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from (0, 0, . . .

More general

Find "the condition" for the system

        
a 10 x 0 + a 11 x 1 + . . . + a 1n x n = 0 a 20 x 0 + a 21 x 1 + . . . + a 2n x n = 0 . . . . . . . . . a (n+1)0 x 0 + a (n+1)1 x 1 + . . . + a (n+1)n x n = 0
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More general

Find "the condition" for the system

        
a 10 x 0 + a 11 x 1 + . . . + a 1n x n = 0 a 20 x 0 + a 21 x 1 + . . . + a 2n x n = 0 . . . . . . . . . a (n+1)0 x 0 + a (n+1)1 x 1 + . . . + a (n+1)n x n = 0

Another more general

Let d 1 , d 2 ∈ N. Find "the condition" for the system of polynomials

a 10 x 0 d 1 + a 11 x 0 d 1 -1 x 1 + . . . = 0 a 20 x 0 d 2 + a 21 x 0 d 2 -1 x 1 + . . . = 0
to have a solution different from (0, 0)
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More more more general...

Let n ∈ N, and d 1 , . . . , d n+1 ∈ N, find the condition for

                    
α 0 +...+α n =d 1 a 1,α 0 ,...,α n x 0 α 0 . . . x n α n = 0 α 0 +...+α n =d 2 a 2,α 0 ,...,α n x 0 α 0 . . . x n α n = 0 . . . . . . . . . α 0 +...+α n =d n+1 a n+1,α 0 ,...,α n x 0 α 0 . . . x n α n = 0 to have a solution different from (0, 0, . . . , 0)
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Elimination: The general problem

For a = (a 1 , . . . , a N ), k, n ∈ N let f 1 (a, x 1 , . . . , x n ), . . . , f k (a, x 1 , . . . , x n ) ∈ K[a, x 1 , . . . , x n ]. Find conditions on a such that

         f 1 (a, x 1 , . . . , x n ) = 0 f 2 (a, x 1 , . . . , x n ) = 0 . . . . . . . . . f k (a, x 1 , . . . , x n ) = 0 has a solution Easy example          a 11 x 1 + . . . + a 1n x n = a 21 x 1 + . . . + a 2n x n = . . . . . . . . . a kn x 1 + . . . + a kn x n = with k ≥ n Carlos D'Andrea
Elimination theory, sparse systems and applications

Easy example

         a 11 x 1 + . . . + a 1n x n = a 21 x 1 + . . . + a 2n x n = . . . . . . . . . a kn x 1 + . . . + a kn x n = with k ≥ n Conditions: all maximal minors of a ij 1≤i≤k, 1≤j≤n
equal to zero

Geometry

V = {(a, x 1 , . . . , x n ) : f 1 (a, x 1 , . . . , x n ) = 0, . . . f k (a, x 1 , . . . , x n ) = 0} V ⊂ K N × K n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N Carlos D'Andrea
Elimination theory, sparse systems and applications

Geometry

V = {(a, x 1 , . . . , x n ) : f 1 (a, x 1 , . . . , x n ) = 0, . . . f k (a, x 1 , . . . , x n ) = 0} V ⊂ K N × K n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N
The set of conditions is π 1 (V ) is not necessarily described by zeroes of polynomials 

Projective Elimination

(homogeneous polynomials in an algebraically closed field)

V = {(a, x 0 , x 1 , . . . , x n ) : f 1 (a, x 0 , x 1 , . . . , x n ) = 0, . . . f k (a, x 0 , x 1 , . . . , x n ) = 0} Carlos D'Andrea
Elimination theory, sparse systems and applications

Projective Elimination

(homogeneous polynomials in an algebraically closed field)

V = {(a, x 0 , x 1 , . . . , x n ) : f 1 (a, x 0 , x 1 , . . . , x n ) = 0, . . . f k (a, x 0 , x 1 , . . . , x n ) = 0} V ⊂ K N × P n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N Carlos D'Andrea
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Projective Elimination

(homogeneous polynomials in an algebraically closed field)

V = {(a, x 0 , x 1 , . . . , x n ) : f 1 (a, x 0 , x 1 , . . . , x n ) = 0, . . . f k (a, x 0 , x 1 , . . . , x n ) = 0} V ⊂ K N × P n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N π 1 (V ) = {p 1 (a) = 0, . . . , p (a) = 0}

Mertens 1889

Set s := max deg(f i ), and G 0 , . . . , G n expressions of the form G j (a, x) := u α,i x α f i (a, x) of degree s in x with new parameters u α,i . Then, "the Kronecker u-Resultant" For arbitrary s, we use the "Macaulay matrix" M s (a) such that

Res x (G 0 , . . . , G n ) = β P β
M s (a)    . . . x β . . .    =    . . . x α f i . . .    , |α| = s
For s 0, all maximal minors of M s (a) vanish iff there is a common solution Generalization of the determinant?

V = {(a, x 0 , x 1 , . . . , x n ) : f 1 (a, x 0 , x 1 , . . . , x n ) = 0, . . . , f n+1 (a, x 0 , x 1 , . . . , x n ) = 0} V ⊂ K N × P n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N Carlos D'Andrea
Elimination theory, sparse systems and applications

Generalization of the determinant?

V = {(a, x 0 , x 1 , . . . , x n ) : f 1 (a, x 0 , x 1 , . . . , x n ) = 0, . . . , f n+1 (a, x 0 , x 1 , . . . , x n ) = 0} V ⊂ K N × P n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N π 1 (V ) = {p 1 (a) = 0} Carlos D'Andrea
Elimination theory, sparse systems and applications

Generalization of the determinant?

V = {(a, x 0 , x 1 , . . . , x n ) : f 1 (a, x 0 , x 1 , . . . , x n ) = 0, . . . , f n+1 (a, x 0 , x 1 , . . . , x n ) = 0} V ⊂ K N × P n π 1 | V ↓ ↓ π 1 π 1 (V ) ⊂ K N π 1 (V ) = {p 1 (a) = 0} One hopes! Carlos D'Andrea
Elimination theory, sparse systems and applications

Example 1

       a 00 x 0 + a 01 x 1 + . . . + a 0n x n = a 10 x 0 + a 11 x 1 + . . . + a 1n x n = . . . . . . . . . a n0 x 0 + a n1 x 1 + . . . + a nn x n = Carlos D'Andrea
Elimination theory, sparse systems and applications

Example 1

       a 00 x 0 + a 01 x 1 + . . . + a 0n x n = a 10 x 0 + a 11 x 1 + . . . + a 1n x n = . . . . . . . . . a n0 x 0 + a n1 x 1 + . . . + a nn x n = p 1 (a) = det(a ij ) Carlos D'Andrea
Elimination theory, sparse systems and applications

Example 2

f 1 = a 10 x 0 d 1 + a 11 x 0 d 1 -1 x 1 + . . . + a 1d 1 x 1 d 1 f 2 = a 20 x 0 d 2 + a 21 x 0 d 2 -1 x 1 + . . . + a 2d 2 x 1 d 2 Carlos D'Andrea
Elimination theory, sparse systems and applications

Example 2 

f 1 = a 10 x 0 d 1 + a 11 x 0 d 1 -1 x 1 + . . . + a 1d 1 x 1 d 1 f 2 = a 20 x 0 d 2 + a 21 x 0 d 2 -1 x 1 + . . . + a 2d 2 x 1 d 2 Res(f 1 , f 2 ) = det             
             Carlos D'Andrea
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Example 3

         f 1 = α 0 +...+α n =d 1 a 1,α 0 ,...,α n x 0 α 0 . . . x n α n f 2 = α 0 +...+α n =d 2 a 2,α 0 ,...,α n x 0 α 0 . . . x n α n . . . f n+1 = α 0 +...+α n =d n+1 a n+1,α 0 ,...,α n x 0 α 0 . . . x n α n Carlos D'Andrea
Elimination theory, sparse systems and applications

Example 3

         f 1 = α 0 +...+α n =d 1 a 1,α 0 ,...,α n x 0 α 0 . . . x n α n f 2 = α 0 +...+α n =d 2 a 2,α 0 ,...,α n x 0 α 0 . . . x n α n . . . f n+1 = α 0 +...+α n =d n+1 a n+1,α 0 ,...,α n x 0 α 0 . . . x n α n Res d 1 ,...,d n (f 1 , f 2 , . . . , f n+1 ) Carlos D'Andrea
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Example 3

         f 1 = α 0 +...+α n =d 1 a 1,α 0 ,...,α n x 0 α 0 . . . x n α n f 2 = α 0 +...+α n =d 2 a 2,α 0 ,...,α n x 0 α 0 . . . x n α n . . . f n+1 = α 0 +...+α n =d n+1 a n+1,α 0 ,...,α n x 0 α 0 . . . x n α n Res d 1 ,...,d n (f 1 , f 2 , . . . , f n+1 ) Macaulay/dense/classical resultant Carlos D'Andrea
Elimination theory, sparse systems and applications

No-example
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No-example

   a 00 x 0 4 + a 01 x 2 0 x 1 x 2 + a 02 x 2 1 x = 0 a 10 x 0 4 + a 11 x 2 0 x 1 x 2 + a 12 x 2 1 x = 0 a 20 x 0 4 + a 21 x 2 0 x 1 x 2 + a 22 x 2 1 x = 0 Carlos D'Andrea
Elimination theory, sparse systems and applications

No-example

   a 00 x 0 4 + a 01 x 2 0 x 1 x 2 + a 02 x 2 1 x = 0 a 10 x 0 4 + a 11 x 2 0 x 1 x 2 + a 12 x 2 1 x = 0 a 20 x 0 4 + a 21 x 2 0 x 1 x 2 + a 22 x 2 1 x = 0 p 1 (a) = det(a ij ) Carlos D'Andrea
Elimination theory, sparse systems and applications

No-example No-example No-example 

   a 00 x 0 4 + a 01 x 2 0 x 1 x 2 + a 02 x 2 1 x 2 = 0 a 10 x 0 4 + a 11 x 2 0 x 1 x 2 + a 12 x 2 1 x 2 = 0 a 20 x 0 4 + a 21 x 2 0 x 1 x 2 + a 22 x 2 1 x 2 = 0 p 1 (a) = det(a ij ) p 1 (a) =
   a 00 x 0 4 + a 01 x 2 0 x 1 x 2 + a 02 x 2 1 x 2 = 0 a 10 x 0 4 + a 11 x 2 0 x 1 x 2 + a 12 x 2 1 x 2 = 0 a 20 x 0 4 + a 21 x 2 0 x 1 x 2 + a 22 x 2 1 x 2 = 0 p 1 (a) = det(a ij ) p 1 (a) =
   a 00 x 0 4 + a 01 x 2 0 x 1 x 2 + a 02 x 2 1 x 2 = 0 a 10 x 0 4 + a 11 x 2 0 x 1 x 2 + a 12 x 2 1 x 2 = 0 a 20 x 0 4 + a 21 x 2 0 x 1 x 2 + a 22 x 2 1 x 2 = 0 p 1 (a) = det(a ij ) p 1 (a) =

Cautionary Example

   a 00 x 0 2 + a 01 x 0 x 1 + a 02 x 2 1 = 0 a 10 x 0 2 + a 11 x 0 x 1 + a 12 x 2 1 = 0 a 20 x 0 + a 21 x 1 + a 22 x 2 = 0 Carlos D'Andrea
Elimination theory, sparse systems and applications

Cautionary Example

   a 00 x 0 2 + a 01 x 0 x 1 + a 02 x 2 1 = a 10 x 0 2 + a 11 x 0 x 1 + a 12 x 2 1 = a 20 x 0 + a 21 x 1 + a 22 x 2 = p 1 (a) = det(a ij ) Carlos D'Andrea
Elimination theory, sparse systems and applications 

Cautionary Example

   a 00 x 0 2 + a 01 x 0 x 1 + a 02 x 2 1 = a 10 x 0 2 + a 11 x 0 x 1 + a 12 x 2 1 = a 20 x 0 + a 21 x 1 + a 22 x 2 = p 1 (a) = det(a ij ) p 1 (a) =
K[x 0 , x 1 ] d 2 -1 ⊕ K[x 0 , x 1 ] d 1 -1 φ → K[x 0 , x 1 ] d 1 +d 2 -1 (g 1 , g 2 ) → g 1 f1 + g 2 f2
fails to be an isomorphism 

             First Definition Res(f 1 , f 2 ) := det(φ) ∈ Z[a 10 , . . . , a 2d 2 ] Properties: Res(f 1 , f 2 ) is: homogeneous of degreee d 1 + d 2 Res(λ 1 f 1 , λ 2 f 2 ) = λ d 2 1 λ d 1 2 Res(f 1 , f 2 ) Carlos D'Andrea
Elimination theory, sparse systems and applications

First Definition

Res(f 1 , f 2 ) := det(φ) ∈ Z[a 10 , . . . , a 2d 2 ] Properties: Res(f 1 , f 2 ) is: homogeneous of degreee d 1 + d 2 Res(λ 1 f 1 , λ 2 f 2 ) = λ d 2 1 λ d 1 2 Res(f 1 , f 2 ) bihomogeneous of bidegree (d 1 , d 2 ) Carlos D'Andrea
Elimination theory, sparse systems and applications

First Definition

Res(f 1 , f 2 ) := det(φ) ∈ Z[a 10 , . . . , a 2d 2 ] Properties: Res(f 1 , f 2 ) is: homogeneous of degreee d 1 + d 2 Res(λ 1 f 1 , λ 2 f 2 ) = λ d 2 1 λ d 1 2 Res(f 1 , f 2 ) bihomogeneous of bidegree (d 1 , d 2 ) weighted homogeneous of degree d 1 d 2 Carlos D'Andrea
Elimination theory, sparse systems and applications

First Definition

Res(f 1 , f 2 ) := det(φ) ∈ Z[a 10 , . . . , a 2d 2 ] Properties: Res(f 1 , f 2 ) is: homogeneous of degreee d 1 + d 2 Res(λ 1 f 1 , λ 2 f 2 ) = λ d 2 1 λ d 1 2 Res(f 1 , f 2 ) bihomogeneous of bidegree (d 1 , d 2 ) weighted homogeneous of degree d 1 d 2 Res(f 1 (λ 0 x 0 , λ 1 x 1 ), f 2 (λ 0 x 0 , λ 1 x 1 )) Carlos D'Andrea
Elimination theory, sparse systems and applications

First Definition

Res(f 1 , f 2 ) := det(φ) ∈ Z[a 10 , . . . , a 2d 2 ] Properties: Res(f 1 , f 2 ) is: homogeneous of degreee d 1 + d 2 Res(λ 1 f 1 , λ 2 f 2 ) = λ d 2 1 λ d 1 2 Res(f 1 , f 2 ) bihomogeneous of bidegree (d 1 , d 2 ) weighted homogeneous of degree d 1 d 2 Res(f 1 (λ 0 x 0 , λ 1 x 1 ), f 2 (λ 0 x 0 , λ 1 x 1 )) = (λ 0 λ 1 ) d 0 d 1 Res(f 1 , f 2 ) Carlos D'Andrea
Elimination theory, sparse systems and applications

More Properties
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More Properties

Res(f 1 , f 2 ) = B 0 a d 1 2d 2 + B 1 a d 1 -1 2d 2 + . . . Carlos D'Andrea
Elimination theory, sparse systems and applications More Properties

Res(f 1 , f 2 ) = B 0 a d 1 2d 2 + B 1 a d 1 -1 2d 2 + . . . B 0 = a d 2 10 Carlos D'Andrea
Elimination theory, sparse systems and applications More Properties

More Properties

Res(f 1 , f 2 ) = B 0 a d 1 2d 2 + B 1 a d 1 -1 2d 2 + . . . B 0 = a d 2 10 B 1 ≡ (-1)
Res(f 1 , f 2 ) = B 0 a d 1 2d 2 + B 1 a d 1 -1 2d 2 + . . . B 0 = a d 2 10 B 1 ≡ (-1) d 2 a 20 a d 2 11 mod a 10 Res(f 1 , f 2 ) is irreducible (Macaulay) Carlos D'Andrea
Elimination theory, sparse systems and applications

More Properties

Res(f 1 , f 2 ) = B 0 a d 1 2d 2 + B 1 a d 1 -1 2d 2 + . . . B 0 = a d 2 10 B 1 ≡ (-1) d 2 a 20 a d 2 11 mod a 10 Res(f 1 , f 2 ) is irreducible (Macaulay) (exercise) Carlos D'Andrea
Elimination theory, sparse systems and applications

Geometry

Carlos D'Andrea Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface Carlos D'Andrea Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface

P 1 K × K[x 0 , x 1 ] d1-1 × K[x 0 , x 1 ] d2-1 ψ → π 1 (V ) ⊂ K[x 0 , x 1 ] d1 × K[x 0 , x 1 ] d2 (p 0 : p 1 ), f1 , f2 → (p 0 x 1 -p 1 x 0 ) f1 , (p 0 x 1 -p 1 x 0 ) f2 Carlos D'Andrea
Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface

P 1 K × K[x 0 , x 1 ] d1-1 × K[x 0 , x 1 ] d2-1 ψ → π 1 (V ) ⊂ K[x 0 , x 1 ] d1 × K[x 0 , x 1 ] d2 (p 0 : p 1 ), f1 , f2 → (p 0 x 1 -p 1 x 0 ) f1 , (p 0 x 1 -p 1 x 0 ) f2 ψ is onto Carlos D'Andrea
Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface

P 1 K × K[x 0 , x 1 ] d1-1 × K[x 0 , x 1 ] d2-1 ψ → π 1 (V ) ⊂ K[x 0 , x 1 ] d1 × K[x 0 , x 1 ] d2 (p 0 : p 1 ), f1 , f2 → (p 0 x 1 -p 1 x 0 ) f1 , (p 0 x 1 -p 1 x 0 ) f2 ψ is onto ψ is generically injective Carlos D'Andrea
Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface

P 1 K × K[x 0 , x 1 ] d1-1 × K[x 0 , x 1 ] d2-1 ψ → π 1 (V ) ⊂ K[x 0 , x 1 ] d1 × K[x 0 , x 1 ] d2 (p 0 : p 1 ), f1 , f2 → (p 0 x 1 -p 1 x 0 ) f1 , (p 0 x 1 -p 1 x 0 ) f2 ψ is onto ψ is generically injective ( =⇒ π| V birational) Carlos D'Andrea
Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface

P 1 K × K[x 0 , x 1 ] d1-1 × K[x 0 , x 1 ] d2-1 ψ → π 1 (V ) ⊂ K[x 0 , x 1 ] d1 × K[x 0 , x 1 ] d2 (p 0 : p 1 ), f1 , f2 → (p 0 x 1 -p 1 x 0 ) f1 , (p 0 x 1 -p 1 x 0 ) f2 ψ is onto ψ is generically injective ( =⇒ π| V birational) dim(Im(ψ)) = d 1 + d 2 + 1 Carlos D'Andrea
Elimination theory, sparse systems and applications π 1 (V ) is a rational hypersurface

P 1 K × K[x 0 , x 1 ] d1-1 × K[x 0 , x 1 ] d2-1 ψ → π 1 (V ) ⊂ K[x 0 , x 1 ] d1 × K[x 0 ,
x 1 ] d2 (p 0 : p 1 ), f1 , f2 → (p 0 x 1 -p 1 x 0 ) f1 , (p 0 x 1 -p 1 x 0 ) f2 ψ is onto f 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i , a 2j ] Vanishes on π 1 (V ) has the same degree as Res(f 1 , f 2 ) =⇒ a 2d 2 d 1 f 2 (ξ,1)=0 f 1 (ξ, 1) = Res(f 1 , f 2 )

ψ is generically injective ( =⇒ π| V birational) dim(Im(ψ)) = d 1 + d 2 + 1 π 1 (V )

  (a)u β gives the conditions {P β (a)}

a

  10 a 11 . . . a 1d 1 0 . . . 0 0 a 10 . . . a 1d 1 -1 a 1d 1 . . . 0 . . . . . . . . . . . . . . . . . . . . . 0 0 . . . a 10 . . . . . . a 1d 1 a 20 a 21 . . . . . . a 2d 2 . . . 0 0 a 20 . . . . . . a 2d 2 -1 . . . 0 . . . . . . . . . . . . . . . . . . . . . 0 0 . . . a 20 . . . . . . a 2d 2

  ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i , a 2j ] Vanishes on π 1 (V ) Carlos D'AndreaElimination theory, sparse systems and applications Prooff 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i 1≤i≤d 1 , a 20 ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i , a 2j ] Vanishes on π 1 (V ) has the same degree as Res(f 1 , f 2 ) Carlos D'AndreaElimination theory, sparse systems and applications Proof f 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i 1≤i≤d 1 , a 20

  a 2 00 a 2 12 -a 00 a 01 a 11 a 12 -2a 00 a 02 a 10 a 12 + a 00 a 02 a 2 11 + a 2 01 a 10 a 12 -a 01 a 02 a 10 a 11 + a 2 02 a

Carlos D'Andrea
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  a 2 00 a 2 12 -a 00 a 01 a 11 a 12 -2a 00 a 02 a 10 a 12 + a 00 a 02 a 2 11 + a 2 01 a 10 a 12 -a 01 a 02 a 10 a 11 + a 2 02 a p 2 (a) = a 2 00 a 2 22 -a 00 a 01 a 21 a 22 -2a 00 a 02 a 20 a 22 + a 00 a 02 a 2 21 + a 2 01 a 20 a 22 -a 01 a 02 a 20 a 21 + a 2 02 a

Carlos D'Andrea
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  a 2 00 a 2 12 -a 00 a 01 a 11 a 12 -2a 00 a 02 a 10 a 12 + a 00 a 02 a 2 11 + a 2 01 a 10 a 12 -a 01 a 02 a 10 a 11 + a 2 00 a 01 a 21 a 22 -2a 00 a 02 a 20 a 22 + a 00 a 02 a

	02 a 22 -a 2 00 a 2 p 2 (a) = a 2 21 + a 2 01 a 20 a 22 -a 01 a 02 a 20 a 21 + a 2 02 a p 3 (a) = a 2 20 a 2

12 -a 20 a 21 a 11 a 12 -2a 20 a 22 a 10 a 12 + a 20 a 22 a 2 11 + a 2 21 a 10 a 12 -a 21 a 22 a 10 a 11 + a 2 22 a Carlos D'Andrea Elimination theory, sparse systems and applications Cautionary Example Carlos D'Andrea Elimination theory, sparse systems and applications

  a 2 00 a 2 12 -a 00 a 01 a 11 a 12 -2a 00 a 02 a 10 a + a 00 a 02 a 2 11 + a 2 01 a 10 a 12 -a 01 a 02 a 10 a 11 + a 2 02 a

	Triangular sets Triangular sets Triangular sets gcd gcd
	For any ideal I ⊂ K[a, x] one can associate a finite family of characteristic sets of polynomials For any ideal I ⊂ K[a, x] one can associate a finite family of characteristic sets of polynomials For any ideal I ⊂ K[a, x] one can For f1 , f2 ∈ K[x 0 , x 1 ] homogeneous of For f1 , f2 ∈ K[x 0 , x 1 ] homogeneous of associate a finite family of characteristic sets of polynomials degrees d 1 , d 2 to have a nontrivial common factor degrees d 1 , d 2 to have a nontrivial common factor the map
	which are in triangular shape: which are in triangular shape: which are in triangular shape:
	polynomials in this set have different polynomials in this set have different
	main variables main variables
	Membership to I is easily tested
	Carlos D'Andrea Carlos D'Andrea
	Elimination theory, sparse systems and applications Elimination theory, sparse systems and applications

Carlos D'Andrea
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  d 2 a 20 a d 2 11 mod a 10

	Carlos D'Andrea
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  is an irreducible hypersurface! Proof f 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i 1≤i≤d 1 , a 20 Proof f 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i 1≤i≤d 1 , a 20 Proof f 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i 1≤i≤d 1 , a 20

		a 2d 2 a 2d 2 a 2d 2	, . . . , , . . . , , . . . ,	a 2d 2 -1 a 2d 2 a 2d 2 -1 a 2d 2 a 2d 2 -1 a 2d 2	] ]
	a 2d 2 a 2d 2	d 1		

Carlos D'Andrea Elimination theory, sparse systems and applications ] Carlos D'Andrea Elimination theory, sparse systems and applications

f 2 (ξ,1)=0 f 1 (ξ, 1) ∈ K[a 1i , a 2j ] Carlos D'Andrea
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Algebraic Definitions
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Algebraic Definitions
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Algebraic Definitions

Elimination theory, sparse systems and applications

Algebraic Definitions

Res(f 1 , f 2 ) is: the "condition" to test if gcd(f 1 , f 2 ) = 1 (Sylvester) One of the (two) generators of the elimination ideal

Elimination theory, sparse systems and applications

Geometry

K any field

Carlos D'Andrea Elimination theory, sparse systems and applications Geometry K any field V = {(α 10 , ..., α 2d 2 ; p 0 : p 1 ) :
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Elimination theory, sparse systems and applications

Geometry

K any field

Geometry

V = {(α 10 , ..., α 2d 2 ; p 0 : p 1 ) :
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Geometry

V = {(α 10 , ..., α 2d 2 ; p 0 : p 1 ) :

Is π 1 (V ) a hypersurface?

Elimination theory, sparse systems and applications

Geometry

V = {(α 10 , ..., α 2d 2 ; p 0 : p 1 ) :

Is π 1 (V ) a hypersurface? Is it irreducible?

Carlos D'Andrea Elimination theory, sparse systems and applications Geometry V = {(α 10 , ..., α 2d 2 ; p 0 : p 1 ) : f 1 (α, p 0 , p 1 ) = f 2 (α, p 0 , p 1 ) = 0}

Is π 1 (V ) a hypersurface? Is it irreducible? is π 1 | V birational?