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Cryptography

Let’s start with a simple example: you want to send a message to someone.
Two possibilities:
I Either you share a secret key (AES...),
I Either you don’t⇒ public key cryptography.
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Public key cryptography

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

Adversary

⇔ solve a difficult algorithmic problem

I Examples: factorisation (RSA), discrete log (El Gamal) ...
I Solving those problems needs an exponential complexity on a classical computer.

I Shor’s algorithm (1997): polynomial time on a quantum computer.

3 / 37



Public key cryptography

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

Adversary ⇔ solve a difficult algorithmic problem

I Examples: factorisation (RSA), discrete log (El Gamal) ...
I Solving those problems needs an exponential complexity on a classical computer.

I Shor’s algorithm (1997): polynomial time on a quantum computer.

3 / 37



Public key cryptography

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

Adversary ⇔ solve a difficult algorithmic problem

I Examples: factorisation (RSA), discrete log (El Gamal) ...
I Solving those problems needs an exponential complexity on a classical computer.

I Shor’s algorithm (1997): polynomial time on a quantum computer.

3 / 37



Public key cryptography

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

Adversary ⇔ solve a difficult algorithmic problem

I Examples: factorisation (RSA), discrete log (El Gamal) ...
I Solving those problems needs an exponential complexity on a classical computer.

I Shor’s algorithm (1997): polynomial time on a quantum computer.

3 / 37



Context
New goals in cryptography
I Resisting to quantum computers,
I Need of new functionalities,

→ need alternatives
I Post-quantum secure,
I Efficient,
I New functionalities, different types of constructions.

NIST competition Code-based cryptography

Lattice-based cryptography

Multivariate, Isogenies, Hash based ...
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NIST competition
From 2017 to 2024, NIST competition to develop new standards

on post-quantum cryptography

Total: 69 accepted submissions (round 1)
I Signature (5 lattice-based),
I Public key encryption / Key Encapsulation

Mechanism (21 lattice-based)

Other candidates: 17 code-based PKE, 7 multivariate signatures, 3 hash-based
signatures, 7 from ”other” assumptions (isogenies, PQ RSA ...) and 4 attacked + 5
withdrawn.

⇒ lattice-based constructions are very serious candidates
5 over 7 finalists are lattice-based

2022 first results: 3 over 4 new standards are lattice-based
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Why lattice-based cryptography?

I Likely to resist attacks from quantum computers,
I Strong security guarantees,

from well-understood hard problems on lattices.

I Novel and powerful cryptographic functionalities,
I Public key encryption and signature scheme (practical),
I Advanced signature (group signature ...),

and encryption scheme (IBE, ABE, ...),
I Fully homomorphic encryption.

I Efficiency
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Today: an introduction to lattice-based cryptography

1. Lattices
I Definition
I Hard problem on lattices

2. The Learning With Errors problem
I Definition
I Difficulty
I How to encrypt using LWE?

3. Practical scheme
I Adding structure
I Module-LWE
I Kyber encryption scheme
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Lattice
L(B) = {

∑n
1=i aibi, ai ∈ Z}, where the (bi)1≤i≤n’s, linearly independent vectors,

are a basis of L(B).
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I Several basis define a lattice, some are better.

I The first minimum λ1 is the norm of the smallest non-zero vector.
I The n-th minima λn is the radius of a sphere which contains n linearly

independent shortest vectors of the lattices.
I The fundamental parallelepiped is defined by P(B) = {

∑n
i=1 cibi : ci ∈ [0, 1)}.

Its volume defines the volume of the lattice: det(Λ) = |det(B)|.

I Minkowski Theorem:
λ1(Λ) ≤

√
n · det(Λ)1/n(

n∏
i=1

λi(Λ)

)1/n

≤
√
n · det(Λ)1/n
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Shortest Vector Problem (SVP)

Given a lattice L(B) of dimension n:

Output: find the shortest non-zero vector x ∈ L(B).

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

λ1

γλ1

10 / 37



Approx Shortest Vector Problem (Approx SVPγ)

Given a lattice L(B) of dimension n:

Output: find a non-zero vector x ∈ L(B) such that ‖x‖ ≤ γλ1(L(B))
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Gap Shortest Vector Problem (GapSVP)

Given a lattice L(B) of dimension n and d > 0:

Output: • YES: there is z ∈ L(B) non-zero such that ‖z‖ < d,
• NO: for all non-zero vectors z ∈ L(B): ‖z‖ ≥ d.

• • • • • • •

• • • •
0
• • •

• • • • • • •

d

•
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• •
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d
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Gap Shortest Vector Problem (GapSVPγ)

Given a lattice L(B) of dimension n and d > 0:

Output: • YES: there is z ∈ L(B) non-zero such that ‖z‖ < d,
• NO: for all non-zero vectors z ∈ L(B): ‖z‖ ≥ γd.
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Closest Vector Problem

Given a lattice L(B) of dimension n and t ∈ Zm:

Output: find x ∈ Zn minimizing ||Bx− t||.
Approx variant: find x ∈ Zn such that ||Bx− t|| ≤ γ · dist(t,Λ(B)).
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How hard is it to solve those problems?
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Hardness of Approx SVPγ

γ
1

√
n poly(n) 2O(n)

cost
to solve 2Ω(n) 2Ω(n) poly(n)

hardness
Complexity NP-hard

NP ∩ CoNP

PCrypto

Conjecture
There is no polynomial time algorithm that approximates this lattice problem and
its variants to within polynomial factors.
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At the heart of lattice-based cryptography
the Learning With Errors problem

I Introduced by Regev in 2005

Problem: solve a linear system with m equations and n variables (m ≥ n), with
noise, and modulo an integer q.

Find (s1, s2, s3, s4, s5) such that:

s1 + 22s2 + 17s3 + 2s4 + s5 ≈ 16 mod 23

3s1 + 2s2 + 11s3 + 7s4 + 8s5 ≈ 17 mod 23

15s1 + 13s2 + 10s3 + 3s4 + 5s5 ≈ 3 mod 23

17s1 + 11s2 + 20s3 + 9s4 + 3s5 ≈ 8 mod 23

2s1 + 14s2 + 13s3 + 6s4 + 7s5 ≈ 9 mod 23

4s1 + 21s2 + 9s3 + 5s4 + s5 ≈ 18 mod 23

11s1 + 12s2 + 5s3 + s4 + 9s5 ≈ 7 mod 23
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Gaussian distributions

Continuous Gaussian distribution of center c and parameter s:∣∣∣∣∣ Ds,c(x) ∼ 1
s exp

(
− π ||x−c||

2

s2

)
∀x ∈ R

Gaussian distribution on Z of center c with parameter s:∣∣∣∣∣ DZ,s,c(x) ∼ 1
s exp

(
− π ||x−c||

2

s2

)
∀x ∈ Z

I It is not the rounding of the continuous Gaussian.
I We now how to sample it efficiently.
I Almost all samples are in [−t · s,+t · s] for a constant t, if s is not to small.

15 / 37



Gaussian distributions

Continuous Gaussian distribution of center c and parameter s:∣∣∣∣∣ Ds,c(x) ∼ 1
s exp

(
− π ||x−c||

2

s2

)
∀x ∈ R

Gaussian distribution on Z of center c with parameter s:∣∣∣∣∣ DZ,s,c(x) ∼ 1
s exp

(
− π ||x−c||

2

s2

)
∀x ∈ Z

I It is not the rounding of the continuous Gaussian.
I We now how to sample it efficiently.
I Almost all samples are in [−t · s,+t · s] for a constant t, if s is not to small.

15 / 37



Discrete gaussian on lattices

Theorem (Gentry, Peikert, Vaikuntanathan 2008)

There exists a PPT algorithm which, given a basis B of a lattice Λ(B) of
dimension n, a parameter s ≥ ‖B̃‖ · ω(

√
log n), an a center c ∈ Rn, outputs a

sample from a distribution statistically close from DΛ,s,c.

Intuition: sampling on Z is quite easy, it is more complicated on a general lattice.

Important: Better is the basis (with short vectors), smaller is the parameter we
can sample with, and then have short vectors.
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Smoothing parameter
Definition
For all ε > 0, the smoothing parameter of a lattice Λ with parameter ε is the smallest s
such that ρ1/s(Λ

∗ \ {0}) ≤ ε, we denote it by ηε(Λ).

When the Gaussian’s parameter is bigger than smoothing parameter, the discrete
gaussian distribution has the same properties than a continuous one. In particular:

I the discrete gaussian distribution DΛ,s,c is mainly concentrated in a sphere of radius√
ns around its center c.

If s > ηε(Λ),
Pr

x←↩DΛ,s,c

[
‖x− c‖ >

√
ns
]
≤ 2−n.

I Addition: if s, t > ηε(Λ), we can also add two gaussian on the same lattice :

DΛ,s +DΛ,t = DΛ,
√
s2+t2 .
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Size of the smoothing parameter

The size of the smooting parameter can be compared to the size of the n-th
minima.

I Micciancio, Regev 2004 and Regev 2005:
For any lattice Λ and ε > 0√

ln(1/ε)

π
· λn(Λ)

n
≤ ηε(Λ) ≤

√
ln(2n(1 + 1/ε))

π
· λn(Λ).
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The Learning With Errors problem [Regev 05]

Let n > 1, q ≥ 2 and α ∈]0, 1[.
For any s ∈ Znq , we define the distribution Dn,q,α(s) by:

(a, 〈a,s〉+ e) , with a← U(Znq ) and e← DZ,αq.

I Search LWE
For any s: find s given an arbitrary number of samples from Dn,q,α(s).

I Decision LWE
With non-negligible probability on s← U(Znq ): distinguish between the
distributions Dn,q,α(s) and U(Zn+1

q ).
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Decision version

Let n > 1, q ≥ 2 and α ∈]0, 1[.
For any s ∈ Znq , we define the distribution Dn,q,α(s) by:

(a, 〈a,s〉+ e) , with a← U(Znq ) and e← DZ,αq.

I Decision LWE
With non-negligible probability on s← U(Znq ): distinguish between the
distributions Dn,q,α(s) and U(Zn+1

q ).

We consider an oracle O which produces independant samples, all from the same
distribution being:
I either Dn,q,α(s) for a fixed s,
I either U(Zn+1

q ).
The goal is to decide which one with a non-negligeable advantage.
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The Learning With Errors problem

LWEn
α,q

,
find s

Given A A
s

+ e

m

n

I A← U(Zm×nq ),
I s← U(Znq ),
I e← DZm,αq, small compared to q.

αq

Discrete Gaussian error DZ,αq

Search version: Given (A,b = As + e), find s.
Decision version: Distinguish from (A,b) with b uniform.
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Equivalence between the two variants
LWE sample: ( A , b = A s + e mod q) with short e .

I Easy reduction : from decision to search
I find s⇒ distinguish b uniform or b LWE sample,

I Given (A,b), find the oracle to find s, compute b− As:

I if it is small, then b is an LWE sample,
I if it looks uniform, then b is uniform.

I 2nd reduction: from search to decision
I Distinguish b uniform from b LWE sample⇒ find s,

I Given (A,b) use the oracle to find each coordinate of s: for all s∗1, choose u
uniform in Zq and modify (A,b) as follow:

(a, b) + (u, 0, . . . , 0, us∗1) = (a′, 〈a′,s〉+ e+ u(s∗1 − s1)), .

I if s∗1 = s1 it stays a LWE sample,
I else b will be uniform.
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Short Integer Solution problem [Ajtai 1996]

For A ← U(Zm×nq ):

SISβ LWEα

x

A = 0 mod q ,A A
s

+ e
m

n

s ← U(Znq ), e ← DZm,αq.

Goal: Given A ← U(Zm×nq ), Goal: Given ( A , A s + e ),
find x s.t. 0 < ‖ x ‖ ≤ β. find s .
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Short Integer Solution problem [Ajtai 1996]

For A ← U(Zm×nq ):

SISβ LWEα

x

A = 0 mod q ,A A
s

+ e
m

n

s ← U(Znq ), e ← DZm,αq.

Solve SVP in Solve CVP in
Λ⊥q ( A ) = { x ∈ Zm| x T A = 0 mod q} Λq( A ) = {y ∈ Zm : y = A s mod q

for some s ∈ Zn}
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Hardness of LWE

I Exhaustive search
I Try all the s ∈ Znq → is b− As small?
I ⇒ cost around qn.

I Other possibility: guess the n first errors, find s→ is b− As small?
I ⇒ cost around (αq

√
n)n.

I How to do better?
I LWE is a lattice problem: consider

Λq(A) = {y ∈ Zm : y = As mod q for s ∈ Zn}.

Solving LWE⇔ solving CVP in this lattice.

I Cost:
(
n log q
log2 α

)n log q

log2 α .
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Hardness of the Learning With Errors problem

Learning
With Errors

Lattice

→ solve Approx GapSVP

•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Worst-case to average-
case reduction

• Regev 2005 - quantum
• Peikert 2009 - classical q exp
• Brakerski, Langlois, Peikert

Regev, Stehlé 2013 - classical
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LWE variants

Choose another distribution for the secret or the error.
Regev 2009: uniform secret and gaussian error.

,A A
s

+ e

m

n

I Gaussian (continue,
discretize, discrete ...),

I Uniform in small interval,
I Binary under conditions.

I Same distribution as the error: in particular Gaussian,
I Binary (Unif in {0, 1}n),
I Entropic.
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Using LWE to build provable constructions - theory

Learning
With Errors

Lattice

→ solve Approx SVP
•

•

• • •

• • •

• • •

• •

• •

• •

λ1

Cryptographic
constructions

Worst-case to average-
case reduction

Security proof
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Public key encryption - definition

Want to send
a message M

c = Encrypt(pk,M)
C

Generate two
keys pk, sk

pk

and keep sk

M = Decrypt(sk, C)

An encryption scheme is defined by three algorithms (KeyGen, Enc, Dec):
I The key generation algorithm KeyGen takes as input a security parameter λ

and outputs the public and the secret keys (pk, sk).
I The encryption algorithm Enc takes as input the public key pk and a message m

and outputs c = Enc(pk,m),
I The decryption algorithm Dec takes as input the secret key sk and a ciphertext c

and outputs m = Dec(sk, c),

such that Dec(sk, (Enc(pk,m)) = m.
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Regev’s encryption scheme

I Parameters: n,m, q ∈ Z, α ∈ R,

I Keys: sk = s and pk = ( A , b ), with b = A s + e mod q

where s ←↩ U(Znq ), A ←↩ U(Zm×nq ), e ←↩ DZm,αq.

I Decryption of (u, v): compute v − uTs,
r

A
s

+ e +bq/2e .M−

r

A
s

= small + bq/2e .M

LWE hard ⇒ Regev’s scheme is IND-CPA secure.
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A
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︸ ︷︷ ︸
v

︸ ︷︷ ︸
uT s

If close from 0: return 0, if close from bq/2c: return 1.

LWE hard ⇒ Regev’s scheme is IND-CPA secure.
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Correction

The randomness r is uniformly chosen in {0, 1}m,
and e is sampled from a discrete gaussian of parameter αq ≤ q/(8m),
then, with overwhealming probability,∣∣∑

i≤m
riei
∣∣ ≤ ‖r‖ · ‖e‖ ≤ √m · q

8
√
m

=
q

8
.

v − uTs is either close from 0, either close from bq/2c, which allows to find M .

output 0 output 0output 1

0
q
2

qq
8

3q
8

5q
8

7q
8
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IND-CPA security

To define the security, we use a game between a challenger and an adversary. We
define two experiments Expb for b ∈ {0, 1} :

Challenger Adversary

Generate (pk, sk) pk

−→
M0,M1 Choose M0,M1
←−

c← Enc(pk,Mb)

−→
output b′

AdvCPA(A) = |Pr[A →Exp0 1]− Pr[A →Exp1 1]|.
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IND-CPA security

Goal of the proof: show that if an adversary succeed in attacking the encryption
scheme with a non-negligible advantage, then the challenger can use it to solve a difficult

problem (here LWE).

Decision LWE can also be seen as a game:

C B
A←− U(Zm×nq )

RAND (b = 0): b← U(Zmq )

LWE (b = 1): b = As + e
(A,b)−−−→

output b′

Adv(B) =
∣∣∣Pr[B RAND−−−−−→ 1]− Pr[B LWE−−−−→ 1]

∣∣∣.
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Leftover Hash Lemma
Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let
A←↩ U(Zm×nq ) and r←↩ U({0, 1}m). Then (A, rTA) has statistical distance ≤ 2−n

from the uniform distribution on Zm×nq × Znq .

I Statistical distance : ∆(D1, D2) = 1
2

∑
x |D1(x)−D2(x)|.

I For any algorithm A, we have
|Pr[A(D1) = 1]− Pr[A(D2) = 1]| ≤ ∆(D1, D2).
∆(D1, D2) small⇒ D1 and D2 are statistically indistinguishable.

The LHL implies that ( (A b) , r (A b) ) is indistinguishable from uniform.

r

A b

33 / 37



Leftover Hash Lemma
Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let
A←↩ U(Zm×nq ) and r←↩ U({0, 1}m). Then (A, rTA) has statistical distance ≤ 2−n

from the uniform distribution on Zm×nq × Znq .

I Statistical distance : ∆(D1, D2) = 1
2

∑
x |D1(x)−D2(x)|.

I For any algorithm A, we have
|Pr[A(D1) = 1]− Pr[A(D2) = 1]| ≤ ∆(D1, D2).
∆(D1, D2) small⇒ D1 and D2 are statistically indistinguishable.

The LHL implies that ( (A b) , r (A b) ) is indistinguishable from uniform.

r

A b

33 / 37



Leftover Hash Lemma
Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let
A←↩ U(Zm×nq ) and r←↩ U({0, 1}m). Then (A, rTA) has statistical distance ≤ 2−n

from the uniform distribution on Zm×nq × Znq .

I Statistical distance : ∆(D1, D2) = 1
2

∑
x |D1(x)−D2(x)|.

I For any algorithm A, we have
|Pr[A(D1) = 1]− Pr[A(D2) = 1]| ≤ ∆(D1, D2).
∆(D1, D2) small⇒ D1 and D2 are statistically indistinguishable.

The LHL implies that ( (A b) , r (A b) ) is indistinguishable from uniform.

r

A b

33 / 37



Leftover Hash Lemma
Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let
A←↩ U(Zm×nq ) and r←↩ U({0, 1}m). Then (A, rTA) has statistical distance ≤ 2−n

from the uniform distribution on Zm×nq × Znq .

I Statistical distance : ∆(D1, D2) = 1
2

∑
x |D1(x)−D2(x)|.

I For any algorithm A, we have
|Pr[A(D1) = 1]− Pr[A(D2) = 1]| ≤ ∆(D1, D2).
∆(D1, D2) small⇒ D1 and D2 are statistically indistinguishable.

The LHL implies that ( (A b) , r (A b) ) is indistinguishable from uniform.

r

A b

33 / 37



IND-CPA security proof

Idea: we start from an LWE instance, and build an instance of the IND-CPA
experiment, then we use the answer of the adversary to solve LWE.
We use the following IND-CPA game:

B A

(sk = s, pk = (A,b = As + e)← KeyGen(.)
pk=(A,b)−−−−−−→

chooses b
m0,m1←−−−− Chooses m0,m1,

computes (c1, c2)← Enc(pk,mb)
c1,c2−−−→ Computes a bit b′

if b = b′ then output Win

We want to show that if LWE is hard, then there exists a negligible function negl
such that:

Pr[AWin] ≤ 1/2 + negl(n).
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IND-CPA security proof
B wants to solve decisional LWE using A.

C B A
RAND: b unif

LWE: b = As + e
(A,b)−−−→ (A,b)−−−→ m0,m1,

choose b
m0,m1←−−−−

(rTA, rTb + q/2 ·mb)
c1,c2−−−→ Computes b′

if b = b′ output 1
b′←−

else output 0

For B:
I RAND: b is uniform then c2 is uniform. A cannot distinguish between the two cases,

its advantage is equals to zero, the probability that B outputs 1 is 1/2.

Pr[B RAND−−−−−→ 1] = 1/2,
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(A,b)−−−→ (A,b)−−−→ m0,m1,

choose b
m0,m1←−−−−

(rTA, rTb + q/2 ·mb)
c1,c2−−−→ Computes b′

if b = b′ output 1
b′←−

else output 0

For B:
I LWE: b = As + e and then the ciphertext is exactly a ciphertext from the Regev

encryption scheme. The probability that B outputs 1 is exactly the success probability
of A in the encryption scheme security game (as it has the same view of the
experiment).

Pr[B LWE−−−−→ 1] = Pr[A win],
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IND-CPA security proof

To conclude, we have:

Pr[B RAND−−−−→ 1] = 1/2,

Pr[B LWE−−−→ 1] = Pr[A win],

then:

Adv(B) = |Pr[B RAND−−−−→ 1]− Pr[B LWE−−−→ 1]|
= |Pr[A win]− 1/2|

If A succeeds with a non-negligible probability, then there exists ε such that
Pr[A win] ≥ 1/2 + ε, then Adv(B) ≥ ε which implies that there exists a
distinguisher able to solve the decisional LWE problem.
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Using LWE

Hardness of LWE used as a foundation for many constructions.

Learning
With Errors

Cryptographic constructions
Signature, encryption
Advanced schemes

Fully Homomorphic Encryption

Security proof

Problem: constructions based on LWE
enjoy a nice guarantee of security

but are too costly in practice.

Solutions used today?
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