Output: i 1 with U 1 ∩ U 2 = ⟨rows of the matrix i 1 ⟩ ≤ Q 1×d Intersection1 (u 1 , u 2 ) m 1 ∶= REF(u 1 ) // row echelon form of u1 m 2 ∶= REF(u 2 ) n 1 n 2 ∶= LeftNullSpace( m 1 m 2 )
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Algorithm 1 to intersect two vector subspaces Algorithm 1: Intersection of vector subspaces Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩.

Output: i 1 with U 1 ∩ U 2 = ⟨rows of the matrix i 1 ⟩ ≤ Q 1×d Intersection1 (u 1 , u 2 ) m 1 ∶= REF(u 1 )
// row echelon form of u1

m 2 ∶= REF(u 2 ) n 1 n 2 ∶= LeftNullSpace( m 1 m 2 ) i 1 ∶= MatMul(n 1 , m 1 ) ∶= n 1 m 1 Mohamed Barakat
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Output: i 1 with U 1 ∩ U 2 = ⟨rows of the matrix i 1 ⟩ ≤ Q 1×d Intersection1 (u 1 , u 2 ) m 1 ∶= REF(u 1 )
// row echelon form of u1

m 2 ∶= REF(u 2 ) n 1 n 2 ∶= LeftNullSpace( m 1 m 2 ) i 1 ∶= MatMul(n 1 , m 1 ) ∶= n 1 m 1 return i 1 Mohamed Barakat
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Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩.

Output:

s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2 )
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Output:

s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2 ) 1 e 2 ∶= RightNullSpace(u 2 )
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Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2 ) e 2 ∶= RightNullSpace(u 2 ) w 1 ∶= MatMul(u 1 , e 2 ) ∶= u 1 e 2 k 1 ∶= LeftNullSpace(w 1 ) v 1 ∶= MatMul(k 1 , u 1 ) ∶= k 1 u 1 s 1 ∶= REF(v 1 )
return s 1
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Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2 )
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Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2 ) e 1 ∶= RightNullSpace(u 1 ) e 2 ∶= RightNullSpace(u 2 ) a ∶= Augment(e 1 , e 2 )
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Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2 ) e 1 ∶= RightNullSpace(u 1 ) e 2 ∶= RightNullSpace(u 2 ) a ∶= Augment(e 1 , e 2 ) k ∶= LeftNullSpace(a)
return k
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Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2 )
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Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2 ) 1 d ∶= NrColumns(u 1 )
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Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2 ) 1 d ∶= NrColumns(u 1 ) 2 i ∶= IdentityMat(d, Q) Mohamed Barakat
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Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2 ) d ∶= NrColumns(u 1 ) i ∶= IdentityMat(d, Q) p ∶= Stack(Augment(i, i), Diag(u 1 , u 2 )) ∶= ⎛ ⎜ ⎝ 1 1 u 1 0 0 u 2 ⎞ ⎟ ⎠ Mohamed Barakat
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Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2 ) d ∶= NrColumns(u 1 ) i ∶= IdentityMat(d, Q) p ∶= Stack(Augment(i, i), Diag(u 1 , u 2 )) ∶= ⎛ ⎜ ⎝ 1 1 u 1 0 0 u 2 ⎞ ⎟ ⎠ z 0 z 1 z 2 ∶= LeftNullSpace(p)
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Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2 ) d ∶= NrColumns(u 1 ) i ∶= IdentityMat(d, Q) p ∶= Stack(Augment(i, i), Diag(u 1 , u 2 )) ∶= ⎛ ⎜ ⎝ 1 1 u 1 0 0 u 2 ⎞ ⎟ ⎠ z 0 z 1 z 2 ∶= LeftNullSpace(p) return z 0
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Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.
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Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.

Main idea Describe the subspaces U 1 , U 2 ≤ V as the image of linear maps u 1 , u 2 defined by the matrices u 1 , u 2 , respectively:

u 1 ∶ Q g 1 ×1 u1 → Q d×1 , u 2 ∶ Q g 2 ×1 u2 → Q d×1 .
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Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.

Main idea Describe the subspaces U 1 , U 2 ≤ V as the image of linear maps u 1 , u 2 defined by the matrices u 1 , u 2 , respectively:

u 1 ∶ Q g 1 ×1 u1 → Q d×1 , u 2 ∶ Q g 2 ×1 u2 → Q d×1 .
Data structures and algorithms for a category

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N )

(s×t) -1 (M,N )
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:
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(s×t) -1 (M,N )
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(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity

1 ∶ C 0 → C 1 ; (4) the "composition" µ ∶ C 1 × C 0 C 1 → C 1 , (ϕ, ψ) ↦ ϕψ
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A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N )

(s×t) -1 (M,N )
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity

1 ∶ C 0 → C 1 ; (4) the "composition" µ ∶ C 1 × C 0 C 1 → C 1 , (ϕ, ψ) ↦ ϕψ
subject to the obvious relations.

To describe an instance of a category we need two data structures (for C 0 , C 1 ) and four algorithms (for s, t, 1, µ).

Categories up to equivalence emphasize morphisms and treat objects merely as place holders for sources and targets.

Further examples of categories

Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category

Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M ) ∶= Hom C (M, N )
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• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category

Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M ) ∶= Hom C (M, N ) • Free category CatClosure(q) generated by a quiver q Mohamed Barakat
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Further examples of categories Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category

Example (Category constructors)

• Opposite category C op :
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For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M ) ∶= Hom C (M, N ) • Free category CatClosure(q) generated by a quiver q • CatClosure(•) =⟳ • • CatClosure(• → ⋆) =⟳ • → ⋆ ⟲ • CatClosure(• → ⋆ → ∎) =? • CatClosure(• ⇄ ⋆ → ∎) =?
Further doctrines: k-linear categories Let k be commutative unital ring.

Definition A category C is called k-linear if
• C is pre-additive and all Hom C (M, N ) are k-modules;

• the composition µ is k-bi-linear. A k-algebroid is a small k-linear category.

Example k-algebra ≡ k-algebroid on one object

We now construct on the computer:

Q-LinClosure(CatClosure(1 b ⇄ a 2 c → 3)) Mohamed Barakat
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Further doctrines: k-linear categories

Let k be commutative unital ring.

Definition

A category C is called k-linear if

• C is pre-additive and all Hom C (M, N ) are k-modules;

• the composition µ is k-bi-linear. A k-algebroid is a small k-linear category.

Example k-algebra ≡ k-algebroid on one object

We now construct on the computer:

Q-LinClosure(CatClosure(1 b ⇄ a 2 c → 3))
In particular, CatClosure invents the word calculus.

Mohamed Barakat
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Further doctrines: (co)cartesian categories Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

.
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M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;
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Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

• A coproduct of objects in C is a product in C op ;

• The empty coproduct is called the initial object;

• A category admitting fin. coproducts is called cocartesian.

Let ϕ ∶ M → N be a morphism in A.

M N ker ϕ ϕ 0 κ Mohamed Barakat Category theory as an abstract programming language

The "hidden" existential quantifiers of "kernels"

Example

Let ϕ ∶ M → N be a morphism in A. The "hidden" existential quantifiers of "kernels" The "hidden" existential quantifiers of "kernels" Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1
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Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1 C 2 e 2 w 1 K k 1 C 1 e 1 C 1 ⊕ C 2 a

Example

  Let ϕ ∶ M → N be a morphism in A.

Example

  Let ϕ ∶ M → N be a morphism in A.So A is a computational context with many basic algorithms.

  A finite product of objects in a category C
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• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

• A coproduct of objects in C is a product in C op ; • The empty coproduct is called the initial object; k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

• 1 m = IdentityMorphism(m) ∶= IdentityMat(m, k)

• ϕψ = PreCompose(ϕ, ψ)
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Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.
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Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)
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• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

• CokernelProjection(ϕ) ∶= CEF(RightNullSpace(ϕ))

• CokernelColift(ϕ, τ )
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Intersection in Abelian categories

Category theory as an abstract programming language

Computable rings

From now on let R be a ring with 1.

Definition

We call a constructive ring left computable if the solvability of XA = B is algorithmically decidable. This means:

• Determining a syzygy matrix S of A:

• Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

Proposition ([Pos17])

If R is left computable then the category ⋃g,g ′ ∈N R g×g ′ is computable additive with weak kernels and decidable lifts.
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• Determining a syzygy matrix S of A:

• Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

Proposition ([Pos17])

If R is left computable then the category ⋃g,g ′ ∈N R g×g ′ is computable additive with weak kernels and decidable lifts.

Now to a computable model for the category of f.p. R-modules:
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A computable model for R-fpmod

Freyd construction Freyd(P)

Let P be an additive category, then a particular ideal quotient

Freyd's construction yields a computable ABELian category if in addition P has weak cokernels and decidable lifts.

Freyd(AdditiveClosure(R-LinClosure(CatClosure(•))))!! In this context any algorithm to compute a GRÖBNER basis is a substitute for the GAUSS resp. HERMITE normal form algorithm.
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Category theory "invents" data structures and calculi

Free instance of a doctrine Calculus cartesian closed category (CCC) λ-calculus compact closed category (CCC) quantized λ-calculus
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Category theory "invents" data structures and calculi Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269-293, (arXiv:1003.1943). MR 2795737 (2012f:18022) Sebastian Posur, A constructive approach to Freyd categories, ArXiv e-prints ( 2017), (arXiv:1712.03492).