Output: i 1 with U 1 ∩ U 2 = ⟨rows of the matrix i 1 ⟩ ≤ Q 1×d Intersection1 (u 1 , u 2) m 1 ∶= REF(u 1) // row echelon form of u1 m 2 ∶= REF(u 2) n 1 n 2 ∶= LeftNullSpace(m 1 m 2)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 1 to intersect two vector subspaces Algorithm 1: Intersection of vector subspaces Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩.

Output: i 1 with U 1 ∩ U 2 = ⟨rows of the matrix i 1 ⟩ ≤ Q 1×d Intersection1 (u 1 , u 2) m 1 ∶= REF(u 1)
// row echelon form of u1

m 2 ∶= REF(u 2) n 1 n 2 ∶= LeftNullSpace(m 1 m 2) i 1 ∶= MatMul(n 1 , m 1) ∶= n 1 m 1 Mohamed Barakat
Category theory as an abstract programming language

Algorithm 1 to intersect two vector subspaces Algorithm 1: Intersection of vector subspaces Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩.

Output: i 1 with U 1 ∩ U 2 = ⟨rows of the matrix i 1 ⟩ ≤ Q 1×d Intersection1 (u 1 , u 2) m 1 ∶= REF(u 1)
// row echelon form of u1

m 2 ∶= REF(u 2) n 1 n 2 ∶= LeftNullSpace(m 1 m 2) i 1 ∶= MatMul(n 1 , m 1) ∶= n 1 m 1 return i 1 Mohamed Barakat
Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩.

Output:

s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩.

Output:

s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2) 1 e 2 ∶= RightNullSpace(u 2)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2) 1 e 2 ∶= RightNullSpace(u 2) 2 w 1 ∶= MatMul(u 1 , e 2) ∶= u 1 e 2 Mohamed Barakat
Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2) e 2 ∶= RightNullSpace(u 2) w 1 ∶= MatMul(u 1 , e 2) ∶= u 1 e 2 k 1 ∶= LeftNullSpace(w 1)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2) e 2 ∶= RightNullSpace(u 2) w 1 ∶= MatMul(u 1 , e 2) ∶= u 1 e 2 k 1 ∶= LeftNullSpace(w 1) v 1 ∶= MatMul(k 1 , u 1) ∶= k 1 u 1 Mohamed Barakat
Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2) e 2 ∶= RightNullSpace(u 2) w 1 ∶= MatMul(u 1 , e 2) ∶= u 1 e 2 k 1 ∶= LeftNullSpace(w 1) v 1 ∶= MatMul(k 1 , u 1) ∶= k 1 u 1 s 1 ∶= REF(v 1)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 2 to intersect two vector subspaces Algorithm 2: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: s 1 with U 1 ∩ U 2 = ⟨rows of the matrix s 1 ⟩ ≤ Q 1×d Intersection2 (u 1 , u 2) e 2 ∶= RightNullSpace(u 2) w 1 ∶= MatMul(u 1 , e 2) ∶= u 1 e 2 k 1 ∶= LeftNullSpace(w 1) v 1 ∶= MatMul(k 1 , u 1) ∶= k 1 u 1 s 1 ∶= REF(v 1)
return s 1

Mohamed Barakat Category theory as an abstract programming language Algorithm 3 to intersect two vector subspaces Algorithm 3: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2)
Mohamed Barakat Category theory as an abstract programming language Algorithm 3 to intersect two vector subspaces Algorithm 3: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2) 1 e 1 ∶= RightNullSpace(u 1)
Mohamed Barakat Category theory as an abstract programming language Algorithm 3 to intersect two vector subspaces Algorithm 3: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2) 1 e 1 ∶= RightNullSpace(u 1) 2 e 2 ∶= RightNullSpace(u 2)
Mohamed Barakat Category theory as an abstract programming language Algorithm 3 to intersect two vector subspaces Algorithm 3: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2) e 1 ∶= RightNullSpace(u 1) e 2 ∶= RightNullSpace(u 2) a ∶= Augment(e 1 , e 2)
Mohamed Barakat Category theory as an abstract programming language Algorithm 3 to intersect two vector subspaces Algorithm 3: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2) e 1 ∶= RightNullSpace(u 1) e 2 ∶= RightNullSpace(u 2) a ∶= Augment(e 1 , e 2) k ∶= LeftNullSpace(a)
Mohamed Barakat Category theory as an abstract programming language Algorithm 3 to intersect two vector subspaces Algorithm 3: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: k with U 1 ∩ U 2 = ⟨rows of the matrix k⟩ ≤ Q 1×d Intersection3 (u 1 , u 2) e 1 ∶= RightNullSpace(u 1) e 2 ∶= RightNullSpace(u 2) a ∶= Augment(e 1 , e 2) k ∶= LeftNullSpace(a)
return k

Mohamed Barakat Category theory as an abstract programming language

Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2) 1 d ∶= NrColumns(u 1)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2) 1 d ∶= NrColumns(u 1) 2 i ∶= IdentityMat(d, Q) Mohamed Barakat
Category theory as an abstract programming language

Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2) d ∶= NrColumns(u 1) i ∶= IdentityMat(d, Q) p ∶= Stack(Augment(i, i), Diag(u 1 , u 2)) ∶= ⎛ ⎜ ⎝ 1 1 u 1 0 0 u 2 ⎞ ⎟ ⎠ Mohamed Barakat
Category theory as an abstract programming language

Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2) d ∶= NrColumns(u 1) i ∶= IdentityMat(d, Q) p ∶= Stack(Augment(i, i), Diag(u 1 , u 2)) ∶= ⎛ ⎜ ⎝ 1 1 u 1 0 0 u 2 ⎞ ⎟ ⎠ z 0 z 1 z 2 ∶= LeftNullSpace(p)
Mohamed Barakat Category theory as an abstract programming language

Algorithm 4 = 3' to intersect two vector subspaces Algorithm 4: Intersection of vector subspaces

Input: Two stackable matrices u 1 , u 2 ∈ Q ?×d U 1 ∶= ⟨rows of the matrix u 1 ⟩, U 2 ∶= ⟨rows of the matrix u 2 ⟩. Output: z 0 with U 1 ∩ U 2 = ⟨rows of the matrix z 0 ⟩ ≤ Q 1×d Intersection4 (u 1 , u 2) d ∶= NrColumns(u 1) i ∶= IdentityMat(d, Q) p ∶= Stack(Augment(i, i), Diag(u 1 , u 2)) ∶= ⎛ ⎜ ⎝ 1 1 u 1 0 0 u 2 ⎞ ⎟ ⎠ z 0 z 1 z 2 ∶= LeftNullSpace(p) return z 0
Mohamed Barakat Category theory as an abstract programming language Our goals were ...

Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.

Mohamed Barakat Category theory as an abstract programming language Our goals were ...

Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.

Mohamed Barakat Category theory as an abstract programming language Our goals were ...

Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.

Main idea Describe the subspaces U 1 , U 2 ≤ V as the image of linear maps u 1 , u 2 defined by the matrices u 1 , u 2 , respectively:

u 1 ∶ Q g 1 ×1 u1 → Q d×1 , u 2 ∶ Q g 2 ×1 u2 → Q d×1 .
Mohamed Barakat Category theory as an abstract programming language Our goals were ...

Goals

• Describe algorithms to intersect vector subspaces;

• Generalize these algorithms to more general setups.

Main idea Describe the subspaces U 1 , U 2 ≤ V as the image of linear maps u 1 , u 2 defined by the matrices u 1 , u 2 , respectively:

u 1 ∶ Q g 1 ×1 u1 → Q d×1 , u 2 ∶ Q g 2 ×1 u2 → Q d×1 .
Data structures and algorithms for a category

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N)

(s×t) -1 (M,N)
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

Mohamed Barakat Category theory as an abstract programming language Data structures and algorithms for a category

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N)

(s×t) -1 (M,N)
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity 1 ∶ C 0 → C 1 ;

Mohamed Barakat Category theory as an abstract programming language Data structures and algorithms for a category

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N)

(s×t) -1 (M,N)
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity

1 ∶ C 0 → C 1 ; (4) the "composition" µ ∶ C 1 × C 0 C 1 → C 1 , (ϕ, ψ) ↦ ϕψ
Mohamed Barakat Category theory as an abstract programming language Data structures and algorithms for a category

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N)

(s×t) -1 (M,N)
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity 1 ∶ C 0 → C 1 ;

(4) the "composition" µ ∶ C 1 × C 0 C 1 → C 1 , (ϕ, ψ) ↦ ϕψ subject to the obvious relations.

Mohamed Barakat Category theory as an abstract programming language Data structures and algorithms for a category

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N)

(s×t) -1 (M,N)
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity 1 ∶ C 0 → C 1 ;

(4) the "composition" µ ∶ C 1 × C 0 C 1 → C 1 , (ϕ, ψ) ↦ ϕψ subject to the obvious relations.

To describe an instance of a category we need two data structures (for C 0 , C 1) and four algorithms (for s, t, 1, µ).

A quiver (directed multi-graph) C consists of • a class of objects C 0 ;

• a class of morphisms C 1 ∶= ⋃M,N∈C 0 Hom C (M, N)

(s×t) -1 (M,N)
;

• two structure maps:

(1,2) source and target s, t ∶ C 1 → C 0 ;

A category is a quiver C with two further structure maps:

(3) the identity

1 ∶ C 0 → C 1 ; (4) the "composition" µ ∶ C 1 × C 0 C 1 → C 1 , (ϕ, ψ) ↦ ϕψ
subject to the obvious relations.

To describe an instance of a category we need two data structures (for C 0 , C 1) and four algorithms (for s, t, 1, µ).

Categories up to equivalence emphasize morphisms and treat objects merely as place holders for sources and targets.

Further examples of categories

Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category

Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M) ∶= Hom C (M, N)
Mohamed Barakat Category theory as an abstract programming language

Further examples of categories Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category

Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M) ∶= Hom C (M, N) • Free category CatClosure(q) generated by a quiver q Mohamed Barakat
Category theory as an abstract programming language

Further examples of categories Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category

Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M) ∶= Hom C (M, N) • Free category CatClosure(q) generated by a quiver q • CatClosure(•) =⟳ • Mohamed Barakat
Category theory as an abstract programming language

Further examples of categories Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M) ∶= Hom C (M, N) • Free category CatClosure(q) generated by a quiver q • CatClosure(•) =⟳ • • CatClosure(• → ⋆) =⟳ • → ⋆ ⟲ Mohamed Barakat
Category theory as an abstract programming language

Further examples of categories Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M) ∶= Hom C (M, N) • Free category CatClosure(q) generated by a quiver q • CatClosure(•) =⟳ • • CatClosure(• → ⋆) =⟳ • → ⋆ ⟲ • CatClosure(• → ⋆ → ∎) =? Mohamed Barakat
Category theory as an abstract programming language

Further examples of categories Example (Instances)

For N = {0, 1, 2, . . .} consider:

• SkeletalFinSets ∶= ⋃m,n∈N {1, . . . , n} m , equivalent, even a computational model for the category of finite sets

• ∆ ∶= ⋃m,n∈N {0 < . . . < n} m ordered tuples
, the simplicial category Example (Category constructors)

• Opposite category C op :

C op 0 = C 0 , Hom C op (N, M) ∶= Hom C (M, N) • Free category CatClosure(q) generated by a quiver q • CatClosure(•) =⟳ • • CatClosure(• → ⋆) =⟳ • → ⋆ ⟲ • CatClosure(• → ⋆ → ∎) =? • CatClosure(• ⇄ ⋆ → ∎) =?
Further doctrines: k-linear categories Let k be commutative unital ring.

Definition A category C is called k-linear if
• C is pre-additive and all Hom C (M, N) are k-modules;

• the composition µ is k-bi-linear. A k-algebroid is a small k-linear category.

Example k-algebra ≡ k-algebroid on one object

We now construct on the computer:

Q-LinClosure(CatClosure(1 b ⇄ a 2 c → 3)) Mohamed Barakat
Category theory as an abstract programming language

Further doctrines: k-linear categories

Let k be commutative unital ring.

Definition

A category C is called k-linear if

• C is pre-additive and all Hom C (M, N) are k-modules;

• the composition µ is k-bi-linear. A k-algebroid is a small k-linear category.

Example k-algebra ≡ k-algebroid on one object

We now construct on the computer:

Q-LinClosure(CatClosure(1 b ⇄ a 2 c → 3))
In particular, CatClosure invents the word calculus.

Mohamed Barakat

Category theory as an abstract programming language

Further doctrines: (co)cartesian categories Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

.

Mohamed Barakat Category theory as an abstract programming language

Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

.

Mohamed Barakat Category theory as an abstract programming language

Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

• A coproduct of objects in C is a product in C op ;

.

Mohamed Barakat Category theory as an abstract programming language

Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

• A coproduct of objects in C is a product in C op ;

• The empty coproduct is called the initial object; .

Further doctrines: (co)cartesian categories

• A finite product of objects in a category C

M 1 ⋮ M P π 1 π P ′ ϕ 1 ϕ ∃ 1 u
• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

• A coproduct of objects in C is a product in C op ;

• The empty coproduct is called the initial object;

• A category admitting fin. coproducts is called cocartesian.

Let ϕ ∶ M → N be a morphism in A.

M N ker ϕ ϕ 0 κ Mohamed Barakat Category theory as an abstract programming language

The "hidden" existential quantifiers of "kernels"

Example

Let ϕ ∶ M → N be a morphism in A. The "hidden" existential quantifiers of "kernels" The "hidden" existential quantifiers of "kernels" Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1
Mohamed Barakat Category theory as an abstract programming language

Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1 C 2 e 2 Mohamed Barakat
Category theory as an abstract programming language

Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1 C 2 e 2 w 1

Mohamed Barakat

Category theory as an abstract programming language

Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1 C 2 e 2 w 1 K k 1 Mohamed Barakat
Category theory as an abstract programming language

Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1 C 2 e 2 w 1 K k 1 C 1 e 1 Mohamed Barakat
Category theory as an abstract programming language

Intersection in Abelian categories

V U 1 U 2 u 1 u 2 I 1 I 2 m 1 m 2 I n 1 n 2 i 1 C 2 e 2 w 1 K k 1 C 1 e 1 C 1 ⊕ C 2 a

Example

 Let ϕ ∶ M → N be a morphism in A.

Example

 Let ϕ ∶ M → N be a morphism in A.So A is a computational context with many basic algorithms.

 A finite product of objects in a category C

	Further doctrines: (co)cartesian categories Further doctrines: (co)cartesian categories Further doctrines: (co)cartesian categories Further doctrines: (co)cartesian categories Further doctrines: (co)cartesian categories
	• A finite product of objects in a category C • A finite product of objects in a category C • A finite product of objects in a category C • A finite product of objects in a category C • A finite product of objects in a category C
			ϕ 1 ϕ 1	
			π 1 π 1 π 1 π 1	M 1 M 1 M 1 M 1 M 1 M 1
	P ′ P ′ P ′	∃ 1 u	P P P P P	⋮ ⋮ ⋮ ⋮ ⋮ ⋮
			π π π π	M M M M M M
			ϕ ϕ	
			
	Mohamed Barakat Mohamed Barakat Mohamed Barakat Mohamed Barakat Mohamed Barakat Mohamed Barakat	Category theory as an abstract programming language Category theory as an abstract programming language Category theory as an abstract programming language Category theory as an abstract programming language Category theory as an abstract programming language Category theory as an abstract programming language

•

Mohamed BarakatCategory theory as an abstract programming language

• The empty product is called the terminal object;

• A category admitting finite products is called cartesian;

• A coproduct of objects in C is a product in C op ; • The empty coproduct is called the initial object; k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

• 1 m = IdentityMorphism(m) ∶= IdentityMat(m, k)

• ϕψ = PreCompose(ϕ, ψ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

• 1 m = IdentityMorphism(m) ∶= IdentityMat(m, k)

• ϕψ = PreCompose(ϕ, ψ) ∶= MatMul(ϕ, ψ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

Mohamed Barakat Category theory as an abstract programming language Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

Mohamed Barakat Category theory as an abstract programming language Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

• s(ϕ) = Source(ϕ) ∶= NrRows(ϕ)

• t(ϕ) = Range(ϕ) ∶= NrColumns(ϕ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof.

• Objects m, n are natural numbers in N

• Morphisms ϕ, ψ are rectangular matrices over k

Categorical algorithms of k-mat

Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

• CokernelProjection(ϕ) ∶= CEF(RightNullSpace(ϕ))

• CokernelColift(ϕ, τ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Mohamed Barakat Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Category theory as an abstract programming language

Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

Category theory as an abstract programming language Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

• KernelEmbedding(ϕ) ∶= REF(LeftNullSpace(ϕ))

• KernelLift(ϕ, τ) ∶= Sol(χ ⋅ REF(LeftNullSpace(ϕ)) = τ)

• CokernelObject(ϕ) ∶= NrColumns(ϕ) -Rank(ϕ)

• CokernelProjection(ϕ) ∶= CEF(RightNullSpace(ϕ))

Category theory as an abstract programming language Categorical algorithms of k-mat Proposition k-mat is a computable Abelian category.

Proof. (continued)

• KernelObject(ϕ) ∶= NrRows(ϕ) -Rank(ϕ)

• KernelEmbedding(ϕ) ∶= REF(LeftNullSpace(ϕ))

• KernelLift(ϕ, τ) ∶= Sol(χ ⋅ REF(LeftNullSpace(ϕ)) = τ)

• CokernelObject(ϕ) ∶= NrColumns(ϕ) -Rank(ϕ)

• CokernelProjection(ϕ) ∶= CEF(RightNullSpace(ϕ))

Category theory as an abstract programming language

Intersection in Abelian categories

Category theory as an abstract programming language

Computable rings

From now on let R be a ring with 1.

Definition

We call a constructive ring left computable if the solvability of XA = B is algorithmically decidable. This means:

• Determining a syzygy matrix S of A:

• Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

Proposition ([Pos17])

If R is left computable then the category ⋃g,g ′ ∈N R g×g ′ is computable additive with weak kernels and decidable lifts.

Mohamed Barakat Category theory as an abstract programming language

Computable rings

From now on let R be a ring with 1.

Definition

We call a constructive ring left computable if the solvability of XA = B is algorithmically decidable. This means:

• Determining a syzygy matrix S of A:

• Deciding the solvability of XA = B and in the affirmative case determining a particular solution X.

Proposition ([Pos17])

If R is left computable then the category ⋃g,g ′ ∈N R g×g ′ is computable additive with weak kernels and decidable lifts.

Now to a computable model for the category of f.p. R-modules:

Mohamed Barakat Category theory as an abstract programming language

A computable model for R-fpmod

Freyd construction Freyd(P)

Let P be an additive category, then a particular ideal quotient

is additive with cokernels Mohamed Barakat Category theory as an abstract programming language

A computable model for R-fpmod

Freyd construction Freyd(P)

Let P be an additive category, then a particular ideal quotient

Freyd's construction yields a computable ABELian category if in addition P has weak cokernels and decidable lifts.

Mohamed Barakat Category theory as an abstract programming language

A computable model for R-fpmod

Freyd construction Freyd(P)

Let P be an additive category, then a particular ideal quotient

Freyd's construction yields a computable ABELian category if in addition P has weak cokernels and decidable lifts.

Mohamed Barakat Category theory as an abstract programming language

A computable model for R-fpmod

Freyd construction Freyd(P)

Let P be an additive category, then a particular ideal quotient

Freyd's construction yields a computable ABELian category if in addition P has weak cokernels and decidable lifts.

Freyd(AdditiveClosure(R-LinClosure(CatClosure(•))))!! In this context any algorithm to compute a GRÖBNER basis is a substitute for the GAUSS resp. HERMITE normal form algorithm.

Mohamed Barakat

Category theory as an abstract programming language Question Q:

Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Mohamed Barakat Category theory as an abstract programming language Question Q:

Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Category theory "invents" data structures and calculi

Free instance of a doctrine Calculus

Mohamed Barakat Category theory as an abstract programming language Question Q:

Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Category theory "invents" data structures and calculi

Free instance of a doctrine Calculus cartesian closed category (CCC) λ-calculus

Mohamed Barakat

Category theory as an abstract programming language Question Q:

Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Category theory "invents" data structures and calculi

Free instance of a doctrine Calculus cartesian closed category (CCC) λ-calculus compact closed category (CCC) quantized λ-calculus

Mohamed Barakat

Category theory as an abstract programming language Question Q:

Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Category theory "invents" data structures and calculi Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Category theory "invents" data structures and calculi Freyd 2 (AdditiveClosure(R-LinClosure(CatClosure(q)..)?

Category theory "invents" data structures and calculi Mohamed Barakat and Markus Lange-Hegermann, An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl. 10 (2011), no. 2, 269-293, (arXiv:1003.1943). MR 2795737 (2012f:18022) Sebastian Posur, A constructive approach to Freyd categories, ArXiv e-prints (2017), (arXiv:1712.03492).