Guillaume Phavorin

Pascal Richard

Interactions between WCET analysis and scheduling

published or not. The documents may come

Cache

Small and fast memory (compared to the main memory).

→ to bridge the gap between the processor speed and the main memory access time.

→ by storing:

data that is frequently accessed (temporal locality), data that will (or may) be accessed next (spatial locality).

Instruction vs data caches, shared cache, cache hierarchy...

When a block is accessed:

in cache: cache hit → low cost (≈ 1 to 4 clock cycles), not in cache: cache miss → high cost (≈ 8 to 32 cycles).

4/22 Guillaume Phavorin and Pascal Richard

Interactions between WCET analysis and scheduling

Cache organization

Cache: divided into cache lines of equal size:

number of contiguous bytes transferred from the main memory to the cache.

that may be grouped into sets:

direct-mapped: 1 line = 1 set a memory block can be mapped to only one line.

fully-associative: only one set containing all lines a memory block can be mapped everywhere in the cache.

set-associative: lines equally divided into several sets a memory block can be mapped only to one set BUT everywhere in it.

Replacement policy

Offline:

Belady's rule: the block whose next request is the furthest in the future is evicted. ⇒ OPTIMAL.

Online:

No optimal policy, as the access sequence is not known.

LRU: Least Recently Used.

Example with a 4-way associative cache set Interactions between WCET analysis and scheduling → by conducting cache analyses:

Classical approaches

1 for WCET: representation of cache contents to identify accesses that will be "Always Hits".

2 to bound the impact of a preemption at a given program point.

WCET w/o preemption

(1) +n • CRPD (2)
Problem: how to get n ? → very dependant on the chosen scheduling policy and the considered task system.

R i = C i + ∀j∈hp(i) R i T j •   Cj + γ i,j CRPD parameter   
hp(i) : tasks of higher priority than task τ i . γ i,j : preemption cost due to each job of a higher priority preempting task τ j executing within the worst-case response time of task τ i . All previous strategies → use of "classical" scheduling policies (RM, EDF...):

CRPD added to achieve better predictability, but scheduling decisions are independant from any cache-related parameter.

Would it not be better to take scheduling decisions to reduce CRPD?

Taking delays due to the use of caches into account in the definition of scheduling algorithms. Cache-aware scheduling:

QUESTION:

Is there a uniprocessor preemptive schedule meeting the overall deadline D for every job J i ?

⇒ the scheduling problem with cache memory is NP-hard.

 Cache size = 1, exec.(hit) = 1, exec.(miss) = 1.5, S 1 = cbabd, S 2 = ebaf .Fixed-Job Priority Scheduling (prio(J 1) > prio(J 2 Cache Miss Miss Miss Miss Miss Miss Miss Miss Miss ⇒ Fixed-Task and Fixed-Job Priority schedulers are not optimal.

 finite set of n tasks τ i (C i , D i , T i), a positive number γ representing the Cache-Related Preemption Delay incurred by τ i , 1 ≤ i ≤ n at every resume point after a preemption.Job defined by J i (C i , D i , S i):C i : WCET considering that all requested memory blocks are hits in the cache, D i : relative deadline of the job, S i : string denoting the sequence of memory blocks used during the job execution (no if-then-else structure).

		Introduction Context Contributions Conclusion Conclusion Conclusion Introduction Context Contributions Conclusion Conclusion	Problematic Problem 1: CRPD-aware scheduling Problem 2: Cache-aware scheduling Problematic Problem 1: CRPD-aware scheduling Problem 2: Cache-aware scheduling Problematic Problem 1: CRPD-aware scheduling Problem 2: Cache-aware scheduling Problematic Problematic Problem 1: CRPD-aware scheduling Problem 1: CRPD-aware scheduling Problem 2: Cache-aware scheduling Problem 2: Cache-aware scheduling
	CRPD-aware scheduling Cache-aware scheduling τ 1 (1, 3), τ 2 (7, 12), CRPD: γ = 0.5. Simplified scheduling with CRPD problem: Scheduling with information about cache state and block reuse by Fixed-Job Priority Scheduling: INSTANCE: the different tasks.
	Scheduling decisions taken based on preemption costs → to τ 1 eg: tasks using the same data or a common external library.
	minimize the general overhead. τ 2	time
		0 1 2 3 4 5 6 7 8 9 10 11 12
	QUESTION: ⇒ Fixed-Task and Fixed-Job Priority schedulers are not optimal. Is there a uniprocessor preemptive schedule meeting the
	CRPD-aware scheduling: deadlines?
	Hypotheses:	τ 1
	τ 2 a single cache line,	time
	0 1 2 3 4 5 6 7 8 9 10 11 12 hit cost = 0, miss cost = BRT (Block Reload Time),
	job preemption → only before requesting the next block,
	synchronous jobs.	15/22 16/22 18/22
	Guillaume Phavorin and Pascal Richard Guillaume Phavorin and Pascal Richard Guillaume Phavorin and Pascal Richard	Interactions between WCET analysis and scheduling Interactions between WCET analysis and scheduling Interactions between WCET analysis and scheduling

Task defined by τ i (C i , D i , T i , γ) C i : WCET without preemption cost estimated when τ i is executed fully non preemptively, γ: CRPD for one preemption → the same for all program points and all tasks. a

 finite alphabet Σ → representing all accessed blocks, a finite set of n jobs J i (C i , D, S i) with a common deadline D,

				Problematic		
				Problem 1: CRPD-aware scheduling
		Conclusion	Problem 2: Cache-aware scheduling
	Simplified scheduling with cache memory problem:
	INSTANCE:					
	J1	c	b	a	b	d
	J2	e	b	a		f
	Cache Miss Miss Miss Hit Miss Hit Miss Miss Miss
		0 1 2 3 4 5 6 7 8 9 10 11 12 13
						19/22
	Guillaume Phavorin and Pascal Richard	Interactions between WCET analysis and scheduling

a

Magic WCET: Approach 1

Easiest way to incorporate preemption delays into the WCET: every access → considered to be a cache miss (as if the cache was disabled) But very pessimistic, and cache benefits are not taking any more into account.