Approx Shortest Vector Problem (Approx SVP γ )

Given a lattice L(B) of dimension n:

Output: find a non-zero vector x ∈ L(B) such that x ≤ γλ 1 (L(B))

• • • • • • • • • • • • • • • • • • • • • • • • γλ 1 Lattice L(B) = { n
1=i a i b i , a i ∈ Z}, where the (b i ) 1≤i≤n 's, linearly independent vectors, are a basis of L(B).

Hardness of Approx SVP

γ γ 1 √ n poly(n) 2 O(n) cost to solve 2 Ω(n)
2 Ω(n) poly(n) ), s ← U (Z n q ), e ← D Z m ,αq , small compared to q. 

Regev's encryption scheme

Parameters: n, m, q ∈ Z, α ∈ R, Keys: sk = s and pk = ( A , b ), with b = A s + e mod q where s ← U (Z n q ), A ← U (Z m×n q

), e ← D Z m ,αq .

Encryption (M ∈ {0, 1}): Let r ← U ({0, 1} m ), , v = u T = r A r b + q/2 . M Decryption of (u, v): compute v -u T s, r A s + e + q/2 . M- r A s = small + q/2 . M v u T s
If close from 0: return 0, if close from q/2 : return 1. Solutions used today?

LWE hard ⇒

Lattice-based NIST finalists

Among the 5 lattice-based finalists, 3 of them are based on (possibly structured) variants of LWE.

Public Key Encryption

Crystals -Kyber: Module-LWE with both secret and noise chosen from a centered binomial distribution. Saber: Module-LWR (deterministic variant). NTRU FrodoKEM (as alternate candidate): LWE but with smaller parameters.

Signature

Crystals -Dilithium: Module-LWE with both secret and noise chosen in a small uniform interval, and Module-SIS.

Falcon: Ring-SIS on NTRU matrices. where n = 2 k then the polynomial x n + 1 is irreducible.

Using LWE to build constructions

Elements of this ring are polynomials of degree less than n.

R is a cyclotomic ring. R is also the ring of integer O K of an number field K: 

K = Q[x]/ x n + 1 : K is a cyclotomic field, R = Z[x]/ φ m (x)
(x) = x n + 1.) Canonical embedding: σ K : α ∈ K → ((σ(α)) σ = (α(ζ j m )) j . R is isomorph to Z n Let a ∈ R, we have a(x) = a 0 + a 1 x + . . . + a n-1 x n-1 , the isomorphism R → Z n associate the polynomial a ∈ R to the vector a =      a 0 a 1 . . . a n-1      ∈ Z n .
Let's look at the product of two polynomials x n + 1

a(x) = a 0 + a 1 . x + . . . + a n-1 . x n-1 s(x) = s 0 + a 1 . x + . . . + a n-1 . x n-1
Using matrices, it gives the following block:

       a 0 -a n-1 • • • -a 2 -a 1 a 1 a 0 • • • -a 3 -a 2 . . . . . . . . . . . . . . . a n-2 a n-3 • • • a 0 -a n-1 a n-1 a n-2 • • • a 1 a 0               s 0 s 1 . . . s n-2 s n-1       

Module LWE

Let K be a number field of degree n with R its ring of integers. Think of K as Q[x]/(x n + 1) and of R as Z[x]/(x n + 1) for n = 2 k .

Replace Z by R, and Z q by R q = R/qR.

, A A s s1 + e e1 m rank d a1,1 a 1,1 ∈ R q Rot(a 1,1 ) ∈ Z n×n q A ← U (R m×d q ), s ← U (R d q ), e ∈ R m small compared to q. Special case d = 1 is Ring-LWE Module SIS and LWE R = Z[x]/ x n + 1 and R q = R/qR.
Module-SIS q,m,β Given a 1 , . . . , a m ∈ R d q independent and uniform, find

z 1 , . . . , z m ∈ R such that m i=1 a i • z i = 0 mod q and 0 < z ≤ β. Let α > 0 and s ∈ (R q ) d , the distribution A (M ) s,D R,αq is: a ∈ (R q ) d uniform,
e sampled from D R,αq , Outputs: (a, a, s + e) .

Module-LWE q,να Let s ∈ (R q ) d uniform, distinguish between an arbitrary number of samples from A (M ) s,D R,αq or the same number from U ((R q ) d × R q ).

Ideals and modules

R = Z[x]/ x n + 1 and R q = R/qR.
An ideal I of R is an additive subgroup of R closed under multiplication by every elements of R.

As R is isomorph to Z n , any ideal I ∈ R defines an integer lattice Λ(B) where B = {g mod x n + 1 : g ∈ I}.

A subset M ⊆ K d is an R-module if it is closed under addition and multiplication by elements of R.

A finite-type R-module: M ⊆ R d : D i=1 R . b i , (b i ) ∈ R d , M = d i=1 I i . b i where I i are ideals of R and (I i , b i ) is a pseudo-basis of M .
As ideals, any module defines an integer module lattice. 

Module or Rings?

Conclusion

Lattice-based cryptography allows to build efficient constructions such as encryption or signature schemes with a security based on the hardness of difficult algorithmic problems on lattices.

Three schemes (Kyber, Dilithium and Falcon) will be standardise by the NIST, together with a hash-based signature. Two of them are based on Module-LWE.

Approx Ideal SVP seems to be the easier problem to try to solve → the results of recent attacks does not impact the security of lattice-based constructions.

αq

  Discrete Gaussian error D Z,αq Search version: Given (A, b = As + e), find s. Decision version: Distinguish from (A, b) with b uniform.

From

  SIS/LWE to structured variants Problem: constructions based on LWE enjoy a nice guaranty of security but are too costly in practice. → replace Z n by a Ring, for example R = Z[x]/ x n + 1 (n = 2 k ). Ring variants since 2006: A Rot(a 1 ) Rot(a m ) Structured A ∈ Z m•n×n q represented by m • n elements, Product with matrix/vector more efficient, Hardness of Ring-SIS, [Lyubashevsky and Micciancio 06] and [Peikert and Rosen 06] Hardness of Ring-LWE [Lyubashevsky, Peikert and Regev 10].

  where φ m is the m th cyclotomic polynomial of degree n = ϕ(m). Its roots are the m th roots of unity ζ j m ∈ C, with ζ m = e 2iπ m . (For m = 2 k+1 , we have φ m

  

  

  

  

  

Regev's scheme is IND-CPA secure. Using LWE
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n

n = 512 ⇒ 60 bits of security, n = 1024 ⇒ 140 bits of security, (n = 256, d = 3) gives nd = 768 which is "in between".Module LWE allows more flexibility.

Log K : x → (ln |σ1(x)|, . . . , ln |σn(x)|)

Log K,S : x → (ln|σ1(x)|, . . . , ln|σn(x)|, -vp 1 (x)ln(N (p1)), . . . , -vp r (x)ln(N (pr)))

Code available at https://github.com/ob3rnard/Tw-Sti.

Hardness of Ring Learning With Errors problem

Ring Learning

With Errors Ideal Lattice

Worst-case to averagecase reduction Self reductions

• Applebaum, Cash, Peikert, Sahai 2009 -same error and secret

Hardness of Module Learning With Errors problem

Module Learning With Errors

Module Lattice

Worst-case to averagecase reduction Encryption scheme based on Ring-LWE [Lyubashevsky, Peikert, Regev 2011] KeyGen : The secret key is a small s ∈ R The public key is

q , with a ← U (R q ) and a small e ∈ R.

Enc : Given m ∈ {0, 1} n , a message is a polynomial in R with coordinates in {0, 1}. Sample small r, e 1 , e 2 in R and output

For each coordinate of m, the plaintext is 0 if the result is closer from 0 than q/2 , and 1 otherwise.

Kyber

[Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler, Stehle] Kyber relies on Module-LWE, Use R q = Z q [x]/ x 256 + 1 with q = 7681.

The small elements follow a binomial distribution B η : For some positive integer η, sample

The uniform public key is generated given a seed and a function Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal I = (g) such that g is short, retrieve g.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal I = (g) such that g is short, retrieve g.

1. Find a generator h = gu of I (u ∈ O × K ) Can be done in polynomial time with a quantum computer 2. Find g given h.

Use the Log-embedding 2 and the Log-unit lattice Log(O × K )

Consider an intermediate problem.

Short Generator Principal ideal Problem (SG-PIP):

Given a principal ideal I = (g) such that g is short, retrieve g.

1. Find a generator h = gu of I (u ∈ O × K ) Can be done in polynomial time with a quantum computer 2. Find g given h.

Use the Log-embedding 2 and the Log-unit lattice Log(O × K ) [Cramer, Ducas, Peikert, Regev 2016] quantum polynomial-time or classical 2 n 2/3+ -time algorithm to solve SG-PIP over cyclotomic fields.

View of the algorithm 1

Log-unit lattice

Log K (h)

Let I be a challenge ideal.

Quantum decomposition Apply Log

Let I be a challenge ideal.

Let I be a challenge ideal.

Let I be a challenge ideal.

Let I be a challenge ideal.

2. Short coset representative ?

3. Hope this is short in I.

Bernard, Lesavourey, Nguyen, Roux-Langlois (2022)

Can we extend these good results to higher dimensions ?

Two major obstructions for experiments:

Can we extend these good results to higher dimensions ?