HAL
open science

Using Structured Variants in Lattice-Based Cryptography

Adeline Roux-Langlois

To cite this version:

Adeline Roux-Langlois. Using Structured Variants in Lattice-Based Cryptography. École thématique. Journées nationales de calcul formel, Luminy, France. 2023. hal-04206009

HAL Id: hal-04206009
https://hal.science/hal-04206009
Submitted on 13 Sep 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

USING STRUCTURED VARIANTS IN LATTICE-BASED CRYPTOGRAPHY

Adeline Roux-Langlois

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, FRANCE

Using LWE to build provable constructions - theory

Approx Shortest Vector Problem (Approx SVP ${ }_{\gamma}$)

Given a lattice $\mathcal{L}(\mathbf{B})$ of dimension n :
Output: find a non-zero vector $\mathbf{x} \in \mathcal{L}(\mathbf{B})$ such that $\|\mathbf{x}\| \leq \gamma \lambda_{1}(\mathcal{L}(\mathbf{B}))$

Lattice
$\mathcal{L}(\mathbf{B})=\left\{\sum_{1=i}^{n} a_{i} \mathbf{b}_{i}, a_{i} \in \mathbb{Z}\right\}$, where the $\left(\mathbf{b}_{i}\right)_{1 \leq i \leq n}$'s, linearly independent vectors, are a basis of $\mathcal{L}(\mathbf{B})$.

Hardness of Approx SVP γ_{γ}

Conjecture

There is no polynomial time algorithm that approximates this lattice problem and its variants to within polynomial factors.

The Learning With Errors problem

$\mathbf{L W E}_{\alpha, q}^{n}$

- $\mathbf{A} \leftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$,
- $\mathbf{s} \leftarrow U\left(\mathbb{Z}_{q}^{n}\right)$,
- $\mathrm{e} \leftarrow D_{\mathbb{Z}^{m}, \alpha q}$, small compared to q.

Discrete Gaussian error $D_{\mathbb{Z}, \alpha q}$

Search version: Given ($\mathbf{A}, \mathbf{b}=\mathbf{A s}+\mathbf{e}$), find \mathbf{s}.
Decision version: Distinguish from (\mathbf{A}, \mathbf{b}) with \mathbf{b} uniform.

Regev's encryption scheme

- Parameters: $n, m, q \in \mathbb{Z}, \alpha \in \mathbb{R}$,
- Keys: $\mathbf{s k}=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$, with $\mathbf{b}=\mathbf{A} \mathbf{s}+\mathbf{e} \bmod q$ where $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathrm{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}$.
- Encryption $(M \in\{0,1\})$: Let $\mathbf{r} \hookleftarrow U\left(\{0,1\}^{m}\right)$,

- Decryption of (\mathbf{u}, v): compute $v-\mathbf{u}^{T} \mathbf{s}$,

If close from 0 : return 0 , if close from $\lfloor q / 2\rfloor$: return 1 .
LWE hard \Rightarrow Regev's scheme is IND-CPA secure.

Using LWE

Hardness of LWE used as a foundation for many constructions.

Solutions used today?

Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured) variants of LWE.

- Public Key Encryption
- Crystals - Kyber: Module-LWE with both secret and noise chosen from a centered binomial distribution.
- Saber: Module-LWR (deterministic variant).
- NTRU
- FrodoKEM (as alternate candidate): LWE but with smaller parameters.
- Signature
- Crystals - Dilithium: Module-LWE with both secret and noise chosen in a small uniform interval, and Module-SIS.
- Falcon: Ring-SIS on NTRU matrices.

Using LWE to build constructions

Using LWE to build constructions in practice

Using LWE to build constructions in practice

Worst-case to average-
case reduction
With Errors $\begin{gathered}\text { Cryptanalysis }\end{gathered}$
Choice of parameters

Security proof

Efficient
$\begin{array}{l}\text { Cryptographic } \\ \text { constructions }\end{array}$

From SIS/LWE to structured variants

Problem: constructions based on LWE enjoy a nice guaranty of security but are too costly in practice.
\rightarrow replace \mathbb{Z}^{n} by a Ring, for example $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle\left(n=2^{k}\right)$.

- Ring variants since 2006:

- Structured $\mathbf{A} \in \mathbb{Z}_{q}^{m \cdot n \times n}$ represented by $m \cdot n$ elements,
- Product with matrix/vector more efficient,

- Hardness of Ring-SIS,
[Lyubashevsky and Micciancio 06] and [Peikert and Rosen 06]
- Hardness of Ring-LWE
[Lyubashevsky, Peikert and Regev 10].

Idea: replace \mathbb{Z}^{n} by $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$

where $n=2^{k}$ then the polynomial $x^{n}+1$ is irreducible.
Elements of this ring are polynomials of degree less than n.
R is a cyclotomic ring. R is also the ring of integer \mathcal{O}_{K} of an number field K :

- $K=\mathbb{Q}[x] /\left\langle x^{n}+1\right\rangle: K$ is a cyclotomic field,
- $R=\mathbb{Z}[x] /\left\langle\phi_{m}(x)\right\rangle$ where ϕ_{m} is the $\mathrm{m}^{t h}$ cyclotomic polynomial of degree $n=\varphi(m)$. Its roots are the $\mathrm{m}^{t h}$ roots of unity $\zeta_{m}^{j} \in \mathbb{C}$, with $\zeta_{m}=e^{\frac{2 i \pi}{m}}$. (For $m=2^{k+1}$, we have $\phi_{m}(x)=x^{n}+1$.)
- Canonical embedding: $\sigma_{K}: \alpha \in K \mapsto\left((\sigma(\alpha))_{\sigma}=\left(\alpha\left(\zeta_{m}^{j}\right)\right)_{j}\right.$.

Idea: replace \mathbb{Z}^{n} by $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$

R is isomorph to \mathbb{Z}^{n}

Let $a \in R$, we have $a(x)=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}$, the isomorphism $R \rightarrow \mathbb{Z}^{n}$ associate
the polynomial $a \in R$ to the vector $\mathbf{a}=\left[\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ a_{n-1}\end{array}\right] \in \mathbb{Z}^{n}$.

Idea: replace \mathbb{Z}^{n} by $R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$

Let's look at the product of two polynomials $x^{n}+1$

- $a(x)=a_{0}+a_{1} \cdot x+\ldots+a_{n-1} \cdot x^{n-1}$
- $s(x)=s_{0}+a_{1} \cdot x+\ldots+a_{n-1} \cdot x^{n-1}$

Using matrices, it gives the following block:

$$
\left[\begin{array}{ccccc}
a_{0} & -a_{n-1} & \cdots & -a_{2} & -a_{1} \\
a_{1} & a_{0} & \cdots & -a_{3} & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-2} & a_{n-3} & \cdots & a_{0} & -a_{n-1} \\
a_{n-1} & a_{n-2} & \cdots & a_{1} & a_{0}
\end{array}\right]\left[\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{n-2} \\
s_{n-1}
\end{array}\right]
$$

Module LWE

Let K be a number field of degree n with R its ring of integers.
Think of K as $\mathbb{Q}[x] /\left(x^{n}+1\right)$ and of R as $\mathbb{Z}[x] /\left(x^{n}+1\right)$ for $n=2^{k}$.
Replace \mathbb{Z} by R, and \mathbb{Z}_{q} by $R_{q}=R / q R$.

- $\mathbf{A} \leftarrow U\left(R_{q}^{m \times d}\right)$,
- $\mathbf{s} \leftarrow U\left(R_{q}^{d}\right)$,
- $e \in R^{m}$ small compared to q.

Special case $d=1$ is Ring-LWE

Module SIS and LWE

$R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle$ and $R_{q}=R / q R$.
Module-SIS ${ }_{q, m, \beta}$
Given $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in R_{q}^{d}$ independent and uniform, find $z_{1}, \ldots, z_{m} \in R$ such that $\sum_{i=1}^{m} \mathbf{a}_{i} \cdot z_{i}=0 \bmod q$ and $0<\|\mathbf{z}\| \leq \beta$.

Let $\alpha>0$ and $\mathbf{s} \in\left(R_{q}\right)^{d}$, the distribution $A_{\mathbf{s}, D_{R, \alpha q}}^{(M)}$ is:

- $\mathbf{a} \in\left(R_{q}\right)^{d}$ uniform,
- e sampled from $D_{R, \alpha q}$,

Outputs: $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$.
Module-LWE ${ }_{q, \nu_{\alpha}}$
Let $\mathbf{s} \in\left(R_{q}\right)^{d}$ uniform, distinguish between an arbitrary number of samples from $A_{\mathbf{s}, D_{R, \alpha q}}^{(M)}$ or the same number from $U\left(\left(R_{q}\right)^{d} \times R_{q}\right)$.

Ideals and modules

$$
R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { and } R_{q}=R / q R .
$$

- An ideal I of R is an additive subgroup of R closed under multiplication by every elements of R.
- As R is isomorph to \mathbb{Z}^{n}, any ideal $I \in R$ defines an integer lattice $\Lambda(\mathbf{B})$ where $\mathbf{B}=\left\{g \bmod x^{n}+1: g \in I\right\}$.
- A subset $M \subseteq K^{d}$ is an R-module if it is closed under addition and multiplication by elements of R.
- A finite-type R-module: $M \subseteq R^{d}: \sum_{i=1}^{D} R \cdot \mathbf{b}_{i},\left(\mathbf{b}_{i}\right) \in R^{d}$,
- $M=\sum_{i=1}^{d} I_{i} \cdot \mathbf{b}_{i}$ where I_{i} are ideals of R and $\left(I_{i}, \mathbf{b}_{i}\right)$ is a pseudo-basis of M.
- As ideals, any module defines an integer module lattice.

Hardness of Ring Learning With Errors problem

Worst-case to averagecase reduction

- Stehlé, Steinfeld, Tanaka and Xagawa 2009 - search - Lyubashevsky, Peikert, Regev 2010-decisional reduction both quantum, q poly Ideal Lattice

Ring Learning With Errors

Self reductions
Applebaum, Cash, Peikert, Sahai 2009 - same error and secret

Hardness of Module Learning With Errors problem

Worst-case to averagecase reduction

- Langlois Stehlé 2015 - quantum, q poly
- Folklore: adapting Peikert 2009 gives classical reduction but $q \exp$ and only search variant
- Boudgoust, Jeudy, Roux-Langlois, Wen 2021 classical, q poly, decisional, linear rank

Self reductions
Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions

Module or Rings?

- Hardness of the problem

Module or Rings?

- Choice of parameters
- Example of Ring $R_{q}=\mathbb{Z}_{q}[x] /\left\langle x^{n}+1\right\rangle$
- Constraints on parameters $n=2^{k}, q=1 \bmod 2 n \ldots$
- An example of parameter set:
- $n=512 \Rightarrow 60$ bits of security,
- $n=1024 \Rightarrow 140$ bits of security,
- ($n=256, d=3$) gives $n d=768$ which is "in between".
- Module LWE allows more flexibility.

NIST competition

From 2017 to 2024, NIST competition to develop new standards on post-quantum cryptography

2022 first results: 3 over 4 new standards are lattice-based

- Kyber - encryption scheme based on Module-LWE,
- Dilithium - signature scheme based on Module SIS and LWE,
- Falcon - signature scheme based on NTRU and Ring-SIS.

Encryption scheme based on Ring-LWE

[Lyubashevsky, Peikert, Regev 2011]
KeyGen: The secret key is a small $s \in R$
The public key is $(a, b)=(a, b=a \cdot s+e) \in R_{q}^{2}$, with $a \leftarrow U\left(R_{q}\right)$ and a small $e \in R$.
Enc: Given $m \in\{0,1\}^{n}$, a message is a polynomial in R with coordinates in $\{0,1\}$. Sample small r, e_{1}, e_{2} in R and output

$$
\left(a \cdot r+e_{1}, b \cdot r+e_{2}+\lfloor q / 2\rfloor \cdot m\right) \in R_{q} \times R_{q} .
$$

Dec: Given $(u, v) \in R_{q} \times R_{q}$, compute

$$
v-u \cdot s=\left(r \cdot e-s \cdot e_{1}+e_{2}\right)+b\lfloor q / 2\rfloor \cdot m
$$

For each coordinate of m, the plaintext is 0 if the result is closer from 0 than $\lfloor q / 2\rfloor$, and 1 otherwise.

Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

- Kyber relies on Module-LWE,
- Use $R_{q}=\mathbb{Z}_{q}[x] /\left\langle x^{256}+1\right\rangle$ with $q=7681$.
- The small elements follow a binomial distribution B_{η} : For some positive integer η, sample $\{(a i, b i)\}_{i=1}^{\eta} \leftarrow\left(\{0,1\}^{2}\right)^{\eta}$ and output $\sum_{i=1}^{\eta}\left(a_{i}-b_{i}\right)$.
- The uniform public key is generated given a seed and a function PARSE,
- Multiplication operations uses NTT - Number Theoretic Transform - which is a variant of the FFT in rings,
- Size of ciphertext is compressed by keeping only high order bits.

Performances

Kyber-512
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)

| sk: | 1632 gen: | 122684 gen: | 33856 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| pk: | 800 enc: | 154524 enc: | 45200 |
| ct: | 768 dec: | 187960 dec: | 34572 |

Kyber-768
Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)

| sk: | 2400 gen: | 199408 gen: | 52732 |
| :--- | ---: | ---: | ---: | ---: |
| pk: | 1184 enc: | 235260 enc: | 67624 |
| ct: | 1088 dec: | 274900 dec: | 53156 |

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (avx2)

| sk: | 3168 gen: | 307148 gen: | 73544 |
| :--- | :--- | ---: | ---: | ---: |
| pk: | 1568 enc: | 346648 enc: | 97324 |
| ct: | 1568 dec: | 396584 dec: | 79128 |

Choice of parameters

- Parameters used by Kyber:
- $n=256$ and $d=2,3,4$ giving three levels of security: $512,768,1024$,
- $q=7681$

Choice of parameters

- Parameters used by Kyber:
- $n=256$ and $d=2,3,4$ giving three levels of security: $512,768,1024$,
- $q=7681$
- How do they choose the parameters?
- By considering the LWE instance with dimension nd,
- and the "lattice estimator" [Albrecht, Player, Scott 2015],

Choice of parameters

- Parameters used by Kyber:
- $n=256$ and $d=2,3,4$ giving three levels of security: $512,768,1024$,
- $q=7681$
- How do they choose the parameters?
- By considering the LWE instance with dimension $n d$,
- and the "lattice estimator" [Albrecht, Player, Scott 2015],
- There is no consideration of the structure!
- Why?
- Because we don't know how...

Approx Ideal SVP seems to be the easiest

- Hardness of the problem

Solving Approx Ideal SVP ${ }^{1}$

- For a long time, no algorithm manages to exploit the structure of Ideal SVP.
- 2014: Quantum algorithm computing (\mathcal{S}-)units, class groups in polynomial time!
[EHKS14,BS16]
- Followed by a long series of cryptanalysis works. [CGS14,CDPR16,CDW17/21,PHS19,BR20,BLNR22,BL21,BEFHY22]

[^0]
Algebraic cryptanalysis of Ideal-SVP

1. Schnorr's hierarchy (unstructured)

Algebraic cryptanalysis of Ideal-SVP

1. Schnorr's hierarchy (unstructured)
2. CDW algorithm [Cramer, Ducas, Wesolowski 17/21]: uses short Stickelberger relations.

Algebraic cryptanalysis of Ideal-SVP

1. Schnorr's hierarchy (unstructured)
2. CDW algorithm [Cramer, Ducas, Wesolowski 17/21]: uses short Stickelberger relations.
3. PHS and Twisted-PHS [Pellet-Mary, Hanrot, Stehlé 19, Bernard, Roux-Langlois 20, Bernard, Lesavouvey, Nguyen, Roux-Langlois 22]: \mathcal{S}-unit attacks.

Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal $I=(g)$ such that g is short, retrieve g.

[^1]
Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal $I=(g)$ such that g is short, retrieve g.

1. Find a generator $h=g u$ of $I\left(u \in \mathcal{O}_{K}^{\times}\right)$

Can be done in polynomial time with a quantum computer
2. Find g given h.

Use the Log-embedding ${ }^{2}$ and the Log-unit lattice $\log \left(\mathcal{O}_{K}^{\times}\right)$
${ }^{2} \log _{K}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|\right)$

Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal $I=(g)$ such that g is short, retrieve g.

1. Find a generator $h=g u$ of $I\left(u \in \mathcal{O}_{K}^{\times}\right)$

Can be done in polynomial time with a quantum computer
2. Find g given h.

Use the Log-embedding ${ }^{2}$ and the Log-unit lattice $\log \left(\mathcal{O}_{K}^{\times}\right)$

- [Cramer, Ducas, Peikert, Regev 2016] quantum polynomial-time or classical $2^{n^{2 / 3+\epsilon}}$-time algorithm to solve SG-PIP over cyclotomic fields.
${ }^{2} \log _{K}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|\right)$

View of the algorithm

View of the algorithm

Let I be a challenge ideal.

1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$

$$
h=g \cdot u
$$

View of the algorithm

Let I be a challenge ideal.

1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?

$$
h=g \cdot u
$$

View of the algorithm

Let I be a challenge ideal.

1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?

$$
h=g \cdot u
$$

View of the algorithm

Let I be a challenge ideal.

1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?

$$
h=g \cdot u
$$

View of the algorithm

Let I be a challenge ideal.

1. Quantum decomposition Apply $\log _{K}$
$\log _{K}(h)=\log _{K}(g)+\log _{K}(u) \in$ $\log _{K}(g)+\log _{K}\left(\mathcal{O}_{K}^{\times}\right)$
2. Short coset representative ?
3. Hope this is short in I.

$$
\begin{aligned}
h & =g \cdot u \\
(h / u) & =g
\end{aligned}
$$

SVP of general ideals

Consider K a number field, I an ideal and S a set of prime ideals.

1. Compute a S-generator of I, i.e. h s.t. $(h)=I \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
2. Reduce h

Two variants for step 2.

1. First reduce $\prod_{\mathfrak{p}} \mathfrak{p}^{v_{\mathfrak{p}}}$; then find a generator with the Log-embedding.
\rightarrow [Cramer, Ducas, Wesolowski 2017] cyclotomic fields, subexponential approximation factor
2. Use the Log- S-embedding ${ }^{3}$ to reduce everything.
\rightarrow [Pellet-Mary, Hanrot, Stehlé 2019] all number fields, exponential preprocessing, subexponential approximation factor
\rightarrow [Bernard, Roux-Langlois 2020] other def. of $\log _{K, S}$, same asymptotic results, good results in practice for cyclotomics up to dimensions 70.
${ }^{3} \log _{K, S}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|,-v_{\mathfrak{p}_{1}}(x) \ln \left(N\left(\mathfrak{p}_{1}\right)\right), \ldots,-v_{\mathfrak{p}_{r}}(x) \ln \left(N\left(\mathfrak{p}_{r}\right)\right)\right)$

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?
Two major obstructions for experiments:

- Decomposition $(h)=I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s)=\prod_{\mathfrak{p} \in S} \mathfrak{p}^{e_{\mathfrak{p}}}$

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:

- Decomposition $(h)=I \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s)=\prod_{\mathfrak{p} \in S} \mathfrak{p}^{\boldsymbol{p}_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- Obtain explicit short basis of S_{m}
- It is constructive: the associated generators can be computed efficiently
- Free family of short S-units

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?
Two major obstructions for experiments:

- Decomposition $(h)=I \cdot \prod_{p \in S} \mathfrak{p}^{v_{\mathfrak{p}}}$
- Group of S-units $(s)=\prod_{\mathfrak{p} \in S} \mathfrak{p}^{\boldsymbol{e}_{\mathfrak{p}}}$

Use new results of Bernard and Kučera (2021) on Stickelberger ideal

- Obtain explicit short basis of S_{m}
- It is constructive: the associated generators can be computed efficiently
- Free family of short S-units

Allows us to approximate $\log \left(\mathcal{O}_{K, S}^{\times}\right)$with a full-rank sublattice

- Cyclotomic units
- Explicit Stickelberger generators
- Real $S \cap K_{m}^{+}$-units \rightarrow only part sub-exponential; dimension $n / 2$
- 2-saturation to reduce the index

Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space

[^2]
Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space

[^3]
Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space

[^4]
Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space

[^5]
Experimental results ${ }^{4}$

Cyclotomic fields with almost all conductors, up to dimension 210. Simulated targets in the Log-space

[^6]
Using LWE to build constructions in practice

Worst-case to average-
case reduction
Learning
With Errors $\begin{gathered}\text { using } \\ \text { structured } \\ \text { variants }\end{gathered}$ Choice of parameters

Security proof

Efficient
$\begin{array}{l}\text { Cryptographic } \\ \text { constructions }\end{array}$

Conclusion

- Lattice-based cryptography allows to build efficient constructions such as encryption or signature schemes with a security based on the hardness of difficult algorithmic problems on lattices.
- Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST, together with a hash-based signature.
Two of them are based on Module-LWE.
- Approx Ideal SVP seems to be the easier problem to try to solve \rightarrow the results of recent attacks does not impact the security of lattice-based constructions.

[^0]: ${ }^{1}$ Thanks to Olivier Bernard and Andrea Lesavourey for part of the slides (particularly to Olivier for the tikz picture!)

[^1]: ${ }^{2} \log _{K}: x \mapsto\left(\ln \left|\sigma_{1}(x)\right|, \ldots, \ln \left|\sigma_{n}(x)\right|\right)$

[^2]: ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^3]: ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^4]: ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^5]: ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

[^6]: ${ }^{4}$ Code available at https://github.com/ob3rnard/Tw-Sti.

