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Using LWE to build provable constructions - theory

Learning
With Errors

Lattice

→ solve Approx SVP
•

•
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λ1

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
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Approx Shortest Vector Problem (Approx SVPγ)
Given a lattice L(B) of dimension n:

Output: find a non-zero vector x ∈ L(B) such that ‖x‖ ≤ γλ1(L(B))
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γλ1

Lattice
L(B) = {

∑n
1=i aibi, ai ∈ Z}, where the (bi)1≤i≤n’s, linearly independent vectors,

are a basis of L(B).
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Hardness of Approx SVPγ

γ
1

√
n poly(n) 2O(n)

cost
to solve 2Ω(n) 2Ω(n) poly(n)

hardness
Complexity NP-hard

NP ∩ CoNP

PCrypto

Conjecture
There is no polynomial time algorithm that approximates this lattice problem and
its variants to within polynomial factors.
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The Learning With Errors problem

LWEn
α,q

,
find s

Given A A
s

+ e

m

n

I A← U(Zm×nq ),
I s← U(Znq ),
I e← DZm,αq, small compared to q.

αq

Discrete Gaussian error DZ,αq

Search version: Given (A,b = As + e), find s.
Decision version: Distinguish from (A,b) with b uniform.
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Regev’s encryption scheme
I Parameters: n,m, q ∈ Z, α ∈ R,
I Keys: sk = s and pk = ( A , b ), with b = A s + e mod q

where s ←↩ U(Znq ), A ←↩ U(Zm×n
q ), e ←↩ DZm,αq.

I Encryption (M ∈ {0, 1}): Let r ←↩ U({0, 1}m),

, v =uT =

r

A
r

b +bq/2e .M

I Decryption of (u, v): compute v − uTs,
r

A
s

+ e +bq/2e .M−

r

A
s

= small + bq/2e .M

︸ ︷︷ ︸
v

︸ ︷︷ ︸
uT s

If close from 0: return 0, if close from bq/2c: return 1.

LWE hard ⇒ Regev’s scheme is IND-CPA secure.
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Using LWE

Hardness of LWE used as a foundation for many constructions.

Learning
With Errors

Cryptographic constructions
Signature, encryption
Advanced schemes

Fully Homomorphic Encryption

Security proof

Problem: constructions based on LWE
enjoy a nice guarantee of security

but are too costly in practice.

Solutions used today?
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Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured)
variants of LWE.

I Public Key Encryption
I Crystals - Kyber: Module-LWE with both secret and noise chosen from a

centered binomial distribution.
I Saber: Module-LWR (deterministic variant).
I NTRU
I FrodoKEM (as alternate candidate): LWE but with smaller parameters.

I Signature
I Crystals - Dilithium: Module-LWE with both secret and noise chosen in a small

uniform interval, and Module-SIS.
I Falcon: Ring-SIS on NTRU matrices.
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Using LWE to build constructions

Learning
With Errors

Lattice
→ solve Approx SVP

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
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From SIS/LWE to structured variants
Problem: constructions based on LWE enjoy a nice guaranty of security
but are too costly in practice.

→ replace Zn by a Ring, for example R = Z[x]/〈xn + 1〉 (n = 2k).

I Ring variants since 2006:

A

Rot(a1)

Rot(am)I Structured A ∈ Zm·n×n
q represented by m · n elements,

I Product with matrix/vector more efficient,
I Hardness of Ring-SIS, [Lyubashevsky and Micciancio 06]

and [Peikert and Rosen 06]

I Hardness of Ring-LWE [Lyubashevsky, Peikert and Regev 10].
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Idea: replace Zn by R = Z[x]/〈xn + 1〉

where n = 2k then the polynomial xn + 1 is irreducible.
Elements of this ring are polynomials of degree less than n.

R is a cyclotomic ring. R is also the ring of integer OK of an number field K:
I K = Q[x]/〈xn + 1〉: K is a cyclotomic field,
I R = Z[x]/〈φm(x)〉 where φm is the mth cyclotomic polynomial of degree
n = ϕ(m). Its roots are the mth roots of unity ζjm ∈ C, with ζm = e

2iπ
m .

(For m = 2k+1, we have φm(x) = xn + 1.)
I Canonical embedding: σK : α ∈ K 7→ ((σ(α))σ = (α(ζjm))j .
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Idea: replace Zn by R = Z[x]/〈xn + 1〉

R is isomorph to Zn

Let a ∈ R, we have a(x) = a0 + a1x+ . . .+ an−1x
n−1,

the isomorphism R→ Zn associate

the polynomial a ∈ R to the vector a =


a0

a1
...

an−1

 ∈ Zn.
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Idea: replace Zn by R = Z[x]/〈xn + 1〉

Let’s look at the product of two polynomials xn + 1

I a(x) = a0 + a1 . x+ . . .+ an−1 . x
n−1

I s(x) = s0 + a1 . x+ . . .+ an−1 . x
n−1

Using matrices, it gives the following block:
a0 −an−1 · · · −a2 −a1

a1 a0 · · · −a3 −a2
...

...
. . .

...
...

an−2 an−3 · · · a0 −an−1

an−1 an−2 · · · a1 a0




s0

s1
...

sn−2

sn−1


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Module LWE
Let K be a number field of degree n with R its ring of integers.
Think of K as Q[x]/(xn + 1) and of R as Z[x]/(xn + 1) for n = 2k.

Replace Z by R, and Zq by Rq = R/qR.

,A A
s

s1

+ e

e1

m

rank d

a1,1

a1,1 ∈ Rq
Rot(a1,1) ∈ Zn×nq

I A← U(Rm×dq ),
I s← U(Rdq),
I e ∈ Rm small compared to q.

Special case d = 1
is Ring-LWE
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Module SIS and LWE
R = Z[x]/〈xn + 1〉 and Rq = R/qR.

Module-SISq,m,β
Given a1, . . . ,am ∈ Rdq independent and uniform, find z1, . . . , zm ∈ R such that∑m

i=1 ai · zi = 0 mod q and 0 < ‖z‖ ≤ β.

Let α > 0 and s ∈ (Rq)
d, the distribution A(M)

s,DR,αq is:

I a ∈ (Rq)
d uniform,

I e sampled from DR,αq,
Outputs: (a, 〈a,s〉+ e) .

Module-LWEq,να
Let s ∈ (Rq)

d uniform, distinguish between an arbitrary number of samples from
A

(M)
s,DR,αq or the same number from U((Rq)

d ×Rq).
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Ideals and modules

R = Z[x]/〈xn + 1〉 and Rq = R/qR.
I An ideal I of R is an additive subgroup of R closed under multiplication by

every elements of R.
I As R is isomorph to Zn, any ideal I ∈ R defines an integer lattice Λ(B) where

B = {g mod xn + 1 : g ∈ I}.

I A subset M ⊆ Kd is an R-module if it is closed under addition and
multiplication by elements of R.

I A finite-type R-module: M ⊆ Rd :
∑D

i=1R .bi, (bi) ∈ Rd,
I M =

∑d
i=1 Ii .bi where Ii are ideals of R and (Ii,bi) is a pseudo-basis of M .

I As ideals, any module defines an integer module lattice.
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Hardness of Ring Learning With Errors problem

Ring Learning
With Errors

Ideal Lattice

→ solve Ideal
Approx SVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Stehlé, Steinfeld, Tanaka and Xagawa 2009 - search
• Lyubashevsky, Peikert, Regev 2010 - decisional

reduction both quantum, q poly

Self reductions

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
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Hardness of Module Learning With Errors problem

Module Learning
With Errors

Module Lattice

→ solve Module
Approx SVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Langlois Stehlé 2015 - quantum, q poly
• Folklore: adapting Peikert 2009 gives classical

reduction but q exp and only search variant
• Boudgoust, Jeudy, Roux-Langlois, Wen 2021

classical, q poly, decisional, linear rank

Self reductions

• Applebaum, Cash, Peikert, Sahai 2009 - same error and secret
• Boudgoust, Jeudy, Roux-Langlois, Wen 2022: short error and secret distributions
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Module or Rings?

I Hardness of the problem

Approx SVP
on Modules

Module LWE

Approx SVP
on Ideals

Ring LWE

Langlois, Stehlé 15

Albrecht, Deo 17

LPR10, PRS17

Gap between
d = 1 and d = 2
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Module or Rings?

I Choice of parameters
I Example of Ring Rq = Zq[x]/〈xn + 1〉
I Constraints on parameters n = 2k, q = 1 mod 2n ...

I An example of parameter set:
I n = 512⇒ 60 bits of security,
I n = 1024⇒ 140 bits of security,
I (n = 256, d = 3) gives nd = 768 which is ”in between”.

I Module LWE allows more flexibility.
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NIST competition

From 2017 to 2024, NIST competition to develop new standards
on post-quantum cryptography

2022 first results: 3 over 4 new standards are lattice-based

I Kyber - encryption scheme based on Module-LWE,
I Dilithium - signature scheme based on Module SIS and LWE,
I Falcon - signature scheme based on NTRU and Ring-SIS.
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Encryption scheme based on Ring-LWE
[Lyubashevsky, Peikert, Regev 2011]

KeyGen : The secret key is a small s ∈ R
The public key is (a, b) = (a, b = a · s+ e) ∈ R2

q ,
with a← U(Rq) and a small e ∈ R.

Enc : Given m ∈ {0, 1}n, a message is a polynomial in R with coordinates
in {0, 1}. Sample small r, e1, e2 in R and output

(a · r + e1, b · r + e2 + bq/2c ·m) ∈ Rq ×Rq.

Dec : Given (u, v) ∈ Rq ×Rq, compute

v − u · s = (r · e− s · e1 + e2) + bbq/2c ·m

For each coordinate of m, the plaintext is 0 if the result is closer from
0 than bq/2c, and 1 otherwise.
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Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle]

I Kyber relies on Module-LWE,
I Use Rq = Zq[x]/〈x256 + 1〉 with q = 7681.

I The small elements follow a binomial distribution Bη:
For some positive integer η, sample {(ai, bi)}ηi=1 ← ({0, 1}2)η and output∑η

i=1(ai − bi).

I The uniform public key is generated given a seed and a function PARSE,
I Multiplication operations uses NTT - Number Theoretic Transform - which is a

variant of the FFT in rings,
I Size of ciphertext is compressed by keeping only high order bits.
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Performances

Current timings (ECDH)
Public key around 32 bytes
Efficiency comparable in
terms of cycles.
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Choice of parameters

I Parameters used by Kyber:
I n = 256 and d = 2, 3, 4 giving three levels of security: 512, 768, 1024,
I q = 7681

I How do they choose the parameters?
I By considering the LWE instance with dimension nd,
I and the ”lattice estimator” [Albrecht, Player, Scott 2015],

I There is no consideration of the structure!
I Why?
I Because we don’t know how...
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Approx Ideal SVP seems to be the easiest

I Hardness of the problem

Approx SVP
on Modules

Module LWE

Approx SVP
on Ideals

Ring LWE

Langlois, Stehlé 15

Albrecht, Deo 17

LPR10, PRS17

Gap between
d = 1 and d = 2
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Solving Approx Ideal SVP1

I For a long time, no algorithm manages to exploit the structure of Ideal SVP.

I 2014: Quantum algorithm computing (S-)units, class groups in polynomial
time!
[EHKS14,BS16]

I Followed by a long series of cryptanalysis works.
[CGS14,CDPR16,CDW17/21,PHS19,BR20,BLNR22,BL21,BEFHY22]

1Thanks to Olivier Bernard and Andrea Lesavourey for part of the slides (particularly to Olivier for
the tikz picture!)
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Algebraic cryptanalysis of Ideal-SVP

1. Schnorr’s hierarchy (unstructured)

2. CDW algorithm [Cramer, Ducas,
Wesolowski 17/21]: uses short
Stickelberger relations.

3. PHS and Twisted-PHS [Pellet-Mary,
Hanrot, Stehlé 19, Bernard,
Roux-Langlois 20, Bernard, Lesavouvey,
Nguyen, Roux-Langlois 22]: S-unit
attacks.
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Solving Approx Ideal SVP

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):
Given a principal ideal I = (g) such that g is short, retrieve g.

1. Find a generator h = gu of I (u ∈ O×K)
Can be done in polynomial time with a quantum computer

2. Find g given h.
Use the Log-embedding2 and the Log-unit lattice Log(O×K)

I [Cramer, Ducas, Peikert, Regev 2016] quantum polynomial-time or classical
2n

2/3+ε
-time algorithm to solve SG-PIP over cyclotomic fields.

2LogK : x 7→ (ln |σ1(x)|, . . . , ln |σn(x)|)
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View of the algorithm

1

Log-unit
lattice

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK

LogK(h) = LogK(g) + LogK(u) ∈
LogK(g) + LogK(O×K)

2. Short coset representative ?

3. Hope this is short in I.

h = g · u
(h/u) = g
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View of the algorithm

1

Log-unit
lattice

LogK(h)

LogK(u) LogK(h/u)

Let I be a challenge ideal.

1. Quantum decomposition
Apply LogK

LogK(h) = LogK(g) + LogK(u) ∈
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SVP of general ideals
Consider K a number field, I an ideal and S a set of prime ideals.

1. Compute a S-generator of I, i.e. h s.t. (h) = I
∏

p∈S p
vp

2. Reduce h

Two variants for step 2.
1. First reduce

∏
p p

vp ; then find a generator with the Log-embedding.
→ [Cramer, Ducas, Wesolowski 2017] cyclotomic fields, subexponential

approximation factor

2. Use the Log-S-embedding3 to reduce everything.
→ [Pellet-Mary, Hanrot, Stehlé 2019] all number fields, exponential preprocessing,

subexponential approximation factor
→ [Bernard, Roux-Langlois 2020] other def. of LogK,S , same asymptotic results,

good results in practice for cyclotomics up to dimensions 70.

3LogK,S : x 7→ (ln|σ1(x)|, . . . , ln|σn(x)|,−vp1(x)ln(N(p1)), . . . ,−vpr (x)ln(N(pr)))
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Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)
Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:
I Decomposition (h) = I ·

∏
p∈S pvp

I Group of S-units (s) =
∏

p∈S pep

Use new results of Bernard and Kučera (2021) on Stickelberger ideal
I Obtain explicit short basis of Sm

I It is constructive: the associated generators can be computed efficiently
I Free family of short S-units

Allows us to approximate Log(O×K,S) with a full-rank sublattice
I Cyclotomic units
I Explicit Stickelberger generators
I Real S ∩K+

m-units→ only part sub-exponential; dimension n/2
I 2-saturation to reduce the index
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Experimental results4

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space

4Code available at https://github.com/ob3rnard/Tw-Sti.
33 / 35

https://github.com/ob3rnard/Tw-Sti


Experimental results4

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space

4Code available at https://github.com/ob3rnard/Tw-Sti.
33 / 35

https://github.com/ob3rnard/Tw-Sti


Experimental results4

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space

4Code available at https://github.com/ob3rnard/Tw-Sti.
33 / 35

https://github.com/ob3rnard/Tw-Sti


Experimental results4

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space

4Code available at https://github.com/ob3rnard/Tw-Sti.
33 / 35

https://github.com/ob3rnard/Tw-Sti


Experimental results4

Cyclotomic fields with almost all conductors, up to dimension 210.
Simulated targets in the Log-space

4Code available at https://github.com/ob3rnard/Tw-Sti.
33 / 35

https://github.com/ob3rnard/Tw-Sti


Using LWE to build constructions in practice
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Conclusion

I Lattice-based cryptography allows to build efficient constructions such as
encryption or signature schemes with a security based on the hardness of
difficult algorithmic problems on lattices.

I Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST,
together with a hash-based signature.
Two of them are based on Module-LWE.

I Approx Ideal SVP seems to be the easier problem to try to solve→ the results
of recent attacks does not impact the security of lattice-based constructions.
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