τ ∈O G (A×B):τ B =µ v τ = y∈µ x∈A v x,y . Proof. τ ∈O G (A×B):τ B =µ v τ = τ ∈O G (A×B):τ B =µ (x,y)∈τ v x,y = y∈µ x∈A v x,y .
Proof of Theorem 3.10. Let r x 1 ,x 2 ,y , r 1

x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y , p x 1 ,x 2 a feasible solution of the program dened in Proposition 3.1, and call S := 1 k 1 k 2

x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y its value. Dene:

r w := (x 1 ,x 2 ,y)∈w r x 1 ,x 2 ,y , r 1 w := (x 1 ,x 2 ,y)∈w r 1 x 1 ,x 2 ,y , r 2 w := (x 1 ,x 2 ,y)∈w r 2 x 1 ,x 2 ,y , p u := (x 1 ,x 2 )∈u p x 1 ,x 2 . ( 33 
)
Let us show that r w , r 1 w , r 2 w , p u is a feasible solution of the program dened in Theorem 3.10, and that its value

S * := 1 k 1 k 2 w W (w)r w = S.
First, we have S * = S. Indeed:

S * = 1 k 1 k 2 w W (w)r w = 1 k 1 k 2 w W (w) (x 1 ,x 2 ,y)∈w r x 1 ,x 2 ,y = 1 k 1 k 2 w (x 1 ,x 2 ,y)∈w W (y|x 1 x 2 )r x 1 ,x 2 ,y since W (w) = W (y|x 1 x 2 ) for all (x 1 , x 2 , y) ∈ w = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = S . (34) 
Then, all the constraints are satised. Indeed, thanks to Lemma 3.14, we have for the rst constraint:

w:w Y =v r w = y∈v x 1 ,x 2 r x 1 ,x 2 ,y = y∈v 1 = |v| .
For the second constraint (and symmetrically for the third constraint), we have:

w:w X 2 Y =v 2 r 1 w = (x 2 ,y)∈v 2 x 1 r 1 x 1 ,x 2 ,y = (x 2 ,y)∈v 2 k 1 x 1 r x 1 ,x 2 ,y = k 1 w:w X 2 Y =v 2 r w .
For the fourth (and symmetrically for the fth), we have:

w:w X 2 Y =v 2 r 2 w = (x 2 ,y)∈v 2 x 1 r 2 x 1 ,x 2 ,y = (x 2 ,y)∈v 2 1 k 1 x 1 p x 1 ,x 2 = 1 k 1 x 2 ∈v 2 X 2 y:(x 2 ,y)∈v 2 x 1 p x 1 ,x 2 = 1 k 1 x 2 ∈v 2 X 2 |v 2 | |v 2 X 2 | x 1 p x 1 ,x 2 thanks to Lemma 3.12 = 1 k 1 |v 2 | |v 2 X 2 | u:u X 2 =v 2 X 2 p u . (35) 
Finally for the last constraints, we only need to compute:

(x 1 ,x 2 ,y)∈w p x 1 ,x 2 = (x 1 ,x 2 )∈w X 1 X 2 y:(x 1 ,x 2 ,y)∈w p x 1 ,x 2 = (x 1 ,x 2 )∈w X 1 X 2 |w| |w X 1 X 2 | p x 1 ,x 2 = |w| |w X 1 X 2 | p w X 1 X 2 ,
which implies that the linear inequalities on p x 1 ,x 2 , r x 1 ,x 2 ,y , r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y get transposed respectively to the values |w| |w X 1 X 2 | p w X 1 X 2 , r w , r 1 w , r 2 w . Indeed, for instance, one has for any x 1 , x 2 , y that p x 1 ,x 2 -r 1 x 1 ,x 2 ,yr 2

x 1 ,x 2 ,y + r x 1 ,x 2 ,y ≥ 0. Thus for some orbit w:

(x 1 ,x 2 ,y)∈w p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y ≥ 0 , and then |w| |w X 1 X 2 | p w X 1 X 2 -r 1 w -r 2 w + r w ≥ 0,
which was what we wanted to show. Now let us consider a feasible solution r w , r 1 w , r 2 w , p u of the program dened in Theorem 3.10, with a value S * := 1 k 1 k 2 w W (w)r w . Dene:

r x 1 ,x 2 ,y := r (x 1 ,x 2 ,y) G |(x 1 , x 2 , y) G | , r 1 x 1 ,x 2 ,y := r 1 (x 1 ,x 2 ,y) G |(x 1 , x 2 , y) G | , r 2 x 1 ,x 2 ,y := r 2 (x 1 ,x 2 ,y) G |(x 1 , x 2 , y) G | , p x 1 ,x 2 := p (x 1 ,x 2 ) G |(x 1 , x 2 ) G | . (36) 
Let us show that r x 1 ,x 2 ,y , r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y , p x 1 ,x 2 is a feasible solution of the program dened in Propo- sition 3.1, and that its value S := 1 k 1 k 2

x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = S * . First we have S = S * . Indeed:

S = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 ) r (x 1 ,x 2 ,y) G |r (x 1 ,x 2 ,y) G | = 1 k 1 k 2 w (x 1 ,x 2 ,y)∈w W (y|x 1 x 2 ) r w |w| = 1 k 1 k 2 w (x 1 ,x 2 ,y)∈w W (w) r w |w| = 1 k 1 k 2 w |w|W (w) r w |w| = 1 k 1 k 2 w W (w)r w = S * . (37) 
Then, all the constraints are satised. Indeed, thanks to Lemma 3.13, we have for the rst constraint:

x 1 ,x 2 r x 1 ,x 2 ,y = 1 |y G | w:w Y =y G r w = |y G | |y G | = 1 .
For the second constraint (and symmetrically for the third constraint), we have:

x 1 r 1 x 1 ,x 2 ,y = 1 |(x 2 , y) G | w:w X 2 Y =(x 2 ,y) G r 1 w = k 1 |(x 2 , y) G | w:w X 2 Y =(x 2 ,y) G r w = k 1 x 1 r x 1 ,x 2 ,y .
For the fourth (and symmetrically for the fth), we have:

x 1 r 2 x 1 ,x 2 ,y = 1 |(x 2 , y) G | w:w X 2 Y =(x 2 ,y) G r 2 w = 1 |(x 2 , y) G | 1 k 1 |(x 2 , y) G | |(x 2 , y) G X 2 | u:u X 2 =(x 2 ,y) G X 2 p u = 1 k 1 1 |(x 2 , y) G X 2 | u:u X 2 =(x 2 ,y) G X 2 p u = 1 k 1 1 |x G 2 | u:u X 2 =x G 2 p u since (x 2 , y) G X 2 = x G 2 = 1 k 1 x 1 p x 1 ,x 2 . ( 38 
)
Finally, to conclude with the last constraints, one has only to see that for any x 1 , x 2 , y:

|(x 1 , x 2 , y) G | |(x 1 , x 2 , y) G X 1 X 2 | p (x 1 ,x 2 ,y) G X 1 X 2 = |(x 1 , x 2 , y) G | |(x 1 , x 2 ) G | p (x 1 ,x 2 ) G = |(x 1 , x 2 , y) G |p x 1 ,x 2 ,
which implies that the linear inequalities on |w| |w X 1 X 2 | p w X 1 X 2 , r w , r 1 w , r 2 w get transposed respectively to the values p x 1 ,x 2 , r x 1 ,x 2 ,y , r 1

x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y . Indeed, for instance, one has for any w that

|w| |w X 1 X 2 | p w X 1 X 2 -r 1 w - r 2 w + r w ≥ 0. But for any (x 1 , x 2 , y) ∈ w, one has that r x 1 ,x 2 ,y = rw |w| , r 1 x 1 ,x 2 ,y = r 1 w |w| , r 2 x 1 ,x 2 ,y = r 2 w
|w| . Thanks to the previous inequality, we have that p

x 1 ,x 2 = pw X 1 X 2 |w X 1 X 2 |
, and thus:

p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y = p w X 1 X 2 |w X 1 X 2 | - r 1 w |w| - r 2 w |w| + r w |w| ≥ 0 ,
which was what we wanted to show. We will now present a numerical method to nd eciently inner bounds on C NS 0 (W ). Thanks to Corollary 3.11, we know how to decide in polynomial time in n, k 1 , k 2 whether S NS (W ⊗n , k 1 , k 2 ) = 1. However, by Proposition 3.8, if S NS (W ⊗n , k 1 , k 2 ) = 1, then we have that log(k 1 ) n , log(k 2 ) n ∈ C NS 0 (W ), which describes a way of computing achievable points for that capacity region. More precisely, this leads to the following result: Proposition 4.1 (Inner Bounds on C NS 0 (W )). Let us dene the zero-error non-signaling assisted n-shots capacity region C NS 0,≤n (W ) in the following way:

C NS 0,≤n (W ) := log(k 1 ) n , log(k 2 ) n : S NS (W ⊗n , k 1 , k 2 ) = 1 .
Then, we have that ∀n ∈ N, C NS 0,≤n (W ) ⊆ C NS 0 (W ), and that one can decide in polynomial time in

n, k 1 , k 2 if log(k 1 ) n , log(k 2 ) n ∈ C NS 0,≤n (W ).
This implies that we can nd eciently achievable rate pairs for MACs.

Application to the binary adder channel The binary adder channel W BAC is the following MAC:

∀x 1 , x 2 ∈ {0, 1}, ∀y ∈ {0, 1, 2}, W BAC (y|x 1 x 2 ) := δ y,x 1 +x 2 .
Its classical capacity region C(W BAC ) is well known and consists of all

(R 1 , R 2 ) such that R 1 ≤ 1, R 2 ≤ 1, R 1 + R 2 ≤ 3
2 , as a consequence of Theorem 2.2. Its zero-error classical capacity C 0 (W BAC ) is not yet characterized. A lot of work has been done in nding outer and inner bounds on this region [START_REF] Lindström | Determination of two vectors from the sum[END_REF][START_REF] Henk | An upper bound for codes in a two-access binary erasure channel (Corresp.)[END_REF][START_REF] Kasami | Bounds on the achievable rates of block coding for a memoryless multipleaccess channel[END_REF][START_REF] Weldon | Coding for a multiple-access channel[END_REF][START_REF] Kasami | Graph theoretic approaches to the code construction for the two-user multiple-access binary adder channel[END_REF][START_REF] Coebergh Van Den Braak | A family of good uniquely decodable code pairs for the two-access binary adder channel[END_REF][START_REF] Shraga | Upper bound for uniquely decodable codes in a binary input N-user adder channel[END_REF][START_REF] Urbanke | The zero-error capacity region of the 2-user synchronous BAC is strictly smaller than its Shannon capacity region[END_REF][START_REF] Ahlswede | Construction of uniquely decodable codes for the twouser binary adder channel[END_REF][START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF][START_REF] Ordentlich | A VC-dimension-based outer bound on the zero-error capacity of the binary adder channel[END_REF]. To date, the best lower bound on the sum-rate capacity is log 2 (240/6) 1.3178 [START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF]. Thanks to Proposition 4.1, we were able to compute the regions C NS 0,≤n (W ) for n going up to 7, which led to Figure 4. The code can be found on GitHub. It uses Mosek linear programming solver [START_REF] Erling | The Mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm[END_REF].

Note that the linear program from Theorem 3.10 has still a large number of variables and constraints although polynomial in n. capacity region C(W BAC ), whereas the grey dashed curve shows the best known inner bound border on the zero-error classical capacity region C 0 (W BAC ), made from results by [32, 28, 27]; see [32] for a description of this border. On the other hand, the continuous curves depict the best zero-error non-signaling assisted achievable rate pairs for respectively 2, 3 and 7 copies of the binary adder channel.

R 1 R 2 C(W BAC ) Best Inner Bounds on C 0 (W BAC ) C NS 0,≤2 (W BAC ) C NS 0,≤3 (W BAC ) C NS 0,≤7 (W BAC )
The rst noticeable result coming from these curves is that the zero-error non-signaling assisted sumrate capacity beats with only 7 copies the classical sum-rate capacity of 3 2 , even without a zero-error constraint, with a value of 2 log 2 (42) 7

1.5406, coming from the fact that S NS (W ⊗7 BAC , 42, 42) = 1 and Proposition 3.8. This implies that C NS 0 (W BAC ) has larger sum-rate pairs than C(W BAC ), and that C NS (W BAC ) is strictly larger than C(W BAC ). This sum-rate can even be increased up to log 2 (72) 4 1.5425, since we have computed S NS (W ⊗8 BAC , 72, 72) = 1, which is the largest number of copies we have been able to manage with our ecient version of the linear program from Theorem 3.10. This should be compared with the upper bound on the non-signaling assisted sum-rate capacity coming from Proposition 5.6, which is

log 2 (3) 1.5850 for R 1 = R 2 .
Another surprising property is the speed at which one obtains ecient zero-error non-signaling assisted codes compared to classical zero-error codes. Indeed, with only three copies of the binary adder channel, one gets that S NS (W ⊗3 BAC , 4, 5) = 1, which corresponds to a sum-rate of 2+log 2 (5) 3

1.4406, which already largely beats the best known zero-error achieved sum-rate of log 2 (240/6) 1.3178 [START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF]. These results are summarized in the following theorem: Theorem 4.2. We have that log We have analyzed the non-signaling assisted capacity region through zero-error strategies and applied it to the BAC. However, if some noise is added to that channel, its zero-error non-signaling assisted capacity region becomes trivial (see Proposition 4.6). Thus, the previous method fails to nd signicant inner bounds on the non-signaling assisted capacity region of noisy MACs.

In this section, we use concatenated codes to obtain achievable rate pairs, and apply it to a noisy version of the BAC: Denition 4.3 (Concatenated Codes). Given a MAC W and a non-signaling assisted code P , dene

W [P ] : [k 1 ] × [k 2 ] → [ ] with W [P ](j|i 1 i 2 ) := x 1 ,x 2 ,y W (y|x 1 x 2 )P (x 1 x 2 j|i 1 i 2 y): P (x 1 x 2 j|i 1 i 2 y) i 1 i 2 j W x 1 x 2 y := W [P ] i 1 i 2 j Note that W [P ] is a MAC since W [P ](j|i 1 i 2 ) ≥ 0 and: j W [P ](j|i 1 i 2 ) = x 1 ,x 2 ,y W (y|x 1 x 2 ) j P (x 1 x 2 j|i 1 i 2 y) = x 1 ,x 2 y W (y|x 1 x 2 ) P (x 1 x 2 |i 1 i 2 ) since P is non-signaling = x 1 ,x 2 P (x 1 x 2 |i 1 i 2 ) = 1 . (39) 
The following proposition states that combining a classical code to a non-signaling strategy leads to inner bounds on the non-signaling assisted capacity region of a MAC: Proposition 4.4. If P is a non-signaling assisted code for the MAC W , we have that

C(W [P ]) ⊆ C NS (W ). Proof. Let (R 1 , R 2 ) ∈ C(W [P ]
). Then, by denition, we have that:

lim n→+∞ S(W [P ] ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
Let us x ε > 0. For a large enough N , we have S(W

[P ] ⊗N , 2 R 1 N , 2 R 2 N ) ≥ 1 -ε. Let us call 1 := 2 R 1 N and 2 := 2 R 2 N . Thus, there exists encoders e 1 : [ 1 ] → [k 1 ], e 2 : [ 2 ] → [k 2 ] and a decoder d : [ ] → [ 1 ] × [ 2 ] such that: 1 1 2 i 1 ,i 2 ,j W [P ](j|i 1 i 2 ) a 1 ∈[ 1 ],a 2 ∈[ 2 ] e 1 (i 1 |a 1 )e 2 (i 2 |a 2 )d(a 1 a 2 |j) ≥ 1 -ε .
In particular, we have:

1 1 2 x 1 ,x 2 ,y W (y|x 1 x 2 )   i 1 ,i 2 ,j,a 1 ,a 2 P (x 1 x 2 j|i 1 i 2 y)e 1 (i 1 |a 1 )e 2 (i 2 |a 2 )d(a 1 a 2 |j)   ≥ 1 -ε . Let us dene P (x 1 x 2 (b 1 b 2 )|a 1 a 2 y) := i 1 ,i 2 ,j P (x 1 x 2 j|i 1 i 2 y)e 1 (i 1 |a 1 )e 2 (i 2 |a 2 )d(b 1 b 2 |j
). Then, one can easily check that P is non-signaling, and thus:

S NS (W ⊗N , 1 , 2 ) ≥ 1 1 2 x 1 ,x 2 ,y W (y|x 1 x 2 ) a 1 ,a 2 P (x 1 x 2 (a 1 , a 2 )|a 1 a 2 y) ≥ 1 -ε . This implies that lim n→+∞ S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1, i.e. (R 1 , R 2 ) ∈ C NS (W ).
Thanks to Proposition 4.4, we have for any non-signaling assisted code P , C(W

⊗n [P ]) ⊆ C NS (W ⊗n ). But if (R 1 , R 2 ) ∈ C NS (W ⊗n ), we have that ( R 1 n , R 2 n ) ∈ C NS (W )
. Thus, applying Theorem 2.2 on W ⊗n [P ] leads to inner bounds on C NS (W ): Proposition 4.5 (Inner Bounds on C NS (W )). For any number of copies n, number of inputs

k 1 ∈ [|X 1 | n ] and k 2 ∈ [|X 2 | n ], non-signaling assisted codes P on inputs in [k 1 ], [k 2 ] for W ⊗n , and distributions q 1 , q 2 on [k 1 ], [k 2 ], we have that the following (R 1 , R 2 ) are in C NS (W ): R 1 ≤ I(I 1 : J|I 2 ) n , R 2 ≤ I(I 2 : J|I 1 ) n , R 1 + R 2 ≤ I((I 1 , I 2 ) : J) n , for (I 1 , I 2 ) ∈ [k 1 ] × [k 2 ]
following the product law q 1 × q 2 , and J ∈ [ ] the outcome of W ⊗n [P ] on inputs I 1 , I 2 . In particular, the corner points of this capacity region are given by: 

I(I 1 : J|I 2 ) n , I ( 
R 1 R 2 C(W BAC,ε,ε ) for ε = 10 -3
ZE NS Capacity Region NS Achievable Points for 3 copies NS Achievable Points for 5 copies for ε = 10 -3 city Region le Points for 3 copies le Points for 5 copies Figure 5: Capacity regions of the noisy binary adder channel W BAC,ε,ε for ε = 10 -3 . The black dashed curve depicts the classical capacity region C(W BAC,ε,ε ) which was found numerically using Theorem 2.2. The red point depicts the zero-error non-signaling assisted capacity region (Proposition 4.6). The blue curve depicts achievable non-signaling assisted rates pairs obtained from C(W ⊗5 BAC,ε,ε [P ]) through the numerical method described in Proposition 4.5.
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Relaxed Non-Signaling Assisted Capacity Region and Outer Bounds A natural question that arises when studying the strength of non-signaling assistance is whether a result similar to Theorem 2.2 can be found to describe by a single-letter formula the non-signaling assisted capacity region of MACs. In particular, dropping the constraint that (X 1 , X 2 ) is in product form in Theorem 2.2 seems to be a particularly good candidate to characterize the non-signaling assisted capacity region of MACs, as this looks quite similar to allowing correlations between parties.

We have not been able to show the equivalence between this region and the non-signaling assisted capacity region; however, it turns out to be equivalent to the capacity region dened by a slight relaxation of non-signaling assistance, which we call S NS (W, k 1 , k 2 ). In particular, this will give us the best known outer bound on the non-signaling capacity. Denition 5.1.

S NS (W, k 1 , k 2 ) := maximize r,p 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y subject to x 1 ,x 2 r x 1 ,x 2 ,y ≤ 1 x 1 ,x 2 p x 1 ,x 2 = k 1 k 2 x 1 p x 1 ,x 2 ≥ k 1 x 1 r x 1 ,x 2 ,y x 2 p x 1 ,x 2 ≥ k 2 x 2 r x 1 ,x 2 ,y 0 ≤ r x 1 ,x 2 ,y ≤ p x 1 ,x 2 (41) 
The following proposition shows that this is indeed a relaxation of the non-signaling constraint.

Proposition 5.2.

S NS (W, k 1 , k 2 ) ≤ S NS (W, k 1 , k 2 ).
Proof. Let us take a solution (p

x 1 ,x 2 , r x 1 ,x 2 ,y , r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y ) x 1 ∈X 1 ,x 2 ∈X 2 ,y∈Y of the linear program com- puting S NS (W, k 1 , k 2 ). Let us show that (p x 1 ,x 2 , r x 1 ,x 2 ,y ) x 1 ∈X 1 ,x 2 ∈X 2 ,
y∈Y is a solution of the linear program computing S NS (W, k 1 , k 2 ) with a same objective value, from which the proposition follows.

They have indeed the same value, since the denition which is the same for both programs depends only on r x 1 ,x 2 ,y . Let us show that all constraints are satised for (p

x 1 ,x 2 , r x 1 ,x 2 ,y ) x 1 ∈X 1 ,x 2 ∈X 2 ,y∈Y .
We have x 1 ,x 2 r x 1 ,x 2 ,y = 1 ≤ 1 so the rst constraint is satised. We have then that:

x 1 ,x 2 p x 1 ,x 2 = k 1 x 1 ,x 2 r 2 x 1 ,x 2 ,y = k 1 k 2 x 1 ,x 2 r x 1 ,x 2 ,y = k 1 k 2 ,
so the second constraint is satised.

For the third constraint (and symmetrically the fourth constraint), we have:

x 1 p x 1 ,x 2 = k 1 x 1 r 2 x 1 ,x 2 ,y ≥ k 1 x 1 r x 1 ,x 2 ,y .
Finally, we have directly 0 ≤ r x 1 ,x 2 ,y ≤ p x 1 ,x 2 , so the last constraint is satised.

We can now introduce the relaxed non-signaling assisted capacity region C NS (W ):

Denition 5.3 (C NS (W )). A rate pair (R 1 , R 2 )
is achievable with relaxed non-signaling assistance if:

lim n→+∞ S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene C NS (W ) as the closure of the convex hull of the set of all achievable rate pairs with relaxed non-signaling assistance.

Remark. One could show as in the non-relaxed case that C NS (W ) is convex without taking the convex hull in its denition.

A direct property that follows from this denition and Proposition 5.2 is the fact that the non-signaling assisted capacity region is included in the relaxed non-signaling assisted capacity region. Corollary 5.4.

C NS (W ) ⊆ C NS (W ).
is as well concave in P X 1 X 2 . Let us consider any of those three bounds, which we call B. We have by concavity of B and the fact that B(P X 1 X 2 ) = B(P X 1 X 2 ):

B(P X 1 X 2 ) = B(P X 1 X 2 ) + B(P X 1 X 2 ) 2 ≤ B P X 1 X 2 + P X1 X2 2 = B q 2 , 1 -q 2 , 1 -q 2 , q 2 
, with q = p 00 + p 11 . This holds for the three bounds at the same time, so we can restrict ourselves to the distributions of the form q 2 , 1-q 2 , 1-q 2 , q 2 for some q ∈ [0, 1], i.e., P X 1 X 2 (0, 0) = P X 1 X 2 (1, 1) = q 2 and P X 1 X 2 (0, 1) = P X 1 X 2 (1, 0) = 1-q 2 . We have P Y (0) = P Y (2) = q 2 and P Y (1) = 1 -q, so:

B 12 (P X 1 X 2 ) = H(Y ) = -q log q 2 -(1 -q) log(1 -q) = -q (log(q) -1) -(1 -q) log(1 -q) = q + h (q) . (43) 
We have P X 2 (0) = P X 1 X 2 (0, 0) + P X 1 X 2 (1, 0) = q 2 + 1-q 2 = 1 2 so P X 2 (1) = 1 2 . Thus:

B 1 (P X 1 X 2 ) = H(X 1 |X 2 ) = 1 2 H(X 1 |X 2 = 0) + 1 2 H(X 1 |X 2 = 1) .
We have

P X 1 |X 2 =0 (0) = P X 1 X 2 (0,0) P X 2 (0)
= q so H(X 1 |X 2 = 0) = h (q). On the other hand, we have

P X 1 |X 2 =1 (1) = P X 1 X 2 (1,1) P X 2 (1) 
= q so we get as well H(Y |X 2 = 1) = h (q), and

B 1 (P X 1 X 2 ) = H(X 1 |X 2 ) = h (q).
Symmetrically, we also get B 2 (P X 1 X 2 ) = h (q). Therefore, we get that C NS (W BAC ) is the closure of the convex hull of:

q∈[0,1] {(R 1 , R 2 ) : R 1 < h (q) , R 2 < h (q) , R 1 + R 2 < q + h (q)} .
However this set is already convex, so we have:

C NS (W BAC ) = q∈[0,1] {(R 1 , R 2 ) : R 1 ≤ h (q) , R 2 ≤ h (q) , R 1 + R 2 ≤ q + h (q)} .
Finally, we can restrict ourselves to q ∈ 1 2 , 2 3 , since h is increasing from 0 to 1 2 (thus q → q + h (q) as well), and the fact that q → q + h (q) achieves its maximum for q = 2 3 with 2 3 + h 2 3 = log 2 (3) and then decreases (whereas h is decreasing from 1 2 to 1), which completes the proof. As before, one can also dene a symmetrized version of the relaxed linear program computing the value S NS (W ⊗n , k 1 , k 2 ) in polynomial time in n and compute the zero-error n-shots capacity region by looking at the rates where S NS (W ⊗n , k 1 , k 2 ) = 1. We have computed this up to 7 copies of the binary adder channel, which led to Figure 6:

The rst noticeable result coming from these curves is that the values S NS and S NS dier. While the highest sum-rate of 2 log 2 (42) 7

1.5406 is achieved on 7 copies of the binary adder channel with zero-error and non-signaling assistance, coming from the fact that S NS (W ⊗7 BAC , 42, 42) = 1, we have that S NS (W ⊗7 BAC , 44, 44) = 1 > S NS (W ⊗7 BAC , 44, 44) 0.9581 which implies that a sum-rate of 2 log 2 (44) 7

1.5598 is achieved on 7 copies of the binary adder channel with zero-error and relaxed non-signaling assistance. It also largely beats the best found sum-rate of log 2 (72) 4

1.5425 achieved on 8 copies with the regular version. However the fact that the non-signaling assisted capacity region is strictly contained in the relaxed one is still open, as the same rates could potentially be achieved by the cost of using more copies of the channel. In particular, the curved corners are obtained by taking R 1 = h(R 2 ) for R 2 ∈ 1 2 , 2 3 and symmetrically by switching the roles played by R 1 and R 2 . The continuous blue (respectively red) curve depicts the zeroerror (respectively relaxed) non-signaling assisted achievable rate pairs for 7 copies of the binary adder channel.

R 1 R 2 C(W BAC ) C NS (W BAC ) C NS 0,≤7 (W BAC ) C NS 0,≤7 (W BAC )

5.1

Outer Bound Part of Theorem 5.5

In order to prove Proposition 5.12, we use a connection between hypothesis testing and relaxed nonsignaling assisted codes as established in [START_REF] Matthews | A linear program for the nite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes[END_REF] for point-to-point channels.

Denition 5.7 (Hypothesis Testing). Given distributions P (0) and P (1) on the same space C, we dene β 1-ε (P (0) , P (1) ) to be the minimum type II error r∈C T r P (1) (r) that can be achieved by statistical tests T which give a type I error no greater than ε, i.e. r∈C T r P (0) (r) ≥ 1 -ε.

In other words, we have that:

β 1-ε (P (0) , P (1) ) = minimize Tr r∈C T r P (1) (r) subject to r∈C T r P (0) (r) ≥ 1 -ε 0 ≤ T r ≤ 1 . (44) 
Lemma 5.8. For any relaxed non-signaling assisted code (p

x 1 ,x 2 , r x 1 ,x 2 ,y ) x 1 ∈X 1 ,x 2 ∈X 2 ,y∈Y with (k 1 , k 2 )
messages and a probability of success 1 -ε, if

P X 1 X 2 (x 1 , x 2 ) = px 1 ,x 2
k 1 k 2 and Y ∈ Y is the outcome of W on inputs X 1 , X 2 , we have:

β 1-ε P X 1 X 2 Y , P X 1 X 2 × P Y |X 2 ≤ 1 k 1 β 1-ε P X 1 X 2 Y , P X 1 X 2 × P Y |X 1 ≤ 1 k 2 β 1-ε (P X 1 X 2 Y , P X 1 X 2 × P Y ) ≤ 1 k 1 k 2 .
(45)

Remark. These three bounds are actually achieved with the same statistical test.

Proof. This result is a direct generalization of Theorem 9 in [START_REF] Matthews | A linear program for the nite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes[END_REF] for point-to-point channels, itself a generalization of Theorem 27 in [START_REF] Yury Polyanskiy | Channel coding rate in the nite blocklength regime[END_REF] without non-signaling assistance.

Let us name W 0 := W and W 1 a MAC yet to be dened. The coding strategy described by r x 1 ,x 2 ,y and p x 1 ,x 2 leads to a probability of success on channel i ∈ {0, 1} is given by:

1 -ε i = 1 k 1 k 2 x 1 ,x 2 ,y r x 1 ,x 2 ,y W i (y|x 1 x 2 ) = x 1 ,x 2 ,y:px 1 ,x 2 >0 r x 1 ,x 2 ,y p x 1 ,x 2 W i (y|x 1 x 2 ) p x 1 ,x 2 k 1 k 2 since 0 ≤ r x 1 ,x 2 ,y ≤ p x 1 ,x 2 = x 1 ,x 2 ,y T x 1 ,x 2 ,y W i (y|x 1 x 2 ) p x 1 ,x 2 k 1 k 2 , (46) 
with T x 1 ,x 2 ,y :=

rx 1 ,x 2 ,y px 1 ,x 2
if p x 1 ,x 2 > 0, and T x 1 ,x 2 ,y := 0 otherwise.

If now Y is the output of the channel W i , the joint distribution of X 1 , X 2 , Y is given by P

(i) X 1 X 2 Y (x 1 , x 2 , y) = W i (y|x 1 x 2 )P X 1 X 2 (x 1 , x 2 ) = W i (y|x 1 x 2 ) px 1 ,x 2 k 1 k 2 .
On the other hand, we have that for all x 1 , x 2 , y, 0 ≤ T x 1 ,x 2 ,y ≤ 1 since 0 ≤ r x 1 ,x 2 ,y ≤ p x 1 ,x 2 . So we get that:

1 -ε i = x 1 ,x 2 ,y T x 1 ,x 2 ,y P (i) X 1 X 2 Y (x 1 , x 2 , y) . Since x 1 ,x 2 ,y T x 1 ,x 2 ,y P (0) X 1 X 2 Y (x 1 , x 2 , y) ≥ 1 -ε 0 and 0 ≤ T x 1 ,x 2 ,
y ≤ 1, we have:

β 1-ε 0 (P (0) , P (1) ) ≤ x 1 ,x 2 ,y T x 1 ,x 2 ,y P (1) X 1 X 2 Y (x 1 , x 2 , y) = 1 -ε 1 .
Let us now consider three general cases, depending on the fact that W 1 does not depend on x 1 , x 2 or both:

W 1 (y|x 1 x 2 ) := Q (1) (y|x 2 ); W 1 (y|x 1 x 2 ) := Q (2) (y|x 1 ); W 1 (y|x 1 x 2 ) := Q (0) (
y). These will give respectively the three bounds we want.

First, let us consider the case where W 1 (y|x 1 x 2 ) := Q (1) (y|x 2 ) (the second case where W 1 (y|x 1 x 2 ) := Q (2) (y|x 1 ) being symmetric), we have that:

1 -ε 1 = x 1 ,x 2 ,y T x 1 ,x 2 ,y Q (1) (y|x 2 ) p x 1 ,x 2 k 1 k 2 = 1 k 1 k 2 x 2 ,y Q (1) (y|x 2 ) x 1 T x 1 ,x 2 ,y p x 1 ,x 2 = 1 k 1 k 2 x 2 ,y Q (1) (y|x 2 ) x 1 r x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 2 ,y Q (1) (y|x 2 ) 1 k 1 x 1 p x 1 ,x 2 = 1 k 1 x 1 ,x 2 p x 1 ,x 2 k 1 k 2 y Q (1) (y|x 2 ) = 1 k 1 x 1 ,x 2 p x 1 ,x 2 k 1 k 2 = 1 k 1 . (47) 
For the third case, when W 1 (y|x 1 x 2 ) := Q (0) (y), we have:

1 -ε 1 = x 1 ,x 2 ,y T x 1 ,x 2 ,y Q (0) (y) p x 1 ,x 2 k 1 k 2 = 1 k 1 k 2 y Q (0) (y) x 1 ,x 2 T x 1 ,x 2 ,y p x 1 ,x 2 = 1 k 1 k 2 y Q (0) (y) x 1 ,x 2 r x 1 ,x 2 ,y ≤ 1 k 1 k 2 y Q (0) (y) = 1 k 1 k 2 . (48) 
In those three cases, we have respectively P

(1)

X 1 X 2 Y = P X 1 X 2 × Q (1) Y |X 2 ; P X 1 X 2 × Q (2) Y |X 1 ; P X 1 X 2 × Q (0) Y . Specializing those cases with Q (1) Y |X 2 := P Y |X 2 ; Q (2) Y |X 1 := P Y |X 1 ; Q (0) Y := P Y
and using the fact that β 1-ε 0 P (0) , P (1) ≤ 1 -ε 1 concludes the proof. Lemma 5.9. For any relaxed non-signaling assisted code (p

x 1 ,x 2 , r x 1 ,x 2 ,y ) x 1 ∈X 1 ,x 2 ∈X 2 ,y∈Y with (k 1 , k 2 )
messages and a probability of success 1

-ε, if P X 1 X 2 (x 1 , x 2 ) = px 1 ,x 2 k 1 k 2 and Y ∈ Y is the outcome of W on inputs X 1 , X 2 , we have: log(k 1 ) ≤ I(X 1 : Y |X 2 ) + h(ε) 1 -ε , log(k 2 ) ≤ I(X 2 : Y |X 1 ) + h(ε) 1 -ε , log(k 1 ) + log(k 2 ) ≤ I((X 1 , X 2 ) : Y ) + h(ε) 1 -ε . (49) 
Proof. Thanks to Lemma 5.8, with the fact that P X

1 X 2 = P X 1 |X 2 × P X 2 = P X 2 |X 1 × P X 1 ,
we have already:

β 1-ε P X 1 X 2 Y , P X 1 |X 2 × P Y |X 2 × P X 2 ≤ 1 k 1 β 1-ε P X 1 X 2 Y , P X 2 |X 1 × P Y |X 1 × P X 1 ≤ 1 k 2 β 1-ε (P X 1 X 2 Y , P X 1 X 2 × P Y ) ≤ 1 k 1 k 2 (50)
Following the steps of section G in [START_REF] Yury Polyanskiy | Channel coding rate in the nite blocklength regime[END_REF], since any hypothesis test is a binary-output transformation, by data-processing inequality for divergence, we have that: 

d 1 -ε||β 1-ε P X 1 X 2 Y , P X 1 |X 2 × P Y |X 2 × P X 2 = d β 1-ε (P X 1 X 2 Y , P X 1 X 2 Y ) ||β 1-ε P X 1 X 2 Y , P X 1 |X 2 × P Y |X 2 × P X 2 ≤ D P X 1 X 2 Y || P X 1 |X 2 × P Y |X 2 × P X 2 = I(X 1 : Y |X 2 ) ( 
log 1 b ≤ d(a||b) + h(a) a = d(a||b) + h(1 -a) a ,
This leads to:

log(k 1 ) ≤ 1 log β 1-ε P X 1 X 2 Y , P X 1 |X 2 × P Y |X 2 × P X 2 ≤ I(X 1 : Y |X 2 ) + h(ε) 1 -ε . P ((X n 1 , X n 2 , y n ) / ∈ T n ε (X 1 , X 2 , Y )) = P (∃(x 1 , x 2 , y) : |π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) -P X 1 X 2 Y (x 1 , x 2 , y)| > εP X 1 X 2 Y (x 1 , x 2 , y)) ≤ x 1 ,x 2 ,y P (|π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) -P X 1 X 2 Y (x 1 , x 2 , y)| > εP X 1 X 2 Y (x 1 , x 2 , y)) by union bound, = x 1 ,x 2 ,y P π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) P X 1 X 2 Y (x 1 , x 2 , y) -1 > ε = x 1 ,x 2 ,y P π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) P X 1 X 2 |Y (x 1 , x 2 |y)π(y|y n ) π(y|y n ) P Y (y) -1 > ε ≤ x 1 ,x 2 ,y P π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) π(y|y n ) > 1 + ε 1 + ε P X 1 X 2 |Y (x 1 , x 2 |y) + x 1 ,x 2 ,y P π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) π(y|y n ) < 1 -ε 1 -ε P X 1 X 2 |Y (x 1 , x 2 |y) , (62) 
since y n ∈ T n ε (Y) and thus 1 -ε ≤ π(y|y n ) P Y (y) ≤ 1 + ε . However, since ε < ε, we have 1+ε 1+ε > 1 and 1-ε 1-ε < 1. We will show that for all x 1 , x 2 , y with P Y (y) > 0, we have

π(x 1 ,x 2 ,y|X n 1 ,X n 2 ,y n ) π(y|y n ) → n→+∞ P X 1 X 2 |Y (x 1 , x 2 |y) in
probability, with a convergence rate independent from y n ∈ T n ε (Y ), which will be enough to conclude the proof.

Let us x some x 1 , x 2 , y with P Y (y) > 0. Since

y n ∈ T n ε (Y ), we have in particular (1 -ε )P Y (y) ≤ π(y|y n ) ≤ (1 + ε )P Y (y). Thus N := |{i : y i = y}| = nπ(y|y n ) ≥ (1 -ε )P Y (y)n. Then we have: π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) π(y|y n ) = 1 N i∈S Z i with Z i := 1 (X 1,i ,X 2,i )=(x 1 ,x 2 )
and S := {i : y i = y} .

Thus, all Z i with i ∈ S are independent and follow the same law:

Z i := 1 with probability P X 1 X 2 |Y (x 1 , x 2 |y) 0 otherwise Furthermore, we have E[Z i ] = P X 1 X 2 |Y (x 1 , x 2 
|y), and all Z i have the same variance σ 2 x 1 ,x 2 |y < +∞ (depending only on X 1 , X 2 , Y, x 1 , x 2 , y). Thus we can apply Chebyshev inequality:

P 1 N i∈S Z i -P X 1 X 2 |Y (x 1 , x 2 |y) ≥ η ≤ σ 2 x 1 ,x 2 |y N η 2 .
However, since N ≥ (1 -ε )P Y (y)n, we get:

P π(x 1 , x 2 , y|X n 1 , X n 2 , y n ) π(y|y n ) -P X 1 X 2 |Y (x 1 , x 2 |y) ≥ η ≤ σ 2 x 1 ,x 2 |y η 2 (1 -ε )P Y (y)n → n→+∞ 0 .
Thus, we have

π(x 1 ,x 2 ,y|X n 1 ,X n 2 ,y n ) π(y|y n ) → n→+∞ P X 1 X 2 |Y (x 1 , x 2 
|y) in probability with a convergence rate independent from y n ∈ T n ε (Y ).

Proposition 5.17 (Achievability part of Theorem 5.5). If a rate pair is in the closure of the convex hull of (R 1 , R 2 ) satisfying:

R 1 < I(X 1 : Y |X 2 ) , R 2 < I(X 2 : Y |X 1 ) , R 1 + R 2 < I((X 1 , X 2 ) : Y ) , |T n ε (X 1 |x n 2 )| |T n ε (X 1 |x n 2 , y n )| ≥ 2 n(-R 1 -2εH(X 1 ,X 2 )) |T n ε (X 1 |x n 2 )| |T n ε (X 1 |x n 2 , y n )| . (66) But|T n ε (X 1 |x n 2 , y n )| ≤ 2 n(1+ε)H(X 1 |X 2 Y
) and for a large enough n we have ∀x n

2 ∈ T n ε (X 2 ), |T n ε (X 1 |x n 2 )| ≥ (1-ε)2 n(1-ε)H(X 1 |X 2 ) ≥ 2 n((1-ε)H(X 1 |X 2 )-1 n ) , so we get with C 1 := 2H(X 1 , X 2 ) +H(X 1 |X 2 Y ) +H(X 1 |X 2 ) (symmetrically C 2 := 2H(X 1 , X 2 ) + H(X 2 |X 1 Y ) + H(X 2 |X 1 )): x n 1 p x n 1 ,x n 2 k 1 x n 1 r x n 1 ,x n 2 ,y n ≥ 2 n(H(X 1 |X 2 )-1 n -H(X 1 |X 2 Y )-R 1 -C 1 ε) = 2 n(I(X 1 :Y |X 2 )-1 n -C 1 ε-R 1) ≥ 1 .
For a large enough n, all constraints are satised, thus (p x n Independent Non-Signaling Assisted Capacity Region

The goal of this section is to show that independent non-signaling assistance does not change the capacity region of a MAC W , i.e. that C NS SR (W ) = C(W ). In order to prove this result, we will need some properties in the one-sender one-receiver case from [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF]. Specically, let us rst recall the denition of the maximum success probability S(W, k) of transmitting k messages using the channel W : As in the MAC scenario, one can consider non-signaling assistance shared between the sender and the receiver, which leads to the following maximum success probability S NS (W, k): S NS (W, k) := maximize Finally, the main tool we will use from [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF] is the following random coding technique, which describes how to nd a classical code with a success probability close to the non-signaling assisted one: Theorem 6.3 (Theorem 3.1 of [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF]). Given a solution r, p of the program computing S NS (W, k), we have that:

S(W, k) := maximize e,d 1 
E S f W (S) ≥ k 1 -1 - 1 k • 1 k x,y W (y|x)r x,y ,
for the multiset S obtained by choosing elements of X independently according to the distribution px k x∈X .

We can now state our result on independent non-signaling assistance, which says that even in one-shot scenarios, the success probability with and without that assistance are close: Theorem 6.4. For any 1 , k 1 , 2 , k 2 :

min k 1 1 1 -1 - 1 k 1 1 , k 2 2 1 -1 - 1 k 2 2 S NS SR sum (W, k 1 , k 2 ) ≤ S sum (W, 1 , 2 ) .
In particular, this will imply that the capacity regions are the same: Corollary 6.5. C NS SR (W ) = C(W ).

Proof. We will show that C NS SR sum (W ) = C sum (W ), which is enough to conclude thanks to Proposition 2.5 and Proposition 2.9. We apply Theorem 6.4 on the MAC W ⊗n . Let us x k 1 = 2 nR 1 , k 2 = 2 nR 2 and 1 = 2 nR 1 n , 2 = 2 nR 2 n . Since:

k 1 -1 - 1 k ≥ k 1 -e -k ≥ 1 - 2k ,
and 1 -1 2k 1 = 1 -2 2k 2 = 1 -1 2n , we get:

1 -1 2n S NS SR sum (W ⊗n , 2 nR 1 , 2 nR 1 ) ≤ S sum W ⊗n ,

2 nR 1 n , 2 nR 2 n .
As 1 -1 2n tends to 1 when n tends to innity, we get that ∀ε > 0, ∃N ∈ N, ∀n ≥ N :

(1 -ε)S NS SR sum (W ⊗n , 2 nR 1 , 2 nR 1 ) ≤ S sum (W ⊗n , 2 n(R 1 -log(n)

n ) , 2 n(R 2 -log(n) n ) ) . S 2 , 2 (y|S i 1 1 ) 1 + y max i 2 W 2 S 1 , 1 (y|S i 2 2 ) 2 = 1 2 f W 1 S 2 , 2 (S 1 ) 1 + f W 2 S 1 , 1 (S 2 ) 2 . (71) 
We have now all the tools to prove Theorem 6.4:

Proof of Theorem 6.4. Let us consider an optimal solution r 1 , r 2 , p 1 , p 2 of the program of Proposition 3.2 computing S NS SR sum (W, k 1 , k 2 ).

Let us x some multiset S 2 with elements in X 2 of size 2 . Note that r 1 and p 1 are a feasible solution of the program of Proposition 6.2 computing S NS (W 1 S 2 , 2 , k 1 ). As a result, we can apply Theorem 6.3 and get the following statement. For the multiset S 1 obtained by choosing 1 elements of X 1 independently according to the distribution

p 1 x 1 k 1 x 1 ∈X 1
, we have: . We have:

E S 1 f W 1 S 2 , 2 (S 1 ) 1 ≥ k 1 1 1 -1 - 1 k 1 1 • 1 k 1 x 1 ,
E S 2 1 k 1 x 1 ,y W 1 S 2 , 2 (y|x 1 )r 1 x 1 ,y = E S 2 1 k 1 x 1 ,y 1 
2 2 i 2 =1
W (y|x 1 S i 2 2 )r 1

x 1 ,y = 1

2 2 i 2 =1 E X i 2 2 ∼ p 2 x 2 k 2 1 k 1 x 1 ,y W (y|x 1 X i 2 2 )r 1 x 1 ,y = E X 2 ∼ p 2 x 2 k 2 1 k 1 x 1 ,y W (y|x 1 X 2 )r 1 x 1 ,y = 1 k 1 x 1 ,x 2 ,y p 2 x 2 k 2 W (y|x 1 x 2 )r 1 x 1 ,y = 1 k 1 x 1 ,y W 1 p 2 ,k 2 (y|x 1 )r 1 x 1 ,y . (72) 
Thus in all, we have:

E S 2 E S 1 f W 1 S 2 , 2 (S 1 ) 1 ≥ E S 2 k 1 1 1 -1 - 1 k 1 1 • 1 k 1 x 1 ,y W 1 S 2 , 2 (y|x 1 )r 1 x 1 ,y = k 1 1 1 -1 - 1 k 1 1 • E S 2 1 k 1 x 1 ,y W 1 S 2 , 2 (y|x 1 )r 1 x 1 ,y ≥ k 1 1 1 -1 - 1 k 1 1 • 1 k 1 x 1 ,y W 1 p 2 ,k 2 (y|x 1 )r 1 x 1 ,y , (73) 
and symmetrically for E S 1 E S 2 f W 2 S 1 , 1 (S 2 )

2

. Since there exists classical codes S * 1 , S * 2 such that:

1 2   f W 1 S * 2 , 2 (S * 1 ) 1 + f W 2 S * 1 , 1 (S * 2 ) 2   ≥ E S 1 ,S 2 1 2 f W 1 S 2 , 2 (S 1 ) 1 + f W 2 S 1 , 1 (S 2 ) 2 ,
by applying Lemma 6.6, we get:

S sum (W, 1 , 2 ) ≥ 1 2   f W 1 S * 2 , 2 (S * 1 ) 1 + f W 2 S * 1 , 1 (S * 2 ) 2   ≥ E S 1 ,S 2 1 2 f W 1 S 2 , 2 (S 1 ) 1 + f W 2 S 1 , 1 (S 2 ) 2 = 1 2 E S 2 E S 1 f W 1 S 2 , 2
(S 1 )

1

+ E S 1 E S 2 f W 2 S 1 , 1 (S 2 ) 2 ≥ 1 2 k 1 1 1 -1 - 1 k 1 1 • 1 k 1 x 1 ,y W 1 p 2 (y|x 1 )r 1 x 1 ,y + k 2 2 1 -1 - 1 k 2 2 • 1 k 2 x 2 ,y W 2 p 1 (y|x 2 )r 2 x 2 ,y ≥ min k 1 1 1 -1 - 1 k 1 1 , k 2 2 1 -1 - 1 k 2 2 S NS SR sum (W, k 1 , k 2 ) . (74) 
Remark. In the whole proof of Theorem 6.4, as well as the properties it depends on, we have never used the fact that the output of the channel y was the same for both decoders d 1 and d 2 . This implies that the result also holds for interference channels, i.e. two-sender two-receiver channels W (y 1 y 2 |x 2 x 2 ). Specically, non-signaling assistance shared between the rst sender and the rst receiver and independently shared between the second sender and the second receiver does not change the capacity region of interference channels.

Conclusion

In this work, we have studied the impact of non-signaling assistance on the capacity of multiple-access channels. We have developed an ecient linear program computing the success probability of the best non-signaling assisted code for a nite number of copies of a multiple-access channel. In particular, this gives lower bounds on the zero-error non-signaling assisted capacity of multiple-access channels. Applied to the binary adder channel, these results were used to prove that a sum-rate of log 2 (72) 4

1.5425 can be reached with zero error, which beats the maximum classical sum-rate capacity of 3 2 . For noisy channels, we have developed a technique giving lower bounds through the use of concatenated codes. Applied to the noisy binary adder channel, this technique was used to show that non-signaling assistance still improves the sum-rate capacity. We have also found an outer bound on the non-signaling assisted capacity region through a relaxed notion of non-signaling assistance, whose capacity region was characterized by a singleletter formula. Finally, we have shown that independent non-signaling assistance does not change the capacity region.

Our results suggest that quantum entanglement may also increase the capacity of such channels. However, even for the binary adder channel, this question remains open. One could also ask if such ecient methods to compute the best non-signaling assisted codes can be extended to Gaussian multiple-access channels. Finally, establishing a single-letter formula for the non-signaling assisted capacity of multipleaccess channels is the main open question left by this work. It remains open even for the binary adder channel. Proving that non-signaling assistance and relaxed non-signaling assistance coincide asymptotically would directly answer this question and show that the capacity region is described in Theorem 5.5.
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 312 Let τ ∈ O G (A × B), and call ν := τ A and µ := τ B . For x ∈ ν, let us call B x τ := {y : (x, y) ∈ τ }. Then, |B x τ | = |B x τ | =: c ν τ for any x, x ∈ ν, and furthermore, we have that c ν τ = |τ | |ν| . Symmetrically, the same occurs for A y τ := {x : (x, y) ∈ τ } with y ∈ µ, where one gets that |A y τ | = |A y τ | =: c µ τ = |τ | |µ| for y, y ∈ µ. Proof. Let x, x ∈ ν. Thus there exists g ∈ G such that x = g • x. Let:

  so y = y . Thus we get that |B x τ | ≤ |B x τ |. By a symmetric argument with x replacing x and g -1 replacing g, we get that |B x τ | ≤ |B x τ |, and so |B x τ | = |B x τ | =: c ν τ . Furthermore, {B x τ } x∈ν is a partition of τ , so x∈ν |B x τ | = |ν|c ν τ = |τ |, and thus c ν τ = |τ | |ν| . Lemma 3.13. For any (x, y) ∈ A × B and v (x,y) G variable indexed by orbits of A × B, let us dene the variable v x,y := v (x,y) G

  Specically, for n = 2, it has 244 variables and 480 constraints; for n = 3, it has 1112 variables and 2054 constraints; for n = 7, it has 95592 variables and 162324 constraints; nally, for n = 8, it has 226911 variables and 383103 constraints.
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 4 Figure 4: Capacity regions of the binary adder channel W BAC . The black dashed curve depicts the classical
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 6 Figure 6: Comparison of relaxed and regular non-signaling assisted capacity regions of the binary adder channel. The black dashed curve depicts the classical capacity region C(W BAC ), whereas the grey dotted curve depicts the relaxed non-signaling assisted capacity region C NS (W BAC ) as described in Proposition 5.6.

  51) where the binary divergence d(a||b) := a log a b + (1 -a) log 1-a 1-b and satises, d(a||b) ≥ -h(a)a log(b) and thus:

  k i,x,y W (y|x)e(x|i)d(i|y) subject to x∈X e(x|i) = 1, ∀i ∈ [k] j∈[k] d(j|y) = 1, ∀y ∈ Y e(x|i), d(j|y) ≥ 0 (68) Then, the following characterization of S(W, k) can be derived: Proposition 6.1 (Proposition 2.1 of [6]). S(W, k) = 1 k max S⊆X:|S|≤k f W (S) with f W (S) := y∈Y max x∈S W (y|x).

P 1 P

 1 (xj|iy) = j P (xj|iy ) x,j P (xj|iy) = (xj|iy) ≥ 0 (69)A symmetrization can also be done to simplify the expression of the linear program dening S NS (W, k): Proposition 6.2 (Appendix A of[START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF]).S NS (W, k) = maximize

  NS (W, k 1 , k 2 ) with a number of variables and constraints polynomial in only |X 1 |, |X 2 | and |Y| and independent of k 1 and k 2 :

	3	Properties of Non-Signaling Assisted Codes
	3.1	Symmetrization
	One can prove an equivalent formulation of the linear program computing S

  is not achievable with non-signaling assistance. Symmetrically, R 2 > log 2 |X 2 | is not achievable with non-signaling assistance. Furthermore, if one takes R 1 +R 2 > log 2 |Y|, then in particular k 1 k 2 > |Y|, so by the second property of Proposition 3.6, S NS (W ⊗n

  log 2 |Y| is not achievable with non-signaling assistance.3. Since (R 1 , R 2 ) is achievable with non-signaling assistance, we have S NS (W ⊗n , 2 nR 1 , 2 nR 2 ) → But, for all positive integer n, we have that 2 nR 1 ≤ 2 nR 1 and 2 nR 2 ≤ 2 nR 2 , so by the third property of Proposition 3.6, we have that S NS (W ⊗n ,2 nR 1 , 2 nR 2 ) ≥ S NS (W ⊗n , 2 nR 1 , 2 nR 2 ). Thus S NS (W ⊗n , 2 nR 1 , 2 nR 2 → n→+∞ 1since it is upper bounded by 1, and so (R 1 , R 2 ) is achievable with non-signaling assistance.

n→+∞ 1. Proposition 3.8. C NS 0 (W ) is the closure of the set of rate pairs (R 1 , R 2 ) such that:

  ). Note also that all the numbers occurring this linear program are integers or fractions of integers, with those integers ranging in [(|X 1 ||X 2 ||Y|) n ], thus of size O(n log(|X 1 ||X 2 ||Y|)). So the size of this linear program is bounded by O

  BAC ), and as a consequence, we have that C(W BAC ) C NS (W BAC ). BAC ) by Theorem 2.2 applied to W BAC . Since C(W BAC ) ⊆ C NS (W BAC ) and C NS 0 (W BAC ) ⊆ C NS (W BAC ), we thus get that C(W BAC ) C NS (W BAC ).

	2 (72) 8 ∈ C(W Proof. Since 2 8 log 2 (72) , log 2 (72) 8 ∈ C NS 0 (W BAC ) but log 2 (72) 8 , log 2 (72) 8 8 = 72 and numerically S NS (W ⊗8 BAC , 72, 72) = 1 thanks to Corollary 3.11, we get that
	log 2 (72) 8	, log 2 (72) 8	∈ C NS 0 (W BAC ) by Proposition 3.8. However, log 2 (72) 8	+ log 2 (72) 8	> 3 2 so	log 2 (72) 8	, log 2 (72) 8	∈
	C(W 4.2	Non-Signaling Assisted Achievable Rate Pairs with Non-Zero Error	

  y W 1 S 2 , 2 (y|x 1 )r 1 x 1 ,y .Now, let S 2 be the multiset obtained by choosing 2 elements of X 2 independently according to the

	distribution	p 2 x 2 k 2	x 2 ∈X 2

,x n

, r x n 1 ,x n 2 ,y n ) is a valid solution. Then:
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Proof. The achievable region comes from the previous discussion. We just need to prove that the corner points are of the given form. If R 1 = I(I 1 :J|I 2 ) n , constraints on R 2 and R 1 + R 2 leads to a maximum R 2 = min I(I 2 :J|I 1 ) n , I((I 1 ,I 2 ):J) n -I(I 1 :J|I 2 ) n . However, I((I 1 , I 2 ) : J) -I(I 1 : J|I 2 ) = I(I 2 : J) by the chain rule. We only need to show that I(I 2 : J) ≤ I(I 2 : J|I 1 ) and the proof will be complete, since the other corner point is symmetric. We have:

the second equality coming from the fact that I 1 and I 2 are independent, and the inequality coming from the fact that H(A|BC) ≤ H(A|B) for any A, B, C.

Application to the Noisy Binary Adder Channel We will now apply this strategy to a noisy version of the BAC. We will consider ip errors ε 1 , ε 2 of inputs x 1 , x 2 on W BAC , which leads to the following denition of W BAC,ε 1 ,ε 2 :

First, let us note that the zero-error non-signaling assisted capacity region of W BAC,ε 1 ,ε 2 is trivial for ε ∈ (0, 1):

Proposition 4.6. If ε 1 , ε 2 ∈ (0, 1), then C NS 0 (W BAC,ε 1 ,ε 2 ) = {(0, 0)}.

Proof. If S NS (W ⊗n , k 1 , k 2 ) = 1, then ∀y n , x n 1 , x n 2 : W ⊗n (y n |x n 1 x n 2 ) > 0 =⇒ r x n 1 ,x n 2 ,y n = p x n 1 ,x n 2 . Indeed, we have for an optimal p, r that:

which implies the previous statement. But, for W ⊗n BAC,ε 1 ,ε 2 , one can easily check that for all y n , x n

. Indeed, you just have to ip the inputs to a valid preimage of the output. Thus if

In particular, this implies that

We have then applied the numerical method described in Proposition 4.5 to W BAC,ε 1 ,ε 2 for the sym- metric case ε 1 = ε 2 = ε := 10 -3 . Since it is hard to go through all non-signaling assisted codes P and product distributions q 1 , q 2 , we have applied the heuristic of using non-signaling assisted codes obtained while optimizing S NS (W ⊗n , k 1 , k 2 ) in the symmetrized linear program. We have combined them with uniform q 1 , q 2 , as the form of those non-signaling assisted codes coming from our optimization program is symmetric. We have evaluated the achievable corner points for all k 1 , k 2 ≤ 2 n for n ≤ 5 copies which led to Figure 5:

Compared to the noiseless binary adder channel, we can rst notice that the classical capacity region is slightly smaller, with a classical sum-rate capacity of 1.478 at most. On the other hand, although the zero-error non-signaling assisted capacity of W BAC,ε,ε is completely trivial, we have with our concatenated codes strategy found signicant rate pairs achievable with non-signaling assistance. In particular, we have reached a non-signaling assisted sum-rate capacity of 1.493 which beats the best classical sum-rate capacity. Thus, it shows that non-signaling assistance can improve the capacity of the noisy binary adder channel as well.

We present now the main result of this section, the characterization of C NS (W ) by a single-letter formula.

Theorem 5.5 (Characterization of C NS (W )). C NS (W ) is the closure of the convex hull of all rate pairs (R 1 , R 2 ) satisfying:

Remark. Note that the only dierence with the classical capacity region of MACs in Theorem 2.2 is that the joint distribution of X 1 and X 2 does not have any product form constraints here.

The proof of Theorem 5.5 will be divided in Proposition 5.12 (outer bound part) and Proposition 5.17 (achievability part). But rst, let us apply these results to the binary adder channel.

Application to the Binary Adder Channel Let us determine the relaxed non-signaling assisted capacity of the binary adder channel which will be plotted in Figure 6.

Proposition 5.6. C NS (W BAC ) has the following description:

Remark. Note that for q = 1 2 , the bound becomes

Proof. We use the characterization of C NS provided by Theorem 5.5. Let us consider an arbitrary P X 1 X 2 = (p 00 , p 01 , p 10 , p 11 ). First, we have that

p 10 , p 01 , p 00 ). One can notice that:

Similarly for the two other inequalities, since

In order to show additivity of the outer bound, we use the following lemma.

Lemma 5.10. For any distribution

1 , X n 2 , we have:

Proof. Consider n copies of the MAC W . Let us write X 1,-i := X 1,1 . . . X 1,i-1 X 1,i+1 . . . X 1,n and Z n := Z 1 . . . Z n . We have:

where the last equality comes from Lemma 5.11. As a result,

(55) Symmetrically by switching the roles of X 1 and X 2 , we get the second part of Lemma 5.10.

For the sum-rate case:

) by the chain rule

We next prove a technical lemma that was used in the previous proof.

Lemma 5.11. For any distribution

We have:

by denition of the law of Y i . On the other hand, we have that:

Thus, we have:

And then:

.

But:

(57) Thus, conditioned on any particular instance of

,-i and Y i are independent, and so I(X 1,-i :

Combining the previous results gives the desired outer bound.

Proposition 5.12 (Outer bound part of Theorem 5.5). If a rate pair is achievable with relaxed nonsignaling assistance then it is in the closure of the convex hull of all (R 1 , R 2 ) satisfying:

Proof. Consider (R 1 , R 2 ) achievable with relaxed non-signaling assistance: we have a sequence of relaxed non-signaling assisted codes for n copies of the MAC W with k 1 = 2 nR 1 , k 2 = 2 nR 2 messages and an error probability ε n → n→+∞ 0, along with associated distributions of X n 1 X n 2 Y n . Thus combining Lemma 5.9 and Lemma 5.10, we have that:

Then let us consider some random variable Q uniform on [n] and independent from (X n 1 , X n 2 , Y n ). Then we can write:

Since Y Q conditioned on X 1,Q and X 2,Q still follows the law of the MAC W (y|x 1 x 2 ), we can take X 1 = X 1,Q , X 2 = X 2,Q , and then the output of the channel Y satises Y = Y Q , and thus we obtain:

Doing this similarly on the other conditional mutual informations, we get:

(59)

By taking the limit as n goes to innity, since the limit of ε n is 0, then the limit of h(εn) n is 0 as well and we get that (R 1 , R 2 ) must be in the set of rate pairs such that:

for some uniform Q in a nite set, (X 1 , X 2 ) any joint law depending on Q, and Y the output of W on inputs (X 1 , X 2 ).

Finally, in order to show that this is the right region, one has only to see that the corner points of this region, such as for instance

which are all in the capacity region of the theorem by taking (X 1 X 2 ) ∼ P X 1 X 2 |Q=q . This implies that (R 1 , R 2 ) is in the convex hull of that region, so we can drop the random variable Q and the proof is completed.

The main consequence of that outer bound on the relaxed non-signaling assisted capacity region is that it holds also for the non-signaling assisted capacity region thanks to Corollary 5.4: Corollary 5.13 (Outer Bound on the Non-Signaling Assisted Capacity Region). If a rate pair is achievable with non-signaling assistance, then it is in the closure of the convex hull of all (R 1 , R 2 ) satisfying:

for (X 1 , X 2 ) following any law P X 1 X 2 on X 1 × X 2 , and Y ∈ Y the outcome of W on inputs X 1 , X 2 .

5.2

Achievability Part of Theorem 5.5

In order to construct the relaxed non-signaling assisted code for achievability, we will need the notions of jointly and conditional typical sets. We will consider the following typical sets dened in Chapter 2.5 of [START_REF] El | Network Information Theory[END_REF]:

Recall that: Denition 5.14 (Typical set and conditional typical set). We have the following denitions:

. This denition generalizes for any t-uple of variables.

∀y

A crucial property of such typical sets is the typical average lemma: Lemma 5.15 (Typical Average Lemma [START_REF] El | Network Information Theory[END_REF]). Let (x n

Then for any nonnegative function g on X 1 × X 2 :

In particular, with this tool, we can derive the following properties:

Lemma 5.16 (Properties of typical sets [START_REF] El | Network Information Theory[END_REF]). We have, among others, the following statements about typical sets:

9. For ε < ε and n suciently large, we get

Proof. We reproduce the proof of the last statement here to emphasize on the fact that there is an n 0 such that for all n ≥ n 0 and for all y n ∈ T n ε (Y ), the property holds. For any ε > ε > 0, let us show that there exists n such that we have:

where X n 1 , X n 2 are drawn from the distribution P X n 1 X n 2 |Y n =y n . This will imply the statement. Indeed, we have that:

since ) . In order to prove our result, we take the proof in Appendix 2A of [START_REF] El | Network Information Theory[END_REF]. We take

Applied to our choice of variables, we have the following result : for (X 1 , X 2 ) following some law P X 1 X 2 on X 1 × X 2 , and Y ∈ Y the outcome of W on inputs X 1 , X 2 , then it is in C NS (W ).

Proof. Let us x ε, ε ∈ (0, 1) such that ε < ε ≤ 1 2 . Let n ∈ N which will be chosen large enough during the proof.

We consider n independent random variables (X

n the law of their product. We have then P X n

we have that:

Thus, Ŷ follows the product law of Y i , i.e. Ŷ = Y n . Let us consider C 1 , C 2 , C 3 some positive numbers independent from n and ε which we will dene later,

We dene a solution of S NS (W ⊗n , 2 nR 1 , 2 nR 2 ) in the following way:

2 is satised. We have also that:

, so in that case:

.

Otherwise, if y n ∈ T n ε (Y ), then:

) and for a large enough n we have that |T n ε (X 1 , X 2 )| ≥ (1 -ε)2 n(1-ε)H(X 1 ,X 2 ) ≥ 2 n((1-ε)H(X 1 ,X 2 )-1 n ) , so in that case:

Let us focus on the constraint x n 2 ,y n will be achieved for symmetric reasons). Let us x (x n 2 , y n ). If (x n 2 , y n ) ∈ T n ε (X 2 , Y ), then for all x n 1 , (x n 1 , x n 2 , y n ) ∈ T n ε (X 1 , X 2 , Y ), thus r x n 1 ,x n 2 ,y n = 0 and the constraint is fullled. Let us assume that (x n 2 , y n ) ∈ T n ε (X 2 , Y ). Since r x n 1 ,x n 2 ,y n > 0 implies that (x n 1 , x n 2 , y n ) ∈ T n ε (X 1 , X 2 , Y ), we have that:

Thus, if lim n→+∞ S NS SR sum (W ⊗n , 2 nR 1 , 2 nR 1 ) = 1, we have that for all R 1 < R 1 and R 2 < R 2 : lim n→+∞ S sum (W ⊗n , 2 nR 1 , 2 nR 1 ) ≥ 1 -ε .

Since this is true for all ε > 0, we get in fact that lim n→+∞ S sum (W ⊗n , 2 nR 1 , 2 nR 1 ) = 1. This implies that C NS SR sum (W ) ⊆ C sum (W ), and thus that the capacity regions are equal as the other inclusion is always satised.

In order to prove Theorem 6.4, we will need the following lemma: Lemma 6.6. If S 1 , S 2 are classical codes (i.e. multisets with elements in X 1 , X 2 ) of size 1 , 2 :

S sum (W, 1 , 2 ) ≥ 1 2

(S 1 )