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2 and if L ∈ C , L = M, then d(L, N) ≥ d(L, M) -d(M, N) ≥ d min (C )+1

Matrix completion and the Netflix Problem

Matrix completion

Fill in the missing entries of a partially observed matrix in such a way that the matrix has least possible rank, or rank at most r .

The MinRank Problem is a generalization of matrix completion, where the unknown entries are linear forms instead of variables. Matrix completion and the MinRank Problem arise in coding theory, cryptography, collaborative filtering, systems theory, IoT localization, and many others.

The Netflix Problem

Given a ratings matrix whose entry (i, j) represents the rating of movie j by customer i if customer has watched movie j, and is otherwise missing, fill the remaining entries so that the matrix has low rank. low rank user preferences depend on few factors

Matrix completion and index coding

Index coding

Find an optimal coding scheme for broadcasting multiple messages to receivers with different side information.
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the rank of the completion is the number of messages to be broadcasted F q finite field, q 1 , . . . , q m ∈ F q [x 1 , . . . , x n ] usually quadratic

Q : F n q -→ F m q α = (α 1 , .
. . , α n ) -→ (q 1 (α 1 , . . . , α n ), . . . , q m (α 1 , . . . , α n ))

T : F m q -→ F m q , S : F n q -→ F n q random affine linear maps, P := T • Q • S Private key: Q, S, T

Public key:

P = (f 1 , . . . , f m )

Multivariate cryptography
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Multivariate cryptosystem: Alice encrypts α ∈ F n q to β = P(α) ∈ F m q . Bob knows Q, S, T , so he can recover α

= P -1 (β) = S -1 • Q -1 • T -1 (β).
Trapdoor: Construct Q so that Q -1 is efficiently computable.
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Multivariate cryptosystem: Alice encrypts α ∈ F n q to β = P(α) ∈ F m q . Bob knows Q, S, T , so he can recover α

= P -1 (β) = S -1 • Q -1 • T -1 (β). Trapdoor: Construct Q so that Q -1 is efficiently computable.
Multivariate digital signature: In order to sign β ∈ F m q , Bob computes α ∈ F n q s.t. P(α) = β.

Security: Eve's task is finding α s.t. β = P(α), knowing P and β. She may solve the system f 1 (x 1 , . . . ,

x n ) = β 1 , . . . , f m (x 1 , . . . , x n ) = β m .
The Multivariate Quadratic Problem and Gr öbner bases

The security of multivariate cryptographic primitives relies on the computational hardness of solving a system of polynomial equations over a finite field.

Multivariate Quadratic (MQ) Problem

Compute the solutions of f 1 = . . . = f m = 0 over a field, where deg(
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Multivariate Quadratic (MQ) Problem

Compute the solutions of f 1 = . . . = f m = 0 over a field, where deg(f i ) = 2.

Assumption

The system has a finite number of solutions over the algebraic closure, possibly zero.

Over F q , one can find the solutions by exhaustive search. Gröbner bases allow us to find the solutions of a system, under the assumption that they are finitely many. Computing a Gröbner basis has exponential complexity.

Cryptographic security

Systems coming from multivariate cryptographic schemes and digital signatures usually... ... consist of equations of small degree, often 2 or 3, ... are defined over small finite fields and contain the field equations, ... have large m and n, m ≥ n.
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Cryptographic security

Systems coming from multivariate cryptographic schemes and digital signatures usually... ... consist of equations of small degree, often 2 or 3, ... are defined over small finite fields and contain the field equations, ... have large m and n, m ≥ n.

Systems coming from index calculus on elliptic curves (or on abelian varieties)... ... rarely have a solution, ... have fewer equations in fewer variables of larger degree (e.g. 8 equations of degree 12 in 6 variables), m ≥ n, ... are defined over large fields, so adding the field equations is not feasible.

The complexity of computing a Gröbner basis of a system gives an upper bound on the security of the corresponding cryptographic scheme.

Monomials and term orders

K a field, R = K [x 1 , . . . , x n ] Definition A monomial is a product of powers of variables x a := x a 1 1 • • • x an n ∈ R, where a ∈ N n . E.g., x (3,0,1,2) = x 3 1 x 3 x 2 4 ∈ K [x 1 , x 2 , x 3 , x 4 ] is a monomial.

Definition

A term order on R is a total order < on the set of monomials such that:

• if x a < x b , then x a+c < x b+c for any c ∈ N n (multiplicative)

• 1 ≤ x a for any a ∈ N n (well-ordering).
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A term order on R is a total order < on the set of monomials such that:

• if x a < x b , then x a+c < x b+c for any c ∈ N n (multiplicative)

• 1 ≤ x a for any a ∈ N n (well-ordering).

Example

If R = K [x],
then we only have one term order 1

< x < x 2 < . . .

Two examples of term orders

Example (Lexicographic order -lex)

x a 1 1 • • • x an n > lex x b 1 1 • • • x bn n if the first nonzero coordinate of (a 1 -b 1 , . . . , a n -b n ) is positive. E.g., x 1 x 3 > lex x d 2 for any d, x 2 1 x 2 2 > lex x 1 x 2 2 x 3 , and x 1 x 2 2 > lex x 1 x 2 x 3 .
Example (Degree Reverse Lexicographic order -drl)

x a 1 1 • • • x an n > drl x b 1 1 • • • x bn n if either n i=1 a i > n i=1 b i or n i=1 a i = n i=1 b i and the last nonzero coordinate of (a 1 -b 1 , . . . , a n -b n ) is negative. E.g., x 1 x 3 > drl x 2 , x 1 x 2 2 > drl x 1 x 2 x 3 , and x 1 x 2 2 x 2 3 < drl x 2 1 x 2 x 2 3 .
For the sequel, we fix a term order.

Leading terms and Gr öbner bases

I = (f 1 , . . . , f m ) = { m i=1 h i f i | h i ∈ R} ideal generated by f 1 , . . . , f m ∈ R Definition The leading term of f = a∈N n α a x a ∈ R is in(f ) = max{x a | α a = 0}. E.g., in R = F 3 [x 1 , x 2 ] with the lex term order, in(x 3 2 -x 1 x 2 2 ) = x 1 x 2 2 .
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Definition

A Gröbner basis g 1 , . . . , g s of I is reduced if in(g 1 ), . . . , in(g s ) are a minimal system of generators of in(I ) and in(g i ) does not divide any monomial in the support of g j for j = i.

The importance of being lex

Proposition (Shape Lemma)

Fix the lex term order on R
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If K = F q and F = {f 1 , . . . , f m } contains the field equations, then (F) is radical.

The assumption on the solutions is true after applying a change of coordinates to F, possibly over a field extension. Hence to solve the polynomial system f 1 = . . . = f m = 0 we:

• compute a reduced lex Gröbner basis of (F),

• factor h n (x n ) to find its roots,

• for each a s.t. h n (a) = 0 we have a solution (h 1 (a), . . . , h n-1 (a), a).

Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 ,

Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 , lcm{in(g 1 ), in(g 2 )} = lcm{x 1 x 2 , x 2 2 } = x 1 x 2

Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 , lcm{in(g 1 ), in(g 2 )} = lcm{x 1 x 2 , x 2 2 } = x 1 x 2 2 S(g 1 , g 2 ) = x1x 2 2 in(g1) g 1 - x1x 2 2 in(g2) g 2 = x 2 (x 1 x 2 + x 2 ) -x 1 (x 2 2 -1) = x 2 2 + x 1 x 1 + 1

Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 , lcm{in(g 1 ), in(g 2 )} = lcm{x 1 x 2 , x 2 2 } = x 1 x 2 2 S(g 1 , g 2 ) = x1x 2 2 in(g1) g 1 - x1x 2 2 in(g2) g 2 = x 2 (x 1 x 2 + x 2 ) -x 1 (x 2 2 -1) = x 2 2 + x 1 x 1 + 1 g 3 := x 1 + 1

Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 , lcm{in(g 1 ), in(g 2 )} = lcm{x 1 x 2 , x 2 2 } = x 1 x 2 2 S(g 1 , g 2 ) = x1x 2 2 in(g1) g 1 - x1x 2 2 in(g2) g 2 = x 2 (x 1 x 2 + x 2 ) -x 1 (x 2 2 -1) = x 2 2 + x 1 x 1 + 1 g 3 := x 1 + 1 S(g 1 , g 3 ) = g 1 -x 2 g 3 = x 2 2 -1 = 0
Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 , lcm{in(g 1 ), in(g 2 )} = lcm{x 1 x 2 , x 2 2 } = x 1 x 2 2 S(g 1 , g 2 ) = x1x 2 2 in(g1) g 1 - x1x 2 2 in(g2) g 2 = x 2 (x 1 x 2 + x 2 ) -x 1 (x 2 2 -1) = x 2 2 + x 1 x 1 + 1 g 3 := x 1 + 1 S(g 1 , g 3 ) = g 1 -x 2 g 3 = x 2 2 -1 = 0 S(g 2 , g 3 ) = x 1 g 2 -x 2 2 g 3 = -x 1 -x 2 2 -x 1 -1 0. Hence x 1 x 2 + x 2 , x 2 2 -1, x 1 + 1 are a lexicographic Gröbner basis of (f 1 , f 2 ).

Buchberger's Algorithm

It generalizes Gaussian elimination and the Euclidean Algorithm.

Example

f 1 = x 1 x 2 + x 2 , f 2 = x 2 2 -1, lex order g 1 := f 1 , g 2 := f 2 , lcm{in(g 1 ), in(g 2 )} = lcm{x 1 x 2 , x 2 2 } = x 1 x 2 2 S(g 1 , g 2 ) = x1x 2 2 in(g1) g 1 - x1x 2 2 in(g2) g 2 = x 2 (x 1 x 2 + x 2 ) -x 1 (x 2 2 -1) = x 2 2 + x 1 x 1 + 1 g 3 := x 1 + 1 S(g 1 , g 3 ) = g 1 -x 2 g 3 = x 2 2 -1 = 0 S(g 2 , g 3 ) = x 1 g 2 -x 2 2 g 3 = -x 1 -x 2 2 -x 1 -1 0. Hence x 1 x 2 + x 2 , x 2 2 -1, x 1 + 1 are a lexicographic Gröbner basis of (f 1 , f 2 ).
Buchberger's Algorithm computes and reduces S-pairs for each pair of elements in the Gröbner basis and adds the results to the Gröbner basis. When all the S-pairs reduce to zero, a Gröbner basis has been found.
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They are the most efficient. They include F 4 /F 5 and XL and its variants.
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Definition

For each degree d one has a Macaulay matrix:

• columns ↔ monomials of degree ≤ d

• rows ↔ polynomials x a f i of degree ≤ d

• the entry (i, j) is the coefficient of the monomial corresponding to column j in the polynomial corresponding to row i

The matrix is brought in RREF. If the rows are not a Gröbner basis of I = (f 1 , . . . , f m ), then one looks at the Macaulay matrix in the next degree.

Some variants add new rows to the matrix, whenever a degree drop occurs.

Example
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The complexity of computing a Gröbner basis... ... is usually largest for the lexicographic order and smallest for the degree reverse lexicographic order ... is dominated by the cost of Gaussian elimination in the largest matrix Algorithm (Faugère, Gianni, Lazard, Mora)

A Gröbner basis for I = (f 1 , . . . , f m ) wrt a given term order can be converted into a Gröbner basis for I wrt a different term order with O(n 2 d 3 ) operations, where d is the number of solutions of f 1 = . . . = f m = 0.

Polynomial systems of cryptographic interest typically have d = 1 or d very small.

Computing a lex Gr öbner basis in practice

• compute a drl Gröbner basis using a linear algebra based algorithm

• convert it into a lex one using the FGLM Algorithm Computing a lex Gr öbner basis in practice

• compute a drl Gröbner basis using a linear algebra based algorithm

• convert it into a lex one using the FGLM Algorithm For cryptographic systems, the complexity is dominated by the first step.

Theorem

The complexity of Gaussian elimination in an a × b matrix is O(a 2 b) operations in K . 

MinRank Problem

Given M 1 , . . . , M n , N ∈ Mat k×m (F q ) and r < min{k, m}, find x 1 , . . . , x n ∈ F q s.t.

rank (N - n i=1 x i M i ) ≤ r .

Example -The complexity of MinRank

Generalized MinRank Problem

Given M ∈ Mat k×m (K [x 1 , . . . , x n ]) and r < min{k, m}, find x 1 , . . . , x n ∈ K s.t.

rank (M) ≤ r .

Genericity Definition

A property is generic if it holds on a nonempty Zarisky-open set.

Over a finite field this is meaningless, but over an infinite field this means that the property holds "almost everywhere".

  If we compute matrices up to degree s, then the largest hasa = m i=1 n + sd i -1 sd i and b = n + s -1 s where d i = deg(f i ).The Castelnuovo-Mumford regularityJ = (F 1 , . . . , F m ), F i ∈ S = K [x 0 , . . . , x n ] homogeneous of deg(F i ) = d i JExample -The complexity of MinRank

Solving degree

Let F = {f 1 , . . . , f m }, fix the degree reverse lexicographic order.

Definition

The solving degree of F, denoted solv. deg(F), is the least degree for which Gaussian elimination in the drl Macaulay matrix of degree d yields a Gröbner basis of (F) = (f 1 , . . . , f m ). max. GB. deg(F) denotes the largest degree of a polynomial in a reduced drl Gröbner basis of (F).
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Remark

Example

The Gröbner basis of

Homogeneous polynomials and homogenization

Definition

A polynomial f is homogeneous if all the monomials in the support of f have the same degree.

Homogeneous polynomials and homogenization

Definition

A polynomial f is homogeneous if all the monomials in the support of f have the same degree.

Definition

The homogenization of f = a∈N n α a x a ∈ K [x 1 , . . . , x n ] wrt x 0 is

where |a| = a 1 + . . . + a n = deg(x a ). E.g., the homogenization of
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Theorem (Lazard)
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Theorem (Lazard)

Theorem (Caminata, G.)

where reg(F h ) is the Castelnuovo-Mumford regularity of (F h ).

Polynomial system solving and applications

Gröbner bases Complexity of Gröbner bases computations

A provable bound for the solving degree

Theorem (Lazard)

Theorem (Caminata, G.)

where reg(F h ) is the Castelnuovo-Mumford regularity of (F h ).
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The Castelnuovo-Mumford regularity

Definition

The Castelnuovo-Mumford regularity of J is reg(J) = max{b j,i -j, d i }.

How to compute the Castelnuovo-Mumford regularity of F h ?

We can compute it from a Gröbner basis of F h .

Have we made any progress?

Yes, because we know a lot on the Castelnuovo-Mumford regularity.

Example -The complexity of MinRank

Generalized MinRank Problem

Given M ∈ Mat k×m (K [x 1 , . . . , x n ]) and r < min{k, m}, find x 1 , . . . ,

The next result was shown by Faugère, Safey El Din, and Spaenlehauer for

Theorem (Caminata, G.)

Assume that the entries of M are generic of degree d ij with d ij > 0 and

hj for all i, j, h, .

Let F be the homogeneous polynomial system of the minors of size r + 1 of M. Then

Algebra and geometry

Definition

The affine variety associated to I is

Algebra and geometry

Definition

The affine variety associated to I is

Theorem (Hilbert's Nullstellensatz)

If K = K , then we have a one-to-one correspondence between radical ideals and affine varieties.

Algebra and geometry

Definition

The affine variety associated to I is

Theorem (Hilbert's Nullstellensatz)

If K = K , then we have a one-to-one correspondence between radical ideals and affine varieties.

Affine varieties in K n are the closed sets of the Zarisky topology on K n .

If K = F q , then the Zarisky topology is the discrete topology.

Genericity Definition

A property is generic if it holds on a nonempty Zarisky-open set.

Over a finite field this is meaningless, but over an infinite field this means that the property holds "almost everywhere". However, when one can describe the open set via the equations of its complement, then one can check whether any given point belongs to the open set.

Example

Genericity conditions for the statement on the complexity of MinRank:

• the homogenization of the minors of M are the minors of the matrix obtained from M by homogenizing its entries, • the zero locus of the minors has codimension (mr )(kr ).

Ideals in generic coordinates

Definition gin(J) := in(gJ) for g ∈ U is the generic initial ideal of J wrt the chosen term order.

Ideals in generic coordinates

Definition gin(J) := in(gJ) for g ∈ U is the generic initial ideal of J wrt the chosen term order.

Theorem (Bayer, Stillman)

Fix the degree reverse lexicographic order, then reg(J) = reg(gin(J)).

Hence, if J is in generic coordinates, then reg(J) = reg(in(J)).

Are we in generic coordinates?

I do not know of any deterministic algorithm that does that. One could check whether in(J) = in(gJ) for a random g ∈ G , but this only shows that J is in generic coordinates with high probability.

Theorem (Caminata, G.)

Then (F h ) is in generic coordinates.

Corollary (Macaulay Bound)

Summary

• polynomial systems arise in many models from engineering and the sciences • they can be solved over finite fields by computing a Gröbner basis

• the complexity of linear algebra algorithms for computing Gröbner bases is upper bounded by a function of the solving degree, which is the least degree for which Gaussian elimination in the Macaulay matrix yields a Gröbner basis • the Castelnuovo-Mumford regularity of the homogenization of a system is an upper bound for its solving degree • the arguments to prove this use the concept of genericity from algebraic geometry
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Thank you for your attention!