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In this paper, we study the problem of gossiping with interference constraint in radio ring networks. Gossiping (or
total exchange information) is a protocol where each node in the network has a message and is expected to distribute
its own message to every other node in the network. The gossiping problem consists in finding the minimum running
time (makespan) of a gossiping protocol and algorithms that attain this makespan. We focus on the case where the
transmission network is a ring network. We consider synchronous protocols where it takes one unit of time (step) to
transmit a unit-length message. During one step, a node receives at most one message only through one of its two
neighbors. We also suppose that, during one step, a node cannot be both a sender and a receiver (half duplex model).
Moreover communication is subject to interference constraints. We use a primary node interference model where,
if a node receives a message from one of its neighbors, its other neighbor cannot send at the same time. With these
assumptions we completely solve the problem for ring networks. We first show lower bounds and then give gossiping
algorithms which meet these lower bounds and so are optimal. The number of rounds depends on the congruences of
n modulo 12.
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1 Introduction and Notations
This paper answers a problem considered in G ↪asieniec and Potapov (2002) where we refer the readers

for motivations and more references. Our aim is to design optimal gossiping (or total exchange informa-
tion) protocols for ring networks with neighboring interferences. More precisely our transmission network
is a symmetric cycle called here a ring Cn of length n. The nodes are labeled with the set of integers mod-
ulo n Zn : 0, 1, ..., n − 1. The arcs represent the possible communications and are of the form (i, i + 1)
and (i, i− 1). Each node i has a message also denoted by i.

The network is assumed to be synchronous and the time is slotted into steps. During a step, a node
receives at most one message only through one of its two neighbors. One important feature of our model
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is the assumption that a node can either transmit or receive at most one message per step. In particular,
we do not allow concatenation of messages.

We will consider only useful calls in which the sender sends a message to a receiver only if it is unknown
to the receiver. We can have two types of sendings as follows:

(a) via a (regular) call (i, i+ 1) (resp. (i, i− 1)), in which the node i sends to the right (resp. to the left)
i.e. to the node i+ 1 (resp. i− 1) one message which is not known to the node i+ 1 (resp. i− 1)

(b) via a 2-call {i : i− i, i+ 1}, in which the node i sends at the same time to both nodes i− 1 and i+ 1
one message which is not known to both nodes and so the message must be i.

We suppose that each device is equipped with a half duplex interface, i.e. a node can receive or send, but
cannot both receive and send during the same step. Furthermore, in order to model neighboring interfer-
ences, we use a primary node interference model like the one used in Bermond et al. (2009, 2006, 2020);
G ↪asieniec and Potapov (2002); Klasing et al. (2008). In this model, when one node is transmitting, its
own power prevents any other signal to be properly received in its neighbors (near-far effect of antennas).
Note that the binary interference model used is a simplified version of the reality, where the Signal-to-
Noise-and-Interferences Ratio (the ratio of the received power from the source of the transmission to the
sum of the noise and the received powers of all other simultaneously transmitting nodes) has to be above
a given threshold for a transmission to be successful. However, the values of the completion times that
we obtain in the above problem will lead to lower bounds on the corresponding real life values. In this
model, two calls (s, r) and (s′, r′) interfere if d(s, r′) ≤ 1 or d(s′, r) ≤ 1. For example call (i, i + 1)
will interfere with all the following calls (i− 2, i− 1), (i− 1, i), (i+ 1, i), (i+ 1, i+ 2), (i+ 2, i+ 1)
and (i+ 2, i+ 3). Two non-interfering calls will be called compatible. Therefore the two calls (s, r) and
(s′, r′) are compatible if d(s, r′) > 1 and d(s′, r) > 1. For example call (i, i+ 1) is compatible with calls
(i− 1, i− 2) and (i+ 3, i+ 2). Only non-interfering (or compatible) calls can be performed in the same
step and we will define a (valid) round as a set of compatible calls. In this article we will omit the word
valid before round.

Gossiping (also called All To All communication or total exchange) is a protocol where each node
in the network has a message and is expected to distribute its own message to every other node in the
network. The gossiping problem consists in finding the minimum running time (makespan) of a gossiping
protocol, i.e. the minimum number Rn of rounds needed to complete the gossiping and to find efficient
algorithms that attain this makespan.

On problems related to information dissemination, we refer to the survey in Bonifaci et al. (2009).
The gossiping problem has been mainly studied in both full duplex and half duplex models (i.e. without
interferences) with unbounded size of messages. Limited size of the messages was considered in Bermond
et al. (1998) where results are obtained in particular for the full duplex model (without interferences). In
particular in a ring network with n nodes, the minimum gossiping time is n − 1 if n is even or n if n is
odd (in full duplex model). A survey for gossiping with primary node interference model has been done
in G ↪asieniec (2010) but most of the results concern unbounded size of messages (i.e. concatenation is
allowed).

The gossiping problem with unit length messages and neighboring primary node model interference
(our model) was first studied in G ↪asieniec and Potapov (2002). The authors established that the makespans
of gossiping protocols in chain (called line) and ring networks with n nodes are 3n+Θ(1) and 2n+Θ(1)
respectively. They gave for general graphs an upper bound of O(n log2 n). This bound was improved
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in Manne and Xin. (2006) to O(n log n) with the help of probabilistic argument. In Bermond et al.
(2020), we completely solved the gossiping problem in radio chain networks with the same model and
proved that the makespan is 3n− 5 for n > 3.

More precisely, in G ↪asieniec and Potapov (2002) the authors gave a general lower bound of 2n − 2
which is not always correct as when n = 12p we will give a gossiping protocol with makespan 2n − 3.
The lower bound of 2n − 2 can be proved only if there are no 2-calls. However, the authors wrote that
in their model “a message transmitted by processor v reaches all its neighbors in the same time step”.
Therefore 2-calls are allowed in their model and should be take in consideration. They also gave an
upper-bound of 2n + 9. To our best knowledge, no improvement has been done on these bounds since
2002 and the determination of the exact value of Rn has not been solved until this paper.

In this article, we determine exactly the minimum number Rn of rounds needed to complete the gos-
siping when transmission network is a ring Cn on n nodes based on the model described above (see
Theorem 1). Our results depend on the congruence of n modulo 12. We first give a non trivial proof of
the lower bounds. The tools developed in Bermond et al. (2020) to design optimal protocols for chain net-
works cannot be used for rings. Though an optimal protocol can easily be found for n ≡ 0 (mod 12),
for other congruences the problem is not easy as one of the difficulties is to ensure that a sender has a use-
ful message to transmit. We succeeded in designing an optimal protocol by developing new sophisticated
tools.

Theorem 1 The minimum number of rounds R needed to achieve a gossiping in a ring network Cn
(n ≥ 3), with the above model is :

2n− 3 if n ≡ 0 (mod 12)
2n− 2 if n ≡ 4, 8 (mod 12)
2n− 1 if n is odd, except when n = 3 for which R = 3 and n = 5 for which R = 10
2n+ 1 if n ≡ 2 (mod 4) except for n = 6 for which R = 12

2 Lower bounds
The determination of the lower bound is based on two facts. Firstly we need n(n − 1)/2 calls to

transmit all the messages. Therefore to minimize the number of rounds, we have to use rounds with the
maximum number of calls and that depends on the number of 2-calls included in this round. Secondly
we have the constraint that each node can be involved in at most one useful 2-call and so the number of
2-calls in any protocol is bounded by n.

We first determine the maximum number of calls fα(n) that a round with α 2-calls can contain. Note
that we have n ≥ 3α.

Lemma 1 For n ≥ 3α, fα(n) = b(n+ α)/2c − εα(n), where εα(n) = 1 if n− 3α ≡ 2 (mod 4) and
0 otherwise.

Proof: We note that, if we have α 2-calls, the maximum number of single calls which can be put between
the remaining n − 3α nodes is b(n − 3α)/2c and so the maximum number of possible calls satisfies
fα(n) ≤ 2α+ b(n− 3α)/2c = b(n+ α)/2c.

If n− 3α 6≡ 2 (mod 4) (i.e. εα(n) = 0), we claim that the bound is attained. Indeed if n = 3α+ 4p
or n = 3α+ 4p+ 1, a solution is given by letting the α 2-calls be (3i+ 1 : 3i, 3i+ 2) for 0 ≤ i ≤ α− 1
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and the 2p single calls be (3α + 4j + 1, 3α + 4j) and (3α + 4j + 2, 3α + 4j + 3) for 0 ≤ j ≤ p − 1.
This round is valid as there is no interference and so in that case fα(n) = 2α + 2p = b(n + α)/2c. If
n = 3α+ 4p+ 3, we add to the preceding solution the single call (3α+ 4p+ 1, 3α+ 4p) and so we get
fα(n) = 2α+ 2p+ 1 = b(n+ α)/2c.

Let us now prove that if there is no idle vertex, then n−3α ≡ 0 (mod 4). Let us denote by s a sender
and r a receiver and let (s0, r0) be a call. If the vertex preceding s0 is a receiver then it should receive
from s0 otherwise there will be an interference and so we have a group of the form rsr corresponding to
a 2-call. If the vertex preceding s0 is a sender then the other neighbor of it should be a receiver and so
we have a group of the form rssr. So if there is no idle vertex we can partition the vertices in α groups
of size 3 and groups of size 4. Therefore n− 3α ≡ 0 (mod 4). In particular if n− 3α ≡ 2 (mod 4)
there is at least an idle vertex and so at most b(n − 3α − 1)/2c = (n − 3α)/2 − 1 single calls. So
fα(n) ≤ 2α+ (n− 3α)/2− 1 = (n+ α)/2− 1.

Finally when n = 3α + 4p + 2, we can take the solution obtained for 3α + 4p, with 2α + 2p =
(n+ α)/2− 1 calls reaching the lower bound. 2

Now we will be able to determine the lower bounds. For that purpose we first state three simple but
useful relations. Let xα be the number of rounds with α 2-calls and R be the number of rounds of a valid
solution. ∑

α

xα = R (1)

∑
α

αxα ≤ n (2)

∑
α

fα(n)xα ≥ n(n− 1) (3)

For the above three relations, (1) follows from the definitions; (2) follows from the fact that on one
side the number of 2-calls is

∑
α αxα, while on the other side as noted before each node can be involved

in at most one useful 2-call and so the number of 2-calls is bounded by n; (3) follows from the fact that
in each round with α 2-calls, there are at most fα(n) calls and so the number of calls in the protocol is at
most

∑
α fα(n)xα, and it should be at least n(n− 1).

Remark 1 Note that equality in (2) implies that each node is a sender of a 2-call. In particular, if in the
first round there are h single calls, then the senders of these calls can no more be senders of useful calls
and so we get

∑
α αxα ≤ n− h.

Equality in (3) implies that each round has exactly the maximum number fα(n) of calls.

Theorem 2 For n ≥ 3, the lower bound of the minimum number of rounds R is:

R ≥


2n− 3 if n ≡ 0 (mod 12)
2n− 2 if n ≡ 4, 8 (mod 12)
2n− 1 if n is odd, except when n = 3 for which R = 3 and n = 5 for which R = 10
2n+ 1 if n ≡ 2 (mod 4) except for n = 6 for which R = 12

Proof:
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• Case n ≡ 0 (mod 4):
In that case, fα(n) = n/2 + bα/2c − εα where εα = 1 if α ≡ 2 (mod 4) and 0 otherwise.

Using (1), inequality (3) becomes nR/2 +
∑
α(bα/2c − εα)xα ≥ n(n− 1).

So R ≥ (2n− 3) + 1
n (n−

∑
α αxα +

∑
α F (α)xα) where F (α) = α− 2bα/2c+ 2εα.

For any α, α ≥ 2bα/2c and hence F (α) ≥ 0. As, by (2), n ≥
∑
α αxα, we get R ≥ 2n− 3.

The equality holds only if we have equality everywhere. We have F (α) > 0, when α is odd as
α > 2bα/2c and when α ≡ 2 (mod 4) as εα = 1. Therefore F (α) = 0 only when α ≡ 0
(mod 4) that is 3α ≡ 0 (mod 12). But then, when n ≡ 4, 8 (mod 12), we get n− 3α ≥ 4 and
so the number of single calls is (n − 3α)/2 ≥ 2. By the remark concerning the equality in (2) we
get n >

∑
α αxα and therefore R > 2n− 3 or R ≥ 2n− 2.

• Case n ≡ 2 (mod 4):
Here fα(n) = (n− 2)/2 + b(α+ 2/2)c − εα, where εα = 1 if α ≡ 0 (mod 4) and 0 otherwise.

By (1) and (3), we get (n− 2)R/2 +
∑
α(b(α+ 2)/2c − εα)xα ≥ n(n− 1), and so

R ≥ 2n + 2
n−2 (n −

∑
α αxα +

∑
α F (α)xα) where F (α) = α − b(α + 2)/2c + εα. Hence,

F (α) = 0 for α = 0, 1, 2 (for α = 0 it follows from the fact that ε0 = 1) and F (α) > 0 for α ≥ 3.
Therefore, R > 2n, except if xα = 0 for α ≥ 3 and furthermore by the above remark concerning
the equality in (3) each round with α 2-calls (α = 0, 1, 2), has exactly fα(n) calls. If n ≥ 10 there
are in the first round (n − 3α)/2 ≥ 2 single calls and so by the remark concerning the equality
in (2) we get n >

∑
α αxα and therefore and R > 2n or R ≥ 2n+ 1.

For n = 6, we can have equality everywhere with x2 = 3 and so x0 = 9 and R = 12. This
bound is attained with the following protocol. The first three rounds consist of the two 2-calls:
(r : r − 1, r + 1) and (r + 3 : r + 2, r + 4) for r = 1, 2, 3. At the end of these three rounds each
node has exactly 3 messages {i− 1, i, i+ 1}. Then we complete with the nine rounds consisting of
two single calls, (r, r − 1) and (r + 2, r + 1) for 4 ≤ r ≤ 12.

• Case n odd :
Here fα(n) = (n − 1)/2 + b(α + 1)/2c − εα, where, for n ≡ 1 (mod 4), εα = 1 for α ≡ 1
(mod 4) and 0 otherwise; while for n ≡ 3 (mod 4) εα = 1 for α ≡ 3 (mod 4) and 0 otherwise.

By (1) and (3), we get (n− 1)R/2 +
∑
α(b(α+ 1)/2c − εα)xα ≥ n(n− 1), and so

R ≥ 2n− 2 + 2
n−1 (n− 1−

∑
α αxα +

∑
α F (α)xα), where F (α) = α− b(α+ 1)/2c+ εα.

For α = 0, F (α) = 0. For α = 1, F (α) = 1 if n ≡ 1 (mod 4) and F (α) = 0 if n ≡ 3
(mod 4). For α = 2, F (α) = 1. For α = 3, F (α) = 1 if n ≡ 1 (mod 4) and F (α) = 2 if n ≡ 3
(mod 4). Finally for α ≥ 4, F (α) ≥ 2.

If n ≡ 1 (mod 4), except if xα = 0 for α ≥ 4 and x1 + x2 + x3 ≤ 1,
∑
α F (α)xα ≥ 2 and by

(2), n −
∑
α αxα ≥ 0, then R > 2n − 2. When xα = 0 for α ≥ 4 and x1 + x2 + x3 ≤ 1, then∑

α αxα ≤ 3 and as n ≥ 5, n−
∑
α αxα ≥ 2 and so as F (α) ≥ 0, R > 2n− 2.

If n ≡ 3 (mod 4), except if xα = 0 for α ≥ 3 and x2 ≤ 1, we have F (α) ≥ 2 and as n−
∑
α αxα ≥

0 we get R > 2n− 2.

For n ≥ 7, consider the case where xα = 0 for α ≥ 3 and x2 ≤ 1.
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If x2 = 1, there should be equality everywhere otherwise we have R > 2n − 2. In particular by
the remark concerning equality in (3), each round with α 2-calls has exactly fα(n) calls and so
there are (n − 3α)/2 single calls. Therefore, if n ≥ 11 or n = 7 and the first round has only one
2-call, then there are at least 2 single calls and so by the remark concerning the equality in (2),
we get n >

∑
α αxα. For n = 7, if the first round contains two 2-calls, as x2 = 1, the second

round contains at most one 2-call and so at least two single calls. Furthermore, as the senders of the
2-calls of the first round have no new message to transmit, the senders of these useful single calls
are different from the senders of the 2-calls. So the two senders of single calls in the second round
cannot be senders of 2-calls and we again get n >

∑
α αxα. Therefore we have strict inequality

and so R > 2n− 2 or R ≥ 2n− 1.

If x2 = 0, then all the rounds have exactly fα(n) calls except perhaps one round which might
have fα(n) − 1 calls. Otherwise we will have a gap of 2 in the inequality (3) and then R ≥
2n − 2 + 2

n−1 (n − 1 −
∑
α αxα + 2) > 2n − 2. If there are at least 2 single calls by the remark

concerning the equality in (2), we get n ≥
∑
α αxα + 2 and so R > 2n − 2. That is the case for

n ≥ 11 and n = 7 except if the first round has one 2-call and only one single call (the exceptional
round). In this latter case, n−

∑
α xα ≥ 1 andR ≥ 2n−2+ 2

n−1 (n−1−
∑
α αxα+1) > 2n−2.

In summary in all the cases for n odd ≥ 7, R > 2n− 2 or R ≥ 2n− 1.

For n = 3, we can have x1 = 3 andR = 3 which is optimal (the 3 rounds consisting of a 2-call). For
n = 5 we can improve the lower bound. Indeed we have fα(5) = 2 and so inequality (3) becomes
R ≥ 10. An optimal solution is obtained as follows: the first 5 rounds consists of the 2-calls
(i : i−1, i+1) for 1 ≤ i ≤ 5, while the last 5 rounds consists of 2 single calls (i, i+1), (i+3, i+2)
for 1 ≤ i ≤ 5.

2

3 Upper bounds
3.1 Symmetric rounds and matchings

Recall that the nodes are assigned to the integers modulo n labeled from 0 to n − 1. We will use i
to denote the message of node i. To an edge {i, i + 1} of the cycle we can associate two calls (i, i + 1)
and (i + 1, i). Let us call two rounds symmetric if, when (i, i + 1) is a call in one round, then (i + 1, i)
is a call in the other round. Therefore, to a matching we can associate two sets of symmetric rounds.
However these rounds are not necessarily valid as they might have interference. If we want to obtain
two symmetric (valid) rounds the following condition should be satisfied: if we have in the matching two
consecutive edges {i, i + 1} and {i + 2, i + 3}, then to avoid interference one round should contain the
calls (i+ 1, i) and (i+ 2, i+ 3) and the other round the calls (i, i+ 1) and (i+ 3, i+ 2). This condition
can be satisfied for any matching except for a perfect matching when n ≡ 2 (mod 4). Indeed we have
seen in the proof of Lemma 1 that in this case there is no valid round with n/2 calls.

3.2 Sketch of the proof
The protocol will consist of three phases. The first phase consists of a small number of rounds (between

0 and 5) which will contain mainly 2-calls. In the second or main phase we will perform sequences of
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four rounds associated to two matchings whose union is either a Hamilton cycle (case n ≡ 0 (mod 4))
or a Hamilton path (case n odd) or a path of length n− 2 (case n ≡ 2 (mod 4)). In such a sequence of
four rounds, all the nodes covered by the two matchings will receive one message from the left and one
from the right. The last phase will consist of a few rounds to ensure that at the end of the protocol, the
nodes will have all received all messages.

The section is organized as follows. We first give optimal protocols when n ≡ 0 (mod 4). We
illustrate the protocol with the example of n = 8. Then we introduce some definitions and notations
which will be useful to describe our protocols for the other cases of congruences. In these cases, the
proofs are more involved and in some special cases we have to slightly modified the last rounds to attain
the lower bounds.

3.3 Design of an optimal protocol when n ≡ 0 (mod 4)

Now we construct protocols which will match the lower bounds given in the previous section when
n ≡ 0 (mod 4). In that case there are two perfect matchings that we denote M and M ′, where M =
{{2j, 2j + 1}, 0 ≤ j ≤ (n − 2)/2} and M ′ = {{2j + 1, 2j + 2}, 0 ≤ j ≤ (n − 2)/2}. To M we
associate the two symmetric (valid) rounds R1 = {(4k + 1, 4k), (4k + 2, 4k + 3), 0 ≤ k ≤ (n − 4)/4}
and R2 = {(4k, 4k + 1), (4k + 3, 4k + 2), 0 ≤ k ≤ (n − 4)/4}. Similarly to M ′ we associate the
two symmetric (valid) rounds R′1 = {(4k + 2, 4k + 1), (4k + 3, 4k + 4), 0 ≤ k ≤ (n − 4)/4} and
R′2 = {(4k + 1, 4k + 2), (4k + 4, 4k + 3), 0 ≤ k ≤ (n− 4)/4}.

The main phase will consist of repeated sequences of 4 rounds R1, R2, R
′
1, R

′
2. These two sets of

symmetric rounds associated to M and M ′ can be viewed as associated to the Hamilton cycle formed by
the union of M and M ′. During such a sequence of 4 rounds we note that node i receives exactly one
message from node i+ 1 and one from node i− 1, but we have to prove that the calls are useful (i.e. that
i− 1 and i+ 1 have messages unknown to i to transmit).

3.3.1 Optimal Protocol for n = 12p+ 4, n = 12p+ 8

In these cases there is no first phase. In the main phase, we execute (n − 2)/2 times the sequence of
4 rounds R1, R2, R

′
1, R

′
2 consisting of the symmetric rounds associated to M and M ′. Then in the last

phase we perform the two symmetric rounds associated to M . The reader can follow the protocol for
n = 8 in Table 1, where columns correspond to the nodes and each row corresponds to a round. An arrow
in a cell indicates the direction of a call, and a value indicates the message received by the corresponding
node. We also indicate the matching associated to two symmetric rounds.

Theorem 3 The above protocol is an optimal gossiping protocol for n ≡ 4 or 8 (mod 12) with 2n− 2
rounds.

Proof: We claim that at the end of round 4h, 0 ≤ h ≤ (n − 2)/2, each node i knows the messages of
nodes at distance at most h from it namely messages j with i−h ≤ j ≤ i+h. The proof is by induction.
It is true for h = 0 as node i knows it own message. Suppose it is true for h. When we perform after
round 4h a sequence of 4 rounds R1, R2, R

′
1, R

′
2, node i receives from i + 1 (resp. i − 1) the message

(i+ 1) +h (resp. (i− 1)−h). By the induction hypothesis, these messages were acquired by i+ 1 (resp.
i − 1) during the preceding sequence and are unknown to i. So, the claim is true for h + 1. Thus, at the
end of round 2n− 4, node i knows all the messages except i+ n/2, but this message is already acquired
by both nodes i − 1 and i + 1. Therefore in the two more symmetric rounds associated to the matching
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PPPPPPPPround
node

matching 0 1 2 3 4 5 6 7

1
M

1 ← → 2 5 ← → 6
2 → 0 3 ← → 4 7 ←
3

M ′
7 2 ← → 3 6 ← →

4 ← → 1 4 ← → 5 0
5

M
2 ← → 1 6 ← → 5

6 → 7 4 ← → 3 0 ←
7

M ′
6 3 ← → 2 7 ← →

8 ← → 0 5 ← → 4 1
9

M
3 ← → 0 7 ← → 4

10 → 6 5 ← → 2 1 ←
11

M ′
5 4 ← → 1 0 ← →

12 ← → 7 6 ← → 3 2
13

M
4 ← → 7 0 ← → 3

14 → 5 6 ← → 1 2 ←

Tab. 1: An optimal protocol for n = 8

M of the last phase, node i receives it from one of its neighbors (i+ 1 if i is even or i− 1 if i is odd). In
total, 2n−2 rounds are used in this protocol, which is optimal as the number of rounds matches the lower
bound. 2

3.3.2 Optimal Protocol for n = 12p

The first phase consists of three rounds where we use all 2-calls. More precisely in round r = 1, 2, 3
we perform the 2-calls: {(3j + r : 3j + r − 1, 3j + r + 1), j = 0, 1, 2, . . . , 4p− 1}. At the end of these
three rounds each node i knows the messages i − 1, i, i + 1. The rest of the protocol is identical to the
preceding cases. In the main phase we repeat (n − 2)/2 times the sequence of 4 rounds R1, R2, R

′
1, R

′
2

associated to M and M ′. Then in the last phase we perform the two symmetric rounds associated to M .

Theorem 4 The above protocol is an optimal gossiping protocol for n ≡ 0 (mod 12) with 2n − 3
rounds.

Proof: We claim that at the end of round 4h + 3, 0 ≤ h ≤ (n− 4)/2, each node knows the messages of
nodes at distance at most h + 1 from it and they are messages j with i − h − 1 ≤ j ≤ i + h + 1. The
proof is by induction. It is true for h = 0, as noted above. Then the proof of the induction step is exactly
the same as in the proof of Theorem 3. In total, 2n− 3 rounds are used in this protocol, which is optimal
as the number of rounds matches the lower bound. 2

Remark 2 This protocol can be modified for the case n=12p+8 by using four rounds containing all the
2-calls. This also gives an optimal protocol.
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3.4 Labels
For n odd or n ≡ 2 (mod 4), the main phase uses also symmetric rounds associated to matchings.

But the matchings are not perfect and so nodes do not receive the same number of messages. Therefore
we have to check carefully that the calls in a round are all useful. In fact we do not need to know exactly
what are the messages a node knows but only the number of the known messages. We will introduce a
notion of labels which will greatly simplify the proofs.

Sets Lti and Rti and their sizes lti and rti: We define Lti (resp. Rti) as the set of messages that have
already been received at the end of the round t at the node i from the left that is via the call (i−1, i) (resp.
from the right that is via the call (i+ 1, i)). By convention, as at the beginning each node knows its own
message, we have L0

i = R0
i = {i}.

Note that the messages in Lti (resp. Rti) arrive only via a call (i − 1, i) (resp. (i + 1, i)) and so
Lti − {i} ⊆ Lt−1i−1 (resp. Rti − {i} ⊆ Rt−1i+1). We will use lti and rti to denote the sizes of Lti and Rti ,
respectively. Recall that we consider only useful calls in which the sender transmits a message unknown
to the receiver. The usefulness of a call is expressed in the following remark.

Lemma 2 A call (i − 1, i) is useful in round t + 1 if and only if lti−1 ≥ lti . Similarly a call (i + 1, i) is
useful in round t+ 1 if and only if rti+1 ≥ rti .

Proof: Node i knows its own messages plus lti − 1 messages transmitted by i − 1 and so it can receive
a new message if and only if lti−1 > lti − 1. Similarly it can receive a message from i + 1 if and only if
rti+1 > rti − 1. 2

Order to send the messages: When lti−1 > lti or rti+1 > rti , a node has more than one message
(unknown to the receiver) to transmit to its neighbor. In the protocols we will send the one which arrives
the earliest (FIFO). More precisely, in the call (i − 1, i) (resp. (i + 1, i)), the node i − 1 (resp. i + 1)
will send among the messages unknown to i that of the nearest node of i. Note that in such protocols,
the values of lti (resp. rti) precisely determine the sets Lti (resp. Rti) and so provide all the messages
acquired by the node i at the end of t rounds. Indeed, if lti = k1 and rti = k2, then at the end of t rounds,
Lti = {i−k1 +1, i−k1 +2, . . . , i−1, i} andRti = {i, i+1, . . . , i+k2−2, i+k2−1}. Therefore, the set
of messages acquired at the node i is {i−k1 +1, i−k1 +2, . . . , i−1, i, i+1, . . . , i+k2−2, i+k2−1}.

Table 2 gives the ordered pairs of values (lti , r
t
i) for node i at the end of round t in the case of the

example for n = 8 (Table 1).

Balanced protocols and labels: We will design “balanced protocols” where, at the end of each round,
the nodes have received almost the same number of messages from left and right. More precisely, at the
end of any round t, the values of lti and rti at each node i will consist of at most 3 consecutive values
denoted α− 1, α and α+ 1. In order to facilitate the proof of the protocol presented, we will attach some
labels to the nodes which reflect how the values of lti and rti behave in terms of the value α.

We will mainly use 6 types of labels assigned to the nodes: B,B+, R+, R−, L+, L−. The labels are
defined as below. We use memo-technic letters where a B stands for balanced (lti and rti are equal), and
L or R when the values of the lti and rti are different. A superscript + (resp. −) stands for the value
concerned being α+ 1 (resp. α− 1).
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PPPPPPPPround
node

0 1 2 3 4 5 6 7

initial state (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
1 (1,2) (2,1) (1,2) (2,1)
2 (2,1) (1,2) (2,1) (1,2)
3 (2,2) (2,2) (2,2) (2,2)
4 (2,2) (2,2) (2,2) (2,2)
5 (2,3) (3,2) (2,3) (3,2)
6 (3,2) (2,3) (3,2) (2,3)
7 (3,3) (3,3) (3,3) (3,3)
8 (3,3) (3,3) (3,3) (3,3)
9 (3,4) (4,3) (3,4) (4,3)

10 (4,3) (3,4) (4,3) (3,4)
11 (4,4) (4,4) (4,4) (4,4)
12 (4,4) (4,4) (4,4) (4,4)
13 (4,5) (5,4) (4,5) (5,4)
14 (5,4) (4,5) (5,4) (4,5)

Tab. 2: Values of (lti , r
t
i) for n = 8

Let the label be B, if lti = rti = α, B+ if lti = rti = α + 1, L+ if lti = α + 1, rti = α, R+ if
lti = α, rti = α+ 1, L− if lti = α− 1, rti = α, and R− if lti = α, rti = α− 1.

Table 3 gives for n = 8 the labels of the nodes and the value of α at the end of each round t and one
can see the regularity in the pattern of the labels.

We can express the condition of usefulness of Lemma 2 in terms of labels.

Proposition 1 A call (i, i+ 1) is useful for round t+ 1, if and only if the labels of nodes i and i+ 1 are
in one of the following situations at the end of round t:

• Node i is labeled B+ or L+.

• Node i is labeled B, R+ or R− and node i+ 1 is labeled B, R+, L− or R−.

• Node i is labeled L− and node i+ 1 is labeled L−.

Similarly, a call (i+ 1, i) is useful for round t+ 1, if and only if the labels of nodes i+ 1 and i are in one
of the following situations at the end of round t:

• Node i+ 1 is labeled B+ or R+,

• Node i is labeled B, L+, L− or R−, and node i+ 1 is labeled B, L+ or L−.

• Node i is labeled R− and node i+ 1 is labeled R−.

The next Proposition will be used heavily to prove that two symmetric rounds associated to a matching
contain useful calls. We list only the cases that we will use (there are other possible cases not mentioned).
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````````````round, matching
node

0 1 2 3 4 5 6 7 α

initial state B B B B B B B B 0
M ←→ ←→ ←→ ←→
R2 R+ L+ R+ L+ R+ L+ R+ L+ 0
M ′ → ←→ ←→ ←→ ←
R4 B B B B B B B B 1
M ←→ ←→ ←→ ←→
R6 R+ L+ R+ L+ R+ L+ R+ L+ 1
M ′ → ←→ ←→ ←→ ←
R8 B B B B B B B B 2
M ←→ ←→ ←→ ←→
R10 R+ L+ R+ L+ R+ L+ R+ L+ 2
M ′ → ←→ ←→ ←→ ←
R12 B B B B B B B B 3
M ←→ ←→ ←→ ←→
R14 R+ L+ R+ L+ R+ L+ R+ L+ 3

Tab. 3: Matchings and labels for the case n = 8

Proposition 2 The two symmetric calls associated to an edge {i, i + 1} are useful when the end nodes i
and i + 1 have the following pair of possible labels: L+R+, BB, B+B+, L+B, L+B+, BR+, B+R+

and R−L−.

Proof: In all the case mentioned in this proposition, the usefulness conditions of Proposition 1 are satisfied
for both calls (i, i+ 1) and (i+ 1, i). 2

One can see in Table 3 that, before the execution of the rounds associated to the matching M , the end
nodes of any edge of the matching have labels BB while before the execution of the rounds associated
to the matching M ′, the end nodes of any edge of the matching have labels L+R+ and so all calls of the
rounds are useful.

3.5 Construction of the first 5 rounds for odd n and n ≡ 2 (mod 4)

In the cases n odd and n ≡ 2 (mod 4), the first phase of the protocol consists of designing 5 rounds
in such a way that the list of labels of all nodes at this stage is as indicated in the next proposition.

Proposition 3 We can design the first five rounds of the protocol such that, at the end of these five rounds,
the label list of the nodes consists of a sequence (starting at node 0) of

n−3
2 R+L+ followed by BBB if n ≡ 1, 3 (mod 6)

n−7
2 R+L+ followed by BR+L+BL+R+B if n ≡ 5 (mod 6)

n−4
2 R+L+ followed by BBBB if n ≡ 2 (mod 4)
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We leave the proof of Proposition 3 to the Appendix A. The proof consists in first designing the first
five rounds for the values of n0 = 7, 9, 11, 13, 15, 17 and n0 = 10, 14, 18 and then in extending the con-
struction to n = 12p+ n0.

3.6 Optimal protocols for n ≡ 2 (mod 4)

We will now give the main phase of the construction for the case n ≡ 2 (mod 4). Each round will
consist of the maximum number of single calls which is (n − 2)/2 and will be associated to a matching
with (n − 2)/2 edges. In what follows we will denote by Mi,i+1 the matching which does not contain
nodes i and i+ 1. So Mi,i+1 = {{i+ 2j + 2, i+ 2j + 3}, 0 ≤ j ≤ (n− 4)/2}. The idea of the protocol
consists in applying repeatedly (n− 2)/2 sequences of 4 rounds associated to the two matchings Mi,i+1

and Mi+1,i+2 (whose union is a path of length n− 2).

Protocol: We first perform the sequence of 5 rounds as given in Proposition 3. Then in the main phase
we perform the (n−2)/2 sequences of 4 rounds associated to the two matchingsM2h−1,2h andM2h,2h+1

(taken in this order), where h = 0, 1, . . . , (n− 4)/2, except one modification in the last round associated
to the matching Mn−4,n−3, in which we replace the call (n− 1, n− 2) with the call (n− 3, n− 4). The
construction is illustrated for n = 10 in Table 4.

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 α

R5 R+ L+ R+ L+ R+ L+ B B B B 1
M9,0 × ←→ ←→ ←→ ←→ ×
R7 R+ B+ B+ B+ B+ B+ L+ R+ L+ B 1
M0,1 × × ←→ ←→ ←→ ←→
R9 L− B R+ L+ R+ L+ B B B R− 2
M1,2 → × × ←→ ←→ ←→ ←
R11 B B R+ B+ B+ B+ L+ R+ L+ B 2
M2,3 ←→ × × ←→ ←→ ←→
R13 L− R− L− B R+ L+ B B B R− 3
M3,4 → ←→ × × ←→ ←→ ←
R15 B B B B R+ B+ L+ R+ L+ B 3
M4,5 ←→ ←→ × × ←→ ←→
R17 L− R− L− R− L− B B B B R− 4
M5,6 → ←→ ←→ × × ←→ ←
R19 B B B B B B B R+ L+ B 4
M6,7 ←− −→ ←− × × −→
∗ −→ ←− −→ ←− × ×
R21 L− R− L− R− L− R− L− L− R− R− 5

Tab. 4: Construction for n = 10
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Theorem 5 The above protocol is an optimal gossiping protocol for n ≡ 2 (mod 4) (n > 6) with
2n+ 1 rounds.

Proof: We will prove by induction on h the following property called Ph: at the end of round 5 + 4h
(0 ≤ h ≤ (n−4)/2) the label list starting at node 2h consists of (n−4)/2−h pairs of R+L+, then three
B, followed by h pairs of R−L− and one B. From that we will deduce that all the calls are useful. Note
that at the end of round 5, property P0 is satisfied by Proposition 3. Suppose the property is true for some
h < (n − 4)/2. Then we first perform 2 rounds associated to M2h−1,2h. The calls of these rounds are
useful by Proposition 2; indeed the labels of the end nodes of the edges of this matching are successively
((n−6)/2−h) L+R+, L+B,BB and h R−L−. Furthermore, at the end of round 5+4h+2 the label list
starting at node 2h+ 1 consists of ((n− 6)/2−h) pairs of B+B+, a pair of B+L+ and a pair of R+L+,
followed by h pairs of BB and a pair of BR+ (corresponding to the two idle nodes 2h− 1 and 2h). Then
we perform the 2 rounds associated to M2h,2h+1. The calls of these rounds are useful by Proposition 2;
indeed the labels of the end nodes of the edges of this matching are successively ((n− 6)/2−h) B+B+,
L+R+, L+B and h BB. Furthermore, at the end of round 5+4h+4 the label list satisfies property Ph+1

and so the induction step is proved.
At the end of round 2n−3, the label list starting at the node n−5 consists of two pairs ofBB followed

by (n − 4)/2 pairs of R−L−. So the calls of the two rounds associated to the matching Mn−5,n−4 are
useful. Now at round 2n − 1 the label list starting at node n − 3 consists of one pair of R+L+ and
(n− 2)/2 pairs of BB. So nodes n− 3 and n− 2 know all the messages and the other nodes are missing
one message. Furthermore, the calls of the two rounds associated to the matching Mn−4,n−3 are useful
except the call (n − 1, n − 2) which has no new message to transmit to n − 2 (which already knows
all messages). So, we delete the call (n − 1, n − 2). All the nodes will know via the other calls of the
matching all the messages except node n − 4. But using the fact that nodes n − 4 and n − 3 were not
involved in the matching, we can add the call (n− 3, n− 4). The round is still valid as it contains the call
(n− 6, n− 5). In summary at the end of round 2n+ 1 every node knows all the messages. As the lower
bound on the number of rounds is 2n+ 1 by Theorem 2, this protocol is optimal. 2

3.7 Optimal protocols for odd n

We will now give the main phase of the protocol for odd n. In what follows we will denote by Mi

the near-perfect matching which does not contain node i. So Mi = {{i + 2j + 1, i + 2j + 2}, 0 ≤ j ≤
(n − 3)/2}. The idea of the protocol consists in applying repeatedly (n − 3)/2 sequences of 4 rounds
associated to two near-perfect matchingsMi andMi+1 whose union is a Hamilton path. In each sequence
we will be able to transform a pair R+L+ of the label list of Proposition 3 into BB and so the protocol
will be completed in 2n − 1 rounds. The main difficulty will be to choose the suitable nodes i and i + 1
and to find the right order of the near-perfect matchings Mi and Mi+1. We first deal with the case n ≡ 1
or 3 (mod 6).

3.7.1 Optimal protocol for n ≡ 1 or 3 (mod 6) (n > 5)

Protocol: We first perform the sequence of 5 rounds as given in Proposition 3. Then in the main phase
we perform the (n− 3)/2 sequences of 4 rounds associated to the two near-perfect matchings Mn−4−2h
and Mn−5−2h (taken in this order), where h = 0, 1, . . . , (n− 5)/2.

The construction is illustrated for n = 9 in Table 5.
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PPPPPPPPround
node

0 1 2 3 4 5 6 7 8

R5 R+ L+ R+ L+ R+ L+ B B B
M5 → ←→ ←→ × ←→ ←
R7 B+ B+ B+ B+ B+ L+ R+ L+ R+

M4 ←→ ←→ × ←→ ←→
R9 R+ L+ R+ L+ B B B B B
M3 → ←→ × ←→ ←→ ←
R11 B+ B+ B+ L+ R+ L+ R+ L+ R+

M2 ←→ × ←→ ←→ ←→
R13 R+ L+ B B B B B B B
M1 → × ←→ ←→ ←→ ←
R15 B+ L+ R+ L+ R+ L+ R+ L+ R+

M0 × ←→ ←→ ←→ ←→
R17 B B B B B B B B B

Tab. 5: Call matchings and labels for n = 9

Theorem 6 The above protocol is an optimal gossiping protocol for n ≡ 1 or 3 (mod 6) (n > 3) with
2n− 1 rounds.

Proof: We will prove by induction on h the following property calledQh: at the end of round 5+4h (0 ≤
h ≤ (n− 3)/2), the label list (starting at node 0) consists of (n− 3− 2h)/2 pairs of R+L+ followed by
(3 + 2h) B (with value α = h + 1). From that we will deduce that all the calls are useful. Note that, at
round 5, the label list satisfies property Q0.

So suppose that at the end of the round 5 + 4h the label list satisfies property Qh. We first perform the
two symmetric rounds associated to the near-perfect matching Mn−4−2h = {{n− 4− 2h+ 2j + 1, n−
4 − 2h + 2j + 2}, 0 ≤ j ≤ (n − 3)/2}. The labels of the end nodes of the edges of the matching are
successively BB for 0 ≤ j ≤ h, then BR+ for j = h + 1, then L+R+ for h + 2 ≤ j ≤ (n − 3)/2.
Therefore, the calls of the two rounds associated to the near-perfect matching Mn−4−2h are useful by
Proposition 2. The label of the node n − 4 − 2h stays unchanged at L+. But the pairs of BB have
changed to R+L+, the pair of BR+ to R+B+, and the pairs of L+R+ to B+B+. So, at the end of round
4 + 5h+ 2, the label list consists of n− 2h− 4 B+ followed by h+ 2 pairs L+R+. Therefore the labels
of the end nodes of the edges of the matching Mn−5−2h are either L+R+ or B+B+. So by Proposition 2
the calls of the two rounds associated to the near-perfect matching Mn−5−2h are useful. Furthermore at
the end of round 5 + 4h + 4 the label list satisfies property Qh+1. We note that after a sequence of 4
rounds, the labels of the nodes have been unchanged (i.e. they are the same with parameter α = h + 1)
except those of n − 5 − 2h and n − 4 − 2h which were respectively R+ and L+ and are now both B’s.
For h = (n − 3)/2 that is at the end of round 5 + 2(n − 3) = 2n − 1, all the nodes have labels B with
α = (n − 1)/2 and so every node knows all the messages. As the lower bound on the number of rounds
is 2n− 1 by Theorem 2, this protocol is optimal. 2

Remark: Note that the order of the matchings is important. For example, we cannot perform first the
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rounds associated to the near-perfect matching Mn−5−2h; indeed the calls will not all be useful as the end
labels of some edges are R+L+.

3.7.2 Optimal protocol for n ≡ 5 (mod 6) (n > 5)

The construction is similar to that of the preceding case, but we have to do small modifications. Recall
that by Proposition 3, the label list consists of (n− 7)/2 pairs of R+L+ followed by BR+L+BL+R+B.

Protocol: We perform the sequence of 5 rounds as given in Proposition 3. Then in the main phase
we first perform the two symmetric rounds associated to the near-perfect matching Mn−6 and then those
associated to Mn−5 (in order to replace the labels R+L+ of nodes n − 6 and n − 5 with BB). Then
we perform (n − 7)/2 sequences of 4 rounds associated to two near-perfect matchings Mn−8−2h and
Mn−9−2h (taken in this order), where h = 0, 1, . . . , (n− 9)/2 (in order to replace like in the case n ≡ 1
or 3 (mod 6) the (n − 7)/2 pairs of R+L+ with BB). Then we perform the 4 symmetric rounds
associated to two near-perfect matchings Mn−3 and Mn−2 except we modify one call in two rounds as
the labels of n− 3 and n− 2 are L+R+. More precisely in the round associated to Mn−3 which contains
the call (n−1, n−2), we delete the call (n−1, n−2) and add for n ≡ 11 (mod 12) the call (n−3, n−2)
and for n ≡ 5 (mod 12) the call (n − 2, n − 3). In the round associated to Mn−2 which contains the
call (n−4, n−3), we delete the call (n−4, n−3) and add for n ≡ 11 (mod 12) the call (n−2, n−3)
and for n ≡ 5 (mod 12) the call (n − 3, n − 2). The construction is illustrated for n = 11 in Table 6
and for n = 17 in Table 7.

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10

R5 R+ L+ R+ L+ B R+ L+ B L+ R+ B
M5 → ←→ ←→ × ←→ ←→ ←
R7 B+ B+ B+ B+ L+ R+ B+ L+ B+ B+ R+

M6 ←→ ←→ ←→ × ←→ ←→
R9 R+ L+ R+ L+ B B B B L+ R+ B
M3 → ←→ × ←→ ←→ ←→ ←
M2 ←→ × ←→ ←→ ←→ ←→
R13 R+ L+ B B B B B B L+ R+ B
M1 → × ←→ ←→ ←→ ←→ ←
M0 × ←→ ←→ ←→ ←→ ←→
R17 B B B B B B B B L+ R+ B
M8 5 ← → 9 9 ← → 2 × 5
* → 7 7 ← → 0 0 ← → 4 ×
M9 ← → 8 8 ← → 1 1 ← × 4
* 6 6 ← → 10 10 ← × 2 ← →
R21 B B B B B B B B B B B

Tab. 6: Construction for n = 11

Theorem 7 The above protocol is an optimal gossiping protocol for n ≡ 5 (mod 6) (n > 5) with
2n− 1 rounds.
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PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R5 R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B R+ L+ B L+ R+ B
M11 → ←→ ←→ ←→ ←→ ←→ × ←→ ←→ ←
R7 B+ B+ B+ B+ B+ B+ B+ B+ B+ B+ L+ R+ B+ L+ B+ B+ R+

M12 ←→ ←→ ←→ ←→ ←→ ←→ × ←→ ←→
R9 R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B B B B L+ R+ B
M9 → ←→ ←→ ←→ ←→ × ←→ ←→ ←→ ←
M8 ←→ ←→ ←→ ←→ × ←→ ←→ ←→ ←→
R13 R+ L+ R+ L+ R+ L+ R+ L+ B B B B B B L+ R+ B

...
R29 B B B B B B B B B B B B B B L+ R+ B
M14 8 ← → 12 12 ← → 16 16 ← → 3 3 ← × → 8

* → 10 10 ← → 14 14 ← → 1 1 ← → 5 5 ← ×
M15 9 9 ← → 13 13 ← → 0 0 ← → 4 4 ← × →

* ← → 11 11 ← → 15 15 ← → 2 2 ← × → 7 7
R33 B B B B B B B B B B B B B B B B B

Tab. 7: Construction for n = 17

Proof: Recall that in that case by Proposition 3, the label list consists of (n − 7)/2 pairs of R+L+

followed by BR+L+BL+R+B. Therefore the calls of the two rounds associated to Mn−6 are useful by
Proposition 2. Furthermore, at the end of these two rounds the label list consists of (n− 7) B+ followed
by L+R+B+L+B+B+R+. Therefore the calls of the two rounds associated to Mn−5 are useful by
Proposition 2. Finally at the end of round 9, the label list consists of (n − 7)/2 pairs of R+L+ followed
by BBBBL+R+B.

Similarly to the case n ≡ 1 or 3 (mod 6), we say that a label list satisfies propertyQ′h if, at the end of
round 9+4h, it consists of (n−7−2h)/2 pairs ofR+L+ followed byBBBBL+R+B. As we have seen
just above the property is satisfied for h = 0. Then we prove exactly in the same manner as in the proof
of Theorem 6 that the calls of two symmetric rounds associated to the near-perfect matching Mn−8−2h
and then of those associated to Mn−9−2h are useful and that at the end of the round 9 + 4(h+ 1) the label
list satisfies property Q′h+1.

Unfortunately we can not perform without modifying the 4 symmetric rounds associated to the two
near-perfect matchings Mn−3 and Mn−2. Indeed the call (n− 1, n− 2) in the round associated to Mn−3
is not necessarily useful. But thanks to the fact that node n−3 is neither a sender nor a receiver, it suffices
to replace (as described in the protocol) this call with the useful call (n− 3, n− 2) (resp. (n− 2, n− 3))
if n ≡ 11 (mod 12) (resp. n ≡ 5 (mod 12)). Furthermore the round is valid as, when n ≡ 11
(mod 12) (resp. n ≡ 5 (mod 12)), the call (n − 3, n − 2) (resp. (n − 2, n − 3)) does not interfere
with the call (n − 4, n − 5) (resp. (n − 5, n − 4)) of this round. Similarly the replacement of the call
(n − 4, n − 3) with the useful call (n − 2, n − 3) (resp. (n − 3, n − 2)) gives a valid round. Therefore,
at the end of round 5 + 2(n− 3) = 2n− 1 all the nodes have labels B with α = (n− 1)/2 and so every
node knows all the messages. As the lower bound on the number of rounds is 2n− 1 by Theorem 2, this
protocol is optimal. 2
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4 Conclusion
In this article we have determined the exact minimum gossiping time in a ring network with n nodes

under the hypothesis of unit length messages and a primary node interference model. One can also try to
determine the exact gossiping time for other simple topologies. In Bermond et al. (2020), we completely
solved the gossiping problem in radio chain networks with the same model proving that the makespan is
3n − 5 for n > 3. The case of grids might be solvable. It will also be interesting to consider stronger
interferences. We can use a binary asymmetric model of interference based on the distance in the commu-
nication digraph like in Bermond et al. (2009, 2006); Klasing et al. (2008). Let d(u, v) denote the distance,
that is the length of a shortest directed path from u to v in G and dI be a non negative integer. We assume
that when a node u transmits, all nodes v such that d(u, v) ≤ dI are subject to the interference from u’s
transmission. Equivalently, two calls (s, r) and (s′, r′) do not interfere if and only if d(s, r′) > dI and
d(s′, r) > dI . Our model corresponds to dI = 1. For example, for dI = 2 we will have to use instead
induced matchings (in the case of rings it is a matching such that between two edges of the matching there
is at least one uncovered node). In this case in a round without 2-calls we can have at most n/3 single
calls. So, we get a general lower bound of 3n− 5. For the protocols we can use the union of 3 matchings,
each with at most n/3 edges and so the gossiping time is 3n+O(1). In order to determine the exact value
we need to consider many cases according to the congruences modulo 24. Similarly for any dI , we will
have a gossiping time of (dI + 2)n+O(1).
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A Proof of Proposition 3
We give in this appendix the proof of Proposition 3.

Proposition 3 We can design the first five rounds of the protocol such that at the end of these five rounds
the label list of the nodes consists of a sequence (starting at node 0) of

n−3
2 R+L+ followed by BBB if n ≡ 1, 3 (mod 6)

n−7
2 R+L+ followed by BR+L+BL+R+B if n ≡ 5 (mod 6)

n−4
2 R+L+ followed by BBBB if n ≡ 2 (mod 4)

We design in the next subsection the first five rounds for the values of n0 = 7, 9, 11, 13, 15, 17 and
n0 = 10, 14, 18. Then we show how to extend the construction for n = 12p+ n0.

A.1 Table of the first five rounds for n0 = 7, 9, 11, 13, 15, 17 and n0 = 10, 14, 18

The nodes are labeled from 0 to n0 − 1 and we have built the rounds in such a way they have the
following properties

• Property 1 : Round 1 contains the 2-call emitted by node 1 : {(1 : 0, 2)}.

• Property 2 : Round 2 contains the 2-call emitted by node n0 − 1 : {(n0 − 1 : 0, n0 − 2)}.

• Property 3 : Round 3 contains the 2-call emitted by node 0 : {(0 : 1, n0 − 1)}.

• Property 4 : In round 4, node 0 receives a message from node 1 (namely message 2), and node
n0 − 1 does not send any message.

• Property 5 : In round 5, node 0 sends a message to node 1 namely message n0− 1 and node n0− 1
does not receive any message.

• Property 6 : the label list consists of a sequence of R+L+ followed by BBB if n0 = 7, 9, 13, 15 or
BR+L+BL+R+B if n0 = 11, 17 or R+BBB if n0 = 10, 18 or BBBB if n0 = 14.

A.2 Extension of the first five rounds for n = 12p+ n0

Let n = 12p + n0. The nodes are labeled from 0 to n − 1. We add to the nodes of the examples for
n0, the 12p nodes n0 + i for 0 ≤ i ≤ 12p − 1. We now describe the calls added in the first five rounds
(one can follow the extension on the Table 17 which shows how the rounds for n = 19 are obtained from
those for n0 = 7).

• Round 1 consists of the calls of the example for n0, plus the 2-calls {(n0 + 3j + 1 : n0 + 3j, n0 +
3j + 2), j = 0, 1, 2, . . . , 4p− 1}.
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PPPPPPPPround
node

0 1 2 3 4 5 6

1 1 1 4 4 ×
2 6 2 2 × 6
3 0 3 3 × 0
4 2 1 5 5
5 6 4 × × ×

label R+ L+ R+ L+ B B B

Tab. 8: First five rounds for n0 = 7

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 4 4 7 7 10 10 ×
2 12 2 2 5 5 8 8 × 12
3 0 3 3 6 6 9 9 × 0
4 2 1 6 5 10 × 11
5 12 4 3 8 7 11 ×

label R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B B B

Tab. 9: First five rounds for n0 = 13, no 2-call from the node 11

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8

1 1 1 4 4 7 7
2 8 2 2 5 5 8
3 0 3 3 6 6 0
4 2 1 6 × × ×
5 8 4 3 × × ×

label R+ L+ R+ L+ R+ L+ B B B

Tab. 10: First five rounds for n0 = 9
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PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 1 4 4 7 7 10 10 13 13
2 14 2 2 5 5 8 8 11 11 14
3 0 3 3 6 6 9 9 12 12 0
4 2 1 6 5 10 9 × × ×
5 14 4 3 8 7 12 × × ×

label R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B B B

Tab. 11: First five rounds for n0 = 15

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10

1 1 1 4 4 7 7 × ×
2 10 2 2 5 5 × × 10
3 0 4 × 4 8 8 0
4 2 1 × 6 6 9 9
5 10 3 3 7 6 0

label R+ L+ R+ L+ B R+ L+ B L+ R+ B

Tab. 12: First five rounds for n0 = 11

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 1 4 4 7 7 10 10 13 13 × ×
2 16 2 2 5 5 8 8 11 11 × × 16
3 0 3 3 6 6 10 × 10 14 14 0
4 2 1 6 5 9 9 12 12 15 15
5 16 4 3 8 7 × 13 12 0

label R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B R+ L+ B L+ R+ B

Tab. 13: First five rounds for n0 = 17
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PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9

1 1 1 4 4 7 7 ×
2 9 2 2 5 5 × 9
3 0 3 3 6 6 × 0
4 2 1 6 × 8 8
5 9 4 3 × × × ×

label R+ L+ R+ L+ R+ L+ B B B B

Tab. 14: First five rounds for n0 = 10

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 1 4 4 7 7 10 10 × ×
2 13 2 2 5 5 8 8 × × 13
3 0 3 3 6 6 9 9 × × 0
4 2 1 6 5 10 × 12 12
5 13 4 3 8 7 11 11 ×

label R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B B B B

Tab. 15: First five rounds for n0 = 14

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 4 4 7 7 10 10 13 13 16 16
2 17 2 2 5 5 8 8 11 11 14 14 17
3 0 3 3 6 6 9 9 12 12 15 15 0
4 2 1 6 5 10 9 14 × × × ×
5 17 4 3 8 7 12 11 × × × ×

label R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ B B B B

Tab. 16: First five rounds for n0 = 18



22 Jean-Claude Bermond, Takako Kodate, Joseph Yu

• Round 2 consists of the calls of the example for n0, except we delete the 2-call {(n0−1 : 0, n0−2)},
which exists by Property 2, and replace it by the 2-call {(n0 − 1 : n0, n0 − 2)}. Then we add the
2-calls {(n0 + 3j+ 2 : n0 + 3j+ 1, n0 + 3j+ 3), j = 0, 1, 2, . . . , 4p−1} (recall the node n0 + 12p
means the node 0).

• Round 3 consists of the calls of the example for n0, except we delete the 2-call {(0 : 1, n0 − 1)}
which exists by Property 3, and replace it by the 2-call {(0 : 1, n0 + 12p − 1)}. Then we add the
2-calls {(n0 + 3j : n0 + 3j − 1, n0 + 3j + 1), j = 0, 1, 2, . . . , 4p− 1}.

• Round 4 consists of the calls of the example for n0, plus the calls {(n0 + 4k + 1, n0 + 4k), (n0 +
4k + 2, n0 + 4k + 3), k = 0, 1, 2, . . . , 3p− 1}.

• Round 5 consists of the calls of the example for n0, plus the calls {(n0 + 4k, n0 + 4k + 1), (n0 +
4k+ 3, n0 + 4k+ 2), k = 0, 1, 2, . . . , 3p− 1}. Also we have to impose that node 0 is now sending
to node 1 the message n0 + 12p− 1 (and not n0 − 1).

PPPPPPPPround
node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 1 4 4 × 8 8 11 11 14 14 17 17
2 18 2 2 × 6 6 9 9 12 12 15 15 18
3 0 3 3 × 7 7 10 10 13 13 16 16 0
4 2 1 5 5 9 8 13 12 17 16
5 18 4 × × × 6 11 10 15 14 18

label R+ L+ R+ L+ B B B R+ L+ R+ L+ R+ L+ R+ L+ R+ L+ R+ L+

Tab. 17: First five rounds for n = 19 (from n0 = 7)

First we note that these five rounds are valid. There is no interference between the calls added and not
between these calls and the ones used for n0 due to Properties 1, 4, 5. Indeed in rounds 1 and 4, nodes
n0 and n0 + 12p− 1 are both receiving while by Property 1 or 4, node 0 is receiving and node n0 − 1 is
not emitting. In round 5, nodes n0 and n0 + 12p− 1 are both emitting while, by Property 5, nodes 0 and
n0 − 1 do not receive any message.

We also note that in this construction the number of messages received from the left and from the right
by the nodes from 0 to n0 − 1 remains the same. Indeed the calls are the same, except in round 2 where
node 0 is receiving from n0 + 12p − 1 instead of n0 − 1 and in round 3 where node n0 − 1 is receiving
from n0 instead of 0. Furthermore, during the first three rounds the 12p nodes added receive one message
from the left and another from the right. During the rounds 4 and 5, nodes n0 + 2j(0 ≤ j ≤ 6p− 1) have
received a message from the right and so have label R+, and nodes n0 + 2j + 1(0 ≤ j ≤ 6p − 1) have
received a message from the left and so have label L+. So using these labels and the Property 6, the label
list starting at n0 satisfies Proposition 3. However, as we are in a cycle, the starting node of a sequence
can be chosen arbitrarily. If we relabel node n0: 0 and n0 + i: i, we get Proposition 3 now starting node
0 (as announced at the beginning of the subsection).
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