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AN ALGEBRAIC POINT OF VIEW ON THE GENERATION OF
PAIRING-FRIENDLY CURVES

JEAN GASNIER AND AURORE GUILLEVIC

Abstract. In 2010, Freeman, Scott, and Teske published a well-known taxon-
omy compiling the best known families of pairing-friendly elliptic curves. Since
then, the research effort mostly shifted from the generation of pairing-friendly
curves to the improvement of algorithms or the assessment of security parame-
ters to resist the latest attacks on the discrete logarithm problem. Consequently,
very few new families were discovered. However, the need of pairing-friendly
curves of prime order in some new applications such as SNARKs has reignited
the interest in the generation of pairing-friendly curves, with hope of finding
families similar to the one discovered by Barreto and Naehrig.

Building on the work of Kachisa, Schaefer, and Scott, we show that some
particular elements of quadratic extensions of a cyclotomic field generate
families of pairing-friendly curves with small parameters. By exhaustive search
among these elements, we discovered new families of curves of embedding
degree k = 20, k = 22 and k = 28. We provide an open-source SageMath
implementation of our technique. We obtain curves of cryptographic size from
our new families and we give a proof-of-concept SageMath implementation of a
pairing on some new curves.
Keywords: Elliptic Curves, Pairing-based Cryptography
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1. Overview about finding pairing-friendly curves

In cryptography, proof systems based on the hardness of the discrete logarithm
problem need the construction of secure groups, with an efficiently computable
bilinear map [3, 17]. As preferred instantiation, elliptic curves over finite fields play
a crucial role. In particular cases, they come with an efficient pairing, obtained
as a variant of the Tate or Weil pairing. Such appropriate curves with an efficient
map are called pairing-friendly. They are known to be rare and should be designed
on purpose. With the recent development of new proof systems in the trend of
SNARK (Succinct Non-interactive ARgument of Knowledge), came back the need
for dedicated pairing-friendly curves, designed specifically. We recall briefly the
area of pairing-friendly constructions since 2000. To lighten this presentation, we
refer to the references in [14]. In the 2000s, as pairings started to be used to design
protocols, supersingular curves were used (the trace of the Frobenius is zero modulo
the characteristic). Because supersingular curves are not very efficient, there was
a series of contributions to design ordinary curves. Barreto, Lynn and Scott and
independently Brezing and Weng expressed the curve parameters as polynomials
in one integer variable. There were many contributions of curve families in the
2000s. Barreto and Naehrig in 2005 discovered one of the rare prime-order families,
of embedding degree 12 and discriminant 3. Kachisa, Schaefer, and Scott in 2008
published a technique to obtain interesting families and obtained the well-known
KSS16 and KSS18 that fill the gap of BLS at embedding degrees k = 16 and k = 18.
Freeman, Scott and Teske published their taxonomy of pairing-friendly curves and
filled many other gaps of BLS [14].

In this work, we obtain a generalization of and a mathematical perspective on
the work of Kachisa, Schaefer, and Scott [22]. We obtained new parameterized
pairing-friendly curves, with a proportionally larger prime factor of the group order.
Some of our new constructions are already implemented, in [23, 1].

In Section 2, we recall some background on the generation of pairing-friendly
curves, and fix some notations.

We then present, in Section 3, the subfield method, a new method for generating
families of pairing-friendly curves by exhaustive search over some algebraic numbers.
We introduce explicit sets of algebraic numbers producing potential families of curves
with a small ρ-value.

Methods of generation of family of curves based on exhaustive search require
being able to check at which integers a polynomial P in Q[X] takes integer values.
They also require being able to check if the integer values of P have a common
prime divisor. Both problems reduce to solving

P (x) ≡ 0 mod pn

for some prime power pn, where x is an integer variable. In Section 4, we present a
general algorithm to solve such polynomial equations.

In Section 5, we present new families with embedding degrees k = 20, k = 22
and k = 28 we think have a cryptographic interest. Following the publication of a
preprint of this work, the algorithmic properties of our k = 20 and k = 28 curves
with j = 1728 were studied in [1] and k = 22 with D = 7, k = 28 with D = 11 in
[23]. We keep this section condensed to avoid overlapping the subsequent works.

2. Notations and technical background

In this work, we consider ordinary elliptic curves E defined over a prime field Fq

of large characteristic (this implies q ≥ 5), given by an equation in short Weierstrass
form y2 = x3 + ax+ b. Let t be the trace of the Frobenius map (x, y) 7→ (xq, yq).
Write t2 − 4q = −Dy2 where D is squarefree. Since E is ordinary, one has that
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End(E) is isomorphic to an order of Q(
√
−D). We call D the discriminant of E

(see Remark 3). The curve order over Fq is |E(Fq)| = q + 1− t. For cryptography,
one desires this order to be a large prime number, or to have a large prime factor
denoted r (say, of 256 bits to resist to a Discrete Logarithm (DL) computation),
with a tiny cofactor h. We also ask that r be coprime to q.

2.1. Torsion subgroup, embedding degree, and pairing. Recall that one has
the following group isomorphism

E[r] ≃ Z/rZ× Z/rZ.
Consider the extension field Fqk such that E[r] ⊂ E(Fqk) and k is minimal. The
degree k is named the embedding degree. Note that k is also the minimal degree
such that µr(Fqk) has order r, where µr denotes the group of r-th roots of unity.
As we asked that h, the cofactor of r in the curve order, be small, we may assume
r ∤ h, which forces k > 1. Define G1 the subgroup of order r of E(Fq), that is

G1 = E[r] ∩ ker(πq − Id) = E(Fq)[r]

and G2 the trace-zero subgroup of order r of E(Fqk), that is

G2 = E[r] ∩ ker(πq − [q]).

In this way, G1 ∩ G2 = {O}. Finally, GT = µr(Fqk) is the group of r-th roots of
unity in F∗

qk . The optimal ate pairing is a bilinear map e : G1×G2 → GT that maps
pairs of points on the curve to a finite field extension.

For a randomly selected curve E, the embedding degree is usually very large,
k ∼ r which makes it impractical. To obtain an efficiently computable pairing, one
requires k to be very small, in practice k ≤ 54 (the Taxonomy of Freeman, Scott and
Teske considers 1 ≤ k ≤ 50). We call curves meeting this condition pairing-friendly.

2.2. Measuring the gap to optimal curves. One desires an elliptic curve E of
prime order r over a base field, with a small embedding degree k. A parameter ρ
was introduced to measure the gap to primality, that is the ratio of the subgroup r
compared to the full curve order, of same magnitude as q:

(2.1) ρ =
log q

log r
where r · h = #E(Fq) = q + 1− t and r is prime.

The ρ-value is closer to 1 when the cofactor h is smaller. Curves with a ρ-value
of 1 are notoriously hard to find: the only known curves that have a prime order
are the MNT curves with k ∈ {3, 4, 6}, the Freeman curves with k = 10, and
the Barreto–Naehrig curves with k = 12. The generic Cocks–Pinch method (see
subsection 2.3), usually produces pairing-friendly curves with ρ ≈ 2. Hence, one is
interested in finding methods able to produce curves with 1 ≤ ρ < 2.

2.3. The Cocks–Pinch method. Given k as input, the Cocks–Pinch method
generates a pairing-friendly curve with embedding degree k. Two relations between
elliptic curve parameters are involved. First, the curve order is such that

(2.2) r | q + 1− t ⇐⇒ t− 1 ≡ q mod r .

The second equation (2.3) combines the CM equation t2 − 4q = −Dy2 to (2.2) with
the definition of k (the smallest integer such that r | qk − 1):

(2.3) r | Φk(t− 1) ⇐⇒ t− 1 ≡ ζk mod r ,

where ζk is a primitive k-th root of unity modulo r.
We briefly sketch the Cocks–Pinch idea to generate a pairing-friendly curve of

given embedding degree k. Choose a small discriminant D > 0 and a prime integer r
such that −D is a square modulo r and r ≡ 1 mod k, so that there exists a primitive
k-th root of unity ζk modulo r. Set
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• t ∈ Z such that t = ζk + 1 mod r,
• y ∈ Z such that y = (t− 2)/

√
−D mod r,

• q = (t2 +Dy2)/4.
If q /∈ Z or q is not prime, restart with a new r or D. Otherwise, applying the CM
method with q as finite field order and t as trace produces a curve with a subgroup
of r rational points with embedding degree k.

2.4. Previous work on polynomial families. Brezing and Weng [5] obtained a
method to generate families of curves by replacing the integer parameters q, r, t, y, h
of the Cocks–Pinch method by polynomials Q,R, T, Y,H in Q[X], required to
satisfy some relations (see Definition 2). To obtain a curve from a family given by
(Q,R, T, Y,H), one needs an integer seed x ∈ Z such that Q(x) = q, R(x) = r are
prime integers, and T (x) = t, Y (x) = y,H(x) = h are integers.

Dupont, Enge and Morain define R(X) as a resultant of two equations [11].
Barreto, Lynn and Scott [2] choose to parameterize R(X) as a cyclotomic polynomial,
R(X) = Φk(X), for 3 | k, producing curves with D = 3. Their original paper can
be reinterpreted as follows: set

T (X) = X + 1,

and set
S(X) = 2Xk/3 + 1 if k ≡ 3 mod 6,

or
S(X) = 2Xk/6 − 1 if k ≡ 0 mod 6.

One has S2(X) + 3 = 0 mod R(X). Then

Y (X) = (X − 1)S(X)/3,

and
Q(X) = (T 2(X) + 3Y 2(X))/4.

The final polynomial Q(X) is never irreducible for 18 | k.

Example 1. A classical example happens with embedding degree k = 12, producing
the BLS12 family of pairing-friendly curves:

• R(X) = X4 −X2 + 1,
• T (X) = X + 1,
• S(X) = 2X2 − 1,
• Y (X) = (X − 1)(2X2 − 1)/3,
• Q(X) = (X6 − 2X5 + 2X3 +X + 1)/3.

2.5. Using number fields to produce families. Here we give the prerequisites
necessary to present the KSS method and our new method in Section 3.

Definition 1. We say that a polynomial P ∈ Q[X] represents primes if the following
conditions are satisfied:

(1) P is non-constant.
(2) P has positive leading coefficient.
(3) P is irreducible.
(4) P (x) ∈ Z for some x ∈ Z, (which implies that it happens for an infinite

number of x ∈ Z).
(5) gcd({P (x) | x, P (x) ∈ Z}) = 1.

Remark 1. Definition 1 is motivated by the Buniakowski-Schinzel conjecture, which
states that these conditions are sufficient for a rational polynomial to take an infinite
number of prime values.
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Let k ≥ 1 be a positive integer, let D be a positive squarefree integer and let
Q be an algebraic closure of Q. Let ζk ∈ Q be a primitive k-th root of unity. As
in [14], we use two levels of satisfiability for a set of polynomials (Q,R, T, Y,H), a
first level where the polynomials satisfy some relations, and a second level where in
addition, they take integer values and the relevant ones generate primes.

Definition 2. Let Q, R, T , Y and H be polynomials in Q[X]. We say that
(Q,R, T, Y,H) parameterizes a potential family of pairing-friendly curves (with
embedding degree k and discriminant D) if:

(1) R is non-constant, irreducible and has positive leading coefficient.
(2) HR = Q+ 1− T .
(3) R divides Φk(T − 1), with Φk the k-th cyclotomic polynomial.
(4) DY 2 = 4Q− T 2.

We say that (Q,R, T, Y,H) parameterizes a family of pairing-friendly curves (with
embedding degree k and discriminant D) if it is a potential family of pairing-friendly
curves and:

(5) Q represents primes.
(6) There exists x ∈ Z such that Q(x), R(x), T (x), Y (x), H(x) all are integers.

Remark 2. In the following, we will only consider (potential) families parameterized
by polynomials. For the sake of simplicity, we will identify the (potential) families
with the polynomials that parameterize them.

Remark 3. Our convention for the definition of the discriminant D of an elliptic curve
E is the standard convention in the literature on the generation of pairing-friendly
curves. It is related to the more traditional convention D′, which is the discriminant
of the fraction field of the endomorphism ring of E. One has that −D′/D is a
positive square in Z (either 1 or 4).

Remark 4. Note that conditions 1 to 4 imply that

(4’) DY 2 = 4Q− T 2 = 4Q− 4T + 4− (T − 2)2 ≡ −(T − 2)2 mod R.

Definition 3. Let (Q,R, T, Y,H) be a potential family of pairing-friendly curves.
We define its ρ-value to be

ρ =
degQ

degR
.

We need the following lemma to introduce the standard method for producing
families of curves.

Lemma 1. Let K be a number field and let θ be a primitive element in K, i.e.
K = Q(θ). Let ζ be an element of K. Then there exists a unique polynomial T in
Q[X] with minimal degree such that:

T (θ) = ζ .

We call it the canonical rational polynomial mapping θ to ζ.

Proof. Let R be the minimal polynomial of θ. We get a canonical isomorphism

Q[X]/⟨R⟩ −→ K
P mod R 7−→ P (θ)

Let P ∈ Q[X] such that P (θ) = ζ. Then T is the remainder of the Euclidean
division of P by R. □

Let K ⊂ Q be a number field containing Ck the k-th cyclotomic field and Q(
√
−D).

Proposition 1 summarizes the methods of Brezing–Weng and Kachisa–Schaefer–Scott
for producing (potential) families of curves.
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Proposition 1. Let θ ∈ K be a primitive element in K. We associate a potential
family to the pair (θ, ζk) by letting

• R be the minimal polynomial of θ.
• T be the canonical rational polynomial mapping θ to ζk + 1 (condition 3).
• Y be the canonical rational polynomial mapping θ to (ζk−1)/

√
−D(condition 4’).

• Q = (T 2 +DY 2)/4 (condition 4).
• H be the unique polynomial such that RH = Q+ 1− T .

We denote the ρ-value of this potential family by ρ(θ, ζk). In particular, one has

ρ(θ, ζk) < 2.

Definition 4. Let S be a set of primitive elements in K. We define

ρ(S, ζk) = max
θ∈S

ρ(θ, ζk) .

Remark 5. If one can show that ρ(S, ζk) is significantly smaller than 2, doing an
exhaustive search over the elements of S is likely to produce a family with a small
ρ-value.

3. The subfield method

The KSS method aims at generating families of pairing-friendly curves where R is
not a cyclotomic polynomial, to fill the gaps left by BLS families (see Section 2.4) and
other cyclotomic families. First, Kachisa, Schaefer, and Scott make the observation
that any monic irreducible polynomial with rational coefficients must be the minimal
polynomial of an algebraic number θ. As a consequence of Definition 2 one only needs
to look for algebraic numbers θ defining number fields Q(θ) containing a primitive
k-th root of unity and some

√
−D, where k and D are the desired embedding degree

and discriminant.
Yet, most of these algebraic numbers define potential families which are of little

interest to us as their ρ-value is too large. One of the main components of the
KSS method is to define a set of algebraic numbers that empirically contains a
relatively large proportion of algebraic numbers defining (potential) families with
a small ρ-value. We recall their construction. Assume D = 1, resp. D = 3. Let
ℓ = lcm(4, k), resp. ℓ = lcm(3, k), and let Cℓ be the ℓ-th cyclotomic field in Q. The
degree of the extension is [Cℓ : Q] = φ(ℓ), where φ is the Euler totient function. Let
ζℓ be a primitive ℓ-th root of unity in Cℓ. Let B1 and B2 be two integers and let
KSS(B1, B2) be the set of primitive elements of Cℓ of the form

P (ζℓ) =

φ(ℓ)−1∑
i=0

Piζ
i
ℓ ,

where
• P ∈ Q[X] has at most B1 non-zero coefficients.
• ∀i ∈ [0, φ(ℓ)− 1],max(num(|Pi|), denom(|Pi|)) ≤ B2.

The families found by Kachisa, Schaefer and Scott were generated by exhaustive
search over the algebraic integers in KSS(2, 3).

Typically, one gets ρ(KSS(B1, B2), ζk) ≈ 2. In fact, usually most elements in
KSS(B1, B2) do not generate potential families with a small ρ value. In subsec-
tion 3.1, we exhibit sets of algebraic numbers with a proven bound on the ρ-value
of the potential families they generate. Theorem 1 is the main result, giving the
general formula for the bound on the ρ-value. We give more explicit bounds in
Theorem 2. In subsection 3.2, we discuss the interest of the method.

https://orcid.org/0009-0006-7292-1337
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3.1. The method. Let k ≥ 1 be an integer, let D be a squarefree positive integer,
and let Q be an algebraic closure of Q. Let F = Q(

√
−D) ⊂ Q and let K = FCk ⊂ Q.

One can see K as an F -vector space. Let Fζk be the F -vector line in K spanned
by ζk.

Fζk = {αζk;α ∈ F} = {(a+ b
√
−D)ζk; a, b ∈ Q}.

Let θ ∈ Fζk, and assume θ is a primitive element in K (over Q). Let R be the
minimal polynomial of θ (over Q). Set

α = θ/ζk ∈ F.

Let e be the minimal divisor of k such that ζek ∈ F . Assume that θe ∈ F is a
primitive element in F . Note that this assumption is not very restrictive.

Since α,
√
−D ∈ F , there exist P1, P2 and P3, three rational polynomials of

degree at most 1 such that:

P1(θ
e) = 1/α,

P2(θ
e) = 1/(α

√
−D),

P3(θ
e) = 1/

√
−D.

Then one has
P1(θ

e)θ + 1 = θ/α+ 1 = ζk + 1

and
P2(θ

e)θ − P3(θ
e) = ζk/

√
−D − 1/

√
−D = (ζk − 1)/

√
−D .

Let T be the canonical rational polynomial mapping θ to ζk + 1, and let Y be the
canonical rational polynomial mapping θ to (ζk−1)/

√
−D. Then T is the remainder

of the Euclidean division of P1(X
e)X + 1 by R. As such, one has

deg T ≤ deg(P1(X
e)X + 1) ≤ e+ 1 .

Similarly, one has deg(Y ) ≤ deg(P2(X
e)X − P3(X

e)) ≤ e+ 1. Consequently

max(deg(T ),deg(Y )) ≤ e+ 1 .

Let Q = (T 2 +DY 2)/4, then

deg(Q) ≤ 2e+ 2 .

Thus, since degR = [K : Q], one has

ρ(θ, ζk) ≤
2e+ 2

[K : Q]
.

Moreover, if 2e+2
[K:Q] < 2, i.e. if e+ 1 < degR, one has

T = P1(X
e)X + 1 and Y = P2(X

e)X − P3(X
e)

by definition of remainder of a Euclidean division of polynomials. Now, since α and
α
√
−D can not be rationals simultaneously, then at least one of P1 or P2 must have

degree 1. Then at least one of T or Y must have degree e+ 1. Thus, in this case we
have an equality

ρ(θ, ζk) =
2e+ 2

[K : Q]
.

Theorem 1. With the notation of the beginning of subsection 3.1, let

S = {θ ∈ Fζk primitive in K | θe is primitive in F}.

Then
ρ(S, ζk) ≤

2e+ 2

[K : Q]
.
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Moreover, if 2e+2
[K:Q] < 2, then

ρ(S, ζk) =
2e+ 2

[K : Q]
.

Remark 6. Note that the construction can be generalized very simply to the case
where F is an extension of Q(

√
−D). Then P1,P2,P3 have degree at most [F : Q]−1

and the bound on the ρ-value becomes:

ρ(S, ζk) ≤
2e([F : Q]− 1) + 2

[K : Q]
.

We studied the cases where F is not quadratic as well, and found that the method
produced potential families with a larger ρ-value (but smaller than 2 in some cases).

We now give more explicit bounds on ρ(S, ζk).

Theorem 2. With the notation of Theorem 1:
(1) Assume that k is a multiple of 6 and D = 3. Then e = k/6 and

ρ(S, ζk) ≤
(k/3 + 2)

φ(k)
.

(2) Assume that k is a multiple of 4 and D = 1. Then e = k/4 and

ρ(S, ζk) ≤
(k/2 + 2)

φ(k)
.

(3) Assume that k is an odd multiple of 3 and D = 3. Then e = k/3 and

ρ(S, ζk) ≤
(2k/3 + 2)

φ(k)
.

(4) Assume that k is even and
√
−D /∈ Ck. Then e = k/2 and

ρ(S, ζk) ≤
(k/2 + 1)

φ(k)
.

(5) Assume that k is odd and
√
−D /∈ Ck. Then e = k and

ρ(S, ζk) ≤
(k + 1)

φ(k)
.

Proof. We only prove case 4 as an example. Assume that k is even and
√
−D /∈ Ck.

Then [K : Q] = 2φ(k) as K is a quadratic extension of Ck. Now we prove e = k/2.
Since

√
−D /∈ Ck, then ζek is not primitive in F (otherwise F ⊂ Ck), and F is

quadratic so ζek is rational. Then ζek ∈ {1,−1}, because ζek is a root of unity. Since
k is even, e = k/2 and ζek = −1. Thus,

ρ(S, ζk) ≤
2e+ 2

[K : Q]
=

k + 2

2φ(k)
=

k/2 + 1

φ(k)
.

□

We refer to the method of generation of families via exhaustive search over the
algebraic integers of S as the subfield method. Note that considering only algebraic
integers is not very restrictive, as one can obtain remaining potential families by
applying an affine substitution (over Q).

Example 2. Let k = 22 and D = 7. Fix an algebraic closure of Q. Let F = Q(
√
−7).

Let K = FC22. Let ζ22 be a primitive 22-th root of unity, and let ω = 1+
√
−7

2 . In
particular, we have K = Q(ω, ζ22). Let α = 1 + ω and θ = αζ22. We have ζ1122 ∈ F ,
and θ11 /∈ Q. Therefore, Q(θ11) = F , and θ ∈ S.

We obtain using our Sagemath implementation [27, 16]:

https://orcid.org/0009-0006-7292-1337
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• T = (X12 + 45X + 46)/46

• Y = (X12 − 4X11 − 47X − 134)/322

• R = (X20 −X19 −X18 + 3X17 −X16 − 5X15 + 7X14 + 3X13 − 17X12 +
11X11+23X10+22X9−68X8+24X7+112X6−160X5−64X4+384X3−
256X2 − 512X + 1024)/23

• Q = (X24 −X23 + 2X22 + 67X13 + 94X12 + 134X11 + 2048X2 + 5197X +
4096)/7406

Therefore, the potential family generated by θ has ρ-value ρ = 6/5. In fact, one can
check that this is a family. Note that R is not monic, because we wanted to make R
represent primes. In fact, this family has a smaller ρ-value than the previous record
family for the embedding degree k = 22 (the previous record was ρ = 13/10). We
obtain seeds in Section 5.2.

Remark 7. Note that when D = 1 or D = 3 and for some values of k, every element
in S is an element in KSS(2, B) for B sufficiently large. More precisely, take
ℓ = lcm(k, 4)) if D = 1 or ℓ = lcm(k, 3) if D = 3. Let ζℓ be a ℓ-th root of unity in Cℓ.
Then ζk := ζ

ℓ/k
ℓ is a primitive k-th root of unity. Moreover, there exists d ∈ {3, 4, 6}

maximal such that ζd := ζ
ℓ/d
ℓ ∈ F is a non-rational root of unity in F = Q(

√
−D).

Then for any θ ∈ S, there exists two rationals a and b such that

θ = (aζd + b)ζk = (aζ
ℓ/d
ℓ + b)ζ

ℓ/k
ℓ .

If ℓ/d + ℓ/k < φ(ℓ) then θ ∈ ∪B>0 KSS(2, B). In particular, one can check that
the inequality holds when k ∈ {16, 18, 22, 32, 36, 40, 46}. Moreover, it so happens
that the families introduced by Kachisa et al. come from elements in such an S.
Therefore, we can see the subfield method as a refinement of the enumeration method
of Kachisa et al. in these cases. This also means that when D ∈ {1, 3} one can
produce any family generated with the subfield method using the KSS method, at
the expense of a longer exhaustive search. However, when D /∈ {1, 3}, the subfield
method is a strict generalization of the work of Kachisa et al.

3.2. Discussion on the interest of the method. The interest of the subfield
method relies on being able to satisfy the following conditions:

(1) the method produces potential families with a smaller ρ-value than the
reference values from the first column of [14, Table 8.2].

(2) the method produces families (i.e. not only potential families).
(3) the method produces families which themselves produce pairing-friendly

curves of an appropriate size.
The idea behind condition 3 is that, in practice, we need to find an integer x such
that the polynomial Q(x) is a prime integer and such that R(x) is (almost) a prime
integer of a given size (related to the desired level of security). It may happen that
such an integer x does not exist (the first primes Q(x) and R(x) are too large).
For a given embedding degree k, the main obstacle to the existence of such an
x is the denominator ∆ of Q (i.e. the smallest positive integer such that ∆Q is
integer-valued). The subfield method, like the KSS method, can produce families
where ∆ is quite large. Yet, we will present in Section 5 new families suitable for
the 192-bit security level, for which all the conditions are satisfied.

The ρ-values of the (actual) families we found with the new method were at least
as small as the ρ-values in [14, Table 8.2] for every embedding degree k ∤ 12. In
Table 1, we compiled the cases where the ρ-value is improved. The ρ-value is in bold
when it is an improvement over [14, Table 8.2], and a cell is green if we were able to
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find a family among the potential families we computed. We think the family for
k = 22 has a cryptographic interest (when the base field Fq should have minimal
size), and give more details in Section 5. Our new families with k = 20 improve over
Construction 6.4 [14]: the ρ-value is unchanged but our Q(X) is not affected with
the refined SNFS attack of [18], as we explain in Section 5.1.1.

k ρ,D = 1 ρ,D = 3 ρ,
√
−D /∈ Ck ρ, Previous method

16 1.250 1.125 1.125 1.250, [14, 6.11]
22 1.200 1.200 1.200 1.300, [14, 6.3]
28 1.333 1.250 1.250 1.333, [14, 6.4]
40 1.375 1.3125 1.3125 1.375, [14, 6.11]
46 1.091 1.091 1.091 1.136, [14, 6.3]

Table 1. Comparison of the ρ-values of potential families generated
by the subfield method with the state of the art [14].

4. Algorithms for computing integer roots modulo prime powers

Checking if a potential family is indeed a family requires essentially to be able
to check if a rational polynomial takes an integer value at some integer, and if a
rational polynomial represents primes. Both problems reduce to being able to solve
the following.

Let P ∈ Z[X] be an integral polynomial, p be a prime integer, and n be a positive
integer. We want to solve

(4.1) P (x) ≡ 0 mod pn

where x is an integer variable. The standard approach to this problem is to start by
solving

P (x) ≡ 0 mod p

and then lifting the solutions modulo pn. Hensel’s lemma [25] is used to lift any
simple root modulo p to a unique root modulo pn. However, the literature is quite
sparse for the degenerate case. In this section, we give a general algorithm for solving
such polynomial equations. We start by giving an appropriate way to represent the
set of solutions of Equation (4.1) in subsection 4.1. In subsection 4.2, we introduce
the µ function, which is central in the final algorithm, and explain how to compute
it. Finally, in subsection 4.3, we present Algorithm 4.1 which solves Equation (4.1).

4.1. Representing the set of solutions. We will use the following elementary
sets to describe the set of solutions of P (x) = 0 mod pn in Z.

Definition 5. Let a be an integer and let j ≥ 0 be an integer. We define

D(a, j) = {x ∈ Z | x ≡ a mod pj}

the p-congruence class of a modulo pj . It is indeed a congruence class.

The following proposition will prove useful later.

Proposition 2. Let a1, a2 be integers and let j1, j2 be two integers larger than 0
such that j1 ≤ j2. Define D(a1, j1) and D(a2, j2) as in Definition 5. Assume that

D(a1, j1) ∩D(a2, j2) ̸= ∅.

Then
D(a2, j2) ⊂ D(a1, j1).

https://orcid.org/0009-0006-7292-1337
https://orcid.org/0000-0002-0824-7273
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Proof. Let x ∈ D(a1, j1) ∩D(a2, j2) be an integer. Then

x ≡ a1 mod pj1 and x ≡ a2 mod pj2 .

Since j1 ≤ j2, one has
x ≡ a2 mod pj1 .

Thus,
a2 ≡ a1 mod pj1 and D(a2, j2) ⊂ D(a1, j1).

□

Now, let S ⊂ Z be a pn-periodic set of integers.

Definition 6. A representation by p-congruence classes of S is a collection of
p-congruence classes (D(ai, ji))i∈I such that

S = ∪i∈ID(ai, ji).

It is called finite if I is finite.

Remark 8. S always admits a finite representation by p-congruence classes. Indeed,
S is pn-periodic, which means that S is a (finite) union of classes of integers modulo
pn. More clearly,

S = ∪a∈S∩[0,pn−1]D(a, n).

We want to define a canonical finite representation by p-congruence classes of
S. A first step is to ask that the congruence classes (D(ai, ji))i∈I be disjoint,
but it is not sufficient. Let a be an integer and let j ≥ 0 be an integer. Then
D(a, j) = ∪p−1

i=0D(a+ i · pj , j + 1), and the union on the right is disjoint. It turns
out that this is the only other obstacle.

Definition 7. Let C be a p-congruence class in S. We say that C is maximal in S
if it is maximal as a p-congruence class for the inclusion.

Let a ∈ S be an integer. According to Proposition 2, S is the disjoint union of
its maximal p-congruence classes. The representation of S composed of its maximal
p-congruence classes is called the reduced representation of S.

4.2. The key quantity. Recall that we ultimately want to compute the set

(4.2) S = {x ∈ Z | P (x) ≡ 0 mod pn}.

Since S is pn-periodic, we ask to compute a reduced representation of S by p-
congruence classes. The content of this section will help us to achieve this goal in
the following subsection. Let us define

(4.3) µ(P ) = sup{j ∈ Z≥0 | ∀x ∈ Z, P (x) ≡ 0 mod pj} .

Example 3. We give two toy examples for the prime p = 2:
• let P = X2 + 3. Observe that P (0) = 3 ̸≡ 0 mod 2. Then µ(P ) = 0.
• let P = X2 −X. Since for any integer x, either x or x− 1 is even, P (x) is

even. Thus, one can check that µ(P ) = 1.

It is easily seen that S = Z if and only if µ(P ) ≥ n. More generally, one can use
the µ function to check if a p-congruence class is in S.

Proposition 3. Let n be a positive integer, let P ∈ Z[X], and let S and µ be as in
Equations (4.2) and (4.3). Let a be an integer and let j ≥ 0 be an integer. Define
D(a, j) as in Definition 5. Then

µ(P (a+ pjX)) ≥ n if and only if D(a, j) ⊂ S.
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Proof.

µ(P (a+ pjX)) ≥ n⇔ ∀b ∈ Z, P (a+ pjb) ≡ 0 mod pn

⇔ ∀x ∈ D(a, j), P (x) ≡ 0 mod pn

⇔ D(a, j) ⊂ S.

□

Therefore, being able to evaluate µ allows us to check if a p-congruence class is
in the set of solutions S. The following theorem explains how to evaluate µ.

Theorem 3. Let P ∈ Z[X] and let p be a prime integer. Let µ be the function
defined in Equation (4.3). Let a0, a1, . . . , adegP be integers such that

P =

degP∑
i=0

ai

(
X

i

)
where (

X

i

)
=

X(X − 1) . . . (X − i+ 1)

i!
.

Then
µ(P ) = min

0≤i≤degP
(valp(ai)).

Proof. It is well-known that (
(
X
i

)
)i∈Z is a Z-basis of the group of integer-valued

polynomials. Since P is integer valued, such a0, a1, . . . , adegP exists.
Let m = min

0≤i≤degP
(valp(ai)). It is clear that

µ(P ) ≥ m.

Let 0 ≤ i0 ≤ degP be the smallest integer such that

valp(ai0) = m.

Then

P (i0) =

degP∑
i=0

ai

(
i0
i

)

=

i0∑
i=0

ai

(
i0
i

)
≡ ai0

(
i0
i0

)
mod pm+1 by minimality of i0

≡ ai0 mod pm+1

̸≡ 0 mod pm+1.

Thus,
µ(P ) ≤ m.

□

4.3. Computing the roots of a polynomial modulo a prime power. We
design a recursive algorithm to compute a reduced representation of the set S of
integer solutions of

P (x) ≡ 0 mod pn.

The idea of the algorithm is actually very straightforward. One computes µ to check
if µ(P ) ≥ n. If the answer is yes, one knows that S = Z. Otherwise, we recursively
search for solutions in every congruence class modulo p using substitutions.

Before presenting Algorithm 4.1, let us recall the following lemma.

https://orcid.org/0009-0006-7292-1337
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Lemma 2. Let P ∈ Z[X], let p be a prime integer and let a be any integer. Then

P (a) ≡ 0 mod p

if and only if

p | P (a+ pX), i.e.
P (a+ pX)

p
∈ Z[X].

Proof. One can check that there exists a polynomial Q ∈ Z[X] such that

P (a+X) = P (a) +X ·Q(X).

Thus,
P (a+ pX) = P (a) + pX ·Q(pX),

and one can easily deduce the lemma. □

Algorithm 4.1 is given below. One can easily see that the algorithm finishes
because n is strictly decreasing in the tree of recursion, and is lower bounded by 0.
Correctness comes from Proposition 3 and the observation that if

P (a) ̸≡ 0 mod p

then
∀x ≡ a mod p, P (x) ̸≡ 0 mod p.

Algorithm 4.1: RootsModPrimePowers(P, p, n)
Input: P ∈ Z[X], p a prime integer, n ≥ 0 an integer

1 if µ(P ) ≥ n then
2 Return D(0, 0).
3 else
4 S ← ∅
5 for 0 ≤ a ≤ p− 1 do
6 if P (a) ≡ 0 mod p then
7 Q← P (a+ pX)/p

8 ∪i∈ID(ai, ji)← RootsModPrimePowers(Q, p, n− 1)

9 S ← ∪i∈ID(a+ p · ai, ji + 1) ∪ S

10 Return S.

Remark 9. We presented the algorithm with the goal to make it as clear as possible.
It can be improved in many ways. Firstly, rather than testing if P (a) ≡ 0 mod p
for every a mod p, one should use the Berlekamp algorithm to compute every root
of P modulo p. Secondly, one should divide P (a+ pX) by the largest power of p
possible, in order to reduce the size of the tree of recursion. Finally, one should
always seek to use Hensel’s lemma, whenever possible during the recursion. The
algorithm is implemented with all these improvements in [16].

5. Applications

This section investigates the practical aspects of our new families of curves. First,
we identify possible interesting embedding degrees and discriminants (Section 5.1).
Second, we generate seeds for these families, that produce curves of cryptographic
size (Section 5.2). Third, we sketch and estimate the cost of an optimal ate pairing
on these curves (Section 5.3). We also give G1 group operation formulas for the
curve with k = 22.

5.1. Our selected families of curves. We highlight k = 20, 28 curves with D = 1,
and k = 22, D = 7, k = 28, D = 11 curves.
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5.1.1. Better security for k = 20, k = 28 with D = 1. In [18], Guillevic identified
that the curve families whose polynomial Q(X) defining the field characteristic
has an endomorphism, are weaker with respect to the Special Number Field Sieve
algorithm to compute discrete logarithms in the field, as the endomorphism allows
selecting a better polynomial for NFS (it works also for the Tower variant TNFS). To
illustrate this, take a target embedding degree k = 20 and consider [14, Construction
6.4], having ρ = 3/2. The polynomials are

• R(X) = Φ20(X) = X8 −X6 +X4 −X2 + 1,
• T (X) = X + 1,
• H = (X − 1)2(X2 + 1)/4,
• Q = (X12 − 2X11 +X10 +X2 + 2X + 1)/4,

with an automorphism σ(X) = −1/X, so that X12Q(σ(X)) = Q(X).
From the trace Id+σ, a polynomial of degree 6 is obtained, M(X) = X6 − 2X5 +
7X4 − 10X3 + 13X2 − 10X + 4 (the minimal polynomial of α − 1/α, where α is
a root of Q(X)). M(X) allows a better parameterization of the special number
field sieve. Without going into details, a pair of polynomials (m(x), u(x)) such
that Res(m,u) = q (or a small multiple of q) is required for running the SNFS
algorithm [21]. The pair (4Q(X), X − x), with x the seed so that q = Q(x), usually
plays this role. With the automorphism, one can choose instead (M(X), xX−x2+1)
whose resultant in X is 4Q(x) = 4q. Because of this automorphism exploited in
SNFS, the field size for k = 20 should be enlarged (otherwise, only 180 bits of
security are offered for q of 574 bits, r of 384 bits). In [18, Table 10], a field size of 670
bits with a subgroup order of 448 bits corresponds to the 192-bit security level. With
our new k = 20 family of curves (having the same ρ-value 3/2), no automorphism
exists, and the trick above does not apply, so there is no need to take a larger field
size. We can consider the minimal size such that r is about 384-bit long, and q
about 576 bits. The same observation applies to k = 28: σ(X) = −1/X acts on
Q(X) = (X16− 2X15+X14+X2+2X +1)/4 of Construction 6.4, and the minimal
polynomial of α−1/α is M(X) = X8−2X7+9X6−14X5+26X4−28X3+25X2−
14X + 4. The pair (M(X), xX − x2 + 1) can be chosen to parameterize SNFS,
obtaining a better estimated running-time. Our k = 28, D = 1 family of curves
(Example 6) does not have this weakness. That is why later, Aranha, Fotiadis and
Guillevic take our new k = 20 and k = 28 curves with D = 1 [1] instead of the
Freeman-Scott-Teske 6.4 construction. We summarize the polynomials of the two
families in Examples 4 and 5. To further optimize the arithmetic operations on
the curves with k = 20, we would like to enforce q ≡ 1 mod 5 so as to define the
extension Fq5 with a binomial, for a faster Frobenius map in Fq20 . In other words,
we add the condition (Q(X)− 1)/5 generates integers. We obtain the following two
families that we call GG20a and GG20b.

Example 4 (GG20a). Let k = 20, k is a multiple of 4, let D = 1 and F = C4. Let
θ = (1− 2ζ4)ζk. Then

• T = (2X6 + 117X + 205)/205
• Y = (X6 − 5X5 − 44X − 190)/205
• H = 125(X2 − 2X + 5)(X2 − 4X + 5)/164
• R = (X8+4X7+11X6+24X5+41X4+120X3+275X2+500X+625)/25625
• Q = (X12 − 2X11 + 5X10 + 76X7 + 176X6 + 380X5 + 3125X2 + 12938X +
15625)/33620

is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/2. With x ≡
69, 75, 79, 135, 175, 239, 299, 315, 325, 339 mod 410, the first conditions of Definition 2
are met (all parameters take integer values). Furthermore with x = 1715, 1815 mod
2050, Q and R generate primes, and q = Q(x) ≡ 1 mod 5.

https://orcid.org/0009-0006-7292-1337
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Example 5 (GG20b). Let k = 20, k is a multiple of 4, let D = 1 and F = C4. Let
θ = (1 + 2ζ4)ζk. Then

• T = (−2X6 + 117X + 205)/205
• Y = (X6 − 5X5 + 44X + 190)/205
• H = 125(X2 − 2X + 5)(X2 + 4X + 5)/164
• R = (X8−4X7+11X6−24X5+41X4−120X3+275X2−500X+625)/25625
• Q = (X12 − 2X11 + 5X10 − 76X7 − 176X6 − 380X5 + 3125X2 + 12938X +
15625)/33620

is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/2. With x ≡
71, 85, 95, 111, 171, 235, 275, 331, 335, 341 mod 410, the first conditions of Definition 2
are met. Furthermore with x ≡ 1465, 1565 mod 2050, Q and R generate primes, and
q = Q(x) ≡ 1 mod 5.

For completeness, we also mention k = 28, D = 1.

Example 6 (GG28). Let k = 28 a multiple of 4, D = 1 and F = C4. Let θ =
(1 + 2ζ4)ζk. Then

• T = (−2X8 − 527X + 145)/145
• Y = (X8 − 5X7 + 336X − 1390)/145
• H = (X2 − 2X + 5)(X2 − 4X + 5)/580
• R = (X12 + 4X11 + 11X10 + 24X9 + 41X8 + 44X7 − 29X6 + 220X5 +
1025X4 + 3000X3 + 6875X2 + 12500X + 15625)/29
• Q = (X16−2X15+5X14+556X9−1344X8+2780X7+78125X2−217382X+
390625)/16820

is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/4. With
x ≡ 309, 449, 1759, 1899 mod 2030, the conditions of Definition 2 are met, Q and R
generate primes, and q = Q(x) ≡ 1 mod 7. (The family obtained with θ = (1−2ζ4)ζk
does not have q ≡ 1 mod 7).

5.1.2. Smallest ρ-values for k = 22, k = 28. We already presented our family with
k = 22, D = 7 in Example 2. The seed should satisfy x ≡ 32, 151 mod 161 for Q,R
to generate primes. For x ≡ 4, 18, 25, 39, 81, 95, 116, 123, 144 mod 161, Q and R/23
generate primes.

Here is our family with smallest ρ-value at k = 28. We obtain manageable
denominators with D = 11 (Example 7).

Example 7. Let k = 28, D = 11, F = Q[x]/(x2+x+3), ω = (−1+
√
−11)/2, α = ω,

(a, b) = (0, 1), θ = αζk.
• T = (X15 + 718X + 3237)/3237
• Y = (X15 + 6X14 + 7192X + 7545)/35607
• R = (X24+5X22+16X20+35X18+31X16−160X14−1079X12−1440X10+
2511X8 + 25515X6 + 104976X4 + 295245X2 + 531441)/(312 · 132 · 832)
• Q = (X30 +X29 + 3X28 + 2515X16 + 14384X15 + 7545X14 + 4782969X2 +
13304911X + 14348907)/38419953
• H = 311(X2 +X + 3)(X4 − 5X2 + 9)/11

With a seed x ≡ 5076, 9366, 13293, 17583 mod 35607.

5.2. Generating seeds for curves of cryptographic size. To generate seeds,
we incorporated our families of curves in [20] in tnfs/curve/gg.py and adapted
tnfs/gen/generate_sparse_curve.py to be able to call the generation of seeds
for each curve family. We obtain the seeds in Table 2. For GG20a and GG20b we
present the seeds of smallest possible Hamming weight such that q = Q(x) is at
most 576-bit long (9 limbs of 64-bits). It implies r = R(x) of 379 or 380 bits (almost
384 bits). For GG22D7 we obtain only three seeds of Hamming weight at most 8,
so that r is close to 384 bits. Later in [1], seeds for k = 28, D = 1 were given.
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curve
family seed x log q log r ρ log qk

secu
Fqk

GG20a −(249 + 246 + 241 + 218 + 23 + 22 + 1) 576 379 1.52 11520 196
GG20a 249 + 246 + 244 + 240 + 234 + 227 + 214 + 1 576 380 1.52 11500 196
GG20b −249 − 245 − 242 − 236 + 211 + 1 575 379 1.52 11500 196
GG20b −249 + 246 − 241 + 235 + 230 − 1 575 379 1.52 11500 196
GG20b −249 − 247 + 245 − 227 − 222 − 218 − 1 576 380 1.52 11520 196

GG22D7 −219 − 217 − 215 − 213 − 27 + 1 453 380 1.19 9966 220
GG22D7 −220 + 218 + 214 + 212 + 210 − 28 − 25 + 1 457 382 1.20 10054 220
GG22D7 −220 + 218 + 213 − 210 − 28 − 22 + 1 457 383 1.19 10054 220

Table 2. Parameters of our new curves at the 192-bit security
level.

5.3. Pairing implementation. We refer to [8] for an introduction on pairing
computation. Curves with a twist are well-suited for an efficient optimal ate pairing
computation. The pairing is a bilinear map on input two groups of points G1, G2

on the elliptic curve, to a target group GT in the finite field extension Fpk . From
Section 2.1, for the optimal ate pairing, G1 = E[r] ∩ ker(πq − Id) = E(Fq)[r] and
G2 = E(Fqk)[r] ∩ ker(πq − [q]).

5.3.1. Miller loop of optimal ate pairing. Our GG20a, GG20b curves have a quartic
twist, our GG22D7 curve has a quadratic twist so that we consider the formulas
for an optimal ate pairing. The key-ingredient is to obtain an equation of the
form s =

∑φ(k)−1
i=0 ciq

i ≡ 0 mod r, with tiny coefficients ci. We wrote a Magma
script for that, as Magma [4] has lattice reduction over polynomial rings available,
while SageMath does not. Once the equation in terms of powers of q is obtained,
the optimal ate pairing formula on input points (P1, P2) ∈ G1 ×G2 is given by a
Miller function evaluated at P1, written fs,P2

(P1) = fc0+c1q+...+cφ(k)−1qφ(k)−1,P2
(P1)

that can be further simplified. A Miller function fc,P2
(P1) has principal divisor

div(fc,P2
) = c(P2)− ([c]P2)− (c− 1)(O) and is evaluated at the coordinates of the

point P1. In other words, the function fc,P2 has a zero of order c at P2, a pole of
order 1 at [c]P2, and a pole of order (c− 1) at the point at infinity O. The classical
formulas are f1,P2 = 1; fi+j,P2 = fi,P2 ·fj,P2 · ℓiP2,jP2/v(i+j)P2

where ℓiP2,jP2 denotes
the line equation through iP2 and jP2, and v(i+j)P2

denotes the vertical line at
(i+ j)P2; and fij,P2 = f j

i,P2
· fj,[i]P2

.
Improvements when computing the Miller function fs,P2

(P1) apply, in our case
because of the even embedding degree k, the vertical lines in the Miller algorithm
to compute the Miller function can be omitted. We sketch the other obvious
optimizations for each curve in the following.

5.3.2. Optimal Ate Pairing Formulas for our new k = 20 curves. For the first k = 20
curve family (GG20a), we get

(5.1) x− q(x) + 2(q(x))6 ≡ 0 mod r(x)

hence the formula, where π(P2) = [q]P2, π6(P2) = [q6]P2:

e(P1, P2) = fx,P2(P1)f−1,π(P2)(P1)f2,π6(P2)(P1)ℓ[x]P2,−π(P2)(P1)ℓxP2−π(P2),π6([2]P2)(P1) .

Well-known simplifications apply: f−1,π(P2)(P1) can be dropped off, and the same
for the line ℓxP2−π(P2),π6([2]P2)(P1) as it will be a vertical. Moreover, f2,π6(P2)(P1)

costs a double-line step ℓπ6(P2),π6(P2)(P1) = ℓq
6

P2,P2
(P1). Finally,

(5.2) e(P1, P2) = fx,P2(P1)ℓ
q6

P2,P2
(P1)ℓ[x]P2,π(−P2)(P1) .

https://orcid.org/0009-0006-7292-1337
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For the second k = 20 family (GG20b), we obtain a similar formula, only a sign
changes:

x− q(x)− 2(q(x))6 ≡ 0 mod r(x)(5.3)

e(P1, P2) = fx,P2
(P1)ℓ

q6

−P2,−P2
(P1)ℓ[x]P2,π(−P2)(P1) .(5.4)

For our new k = 22 curve with D = 7, we get

(5.5) x2 − xq(x) + 2(q(x))2 ≡ 0 mod r(x)

hence the optimal ate Miller loop formula

e(P1, P2) = fx2,P2
(P1)f−x,π(P2)(P1)f2,π2(P2)(P1)ℓ[x2]P2,−π([x]P2)(P1)ℓx2P2−π([x]P2),π2([2]P2)(P1)

and the latter line can be removed as it is a vertical. Finally,

(5.6) e(P1, P2) = fx2,P2
(P1)f

−q
x,P2

(P1)ℓ
q2

P2,P2
(P1)ℓ[x2]P2,−π([x]P2)(P1) .

Moreover one can share the computation of fx,P2
inside fx2,P2

:

(5.7) e(P1, P2) = fx
x,P2

(P1)fx,[x]P2
(P1)f

−q
x,P2

(P1)ℓ
q2

P2,P2
(P1)ℓ[x2]P2,−π([x]P2)(P1) .

k curve family Equation Optimal ate formula

20 GG20a u− q + 2q6 ≡ 0 mod r fu,P2
(P1) · f2,πq6 (P2)(P1) · ℓ[u]P2,−πq(P2)(P1)

20 GG20b u− q − 2q6 ≡ 0 mod r fu,P2
(P1) · f2,πq6 (−P2)(P1) · ℓ[u]P2,−πq(P2)(P1)

22 GG22D7 u2 − uq + 2q2 ≡ 0 mod r fu
u,P2

(P1)fu,[u]P2
(P1)f

−q
u,P2

(P1)ℓ
q2

P2,P2
(P1)ℓ[u2]P2,−πq([u]P2)(P1)

Table 3. Optimal ate Miller loop formulas.

Miller algorithm (algorithm 5.1) computes a Miller function fc,P2(P1). Because
our curves have even embedding degrees, we omit the vertical lines vP2(P1) in the
formulas. Formulas for doubling step and addition step for our k = 20 curves can
be found in Costello, Lange and Naehrig paper [9], and for k = 22 curves, in [7].

Algorithm 5.1: MillerFunction(c, P1, P2)
Input: E,Fq,Fqk , k even, P1 ∈ E(Fq)[r], P2 ∈ E(Fqk)[r] such that

π(P2) = [q]P2 in affine coord., c ∈ Z∗.
Result: f = fc,P2

(P1)
1 f ← 1; Pi ← P2;
2 if c < 0 then Pi ← −Pi; c← −c;
3 for b from the second most significant bit of c to the least do
4 ℓ0 ← ℓPi,Pi

(P1); Pi ← [2]Pi ; // Dbl step, tangent line
5 f ← f2; // sk
6 if b = 1 then
7 ℓ1 ← ℓPi,P2

(P1); Pi ← Pi + P2 ; // Add step, chord line
8 f ← f · (ℓ0 · ℓ1) ; // mk + sparse-sparse-mk

9 else
10 f ← f · ℓ0 ; // full-sparse-mk

11 return f ;
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5.3.3. Final Exponentiation. Like for KSS curves, the final exponentiation formulas
are tedious to write down. The final exponentiation is decomposed into two parts,
called easy and hard. For k = 20, one has:

q20 − 1

r
=

q20 − 1

ϕ20(q)

ϕ20(q)

r
= (q10 − 1)(q2 + 1)︸ ︷︷ ︸

easy

ϕ20(q)

r︸ ︷︷ ︸
hard

.

For k = 22, this is
q22 − 1

r
=

q22 − 1

ϕ22(q)

ϕ22(q)

r
= (q11 − 1)(q + 1)︸ ︷︷ ︸

easy

ϕ22(q)

r︸ ︷︷ ︸
hard

.

The easy part costs one inversion and a few Frobenius powers. We apply the
technique of Fuentes et al. [15] to simplify the hard part. We note that q8 ≡
q6 − q4 + q2 − 1 mod Φ20(q) and after some ad-hoc improvements, we obtain the
following exponents ea, eb for GG20a, resp. GG20b that are multiples of the hard
part Φ20(q)/r and coprime to r.

ea =(x6 − 2x5 + 5x4 + 328)

× (−41q2 + xq(7− 24q5) + x2(11− 2q5) + x3q4(4− 3q5) + x4q3(2 + q5) + x5q7)

+ (x2 − 2x+ 5)

× (625q(2− q5) + 125x(4 + 3q5) + 25x2q4(11 + 2q5) + 5x3q3(7 + 24q5) + 38x4q7)

+ 6724q7

eb =(x6 − 2x5 + 5x4 − 328)

× (−41q2 + xq(7 + 24q5) + x2(11 + 2q5)− x3q4(4 + 3q5) + x4q3(−2 + q5) + x5q7)

+ (x2 − 2x+ 5)

× (−54q(q5 + 2) + 53x(−4 + 3q5) + 52x2q4(11− 2q5) + 5x3q3(7− 24q5)− 38x4q7)

+ 6724q7

For the final exponentiation on GG22D7, with the same technique we obtain

e =(x12 − x11 + 2x10 + 161) · (−23q8 + 11xq7 + 17x2q6 + 3x3q5 − 7x4q4 − 5x5q3

+ x6q2 + 3x7q + x8 + x9q10 + x10q9)

+ (x2 − x+ 2) · (210q7 + 29xq6 − 28x2q5 − 3 · 27x3q4 − 26x4q3 + 5 · 25x5q2

+ 7 · 24x6q − 3 · 23x7 + 17 · 22x8q10 + 11 · 2x9q9)

Remark 10. We observe that in each hard final exponentiation formula, a factor
of H(X) shows up, namely x2 − 2x+ 5 for GG20a and GG20b, and x2 − x+ 2 for
GG22D7. A similar pattern can be found for KSS16 and KSS18 curves [6].

Finally, we mention that Fouotsa et al. x-super-optimal ate pairing [13] can apply
to this curve, but we did not investigate further. The formulas for this alternative
pairing can be found in [23].

5.3.4. Twisted curve and sparse G2 representation for k = 22. Our new k = 22
curves E : y2 = x3 + ax + b in short Weierstrass form have a quadratic twist
defined over Fq11 . Let t be the trace of E over Fq. The trace of E over Fq11 is
t11 = t11 − 11qt9 + 44q2t7 − 77q3t5 + 55q4t3 − 11q5t. The quadratic twist of E over
Fq11 has order q11 + 1 + t11 and by construction, its order is a multiple of r = R(x).
The quadratic M-twist is defined by E′

M : y′2 = x′3+aw2x+bw3 where w ∈ Fq11 \Fq

is not a square. Let ω in Fq22 be a root of x2 −w. Let P ′
2(x

′, y′) ∈ E′
M (Fq11). Then

https://orcid.org/0009-0006-7292-1337
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P2 = ϕ(P ′
2) = (x′/ω2, y′/ω3) = (x′/w, y′/w2ω) lies on E(Fq22). More precisely,

x′/w is in the subfield Fq11 . The vertical line equation at P2 evaluated at P1 is
vP2(P1) = xP2 − xP1 = x′/w − xP1 ∈ Fq11 . Because it is in a proper subfield of
Fq22 , it becomes 1 after the easy part of the final exponentiation. As elements of
Fq22 = Fq11 [ω], x′/w and y′/w2ω are sparse.

5.3.5. Field extension representation for k = 22. The polynomial shape of q = Q(x)
does not allow q ≡ 1 mod 11 and finding an irreducible binomial polynomial is not
possible. We have chosen the alternative with a sparse polynomial of the form
x11 + v1x + v0 with tiny integers v1, v0. We represent elements of Fq11 as degree
10 polynomials modulo x11 + v1x + v0. The top extension Fq22 is represented as
a quadratic extension of Fq11 with an irreducible quadratic polynomial x2 − w,
w ∈ Fq11 .

Example 8 (GG22D7-457). With the seed x = −220 + 218 + 213 − 210 − 28 − 22 + 1,
q = Q(x) is 457-bit long. We found the irreducible polynomials x11 + x− 19 and
x11 − 2x − 2. Let ν be a root of either polynomial. Then x2 − ν defines the
quadratic extension. Let ω ∈ Fq22 such that ω2 = ν. The quadratic M-twist is
E′

M : y2 = x3 + aν2x+ bν3. The twist map is ϕM : (x′, y′) 7→ (x′/ν, y′/ν2ω).
A Frobenius power in this case is quite tedious, as q ≡ 3 mod 11. We obtain

f11 = 110m and f22 = 21 · 11m = 231m.

5.3.6. SageMath proof-of-concept implementation. We rely on SageMath for the finite
field extension arithmetic (including Frobenius powers). We base our implementation
on the MIT-licensed library of pairings at [12]. We adapt the pairing computation
on KSS16 curves to our k = 20 curves as they both have a quartic twist. More
precisely, we adapt pairing.py to our needs. Our implementation is available under
MIT license at

https://gitlab.inria.fr/guillevi/pairings-on-gasnier-g-curves
We validated our pairing formulas (optimal ate Miller loop formulas, final exponen-
tiation formulas) and checked that the pairing is bilinear.

5.3.7. Pairing cost estimation. Our estimates are given in Table 4.

Curve q r Miller final exponentiation pairing
family (bits) (bits) loop easy hard total total

GG20b 575 379 17554m 507m 41997m 42504m 60058m
GG22D7 457 383 45780m 1500m 79740m 81240m 127020m

Table 4. Optimal ate pairing and final exponentiation cost esti-
mates in terms of finite field multiplications m in Fq.

5.3.8. Group operations. It becomes standard to give the formulas for subgroup
membership testing and co-factor clearing on the three groups G1, G2, and GT .
We apply the technique of Scott [24], generalized by Yu Dai et al. [10]. The
formulas for GG20a, GG20b can be found in [1]. For GG2D7, on G1 the formulas
are obtained with a GLV-like decomposition. The endomorphism comes from the
Complex Multiplication by (−1 +

√
−7)/2. It is textbook to obtain the formula

on a curve of j-invariant -3375 from a 2-isogeny [26, Proposition 2.3.1]. With
E : y2 = x3 − 35x+ 98, j(E) = −3375, α = 1+

√
−7

2 ,

ϕ(x, y) =

(
α−2

(
x− 7(1− α)4

x+ α2 − 2

)
, α−3y

(
1− 7(1− α)4

(x+ α2 − 2)2

))
.

https://gitlab.inria.fr/guillevi/pairings-on-gasnier-g-curves
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The eigenvalue of ϕ is (1 +
√
−7)/2 in the appropriate subgroup of E(Fq). On

E(Fq)[r], λ = (x11 + 45)/23 is a root of X2 −X + 2 modulo r. With SageMath,
the endomorphism is easily obtained from a 2-isogeny whose kernel is a 2-torsion
point, either (3 + α, 0) or (4 − α, 0). The rational point (−7, 0) does not give an
endomorphism. A fast multiplication by r for subgroup membership testing can
be achieved with the formula a0 − a1λ, where a20 − a0a1 + 2a21 = r exactly (Yu
Dai’s criterion). According to the congruence of the seed modulo 23, we give the
integer values of (a0, a1) in Table 5. The subgroup membership testing boils down
to testing if [a0]P − ϕ([a1]P ) is O. Yu Dai et al. [10] provided a trick to optimize
and share the cost of the two scalar multiplications more efficiently than a generic
multi-scalar multiplication. We refer to the online SageMath source code for further
formulas [19].

x ≡ 9 mod 23

a0 = (−3x10 + 7x9 − x8 − 13x7 + 15x6 + 11x5 − 41x4 + 19x3 + 63x2 − 101x− 25)/23
a1 = (2x10 + 3x9 − 7x8 + x7 + 13x6 − 15x5 − 11x4 + 41x3 − 19x2 − 63x+ 101)/23

x ≡ 13 mod 23

a0 = (−5x10 + x9 + 9x8 − 11x7 − 7x6 + 29x5 − 15x4 − 43x3 + 73x2 + 13x− 159)/23
a1 = (−2x10 + 5x9 − x8 − 9x7 + 11x6 + 7x5 − 29x4 + 15x3 + 43x2 − 73x− 13)/23

x ≡ 1, 2, 3, 4, 6, 8, 12, 16, 18 mod 23

a0 = (x10 − x9 − x8 + 3x7 − x6 − 5x5 + 7x4 + 3x3 − 17x2 + 11x+ 23)/23
a1 = (−x9 + x8 + x7 − 3x6 + x5 + 5x4 − 7x3 − 3x2 + 17x− 11)/23

Table 5. G1 subgroup membership testing formulas for Example 2.

Conclusion

In this work, we generalized the KSS technique to generate complete families
of pairing-friendly curves. Firstly, we introduced the subfield method, a method of
generation of families of pairing-friendly curves generalizing the method of KSS. This
new method uniformizes many of the previous best performing families, including
the cyclotomic families and the KSS families, and provides a deeper mathematical
understanding of the related methods. Using our new method, we have found new
families of embedding degrees k = 20 and k = 22. For k = 20, we improve on
the previous FST 6.4 curves with parameters that are not vulnerable to a specific
STNFS attack (the polynomial Q(X) has no automorphism). Finally, for k = 22,
we improve on the previously best ρ-value curves: our new family with D = 7 has
ρ = 1.2 compared to FST 6.3 with ρ = 1.3.

Secondly, we studied the problem of computing integer roots of an integral
polynomial modulo prime powers. We proposed a simple and efficient method
for solving this problem and use it to compute the integers x at which a rational
polynomial takes integer values, and to check if a rational polynomial represents
primes. This contribution comes with a SageMath open-source companion code
available online [16]. We obtain seeds to generate new instances of elliptic curves of
cryptographic interest at the 192-bit security level for the new families of embedding
degrees k = 20, k = 22, and derive the optimal ate pairing and final exponentiation
formulas. Finally, we implemented the pairing and group operations on our new
curves in SageMath to validate the formulas [19].

As a closing remark, we would like to point out that the subfield method, in
many cases, do not require a specific discriminant D. Thus, one could hope to
improve the second column of [14, Table 8.2], which is concerned with the “variable

https://orcid.org/0009-0006-7292-1337
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D” case. To accomplish this, one would need a better understanding of which choice
of discriminant D allows us to produce (actual) families.
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