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Cryptography Y GREYC

Let’s start with a simple example: you want to send a message to someone.
Two possibilities:

» Either you share a secret key (AES...),

» Either you don’t = public key cryptography.
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Public key cryptography

Generate two

Want to send keys pk, sk
amessage M @ GP’“ o
and keep sk
¢ = Encrypt(pk. M) . M = Decrypt(sk, C)

-/

Adversary < solve a difficult algorithmic problem

» Examples: factorisation (RSA), discrete log (El Gamal) ...
» Solving those problems needs an exponential complexity on a classical computer.
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Public key cryptography ‘\GREYC
W g erneratke tvl;/o
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¢ = Encrypt(pk, M)

’ and keep sk
. M = Decrypt(sk, C)
Adversary < solve a difficult algorithmic problem

» Examples: factorisation (RSA), discrete log (El Gamal) ...
» Solving those problems needs an exponential complexity on a classical computer.

» Shor’s algorithm (1997): polynomial time on a quantum computer.
S



Context

New goals in cryptography
> Resisting to quantum computers,
> Need of new functionalities,

— need alternatives
» Post-quantum secure,
> Efficient,
> New functionalities, different types of constructions.

Lattice-based cryptography

NIST competition Code-based cryptography

Multivariate, Isogenies, Hash based ...

] 437



NIST competition Y GREYC

From 2017 to 2024, NIST competition to develop new standards
on post-quantum cryptography

Total: 69 accepted submissions (round 1)
» Signature (5 lattice-based),

» Public key encryption / Key Encapsulation
Mechanism (21 lattice-based)

Other candidates: 17 code-based PKE, 7 multivariate signatures, 3 hash-based
signatures, 7 from “other” assumptions (isogenies, PQ RSA ...) and 4 attacked + 5
withdrawn.

= lattice-based constructions are very serious candidates
5 over 7 finalists are lattice-based
2022 first results: 3 over 4 new standards are lattice-based



Why lattice-based cryptography? Y GREYC

> Likely to resist attacks from quantum computers,
» Strong security guarantees,

» Novel and powerful cryptographic functionalities,
Public key encryption and signature scheme (practical),
Advanced signature (group signature ...),
and encryption scheme (IBE, ABE, ...),
Fully homomorphic encryption.

» Efficiency



Today: an introduction to lattice-based cryptography & GREYC

1. Lattices
Definition
Hard problem on lattices

2. The Learning With Errors problem
Definition
Difficulty
How to encrypt using LWE?

3. Practical scheme

Adding structure
Module-LWE
Kyber encryption scheme

] 737



Lattices Y GREYC
L by .
Lattice

L(B) = {>]_, aibi,a; € Z}, where the (b;)1<;<»’s, linearly independent vectors,
are a basis of L(B).

] 8/ 37



Lattices

» Several basis define a lattice, some are better.

Y GREYC
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» The first minimum ), is the norm of the smallest non-zero vector.
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Lattices

» Several basis define a lattice, some are better.

» The first minimum X, is the norm of the smallest non-zero vector.

» The n-th minima ), is the radius of a sphere which contains n linearly
independent shortest vectors of the lattices.

> The fundamental parallelepiped is defined by P(B) = {>_"" , ¢;b
Its volume defines the volume of the lattice: det(A) =

gy GREYC

€[0,1)}.
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Lattices gy GREYC

» The first minimum \; is the norm of the smallest non-zero vector.

» The n-th minima ), is the radius of a sphere which contains n linearly
independent shortest vectors of the lattices.

> The fundamental parallelepiped is defined by P(B) = {37, ¢;b; : ¢; € [0,1)}.
Its volume defines the volume of the lattice: det(A) = |det(B)].

» Minkowski Theorem:

A (A) < /- det(A)V7
n 1/n
(H MA)) < V/n - det(A)V"

i=1



Shortest Vector Problem (SVP) Y GREYC

Given a lattice £(B) of dimension n:

Output: find the shortest non-zero vector x € £(B).

] 10/37



Approx Shortest Vector Problem (Approx SVP.) %Y GREYC

Given a lattice £(B) of dimension n:

Output: find a non-zero vector x € £(B) such that ||x|| < 71 (£(B))

] 10/37



Gap Shortest Vector Problem (GapSVP) %Y GREYC

Given a lattice £(B) of dimension n and d > 0:

Output: e YES: there is z € £(B) non-zero such that ||z|| < d,
e NO: for all non-zero vectors z € L(B): ||z]| > d.




Gap Shortest Vector Problem (GapSVP.) %Y GREYC

Given a lattice £(B) of dimension n and d > 0:

Output: e YES: there is z € £(B) non-zero such that ||z|| < d,
e NO: for all non-zero vectors z € L(B): ||z|| > ~d.
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Closest Vector Problem Y GREYC
Given a lattice £(B) of dimension n and t € Z™:

Output: find x € Z™ minimizing ||Bx — t||.
Approx variant: find x € Z™ such that ||Bx — t|| < ~ - dist(t, A(B)).

] 12/37



Closest Vector Problem Y GREYC
Given a lattice £(B) of dimension n and t € Z™:

Output: find x € Z™ minimizing ||Bx — t||.
Approx variant: find x € Z™ such that ||Bx — t|| < ~ - dist(t, A(B)).

How hard is it to solve those problems?
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Hardness of Approx SVP, Y GREYC
tOCSOOS|E/e 252(/7‘] 282(n) po|y(,,)
N % \{ﬁ po|¥(/1) 2()}”} .
Complexity NP'harﬁ Crypto P
hardness
NP N CoNP
Conjecture

There is no polynomial time algorithm that approximates this lattice problem and
its variants to within polynomial factors.
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At the heart of lattice-based cryptography
the Learning With Errors problem

» Introduced by Regev in 2005

Y GREYC

Problem: solve a linear system with m equations and n variables (m > n), with

noise, and modulo an integer g.
Find (s, 55, 53, 54, s5) such that:

51+ 2250 +17s3 + 254 + 85
351+ 252+ 11s3 4 7s4 4 8ss
1551 + 1355 + 1055 + 354 + Hs5
1751 + 1155 + 2053 4+ 954 4 3s5
251 + 1455 + 1353 + 654 + 7s5
4s1 +21s2 + 9s3 4+ 554+ s5
11s1 + 1255 + 5s3 + 54+ 9s5

&

%

%

%

Q

16
17

18

mod 23
mod 23
mod 23
mod 23
mod 23
mod 23
mod 23
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Gaussian distributions Y GREYC

Continuous Gaussian distribution of center ¢ and parameter s:

2 / AN
Dyefa) ~ Lesxp (-~ mliel) VRN
Vr e R - N
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Gaussian distributions

Continuous Gaussian distribution of center ¢ and parameter s:

A2
DS,C(x) ~ %exp ( — 7-(-||$520|| )

Vz e R / N

Gaussian distribution on Z of center ¢ with parameter s:

—cl12 o
DZ,S,C(J})N%GXP(—W%) AT T

RS
RN B R +
#rtrvileligg *

\V/‘CUEZ PR E Sl B B i i Y

» |t is not the rounding of the continuous Gaussian.
» We now how to sample it efficiently.
» Almost all samples are in [—¢ - s, +t - s] for a constant ¢, if s is not to small.
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hd Al J
Discrete gaussian on lattices 3 GREYC

Theorem (Gentry, Peikert, Vaikuntanathan 2008)

There exists a PPT algorithm which, given a basis B of a lattice A(B) of
dimension n, a parameter s > ||B|| - w(y/logn), an a center c € R", outputs a
sample from a distribution statistically close from Dy .

Intuition: sampling on Z is quite easy, it is more complicated on a general lattice.

Important: Better is the basis (with short vectors), smaller is the parameter we
can sample with, and then have short vectors.

——— 16137



Smoothing parameter gy GREYC

For all £ > 0, the smoothing parameter of a lattice A with parameter ¢ is the smallest s
such that p; /,(A* \ {0}) < ¢, we denote it by 7.(A).

When the Gaussian’s parameter is bigger than smoothing parameter, the discrete
gaussian distribution has the same properties than a continuous one. In particular:

» the discrete gaussian distribution D, , . is mainly concentrated in a sphere of radius
\/ns around its center c.

If s > n.(A),
Pr [|lz—c|| > vns] <27

I(—‘DA,S,C

» Addition: if s,t > n.(A), we can also add two gaussian on the same lattice :

DA,s + DA,t = DA, /5222 *

17/37



Size of the smoothing parameter %Y GREYC

The size of the smooting parameter can be compared to the size of the n-th
minima.

» Micciancio, Regev 2004 and Regev 2005:
For any lattice A and ¢ > 0

m(1/2) Aa(A) < n(A) < \/ln(Zn(l +1/¢)) An(A).

™ n ™

——— 18137



The Learning With Errors problem [Regev 05] Y GREYC
Letn>1,¢>2and «a €]0,1].
For any s € Z, we define the distribution D,, ;. (s) by:

(a,(a,;s) +e), witha < U(Z;) and e < Dz oq-

» Search LWE
For any s: find s given an arbitrary number of samples from D,, , (S).

» Decision LWE
With non-negligible probability on s <— U(Zy): distinguish between the
distributions D,, 4. (s) and U (Z;*1).

———



Decision version Y GREYC

Letn >1,¢>2and «a €]0,1].
For any s € Z;, we define the distribution D,, , .(s) by:

(a,(a,s) +e), witha < U(Z;) and e <+ Dz aq-

» Decision LWE
With non-negligible probability on s < U(Zy): distinguish between the
distributions D,, 4. (s) and U(Z2+1).

We consider an oracle O which produces independant samples, all from the same
distribution being:

» either D,, ,(s) for a fixed s,

> either U(Z]™).
The goal is to decide which one with a non-negligeable advantage.

——— T



The Learning With Errors problem Y GREYC
LWE”

a,q

GivenmA’AH+ mH

n

> A Uz,
> s+ U(Zy),
» €< Dyzm o4, SMall compared to g.

aq

Discrete Gaussian error Dz, q

Search version: Given (A,b = As +e), find s.
Decision version: Distinguish from (A, b) with b uniform.

———



Equivalence between the two variants Y GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,

] 22/37
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Equivalence between the two variants Y GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,
» Given (A,b), find the oracle to find s, compute b — As:

» if it is small, then b is an LWE sample,
» if it looks uniform, then b is uniform.

——— 22157



Equivalence between the two variants
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,
> Given (A,b), find the oracle to find s, compute b — As:

» if it is small, then b is an LWE sample,
» if it looks uniform, then b is uniform.

» 2nd reduction: from search to decision
» Distinguish b uniform from b LWE sample =- find s,

——— 227



Equivalence between the two variants gy GREYC
LWE sample: (A, b = A s + e mod ¢) with short e.

» Easy reduction : from decision to search
» find s = distinguish b uniform or b LWE sample,
> Given (A,b), find the oracle to find s, compute b — As:

» if it is small, then b is an LWE sample,
» if it looks uniform, then b is uniform.

» 2nd reduction: from search to decision
» Distinguish b uniform from b LWE sample =- find s,

»> Given (A, b) use the oracle to find each coordinate of s: for all s}, choose u
uniform in Z, and modify (A, b) as follow:

(8,5) + (u,0,...,0,us}) = (&, (@, 8) + e+ uls —s1))..

> if s7 = s1 it stays a LWE sample,
» else b will be uniform.

——— 22137



Short Integer Solution problem [Ajtai 1996]

For A < U(Zg""):
SIS

LWE,

Y GREYC

A [=0modg

Goal: Given A <« U(Zg""),
find X s.t. 0 < || X | < 5.

A A

n

g

s < U(Zy), € < Dgm aq.

Goal: Given (A, A's + e),

find s.



Short Integer Solution problem [Ajtai 1996]

For A < U(Zy""):

Y GREYC

SIS; | LWE,
X - H
A =0modgq Al A +
n
s «+U(Zy), € < Dzm aq.
Solve SVP in Solve CVP in
AL(A)={Xez"|x"A =0modq} | AJ(A)={yeZ":y= A s modg

for some s € Z"}

23/37



Hardness of LWE Y GREYC

» Exhaustive search

> Tryallthe s € Z; — is b — As small?
» = cost around ¢".

——— 24137



Hardness of LWE

» Exhaustive search
> Tryallthe s € Z; — is b — As small?
» = cost around ¢".
» Other possibility: guess the n first errors, find s — is b — As small?
» = cost around (agqy/n)".

——— 24157



Hardness of LWE Y GREYC

» Exhaustive search
> Tryallthe s € Z; — is b — As small?
» = cost around ¢".
» Other possibility: guess the n first errors, find s — is b — As small?
» = cost around (agqy/n)".

» How to do better?
» LWE is a lattice problem: consider

Aj(A)={yeZ™:y=Asmodgqfors e Z"}.

Solving LWE < solving CVP in this lattice.

nlogq

» Cost: (nlogq) log? o

log? a

——— 24137



Hardness of the Learning With Errors problem

Worst-case to average-

: Lattice
case reduction

e Regev 2005 - quantum

o Peikert 2009 - classical ¢ exp

o Brakerski, Langlois, Peikert
Regev, Stehlé 2013 - classical

— solve Approx GapSVP

Learning
With Errors

25/37



LWE variants

Choose another distribution for the secret or the error.
Regev 2009: uniform secret and gaussian error.

A |,

<
n

Same distribution as the error: in particular Gaussian,

Binary (Unif in {0,1}"),
Entropic.

Gaussian (continue,
discretize, discrete ...),

Uniform in small interval,

Binary under conditions.

26/37



Using LWE to build provable constructions - theory ""\GREYC

Lattice
Worst-case to average-
case reduction

— solve Approx SVP

Learning
With Errors

Security proof

Cryptographic
constructions

] 27,37



Public key encryption - definition

Generate two

Want to send keys pk, sk
a message M P
and keep sk
¢ = Encrypt(pk, M) . —> M = Decrypt(sk. C)

An encryption scheme is defined by three algorithms (KeyGen, Enc, Dec):

» The key generation algorithm KeyGen takes as input a security parameter A
and outputs the public and the secret keys (pk, sk).

» The encryption algorithm Enc takes as input the public key pk and a message m
and outputs ¢ = Enc(pk, m),

» The decryption algorithm Dec takes as input the secret key sk and a ciphertext ¢
and outputs m = Dec(sk, c),

such that Dec(sk, (Enc(pk,m)) = m.

] 2837



Regev’s encryption scheme Y GREYC

» Parameters: n,m,q € Z, o € R,

> Keys: sk=s andpk=(A,b),with b =A s + e modg
where s < U(Zy), A < U(Z7*"), € < Dzm aq.

] 29/37



Regev’s encryption scheme

» Parameters: n,m,q € Z, a € R,

> Keys: sk=s andpk=(A, b),with b =
where s < U(Zy), A < U(Z7*"), € < Dzm aq.

» Encryption (M € {0,1}): Let|[r + U({0,1}™),

A s + e modg

I —

u’ =

A

+19/2]

Y GREYC

M

29/37



hd Al J
Regev’s encryption scheme Y GREYC
» Parameters: n,m,q € Z, o € R,
> Keys: sk=s andpk=(A,b),with b = A s + e modg
where s < U(Zy), A < U(Z7*"), € <> Dzm aq.
» Encryption (M € {0,1}): Let [r + U({0,1}™),
I — r

u’ = A | v= +la/21- M1

» Decryption of (u,v): compute v — u”'s,
/) /e
H + le||+Har21 2

A

A H = small +|q/2]- M

v~

v uTs
If close from 0: return 0, if close from |¢/2]: return 1.

——— 29157



hd Al J
Regev’s encryption scheme Y GREYC
» Parameters: n,m,q € Z, a € R,
> Keys: sk=s andpk=(A,b),with b = A s + e modg
where s < U(Zy), A < U(Z7*"), € < Dzm aq.
» Encryption (M € {0,1}): Let|[r + U({0,1}™),
r r

= A y U= +la/2]- M

u?

> Decryption of (u,v): compute v — u”’s,
I — /)

A

A |E| = small + |¢/2]-M

LWE hard = Regev’s scheme is IND-CPA secure.
]



Correction

The randomness r is uniformly chosen in {0, 1},
and e is sampled from a discrete gaussian of parameter

then, with overwhealming probability,

1> riei] < Il - llell < /om -

<m

4
5
v — uT's is either close from 0, either close from |¢/2], which allows to find M.

0

q 4w Wy
8 8 2 8 8
[ ] [
I 1 —
S r——
output 0 output 1 output 0

30/37



IND-CPA security Y GREYC

To define the security, we use a game between a challenger and an adversary. We
define two experiments Exp, for b € {0,1} :

Challenger Adversary
Generate (pk, sk) pk
—
Mo, M Choose My, M;
%

¢ <+ Enc(pk, My)
—
output v/

Adv?PA(A) = | Pr[A —=FoPo 1] — Pr[A =P 1)),

] 3137



IND-CPA security 3 GREYC

Goal of the proof: show that if an adversary succeed in attacking the encryption
scheme with a non-negligible advantage, then the challenger can use it to solve a difficult
problem (here LWE).

Decision LWE can also be seen as a game:

C B
A Uz ™)
RAND (b = 0): b < U(Z")
LWE(b=1):b=As+e 22,
output b’

Adl’(B) = PI‘[B M) 1] o PI’[B LWE 1} )

———



Leftover Hash Lemma Y GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zp>")andr < U({0,1}™). Then (A, r"A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

] 33/37



Leftover Hash Lemma Y GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zp>")andr < U({0,1}™). Then (A, r"A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

> Statistical distance : A(Dy, Ds) = 3 Y, |D1(z) — Da(2)].
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Leftover Hash Lemma Y GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zp>")andr < U({0,1}™). Then (A, r"A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

> Statistical distance : A(Dy, Ds) = 3 Y, |D1(z) — Da(2)].

» For any algorithm A, we have
|P1“[A(D1) = 1] — PY[A(DQ) = 1]| S A(Dl,Dg).
A(D1, D7) small = Dy and D, are statistically indistinguishable.

——— 33137



Leftover Hash Lemma gy GREYC

Let m,n,q > 1 be integers such that m > 4nlog ¢ and ¢ prime, and let
A — U(zr>*™) and r <= U({0,1}™). Then (A, r" A) has statistical distance < 27"
from the uniform distribution on Z7**" x Z.

> Statistical distance : A(Dy, Ds) = 3 Y, |D1(z) — Da(2)].

» For any algorithm A, we have
|P1“[A(D1) = 1] — PY[A(DQ) = 1]| S A(Dl,Dz).
A(D1, D7) small = Dy and D, are statistically indistinguishable.

The LHL implies that ( (A b) , ¥ (A b) ) is indistinguishable from uniform.
L |

A |»b

——— 33187



IND-CPA security proof Y GREYC

Idea: we start from an LWE instance, and build an instance of the IND-CPA
experiment, then we use the answer of the adversary to solve LWE.
We use the following IND-CPA game:

5 A
(sk =s,pk = (A,b = As +e) < KeyGen(.) —>pk:(A’b)
chooses b o Chooses mg, m1,

c1,C2

Computes a bit v/
if b = ' then output Win

computes (c1, c2) < Enc(pk,my)

We want to show that if LWE is hard, then there exists a negligible function negl
such that:
Pr[A Win] < 1/2 + negl(n).

] 3437



IND-CPA security proof

B wants to solve decisional LWE using .A.

C B

RAND: b unif
IWE:b=As+e —=

(A,b) (A.b)

choose b

mg,mi
%

mo, M1,

r"A b +q/2-mp) = Computes v/

4

if b =0 output 1 (=
else output 0

For B:

» RAND: b is uniform then ¢; is uniform. A cannot distinguish between the two cases,

its advantage is equals to zero, the probability that 5 outputs 1 is 1/2.

RAND
R

Pr[B 1] =1/2,

35/37



IND-CPA security proof

B wants to solve decisional LWE using .A.

C B

RAND: b unif
LWE:b=As +e

mo,mi

choose b

r"Ar"b+q/2-m;) =2 Computes b/

4

if b =0 output 1 —
else output 0

For B:

> LWE: b = As + e and then the ciphertext is exactly a ciphertext from the Regev

(Ab) (Ab)
— —

M, 11,

encryption scheme. The probability that 3 outputs 1 is exactly the success probability
of A in the encryption scheme security game (as it has the same view of the

experiment).
Pr[B 225, 1) = Pr[ A win),

35/37



IND-CPA security proof Y GREYC

To conclude, we have:

Pr(B 22D, 1) = 1/,
Pr(B 25, 1) = Pr[A win],
then:
Adv(B) = |Pr[B E2YE, 4] — o EYE q)
= |Pr[Awin] —1/2|

If A succeeds with a non-negligible probability, then there exists ¢ such that
Pr[Awin] > 1/2 + ¢, then Adv(B) > e which implies that there exists a
distinguisher able to solve the decisional LWE problem.

] 36/37



Using LWE Y GREYC

Hardness of LWE used as a foundation for many constructions.

Problem: constructions based on LWE
enjoy a nice guarantee of security
but are too costly in practice.

Learning
With Errors

ryptographic constructions

Signature, encryption
Advanced schemes
Fully Homomorphic Encryption

Security proof

Solutions used today?

] 37/37
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