
HAL Id: hal-04205883
https://hal.science/hal-04205883v1

Submitted on 13 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BlendGen: A Blender Add-on for General RGB-D
Databases Generation

Cedric Maron, Virginie Fresse, Karynn Morand, Hubert Konik

To cite this version:
Cedric Maron, Virginie Fresse, Karynn Morand, Hubert Konik. BlendGen: A Blender Add-on for
General RGB-D Databases Generation. International Journal of Computer Information Systems and
Industrial Management Applications, 2023, 15, pp.332-341. �hal-04205883�

https://hal.science/hal-04205883v1
https://hal.archives-ouvertes.fr

International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 15 (2023) pp. 332-340

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 03 November 2022; Accepted: 15 May, 2023; Published: 23 June, 2023

BlendGen: A Blender Add-on for General RGB-D

Databases Generation

Cedric Maron1,2, Virginie Fresse1, Karynn Morand2 and Hubert Konik1

1 Hubert Curien Laboratory, Jean-Monnet University,

18 Rue Professeur Benoît Lauras Bâtiment F, 42000 Saint-Étienne, France

cedric.maron@univ-st-etienne.fr

virginie.fresse@univ-st-etienne.fr
hubert.konik@univ-st-etienne.fr

2 SEGULA Technologies

1 Rue des Combats du 24 Août 1944, 69200 Venissieux, France
cedric.maron@segula.fr

karynn.morand@segula.fr

Abstract: With the growing usage of convolutional neural

networks in image classification[1], [2], detection and

segmentation tasks, the need for image databases has also

increased. Image database creation from real scenes is a

time-consuming process. It requires capturing several thousand

images of objects that are not necessarily easy to access in

various contexts. In addition, the labeling process also takes a lot

of time and human labeling precision is far from perfect. With

time, numerous image databases have been made available.

However, these databases rarely match new application

requirements in terms of image resolution, labeling quality,

object specificity and quantity. They can also lack information

such as depth images. Creating synthetic image databases using

database generation tools is a solution that makes image

database creation easier and faster. In this paper, a new

database generation tool named BlendGen is proposed.

Database generation tools enable to create image databases with

various image resolutions, perfect labeling quality, highly

specific objects and high context variety. However, the existing

database generation tools require users to use APIs to set up

scenes and database parameters. The APIs usage can become

heavy and less convenient for scene setups when the camera and

numerous objects are following complex trajectories. BlendGen

on the other hand is a Blender[3] add-on that enables RGB-D

image database generation via a complete and intuitive

graphical user interface (GUI). BlendGen GUI enables the

creation of whole synthetic RGB-D databases including complex

scenes, camera movements and lighting environments.

Keywords: Blender, Image Database Generation, RGB-D

images database, CGI

I. Introduction

Databases are a key element of applications based on neural

networks. Image databases are used to train and test neural

networks to perform different tasks such as classification,

detection, or segmentation.

The creation of an image database from real scenes is a very

time-consuming process. First, it requires to have access to

the objects which is not always easy or possible. For example,

in the industry, it is not always possible to interact with a

production line to acquire an image database. Secondly, it is

necessary to acquire images with various contexts such as

various object positions, rotations, textures, sizes and

background environments. Finally, it requires labeling the

images by hand. The human labeling precision is enough to

classify images, but it becomes almost impossible for a human

to label pixel-accurately detection and segmentation database.

With time numerous image databases have been made

available such as ImageNet[4] or Cityscapes[5]. The problem

is that these existing databases are generally not adapted for

new application needs. The image resolution of these

databases is often low. For example, the image resolutions of

the COCO[6] and KITTI[7] databases are respectively

640x480p and 1,382x512p, therefore they are not adapted for

applications processing high-resolution images such as 2K,

4K and more. The variety of objects present in available

databases is usually wide. For example, the dataset

PASCAL-Context[8] and NYU-Depth V2[9] contain

respectively 460 and 1000 classes which means only a

fraction of these databases can be useful for applications

requiring to detect only few classes. The context variety is

also either too narrow or too wide in terms of background

environment, object positions, rotations and textures. The

label precision is also far from perfect and the acquisition

precision for images other than RGB such as depth images is

usually below application requirements. For example, in the

NYU-Depth V2 database, depth images were acquired using

Microsoft Kinect which leaves blind spots on depth images.

Synthetic image database generation tools have been

created to address the previously listed problems. These tools

enable synthetic image database generation from 3D models

addressing the problem of access to real objects. They make it

possible to choose an image resolution that suits application

needs. They enable perfect labeling precision. They also

enable full control of context variety in terms of

camera/object positions, rotations, textures, background

mailto:cedric.maron@univ-st-etienne.fr
mailto:virginie.fresse@univ-st-etienne.fr
mailto:hubert.konik@univ-st-etienne.fr
mailto:cedric.maron@segula.fr
mailto:karynn.morand@segula.fr

BlendGen: A Blender Add-on for General RGB-D Databases Generation 333

environments and lighting conditions.

However, existing image database generation tools require

users to use APIs which can become heavy to create complex

scenes. Complex scenes refer to having the camera and

objects following complex paths combined with changing

textures, background environments and lighting conditions.

Moreover, some tools partially lack interesting functionalities

such as camera path following, point of interest tracking,

depth acquisition range control and the use of 360° images as

background environment.

Our contribution is the creation of BlendGen, a Blender

add-on that provides fast and easy RGB, Depth and RGB-D

labeled databases generation via a simple graphical user

interface. The add-on integrates multiple features designed to

assist users in realistic database creation.

This paper presents BlendGen starting with its design

principle, its interface and then its workflow. Finally, a

concrete BlendGen use case to generate a high-resolution bus

back-end image database is presented.

II. Related Work

The largest image databases became the benchmark for

general classification, recognition and segmentation

applications. For example, ImageNet became one of the

benchmarks for classification models[10]. NYU-Depth V2,

SUN RGB-D[11] and Cityscapes became benchmarks for

object recognition and object segmentation models[12]–[14].

However, these large databases are too general and therefore,

they cannot respond to the needs of specific applications in

terms of image resolution, presence of specific objects in the

database, labeling quality (hand-labeled databases are not

100% accurate), depth acquisition quality (sometimes depth is

acquired using poor acquisition systems). Using database

generation tools is a solution to generate high-quality

databases for dedicated applications.

Database generation tools can be separated into two

categories. The application-specific ones are dedicated to

generating one specific database type such as a small electric

motor database [15] and the general ones can generate

databases based on all kinds of objects like cars, human body

parts, animals, furniture, buildings and so on. Database

generation tools are usually made using existing graphical

computing frameworks[16]. Others use 3D computer graphics

engines such as Unity [17], Unreal Engine [18] or Blender.

Blender is often used since it is an open-source software with

an API that allows to control its interface. Blender also

continuously improves thanks to the help of its highly

invested community.

However, most existing database creation tools require

APIs usage to configure scenes and database generation

parameters. APIs usage can become heavy when the scene

complexity increases. Objects can be moving while the

camera follows a given trajectory and, at the same time, tracks

a point of interest that is also moving. For example, a camera

attached to a robotic welding arm that is performing complex

movements around a car moving along an assembly line with

parts being assembled as it goes.

BlendGen is an alternative solution to the existing image

database generation tools. BlendGen generates image

databases directly through the powerful Blender GUI. This

enables quick and intuitive scene setup, which enables faster

database generation. BlendGen's GUI also integrates multiple

tools to ease the configuration of realistic scenes. Finally,

BlendGen enables image rendering using either ray tracing or

rasterization rendering methods. Rasterization is several times

faster than ray tracing, but ray tracing enables to get more

photorealistic images. Most existing tools enable to use only

one rendering method as presented in Table 1.

Name Rendering methods AP

I

GUI

Rasterization Ray tracing

BlenderProc

[19]

 x x

Blendtorch

[20]

x x

ZPY

[21]

 x x

Kubric

[22]

 x x

BlendGen x x x x

Table 1. Rasterization/Ray-tracing : the majority of the

existing tools use either one or the other; API: all solutions use

API to generate databases, BlendGen can also be used using

the Blender API named Bpy; GUI: Only BlendGen enables

the use a GUI to setup scenes and database generation

parameters.

BlendGen GUI tools have been compared to other existing

image database generation tools under 3 tables which resume

depth functionalities, camera functionalities and

objects/background functionalities.

Concerning depth functionalities, most existing tools

enable depth acquisition but none of them enables to modify

depth acquisition resolution nor enables different depth

acquisition methods usage as presented in Table 2.

Name Depth

Depth

acquisition

changeable

depth

acquisition

resolution

Different

depth

acquisition

methods

BlenderProc x

Blendtorch

ZPY x

Kubric x

BlendGen x x x

Table 2. Depth functionalities available in the different

solutions

For the camera functionalities, most tools enable object/point

of interest tracking. Only one existing tool enables camera

path following and another enables random camera position

and rotation in given ranges while BlendGen enables all three

functionalities as presented in Table 3.

Name Camera

Object/Point

of Interest

tracking

Camera path

following

Random

camera

pos/rot in

given ranges

Maron et al. 334

BlenderProc x x

Blendtorch

ZPY x x

Kubric x

BlendGen x x x

Table 3. Camera functionalities available in the different

existing tools

Finally, only one existing tool enables random object

position and rotation in given ranges. Two existing tools

enable the use of 360° images as background environments.

Only BlendGen and ZPY enable these two functionalities as

presented in Table 4.

Name Random object

pos/rot in given

ranges

360° image as

background

environment

BlenderProc

Blendtorch

ZPY x x

Kubric x

BlendGen x x

Table 4. Object positioning and background functionalities

available in the different existing tools

III. BlendGen architecture

BlendGen architecture is detailed starting with its design

principle and motivations. Then its user interface is detailed.

Finally, the general workflow to generate a database using

BlendGen will be presented.

A. Motivation and design principle

The motivation behind the BlendGen creation was to create a

tool that enables RGB-D database generation efficiently and

intuitively.

Quick installation BlendGen is a Blender add-on, therefore

the BlendGen installation only requires installing Blender and

adding Blender to the used add-ons list. Blender is a free and

open-source 3D creation suite. It is one of the most popular

applications in the world for 3D artists.

Simplicity. BlendGen GUI enables quick and intuitive

database generation. It makes possible for users to set up

every key aspect of RGB-D image database generation by

only using the BlendGen GUI. Its tools enable to quickly set

up background environment, complex objects and camera

positioning, depth acquisition parameters as well as

image-related parameters.

Rendering flexibility. BlendGen enables to use either ray

tracing or rasterization render engine. Ray tracing has the

advantage to produce highly realistic images but takes a

significant amount of time to render. Rasterization rendering

quality is often lower than ray-tracing rendering, but it is a

good compromise between quality and rendering speed.

B. Global user interface architecture

The global user interface architecture depicted in Figure 1 is

composed of 4 blocks. The first block, General

Parameters, contains the high-level database parameters such

as the image resolution, the number of images to generate and

the types of images to generate (RGB, depth, label).

The second block, Background Properties, makes it

possible to add a 360° background image that will be used to

create a photorealistic background environment.

The third block, Camera Properties enables the selection of

two different depth acquisition methods and defining a depth

acquisition range. The camera positioning can be controlled in

this block by either positioning it in random ranges or making

it follow complex trajectories and track objects.

Finally, the last block named Objects Properties configures

all the object parameters such as their positions, their rotations,

their label values as well as their visibilities during the

different rendering stages (RGB, depth, label).

Figure 1. BlendGen global architecture

1) General parameters

The General parameters block controls the high-level

parameters relative to the database generation. As depicted in

Figure 2, it is possible to modify/change the image resolution,

the number of images to generate and the types of images to

generate (RGB, depth, label). Two generation types are

proposed, Random and Animation. The Random generation

type gives the possibility to set the camera and objects using

random position and rotation values inside given ranges. The

Animation generation type uses the animation system present

in Blender. This second type enables the creation of more

complex object and camera trajectories.

The General parameter block also gives the possibility to

choose between two rendering engines for the RGB images.

The first rendering engine named Cycles uses raytracing to

render images. Raytracing produces photorealistic results but

takes a good amount of time to render. The second rendering

engine named Eevee uses rasterization to render images.

Rasterization is a way to convert the 3D scene into a 2D image

that is faster than raytracing but produces less photorealistic

results.

All the images generated are saved in the .PNG format with

a 0% compression rate. The RGB images are saved in an 8bits

RGB format. The depth and label images are saved in a 16bits

grayscale format.

Finally, there are different paths for the different image

types and the metadata file to be saved. The metadata file

contains information such as object label values, the

generated data number, the camera position/rotation, the 360°

background image view angle if there is one. Objects

positions/ rotations are also provided.

BlendGen: A Blender Add-on for General RGB-D Databases Generation 335

Figure 2. General parameters properties GUI

2) Background properties

The Background properties block controls parameters related

to the 360° background image use. In addition to obtaining a

photorealistic background, background image use simplifies

the background environment creation. Moreover, Blender

calculates the light emitted by the background image,

avoiding manual set up numerous lights to illuminate the

objects in the scene. Nevertheless, BlendGen can be used

without using background images by adding 3D models for

the background and setting up a light environment.

With the block Background properties, the user can select

or not the use of a background image. If the user chooses not

to use a background image, only the background label value

variable is accessible. In case the user wishes to use a

background image, all the parameters are accessible as

depicted in Figure 3.

Figure 3. Background properties GUI

To obtain the best possible rendering, it is advisable to

choose a background image resolution that is adapted to the

generated images resolution. Since the images rendering is

done using a small background image area, it is necessary that

the background image has a resolution several times higher

than the resolution generated images resolution If the

background image resolution is too low, the background in the

generated image will be pixelated.

Once the background image is chosen, the user needs to add

the path to the background image. Then it is possible to

choose the label value associated with the background image.

It is also possible to rotate the background image around the

scene vertical axis using the variable named Background

rotation. The variables min angle and max angle indicate the

range in which the background rotation will be set randomly

during the generation database generation. The vector

Background scale allows to modify the background image

proportion.

Finally, it is possible to modify separately the backgrounds

light intensity and the light intensity received by scene objects.

This gives to the user the possibility to perform fine tuning to

obtain the most realistic light environment. The Objects

intensity is useful to create a match between the light

generated by the background and the light received by the

object. The Background intensity can be used to create various

light environment conditions. Figure 4 shows different Object

intensity values using a fixed Background intensity. Figure 5

shows different Background intensity values using for each a

relatively adapted Objet intensity.

Figure 4. Different object intensities (OI) with a fixed

background intensity (BI)

Figure 5. Different background intensities (BI) with adapted

object intensity (OI)

Maron et al. 336

1) Camera properties

The block Camera Properties controls the depth acquisition

and the camera positions/rotations. Two depth acquisition

methods are available. The first method is called Front-Axis.

It acquires the depth for each camera pixel by calculating the

distance between the scene 3D points seen by the camera and

their projection on the camera plane. The Figure 6 depicts the

method schema and the Figure 7 corresponds to its application

in Blender.

Figure 6 Depth acquisition scheme using the front-axis

method

Figure 7. Depth acquisition using the camera front-axis

The second method is called Norm. It acquires the depth for

each camera pixel by calculating the distance between the

scene 3D points and the intersection with the camera plane.

Figure 8 depicts the method schema and the Figure 9

corresponds to its application in Blender.

Figure 8 Depth acquisition scheme using the norm method

Figure 9. Depth acquisition using the norm between objects

and the camera

It is also possible to define the depth acquisition range. A

resolution indication is given in meters to help the user to

select an acquisition range that suits his constraints.

For the camera position and rotation control, different

options are available depending on the generation type chosen

in the General parameters block. In case the user chooses

Random as generation type, it is possible to define for the

three scene axes X, Y, Z, a position and rotation range as

depicted in Figure 10 (X and Y correspond to scene horizontal

plane and the Z axis is the vertical axis). Regarding the

rotation, it is also possible to choose to track an object present

in the scene. The object tracking allows to make sure that the

tracked object is always in the image center. The buttons Copy

Camera Pos and Copy Camera Rot are used to copy

respectively the current camera position and rotation to the

min and max vector under it.

Figure 10. Camera properties GUI when the generation type

chosen is Random

If the user chooses Animation as generation type, the

database generation will be done using the animation system

present in Blender. The camera can be animated in different

ways. The first way is to define several key frames that will be

used to define the camera position and/or rotation at key

animation moments. Blender then interpolates between the

different key frames to calculate a trajectory passing through

the different animation key frames. The other option is to

create a trajectory that will be followed by the camera. To do

this it is necessary to create a curve typed object and model it

until the desired trajectory is obtained. Then the user can add

the curve as a target to follow via the interface present in

Figure 11 and press the button Generate Camera Animation.

This button samples the curve according to the total image

BlendGen: A Blender Add-on for General RGB-D Databases Generation 337

number in the animation so that the camera follows the curve

throughout the animation. The camera can at the same time

track an object and follow a given trajectory as depicted in

Figure 12 where the camera follows a circle shaped trajectory

and track an object positioned in the car center.

Figure 11. Camera properties GUI when the generation type

is animation

Figure 12. Camera following a circle shaped curve while

tracking a car

2) Object properties

The block Object properties controls parameters related to the

selected objects as depicted in Figure 14.

Figure 13. Object properties GUI

The first parameter is a checkbox used to define if the object is

either mobile or not. If the object is mobile and the generation

type selected is Random, it is possible to define for each scene

axis, position and rotation ranges in which the object will be

positioned randomly. If the generation type selected is

Animation, this enables to use the Blender animation system.

Therefore, it becomes possible to animate objects using

key-frames. This enables to create complexes scenes and

scenarios. Then a label value can be associated to the selected

object. The button Set Labels To Objects sets a label value to

every object in the scene starting by the value 1 up to the

objects number. Finally, it is possible to select the object

visibility during the different rendering types (RGB, depth or

label).

Figure 14. Object properties GUI

C. BlendGen general Workflow

The general BlendGen database generation workflow consists

in 7 steps. The workflow is depicted in Figure 15. The first

step is the creation or acquisition assets such as 3D models,

textures or 360° environment images. The second step is the

database parameters set-up which is done in the block

General properties. The third step is the background

environment set-up using either a 360° background image or

using 3D models to create a background environment. The

fourth step consists in positioning the mains assets into the

scene by either using the animation system or using random

ranges and setting up their label values. The fifth step is the

camera positioning using either the animation system or using

random ranges. The sixth step consists in adjusting the light

environment by either modifying background parameters in

the block Background properties if a 360° background image

is used or by adding light objects if the background

environment is 3D models composed. The last step is the

database generation once all the previous steps are done.

Maron et al. 338

Figure 15 BlendGen database generation workflow

IV. Real BlendGen use case to generate high

resolution bus rear faces RGB-D image

database

BlendGen was used to generate a photorealistic RGB-D bus

backs image database for an industrial application requested

by Segula Technologies. The purpose of the application was

to segment different sizes of body parts ranging from parts in

the order of centimeters to meters using high resolution

RGB-D images. The application constraints required to have

few thousand RGB-D photorealistic buses backs images, with

body part labeled and high resolution (1 pixel < 1mm²). For

example, if the bus rear faces dimensions are 2.5 meters wide

and 4 meters tall, its image should have at least 2,500x4,000

pixels. Because the bus will never perfectly fit the entire

image, its image should have an even higher resolution. The

final chosen resolution was 3,600x4,800 pixels. The

application needed that some body parts were positioned with

slight shift and rotation. Finally, the application also needed a

depth resolution below the millimeter.

To generate a database as realistically as possible, a bus

model was used. An environment close to a body part

assembly site was needed. Therefore, a 360° background

garage image was used as it is an indoor environment

composed of light condition close to a body part assembly site

as depicted in Figure 16. The background label value has been

set to 0.

Figure 16 360° background image chosen to generate the bus

backend database

Then the bus rear faces body parts were added to the scene

as depicted in Figure 17. A rectangle shape without much

detail has been added to simulate the rest of the bus. When

using the Cycles rendering engine, Blender enables to set an

object as shadow catcher in the Blender Object properties.

When this option is selected, the object will display only the

shadow that is supposed to catch. To add realism a plane with

the option shadow catcher has been added under the bus to

catch shadows that the bus is supposed to create. As required

in the application constraints, some body parts have been set

with slight shift and rotation. Finally, objects label values

have been set.

Figure 17 Bus back-end 3D model positioning without

materials into the scene.

Because the 3D models procured had no materials, 3

different materials have been created from scratch using

Blender for each body part types which are glass, light and

body. The different materials are depicted in the Figure 18.

Figure 18 Bus back-end with materials.

Some textures have been generated to add diversity in the

database. These textures have been applied on the bus rear

faces using UV mapping. UV mapping is a process that

creates a 2D representation of a 3D object. The UV mapping

and its result are depicted in the Figure 19 below

.

Figure 19 UV mapping applied on the body part. a) Selected

body part. b) UV mapping result with the applied texture in

the background. c) RGB image rendering using Cycles

rendering engine.

BlendGen: A Blender Add-on for General RGB-D Databases Generation 339

The camera location ranges have been set to be between 4.5

and 5.5 meters behind the bus with a -0.5 to +0.5 meters

right/left shifting and a height between 0.8 to 1.2 meters. The

camera positioning is depicted in Figure 20. The camera

rotation has been set to track an empty time object which was

positioned in the bus back-end center. These parameters have

been set to always have the bus back-end entirely visible.

Figure 20 Camera positioning. The orange box represents the

volume in which the camera can be randomly located. The

orange axis on the bus back-end is the object tracked by the

camera.

Then the depth type has been set to Front-axis as the

application needed this depth acquisition type. The depth

range has been set between 2 meters and 8.5535 meters to get

a 0.1 millimeter depth resolution. The depth acquisition

preview is visible in the Figure 21.

Figure 21 The bus back-end depth acquisition preview

The object intensity has been lowered to 0.6 to match the

light reflected by the other vehicles in the background images.

Finally, the database has been generated giving the result in

the Figure 22 below. The database of 1000 RGB-D labeled

images have been generated using the Cycles engine with

GPU compute in less than 24 hours. The PC configuration

used to generate the database is composed of a i7-9700 CPU,

32Go RAM, Nvidia Quadro P5000 16Go GPU with windows

10 and Blender 3.1.

Figure 22. Dataset containing few bus back-ends RGB-D

images generated with BlendGen using the ray tracing render

engine named Cycles

V. Conclusion

We present BlendGen, a Blender add-on that enables photorealistic

RGB-D database generation for general and specific industrial

applications via a simple and powerful GUI. BlendGen is an
alternative to the existing database generation tools that enables

databases generation uniquely through APIs which can make the

set-up of complexes scenes less convenient. BlendGen GUI tools are
designed to make the scenes set-ups as quick and intuitive as possible

therefore enabling fast databases generation. BlendGen enables

parameters control such as image resolution, background
environment set-up using 360° images, camera positioning, depth

acquisition resolution, objects positioning and labeling. An industrial

BlendGen use case has been detailed through a high resolution

(3,600x4,800p) RGB-D bus backs database generation. This
database composed of 1,000 images have been generated using

Blender ray-tracing rendering engine in less than 24 hours using a

i7-9700 CPU, 32Go RAM and a Nvidia Quadro P5000 16Go GPU.
BlendGen was created hoping it will help the community by making

image database generation easier. BlendGen code is available on

https://gitlab.univ-st-etienne.fr/labhc/dep-isi/image/blendgen.

Acknowledgment

This work is funded by the Association Nationale de la

Recherche et de la Technologie (ANRT) under the industrial

agreement (CIFRE contract) number 2022/0190.

References

[1] N. Srisook, O. Tuntoolavest, P. Danphitsanuparn, V.

Pattana-anake, and F. J. Joseph, “Convolutional Neural

Network Based Nutrient Deficiency Classification in

Leaves of Elaeis guineensis Jacq,” Int. J. Comput. Inf.

Syst. Ind. Manag. Appl., vol. 14, pp. 19–27, 2022.

[2] M. Elleuch and M. Kherallah, “Off-line Handwritten

Arabic text recognition using convolutional DL

networks,” Int. J. Comput. Inf. Syst. Ind. Manag. Appl.,

vol. 12, pp. 104–112, 2020.

[3] B. Foundation, “blender.org - Home of the Blender

project - Free and Open 3D Creation Software,”

blender.org. https://www.blender.org/ (accessed May

22, 2023).

[4] O. Russakovsky et al., “ImageNet Large Scale Visual

Recognition Challenge,” ArXiv14090575 Cs, Jan. 2015,

Accessed: Sep. 20, 2022. [Online]. Available:

http://arxiv.org/abs/1409.0575

[5] “Cityscapes Dataset – Semantic Understanding of

Urban Street Scenes.”

https://www.cityscapes-dataset.com/ (accessed Sep. 20,

2022).

[6] T.-Y. Lin et al., “Microsoft COCO: Common Objects

in Context,” ArXiv14050312 Cs, Feb. 2015, Accessed:

Sep. 28, 2022. [Online]. Available:

http://arxiv.org/abs/1405.0312

[7] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision

meets robotics: The KITTI dataset,” Int. J. Robot. Res.,

vol. 32, no. 11, pp. 1231–1237, 2013, doi:

10.1177/0278364913491297.

[8] “PASCAL-Context Dataset.”

https://cs.stanford.edu/~roozbeh/pascal-context/#introd

uction (accessed Oct. 24, 2022).

[9] “NYU Depth V2 « Nathan Silberman.”

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.h

tml (accessed Sep. 20, 2022).

https://gitlab.univ-st-etienne.fr/labhc/dep-isi/image/blendgen

Maron et al. 340

[10] “Papers with Code - ImageNet Benchmark (Image

Classification).”

https://paperswithcode.com/sota/image-classification-o

n-imagenet (accessed Sep. 20, 2022).

[11] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D:

A RGB-D scene understanding benchmark suite,” in

2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015, pp. 567–576. doi:

10.1109/CVPR.2015.7298655.

[12] “Papers with Code - NYU Depth v2 Benchmark

(Semantic Segmentation).”

https://paperswithcode.com/sota/semantic-segmentatio

n-on-nyu-depth-v2 (accessed Sep. 20, 2022).

[13] “Papers with Code - SUN-RGBD Benchmark

(Semantic Segmentation).”

https://paperswithcode.com/sota/semantic-segmentatio

n-on-sun-rgbd (accessed Sep. 20, 2022).

[14] “Papers with Code - Cityscapes val Benchmark

(Semantic Segmentation).”

https://paperswithcode.com/sota/semantic-segmentatio

n-on-cityscapes-val (accessed Sep. 20, 2022).

[15] C. Wu et al., “MotorFactory: A Blender Add-on for

Large Dataset Generation of Small Electric Motors,”

Procedia CIRP, vol. 106, pp. 138–143, Jan. 2022, doi:

10.1016/j.procir.2022.02.168.

[16] J. McCormac, A. Handa, S. Leutenegger, and A. J.

Davison, “SceneNet RGB-D: 5M Photorealistic Images

of Synthetic Indoor Trajectories with Ground Truth.”

arXiv, 2016. doi: 10.48550/ARXIV.1612.05079.

[17] S. Borkman et al., “Unity Perception: Generate

Synthetic Data for Computer Vision,” ArXiv210704259

Cs, Jul. 2021, Accessed: Sep. 20, 2022. [Online].

Available: http://arxiv.org/abs/2107.04259

[18] W. Qiu et al., “UnrealCV: Virtual Worlds for Computer

Vision,” in Proceedings of the 25th ACM international

conference on Multimedia, New York, NY, USA, Oct.

2017, pp. 1221–1224. doi: 10.1145/3123266.3129396.

[19] M. Denninger et al., “BlenderProc,” ArXiv191101911

Cs, Oct. 2019, Accessed: Sep. 20, 2022. [Online].

Available: http://arxiv.org/abs/1911.01911

[20] C. Heindl, L. Brunner, S. Zambal, and J. Scharinger,

“BlendTorch: A Real-Time, Adaptive Domain

Randomization Library,” ArXiv201011696 Cs, Oct.

2020, Accessed: Sep. 20, 2022. [Online]. Available:

http://arxiv.org/abs/2010.11696

[21] H. Ponte, N. Ponte, and S. Crowder, “zpy: Synthetic

data for Blender.,” GitHub. Note:

https://github.com/ZumoLabs/zpy, vol. 1. 2021.

[22] K. Greff et al., “Kubric: A scalable dataset generator,”

ArXiv220303570 Cs, Mar. 2022, Accessed: Sep. 20,

2022. [Online]. Available:

http://arxiv.org/abs/2203.03570

Author Biographies

Cédric Maron graduated with an electrical engineering degree in 2021 from

Polytech Clermont-Ferrand, France. Since 2022 he is a Ph.D. student in

Computer science working at the Hubert-Curien Laboratory in Saint-Etienne,

France in collaboration with Segula Technologies. His research interests are

artificial intelligence and computer vision.

Virginie Fresse is an associate professor in the Jean Monnet University, in

Saint Etienne, France. She got her PhD degree in Electrical Engineering in

INSA Rennes in 2001 and got a post-doctorate position in the University of

Strathclyde, in Glasgow from 2001-2003. Her reserarch projects are on

embedding image processing algorithms on embedded systems containing

FPGA, DSP or embedded CPU devices put on cloud and edge infrastructure.

The integration of CNN models for videos and images is also an actual

research project with an industrial partner.

Karynn Morand is currently a Research and Development Manager in
SEGULA Technologies, Lyon. She graduated with a mechanical and

electrical engineering degree in 2001 from ECAM Lyon, France. Her area of

work includes artificial intelligence, computer vision and materials.

Hubert Konik received the Ph.D. degree in computer science from

Université Jean Monnet, in 1995. He is currently an Associate Professor with

Télécom Saint-Etienne and a member of Image Science and Computer Vision

team, Laboratoire Hubert Curien, Saint-Etienne, France. His research

interests are focused on image processing and analysis, more particularly

content aware image processing for new services and usages and eXplainable

Artificial Intelligence.

