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AN ALGEBRAIC POINT OF VIEW ON THE GENERATION OF
PAIRING-FRIENDLY CURVES

JEAN GASNIER AND AURORE GUILLEVIC

Abstract. In 2010, Freeman, Scott, and Teske published a well-known taxon-
omy compiling the best known families of pairing-friendly elliptic curves. Since
then, the research effort mostly shifted from the generation of pairing-friendly
curves to the improvement of algorithms or the assessment of security parame-
ters to resist the latest attacks on the discrete logarithm problem. Consequently,
very few new families were discovered. However, the need of pairing-friendly
curves of prime order in some new applications such as SNARKs has reignited
the interest in the generation of pairing-friendly curves, with hope of finding
families similar to the one discovered by Barreto and Naehrig.

Building on the work of Kachisa, Schaefer, and Scott, we show that some
elements of extensions of a cyclotomic field have a higher probability of generat-
ing a family of pairing-friendly curves. We present a general framework which
embraces the KSS families and many of the other families in the taxonomy
paper, and provide an open-source SageMath implementation of our technique.
We finally introduce a new family with embedding degree k = 20 which we
estimate to provide a faster Miller loop compared to KSS16 and KSS18 at the
192-bit security level.
Keywords: Elliptic Curves, Pairing-based Cryptography

1. Introduction

1.1. Pairing-friendly curves in cryptography. Pairing-friendly curves are a key-
ingredient in public-key cryptography. They allow identity-based encryption [10],
short signatures [11] and more flexible key-exchange protocols [34]. A pairing is an
efficient bilinear map er : G1×G2 → GT . The input groups G1, G2 of points on the
curve E have prime order r, and GT , the target group of same order r, embeds in
an extension field Fqk of Fq. Usually in cryptography, G1 is defined over Fq. The
pairing efficiency is determined by the size of q, the size of qk, and the availability
of improvements in specific cases [16].

A pairing-based cryptosystem like the tri-partite Diffie–Hellman key exchange [34]
relies on the bilinearity of the pairing: er([a]P, [b]Q) = er([b]P, [a]Q) = er(P,Q)ab

that is, the pairing allows to multiply (in the exponents) two hidden secret scalars
without knowing them. This property is a major key-ingredient for zero-knowledge
proof systems, the latest trend being about SNARKs (Succinct Non-Interactive
ARgument of Knowledge) where a quadratic equation shall be verified [27]. Cryp-
tographic elliptic curves such as the ones standardised by NIST, and the Edwards
curve 25519, do not allow an efficient pairing computation. Pairing-friendly curves
shall be designed on purpose, with two criteria in mind: security and efficiency.

For cryptographic applications, G1 and G2 should offer a standard security level
against a discrete logarithm computation. This problem is well-known for plain
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elliptic curves and standard recommendations consist in taking a prime order r of
2n bits for a security level of n bits, that is, usually r is 256, resp. 384-bit long to
ensure a 128-bit, resp. 192-bit security level. However there is no standard choice of
size of finite field Fqk yet, as the security in a finite field extension is much more
difficult to analyse due to the many variants of the Number Field Sieve algorithm.
In 2016, Kim and Barbulescu [37] published their Extended Tower NFS algorithm
(exTNFS or TNFS for short), and they achieve the best asymptotic complexity
in some particular instances of finite fields. In particular, exTNFS is expected to
be very efficient in fields such as Fp12 , where the extension degree has many small
divisors. The heuristic complexity of TNFS follows a sub-exponential equation

LQ(α, c) = exp
((
c+ o(1)

)
(lnQ)α(ln lnQ)1−α

)
where Q = qk, α = 1/3, and c varies from (32/9)1/3 = 1.526 to (64/9)1/3 = 1.923.
This complexity is very different from the DL computation on the curve, in O(

√
r).

The finite field extension degree k allows to adjust the DL-security in Fqk to the
security on E(Fq) so as to have parameters of minimal size. Before 2016 and Kim
and Barbulescu’s TNFS algorithm, the best known pairing-friendly curve family was
given by Barreto and Naehrig (BN) [7]: a prime-order curve of about 256 bits, where
the pairing transfers the DL problem into Fq12 of about 3072 bits. The security in
the three groups G1, G2 and GT was believed to reach 128 bits. Nowadays these
BN curves of 254 to 256 bits have about 103 bits of security in Fq12 [3].

Most of the known pairing-friendly curves are not of prime order: BN curves are
an exception. G1 has prime order r of log2 r bits but its elements are defined over a
field Fq of log2 q bits. The parameter ρ measures the loss for G1 elements compared
to an optimal key-size:

(1.1) ρ =
log q

log r
.

The successor curves of BN curves in cryptography are Barreto–Lynn–Scott curves
(BLS) [6], where ρ = 1.5 and k = 12. One of the most widespread parameter set is
BLS12-381, where r is 254-bit long, q is 381-bit long, and k = 12. Non-prime-order
curves showed to have a very efficient pairing computation, and were investigated
as replacements [29].

However with the development of cycles of pairing-friendly elliptic curves [9],
prime-order pairing-friendly curves are again needed. There are only three known
families of such curves: Miyaji–Nakabayashi–Takano (MNT) curves [41], BN
curves [7] and Freeman curves [21]. Moreover, generalising their ideas gave new
curves but none of prime order [24, 44]. At the moment, only the MNT curves allow
the construction of cycles of pairing-friendly curves, but their instantiation is not
efficient. It is an open problem [14, 8] to find cycles of prime-order pairing-friendly
curves at cryptographic security levels, with efficient group operations. To this aim,
finding new prime-order pairing-friendly curves is a prerequisite.

1.2. Previous work on finding families of pairing-friendly curves. Pairing-
friendly curves are very rare and are obtained by dedicated methods. This paper
focuses on ordinary curves defined over prime fields. The first solution was given
by Miyaji, Nakabayashi and Takano [40]. They obtain ordinary curves (MNT) of
prime order and embedding degree 3, 4 and 6. The curve parameters are given
by quadratic polynomials q(x), r(x) and a linear polynomial t(x). Solving a Pell
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equation is needed [36] to obtain valid seeds u such that q(u), r(u), t(u) are valid
parameters. Then a Hilbert class polynomial is required to get the curve coefficients
a, b [45].

Later Barreto, Lynn and Scott [5] focused on curves of embedding degree multiple
of 3 and j-invariant 0. They obtained a much more simple way of generating
parameters. Their curves of embedding degrees 12 and 24 (BLS12, BLS24) are now
widely deployed at the 128-bit and 192-bit security level respectively. In particular,
BLS12-381 is on the way to standardisation (through Hashing to Elliptic Curves
IETF draft [19, §8.8]). This cyclotomic polynomial technique was explored by Brezing
and Weng in [12]. The taxonomy paper of Freeman, Scott and Teske [22] generalises
the BLS technique to all curves with j(E) = 0 and any k except k = 0 mod 18, and
to all curves with j(E) = 1728 and any k except k = 0 mod 8. These techniques
fail at certain embedding degrees: when k = 0 mod 18 with j(E) = 0 (BLS), when
k = 0 mod 8 with j(E) = 1728 (BW). The BLS issue was fixed at k = 0 mod 18
with the Aurifeuillean factorisation of cyclotomic polynomials [44]. In 2008, Kachisa,
Schaefer and Scott [35] published another method that obtains a factorisation of
cyclotomic polynomials evaluated at sparse polynomials of degree at least 3. This new
technique provides pairing-friendly curves of embedding degrees 8, 16, 18, 32, 36, 40,
filling some of the gaps at k = 0 mod 8 and k = 0 mod 18.

1.3. Contributions. In this paper, we revisit the KSS construction and expose a
generalisation. Like in previous works [24, 44], we obtained new interesting families
of pairing-friendly curves, but did not get any of prime order. Our contribution
is twofold: first we narrow the exhaustive and time-consuming search of KSS, so
that we obtain new KSS-like curves at new embedding degrees in a few seconds
on a laptop. Second, we generalise the technique and explore other discriminants
and settings. Our outcome on the constructive side is to provide new interesting
pairing-friendly curves at the 192-bit security level. On the other side, we show that
there is no pairing-friendly curve of prime order obtained with our generalised KSS
technique. This article comes with with a SageMath open-source companion code
available online [25] [30].

1.4. Organisation of the paper. The notation and definitions are introduced
in section 2, and well-known constructions are recalled. The notions of a pairing-
friendly curve and a family of pairing-friendly curves are defined at first, after which
the work of Brezing and Weng [12] and Kachisa, Schaefer and Scott [35] are recalled.
Our new construction method is presented at the beginning of section 3. Then
follows theoretical results and more practical results, as well as some algorithmic
ideas on the processing of potential families. Finally in section 4, two of the new
families are examined. We show that the families contain curves which can be used
at the 192-bit security level, and give an estimation of the cost of computing the
pairing application on these curves.

2. Preliminaries

2.1. Notation and pairing-friendly curves. We start by recalling some facts
on elliptic curves. We will use the same notation as in the taxonomy article of
Freeman, Scott and Teske [22]. Let Fq be the finite field of size q and characteristic
p 6= 2, 3, we denote Fq its algebraic closure. We call E : y2 = x3 + Ax + B an
elliptic curve over Fq under short Weierstrass form, where A,B ∈ Fq are such that
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4A3 + 27B2 6= 0. We use the notation E/Fq to denote such a curve. We denote
E(Fq) the subgroup of Fq-rational points of E and #E(Fq) its order. For any
integer r, we denote E[r] the subgroup of r-torsion points of E (defined over Fq)
and E(Fq)[r] the subgroup of Fq-rational points of E[r]. We define the trace t of E
as t = q + 1−#E(Fq). The Hasse–Weil bound says that |t| ≤ 2

√
q. We say that

E is ordinary if gcd(t, q) = 1 otherwise E is supersingular. Let End(E) be the set
of Fq-endomorphisms of E, then End(E) is strictly larger than Z, and we say that
E has complex multiplication, or that E is a CM curve. Furthermore, End(E) is
either an order of a quadratic imaginary number field or an order of a quaternion
algebra, depending on whether E is ordinary or supersingular (respectively). If
E/Fq is ordinary, we call CM discriminant of E the squarefree part of the non-
negative integer 4q − t2. Note that it is different from the discriminant of the
quadratic imaginary field K containing End(E): with usual definitions, denoting D
the CM discriminant, we have D = −disc(K) if D ≡ 3 mod 4 and D = −disc(K)/4
otherwise.

Let E/Fq be an elliptic curve over a finite field. A pairing on E is a non-degenerate
bilinear map defined over a subgroup G of E with values in Fq

∗
. Let er denote a

pairing such that er : E[r]× E[r] −→ Fq(µr)∗. It is well known that one can often
use er to embed E(Fq)[r] in Fq(µr)∗. We define k the embedding degree of E with
respect to r as the index of the extension Fq(µr) over Fq. We will omit r when it
can be determined from the context. Since solving the discrete logarithm problem
inside the group of invertible elements of a field can be done in subexponential time,
the existence of such an embedding can be a liability for cryptographic use when
k is small [39]. For cryptographic use, we need to ensure that k is large enough,
so that the discrete logarithm has the same security level on the curve and in the
field Fqk . The minimal embedding degree depends on the security level, and on the
ρ-value of the curve ρ = log q/ log r. Because of the new Tower Number Field Sieve
algorithm of [4], and Kim’s extended variant [37], the sizes recommended in [22,
Table 1.1] are no longer up-to-date. There is not a strong consensus on the sizes for
the usual security levels yet, though the following parameters tend to become very
common [3, 33, 29, 28]:
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Curve Security level Subgroup size Field size Extension Field Embedding ρ
(in bits) r (in bits) q (in bits) size qk (in bits) degree k

BN ≈ 100 256 256 3072 12 1
Security level 128

MNT-4 128 1024 1024 4096 4 1
MNT-6 128 672 672 4032 6 1
CP-6 128 256 672 4032 6 2.625
CP-8 128 256 544 4352 8 2.125
BN 128 384 384 4608 12 1

BLS-12 128 256 384 4608 12 1.5
KSS-16 128 256 330 5280 16 1.29
KSS-18 128 256 348 6264 18 1.36
BLS-24 128 256 320 7680 24 1.25

Prime embedding degrees, for specific needs [32, 15]
CP-5 128 256 663 3315 5 2.59
CP-7 128 256 512 3584 7 2

BW13-P310 128 267 310 4027 13 1.16
BW19-P286 128 259 286 5427 19 1.10

Security level 192
BN 192 1024 1024 12288 12 1

BLS-12 192 768 1152 13824 12 1.5
KSS-16 192 608 768 9728 16 1.26
KSS-18 192 481 640 8658 18 1.33
BLS-24 192 409 512 7680 24 1.25
BLS-27 192 384 427 11529 27 1.11

Table 1. Bit sizes of curve parameters and corresponding embed-
ding degrees to obtain commonly desired levels of security.

We use the definition from [22] for pairing-friendly curves:

Definition 1. Let E/Fq be an elliptic curve. We say that E is pairing-friendly if:
• there is a prime r > √q dividing #E(Fq),
• the embedding degree of E with respect to r is less than log(r)/8.

It should be mentioned that supersingular curves have a very particular behavior
regarding their embedding degree.

Theorem 1 ([39]). Let E/Fq be a supersingular elliptic curve. Then E is pairing-
friendly with embedding degree k ≤ 6.

This means that supersingular curves can be interesting for small embedding
degrees, but can not be used for higher ones. Since we aim at providing a method
to generate pairing-friendly curves with an arbitrary embedding degree k, we will
focus on ordinary curves.

2.2. Criteria to Generate Ordinary Pairing-Friendly Curves. While super-
singular curves are always pairing-friendly, ordinary curves often are not. A result
by Balasubramanian and Koblitz [2] shows that the probability of a randomly
chosen ordinary curve over Fq to have an embedding degree bounded by log(q)2

is extremely small when r ≈ q, for q a prime integer. Therefore, it is completely
hopeless to try to randomly find ordinary pairing-friendly curves, and one has to
find specific methods to generate them. A very common way to do so is to generate
integers q, t and r representing the cardinal of the base field, the trace of the curve
and the (prime) order of the subgroup of the curve that can be embedded, and to
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recover the coefficients of the curve using the CM algorithm. This will require that
the discriminant D of the curve is sufficiently small to be able to execute the CM
algorithm. According to [45], D ≤ 1018 is manageable. Moreover, we also have to
state the conditions on q, t and r required for ensuring the existence of a curve E
over Fq with trace t, embedding degree k with respect to r and discriminant D. The
following proposition shows that the embedding degree k depends only on r and q:

Proposition 1 ([22]). The following conditions are equivalent:
• E has embedding degree k with respect to r.
• k is the smallest integer such that r divides qk − 1.
• q has order k in (Z/rZ)∗.

The following theorem sums up the conditions on q, r and t:

Theorem 2 ([22]). Fix k a positive integer and D ≤ 1018 a squarefree positive
integer. Let q, r, t be integers such that:

(1) q is a positive prime power.
(2) r is a positive prime.
(3) t is coprime to q.
(4) r divides q + 1− t.
(5) r divides qk − 1 and r does not divide qk

′ − 1 for every k′ < k.
(6) 4q − t2 = Dy2 for some integer y (called CM equation).

Then there exists an ordinary elliptic curve E/Fq with trace t, having a subgroup of
rational points of order r, with embedding degree k and discriminant D.

Proof. Conditions 1, 3 and 6 imply that there exists an ordinary elliptic curve E
over Fq with trace t and discriminant D, that can be recovered with the complex
multiplication method [18]. Condition 6 shows that |t| ≤ 2

√
q.

Conditions 2 and 4 imply that there exists a subgroup of E(Fq) of prime order r
(required for cryptographic applications), and condition 5 implies that the embedding
degree of E with respect to r is k. �

Some conditions can be formulated slightly differently. First, if one defines h to
be the cofactor of r in q + 1− t, such that q + 1− t = hr, one obtains a new CM
equation for condition 6:

(6’) Dy2 = 4hr − (t− 2)2

Then, Freeman, Scott and Teske also modify condition 5 by using the cyclotomic
polynomial Φk:

Proposition 2 ([22, Prop. 2.4]). Let k be an integer, and E/Fq be an elliptic curve
such that #E(Fq) = hr, with r prime. Let t be the trace of E. Assume that r - k.
Then condition 5 is equivalent to r | Φk(t− 1).

Remark 1. The proposition implies as well that if r is not a prime but satisfies the
other conditions from Theorem 2, then denoting r′ the largest prime divisor of r,
the integers q, r′ and t describe a pairing-friendly curve with embedding degree k,
as r′ | r | Φk(t− 1).

In our cryptographic context, r is greater than k, so we replace the condition 5
by the more convenient equation:

(5’) (r | Φk(t− 1))
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The conditions from Theorem 2 do not take into account the first condition r ≥ √q
from Definition 1. This is equivalent to asking that the ρ-value log q/ log r is less
than 2. In general, unless there is a particular reason to do otherwise, the curve
with the smallest ρ-value available should always be preferred.

2.3. Families of pairing-friendly elliptic curves. Another interesting problem
is to generate families of pairing-friendly elliptic curves. Searching for families of
curves rather than a single curve is a common idea which has two main purposes:
easing the generation of a curve of specified security level, or the generation of
multiple curves, and finding curves with a ρ-value significantly smaller than 2 [22,
Sections 4-6]. To define families of curves with one-parameter x, we follow [22] and
use polynomials Q, R and T in Q[X] instead of the previous integers q, r and t.
When evaluating the polynomials at x0 ∈ Z, one hopes that Q(x0), R(x0) and T (x0)
satisfy the conditions of Theorem 2. To achieve this, similar conditions on Q, R and
T shall be set. With our representation, Q(x) needs to take an infinite number of
prime (or prime power) values at integers. We also want R(x) to take prime values
up to a small cofactor. However, for now very little is known about prime values of
polynomials. There is a conjecture by Buniakowski and Schinzel:

Buniakowski–Schinzel Conjecture. Let f be a polynomial in Q[X]. Then f takes an
infinite number of prime values if and only if:

• f is non-constant,
• f has positive leading coefficient,
• f is irreducible,
• f(x) ∈ Z for some x ∈ Z, (which implies that it happens for an infinite

number of x ∈ Z),
• gcd({f(x) | x, f(x) ∈ Z}) = 1.

In the following, we will assume that the conjecture is true, and will say that
a polynomial f represents primes if it satisfies the conditions of the conjecture.
Polynomials taking integer values at integers will be very useful for defining families
of curves, so we define:

Definition 2 ( [22, Definition 2.6]). Let f be a polynomial in Q[X], we say that f
is integer-valued if f(x) ∈ Z whenever x ∈ Z.

We are now ready to define families of curves, inspired by [22, Definition 2.7]:

Definition 3. Let k > 0 be an integer and D be a positive squarefree integer, and
let Q, R and T be polynomials in Q[X]. We say that Q, R and T parameterize a
complete family of elliptic curves with embedding degree k and discriminant D if:

(1) Q represents primes;
(2) R is non-constant, irreducible and has positive leading coefficient;
(3) There exists a polynomial H ∈ Q[X] such that HR = Q+ 1− T ;
(4) R divides Φk(T − 1), with Φk the k-th cyclotomic polynomial;
(5) There exists a polynomial Y ∈ Q[X] such that DY 2 = 4Q− T 2;
(6) Q, R, T , Y , H all take an integer value at a common integer.

We may also say that (Q, R, T , Y ) or (Q,R, T, Y,H) parameterizes the family. We
also define the notion of potential family: if the polynomials Q, R, T , Y and H
satisfy condition 2 to 5, we say that they form a potential family of pairing-friendly
elliptic curves.
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We define the ρ-value of a family as ρ = degQ/degR so that the ρ-values of the
curves that the family generates are close to the ρ-value of the family asymptotically.

Remark 2. In [22], a more general notion of a family is defined. In this article, we are
only interested in complete families, so we did not recall their definition of a family.
In the following, we will use “family” to mean “complete family of pairing-friendly
elliptic curves”.

Remark 3. Notice that the third condition of Theorem 2 has not been adapted.
Indeed, since degQ = 2 deg T and since we asked Q to represent primes so that
Q(x0) can easily be a prime, we will only look for Q(x0) prime. Then, it is obvious
that Q(x0) and T (x0) are coprime because of their sizes.

LetQ, R, T , Y andH be as above, and let x0 be an integer. For (Q(x0), R(x0), T (x0))
to define a pairing-friendly elliptic curve, the values need to satisfy the conditions
of Theorem 2. In particular, Y (x0), T (x0) and H(x0) need to be integers simulta-
neously, while Q(x0) needs to be a prime and R(x0) needs to be a prime up to a
small cofactor. It sometimes happen that there is no such x0 ∈ Z, even when every
polynomial takes an integer value at —at least— one integer. This precision is all
the more important as we are going to introduce new families with polynomials
with large denominators, which increases the difficulty of finding a shared seed x0.

Remark 4. We stress that conditions 1 to 5 give only mild constraints on R and H.
If (Q,R, T, Y,H) is a potential family, for every rational λ ∈ Q, another potential
family is (Q,λR, T, Y, 1

λH). We will exploit this property later in this work.

2.4. The Brezing–Weng method. Condition 4 of Definition 3 suggests that the
number field defined by the irreducible polynomial R contains the k-th cyclotomic
field, which we will denote Ck. The Brezing–Weng method described in [5] and [12]
is a method for constructing families of curves using this observation: it relies on
finding a polynomial R, and a polynomial T mapping to ζk + 1 in Q[X]/〈R〉 where
ζk is a primitive k-th root of unity in Q[X]/〈R〉. Similarly to what happens with the
integers, we have DY 2 = 4HR− (T −2)2, so we know that Y maps to (T −2)/

√
−D

in Q[X]/〈R〉. Algorithm 2.1 exploits these ideas.

Algorithm 2.1: Brezing–Weng method
Input: k > 0 and D > 0 squarefree.
Output: Polynomials Q, R, T , Y , H generating a family of elliptic curves

with discriminant D and embedding degree k.
1 Let R ∈ Z[X] be an irreducible polynomial with positive leading coefficient

such that K = Q[X]/〈R〉 contains
√
−D and Ck.

2 Fix a k-th root of unity ζk ∈ K.
3 Let T ∈ Q[X] be a polynomial mapping to ζk + 1 in K.
4 Let Y ∈ Q[X] be a polynomial mapping to T−2√

−D in K.
5 Q = (T 2 +DY 2)/4 ∈ Q[X]; H = (Q+ 1− T )/R ∈ Q[X]

6 [Process the potential family] // see subsection 3.5

The goal of the last step (step 6) of Algorithm 2.1 is to check if conditions (1)
and (6) of Definition 3 can be met. We expand on our processing method adapted
to our new potential families in subsection 3.5.
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As we can always choose T and Y to have degree strictly less than R, the method
generates families with ρ-value strictly less than 2. In general, there is no particular
reason why the polynomials T and Y should have degree less than degR− 1, but
for particular choices of R, the ρ-value can decrease significantly. Below, we give
examples of such families.

Example 1. From [12] and [22, Construction 6.2].
Let k be odd and k < 1000. Let:
• R = Φ4k(X),
• T = −X2 + 1,
• Y = Xk(X2 + 1),
• Q = 1

4 (X2k+4 + 2X2k+2 +X2k +X4 − 2X2 + 1).
Then (Q,R, T, Y ) parameterizes a family of pairing-friendly elliptic curves with
embedding degree k and discriminant 1. Its ρ-value is k+2

ϕ(k) where ϕ is Euler’s totient
function.

The polynomials Q, R, T and H = (Q + 1 − T )/R are even, and Y is odd.
Therefore, denoting R(X) = R′(X2), Q(X) = Q′(X2), T (X) = T ′(X2) and Y =
XY ′(X2), for every α ∈ N, the substitution X2 7→ αX2 yields:

4Q′(αX2)− T ′(αX2)2 = αX2Y ′(αX2).

Therefore, (Q′(αX2), R′(αX2), T ′(αX2), XY ′(αX2)) is a potential family of elliptic
curves with degree k, discriminant α, and ρ-value k+2

ϕ(k) as well. This method is
used to modify the discriminant of the family to avoid attacks targeting specific
discriminants.

We give an example of a similar family achieving a better ρ-value for k ≡ 3 mod 4.

Example 2 (From [22, Constructions 6.20]). Let k ≡ 3 mod 4 and k < 1000. Let:
• R = Φ4k(X),
• T = Xk+1 + 1,
• Y = Xk +X,
• Q = 1

4 (X2k+2 +X2k + 4Xk+1 +X2 + 1).
Then (Q,R, T, Y ) parameterizes a potential family of pairing-friendly elliptic curves
with embedding degree k and discriminant 1. Its ρ-value is k+1

ϕ(k) .

Unfortunately, the polynomials (Q,R, T, Y ) only define a potential family because
2 divides the integer values of Q. A solution to obtain a family of curves is to use
the previous substitution method for a suitable α (for example, α = 3). As a result,
the discriminant will once again be multiplied by α.

We now state a very popular family of pairing-friendly elliptic curves of discri-
minant 3. The popular BLS12 and BLS24 curves fall in the case k ≡ 0 mod 6 of
this family. The polynomials stated below give the best known ρ-values for many
embedding degrees (see [22, Table 8.2]).

Example 3 (From [22, Construction 6.6]). Let k be an integer with k ≤ 1000 and
18 - k. Let Q, R and T be defined as in Table 2: Then (Q,R, T ) defines a complete
family of pairing-friendly elliptic curves with embedding degree k and discriminant 3.
Let l = lcm(k, 6), then the ρ-value of any such family is (l/3+6)/ϕ(l) if k ≡ 4 mod 6
and (l/3 + 2)/ϕ(l) otherwise.



10 JEAN GASNIER AND AURORE GUILLEVIC

k R(X) T (X) Q(X)
1 mod 6 Φ6k(X) −Xk+1 +X + 1 (X + 1)2(X2k −Xk + 1)/3−X2k+1

2 mod 6 Φ3k(X) Xk/2+1 −X + 1 (X − 1)2(Xk −Xk/2 + 1)/3 +Xk+1

3 mod 18 Φ2k(X) Xk/3+1 + 1 (X2 −X + 1)2(X2k/3 −Xk/3 + 1)/3 +Xk/3+1

9, 15 mod 18 Φ2k(X) −Xk/3+1 +X + 1 (X + 1)2(X2k/3 −Xk/3 + 1)/3−X2k/3+1

4 mod 6 Φ3k(X) X3 + 1 (X3 − 1)2(Xk −Xk/2 + 1)/3 +X3

5 mod 6 Φ6k(X) Xk+1 + 1 (X2 −X + 1)(X2k −Xk + 1)/3 +Xk+1

0 mod 6 Φk(X) X + 1 (X − 1)2(Xk/3 −Xk/6 + 1)/3 +X

Table 2. Construction 6.6 from [22, Sect. 6], formulas for k =
3 mod 6 from ePrint.

2.5. The Kachisa–Schaefer–Scott Method. The previous families were all cy-
clotomic, meaning that R was a cyclotomic polynomial. There have been some
attempts to apply the Brezing–Weng method with a non-cyclotomic polynomial
R, such as the Barreto–Naehrig family [7], or the Kachisa–Schaefer–Scott (KSS)
families [35]. In the next sections, we will extend the method of Kachisa et al.,
so we recall briefly their results. The KSS method consists in taking R as the
minimal polynomial of an element of a cyclotomic field. Using this method, Kachisa
et al. found some interesting families via enumeration (see Algorithm 2.2). KSS
families are particularly interesting because they fill most of the gaps left by the
cyclotomic methods: in Example 3, we have seen that the method does not work
when k is a multiple of 18 and produces a larger ρ-value for k ≡ 4 mod 6, while the
KSS method was successful for k = 18, 36, with the expected ρ-value (k/3 + 2)/ϕ(k),
and for for k = 16, 40, a ρ-value of (k/2 + 2)/ϕ(k). The first two families are given
in Example 4 and Example 5.

Example 4 (KSS16). Let:
• R = X8 + 48x4 + 625,
• T = 1

35 (2X5 + 41X + 35),
• Y = 1

35

(
X5 − 5X4 + 38X − 120

)
,

• Q = 1
980 (X10+2X9+5X8+48X6+152X5+240X4+625X2+2398X+3125).

Then (Q,R, T, Y ) parameterizes a complete family of elliptic curves with embedding
degree k = 16, discriminant 1 and ρ-value 5/4.

Example 5 (KSS18). Let:
• R = X6 + 37X3 + 343,
• T = 1

7 (X4 + 16X + 7),
• Y = 1

21

(
−5X4 − 14X3 − 94X − 259

)
,

• Q = 1
21 (X8 +5X7 +7X6 +37X5 +188X4 +259X3 +343X2 +1763X+2401).

Then (Q,R, T, Y ) parameterizes a complete family of elliptic curves with embedding
degree k = 18, discriminant 3 and ρ-value 4/3.

Could these examples have been obtained with the Brezing–Weng method? Yes, if
the ad hoc choices of R and T were given as input. Nevertheless, the Brezing–Weng
is in some sense incomplete, as it does not provide a way to find R and T : they are
used in the method as if they were parameters. The difficulty is to characterize the
polynomials which could be suitable choices for R, as Step 1 of the Brezing–Weng
method (Algorithm 2.1) mostly put constraints on the number field that R generates.
The initial way to overcome this obstacle was to work with cyclotomic polynomials
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Algorithm 2.2: Outline of KSS’s algorithm
Input: k the embedding degree, D ∈ {1, 3} the discriminant

1 Let l = lcm(3, k) if D = 3 or l = lcm(4, k) if D = 1, and ζl be a fixed
primitive l-th root of unity in Cl;

2 for θ an integer linear combination of (ζil )i=0,...,ϕ(l)−1 do
3 R=minpoly(θ);
4 for ζk a primitive k-th root of the unity in Cl do
5 Let T ∈ Q[X] such that T (θ) = ζk + 1;
6 Let Y ∈ Q[X] such that Y (θ) = (ζk − 1)/

√
−D;

7 Let Q = (T 2 +DY 2)/4;
8 Let H = (Q+ 1− T )/R;
9 [Process the potential family] ; // see subsection 3.5

for R (Barreto–Lynn–Scott, Brezing–Weng). This is however quite restrictive and
does not offer the diversity we could have hoped for. For example, all families in
the previous examples have a discriminant of 1 or 3. Moreover, a better choice of R
could generate more efficient families.

To improve on the Brezing–Weng method, how to search for a better, non-
cyclotomic polynomial R generating a cyclotomic field containing

√
−1 or

√
−3 (or

any
√
−D)? Two paths arised: trying to find U(X) such that Φl(U(X)) factors for

a chosen l and R is such a factor [7, 44], or taking R as the minimal polynomial of
an element in a cyclotomic field Cl (KSS [35]). In KSS’s case, the authors designed
Algorithm 2.2. Define θ and ζk as in Algorithm 2.2. KSS’s algorithm relies on the
equivalence of giving ourselves R and T , or θ and ζk (when Q[X]/〈R〉 = Cl is fixed).
In practice, the representation by θ and ζk is more adapted to enumeration (over the
ai in θ =

∑ϕ(l)−1
i=0 aiζ

i
l ). Unfortunately, KSS reported that bruteforce enumeration

(step 2) did not work well, and they had to restrict themselves to the elements θ
having a special form, which they selected using trial and error. Their method was
effective as they were able to find some interesting curves. However, it is possible to
improve their enumeration technique, as we will explain in the next section.

3. Results

In this section, our goal is to improve on the KSS method and generate new
families with ρ-values as small as possible. We introduce a new enumeration method
which allows to compute families very quickly with ρ-values depending uniquely on
the embedding degree k and the discriminant D. Then, we present the results of
the new enumeration method.

3.1. Properties of the number-theoretic representation. We will work in a
slightly more general context than KSS. Fix k ≥ 7 and D > 0, and let K be any
Galois extension of Q containing Ck(

√
−D) (the compositum of Ck and Q(

√
−D),

Figure 1).
Let ζk be any primitive k-th root of unity in K, and let τ = ζk + 1 and γ =

(ζk− 1)/
√
−D. Let θ ∈ K such that the minimal polynomial of θ has degree [K : Q].

This is equivalent to asking that θ generate the whole field, most elements of the field
satisfy this property. We will note Rθ the minimal polynomial of θ, Tθ the polynomial
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Q

CkQ(
√
−D)

Ck(
√
−D)

K

Figure 1. Our setting: K is a Galois extension of Ck(
√
−D).

mapping θ to τ , Yθ the polynomial mapping θ to γ, and Qθ = (T 2
θ +DY 2

θ )/4. We
will drop the indices when θ is clear from context.

We consider how affine transformations of θ affect the generated families. It
is easy to see that adding a rational λ only induces the substitution X 7→ X − λ.
Multiplying by an integer is not much more interesting, but allows to simplify the
enumeration process:

Proposition 3. Let N be an integer, if (Rθ, Tθ, Yθ, Qθ) is a family of curves then
(RNθ, TNθ, YNθ, QNθ) is a family with the same ρ-value.

Proof. It is easy to show that RNθ = NdegRRθ(X/N), TNθ = Tθ(X/N), YNθ =
Yθ(X/N), and therefore QNθ = Qθ(X/N). Every corresponding polynomial has the
same degree so the potential families have the same ρ-value. It is clear that Q(X/N)
is irreducible if and only if Q is irreducible, and that if Q represents primes then
Q(X/N) represents primes as well (notice that Q is a weighted sum of squares, so
N < 0 does not change the sign of the leading coefficient). �

Proposition 3 is useful because it shows we only have to consider integer linear
combinations of elements of a basis of K as candidates for θ in our enumeration.
However, the polynomials generated may have a large denominator.

We finally mention that in the context of the Brezing–Weng method, the degree
of Q is degQ = 2 max(deg T, deg Y ). Then, the problem of generating a potential
family with small ρ-value can be seen as a particular instance of the following
problem:

Problem 1. Let K be a number field of degree d over Q, let n be an integer,
and let τ and γ be elements of K. Find an element θ ∈ K such that there exists
polynomials Y and T satisfying:

• Y (θ) = γ,
• T (θ) = τ ,
• deg Y ≤ n and deg T ≤ n.

In the general case, it seems unlikely to be able to find a solution when n < d− 1,
and even more for n ≤ (d+ ε)/2. However, in our particular instance, many families
with ρ-value significantly smaller than 2 have been found. In the following, we will
explain which mathematical property of τ and γ allows to find families with small
ρ-value in our specific setting and propose a method to compute such families.

3.2. Subfield method. Fix k ≥ 7 and D. Let F be a number field containing√
−D, and let K be the compositum of F and Ck. We can see K as a F -vector space,

and we can also see Ck as a subfield of K. Then, the vector line Fζk = {αζk;α ∈ F}
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contains ζk and ζk/
√
−D. This method relies on the idea that elements of F will

be represented by polynomials of small degree, and the polynomial corresponding
to the multiplication by α ∈ F as well.

We take θ ∈ Fζk, that is we force θ to be of the form θ = αζk, and let α =
θ/ζk ∈ F . Notice that θk = αk ∈ F , and most commonly αk will generate F , or
equivalently Q(αk) = F . Then, let e be the minimal divisor of k such that θe ∈ F
and θe generates F . Now let P1, P2, P3 be the polynomials such that:

P1(θe) = 1/α ,

P2(θe) = 1/(α
√
−D) ,

P3(θe) = 1/
√
−D .

Notice that P1, P2 and P3 have degree at most [F : Q]− 1 (we will have equality in
most cases). Now, notice that:

P1(θe)θ + 1 = θ/α+ 1 = ζk + 1 ,

P2(θe)θ − P3(θe) = ζk/
√
−D − 1/

√
−D = (ζk − 1)/

√
−D .

Therefore we can choose T (X) = P1(Xe)X and Y (X) = P2(Xe)X −P3(Xe), which
have degree at most (generally equal to) e([F : Q]− 1) + 1. Let R be the minimal
polynomial of θ. This method generates potential families with ρ-value:

(3.1) ρ ≤ 2e([F : Q]− 1) + 2

[K : Q]
.

Generally, Eq. (3.1) is an equality (in fact we did not encountered any counterexample
in our enumeration). From now on, we will assume that Eq. (3.1) is an equality, and
try to choose F so that ρ is minimal. Notice that a decomposition of the extension
degree of K over Q with the intermediate field F gives [K : Q] = [K : F ][F : Q] and
it follows from Eq. (3.1) that

ρ = 2e
[F : Q]− 1

[K : Q]
+

2

[K : Q]

= 2e
[F : Q]− 1

[K : F ][F : Q]
+

2

[K : Q]

=
2e

[K : F ]

(
1− 1

[F : Q]

)
+

2

[K : Q]
.(3.2)

The term 2e
[K:F ]

(
1− 1

[F :Q]

)
is dominant in this sum. Therefore, when e is fixed, we

should try to maximize [K : F ] and minimize [F : Q]. In the following three cases,
we give the optimized ρ-value for different choices of e.

Case 1. When e = k, that is, the minimal power of θ such that it belongs to F is
θk ∈ F , the extension diagram is the following (Figure 2). From the diagram 2(a)
we deduce that the choice F = Q(

√
−D) contributes to minimizing the ρ-value. In

that case, it would be more favorable if
√
−D were not an element of Ck, so that

[K : F ] = ϕ(k) (and not ϕ(k)/2) (see Figure 2(b)). Then, from Eq.(3.2) with e = k,
[K : F ] = ϕ(k), [F : Q] = 2, [K : Q] = 2ϕ(k),

(3.3) ρ =
2k

ϕ(k)

(
1− 1

2

)
+

2

2ϕ(k)
=
k + 1

ϕ(k)
.
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Q

CkQ(
√
−D)

F

K

(a) General setting

Q

Ck 63
√
−DQ(

√
−D) = F

K = Ck(
√
−D)

2 ϕ(k)

2ϕ(k)

(b) Optimized setting

Figure 2. General and optimized setting for Case 1.

Case 2. When k is even, then θk/2 = −αk/2 which will generally be a generator of
F . Therefore, the decrease of e to e = k/2 is free, as we do not have to make any
further assumption on F . The diagram will be exactly the same as in Case 1, and
in Eq. (3.2), e = k/2 instead. In this case,

(3.4) ρ =
2k/2

ϕ(k)

(
1− 1

2

)
+

2

2ϕ(k)
=
k/2 + 1

ϕ(k)
.

Case 3. Let d be a divisor of k, d ≥ 3. If we want that Q(θk/d) = F , then ζk/dk = ζd
has to be an element of F , and F has to be an algebraic extension of Cd. This
changes the extension diagram to Figure 3(a). Here from Figure 3(a) we deduce

Q

Ck

CdQ(
√
−D)

F

K

(a) General setting

Q

Q(
√
−D)

F = Cd 3
√
−D

K = Ck

2

ϕ(d)/2

ϕ(k)/ϕ(d)

(b) Optimized setting

Figure 3. General and optimized setting for Case 3.

that F should be the compositum of Q(
√
−D) and Cd. However, in that case, it

would be better if
√
−D were an element of Cd to minimize [F : Q] (here [K : F ] is

already bounded by [Ck : Cd]) (Figure 3(b)). With e = k/d, [K : F ] = ϕ(k)/ϕ(d),
[F : Q] = ϕ(d) and [K : Q] = ϕ(k),

(3.5) ρ =
2k/d

ϕ(k)/ϕ(d)

(
1− 1

ϕ(d)

)
+

2

ϕ(k)
=

2(ϕ(d)− 1)

d

k

ϕ(k)
+

2

ϕ(k)
.

We need to compare Case 3 to the first two cases. When k is odd, we mostly
need to find which d satisfies 2(ϕ(d)−1)/d ≤ 1 (we authorize equality as the ρ-value
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D

D = 1 →


k = 0 mod 4, Case 3, d = 4, ρ = (k/2 + 2)/ϕ(k)
k = 2 mod 4, Case 2,

√
−D /∈ Ck, ρ = (k/2 + 1)/ϕ(k)

k = 1 mod 2, Case 1,
√
−D /∈ Ck, ρ = (k + 1)/ϕ(k)

D = 3 →


k = 0 mod 6, Case 3, d = 6, ρ = (k/3 + 2)/ϕ(k)
k = 3 mod 6, Case 3, d = 3, ρ = (2k/3 + 2)/ϕ(k)
k = 2, 4 mod 6, Case 2,

√
−D /∈ Ck, ρ = (k/2 + 1)/ϕ(k)

k = 1, 5 mod 6, Case 1,
√
−D /∈ Ck, ρ = (k + 1)/ϕ(k)

other D →
{
k = 0 mod 2, Case 2,

√
−D /∈ Ck, ρ = (k/2 + 1)/ϕ(k)

k = 1 mod 2, Case 1,
√
−D /∈ Ck, ρ = (k + 1)/ϕ(k)

Figure 4. Best choice of k, d to minimize ρ, according to D.

will only differ by 1/ϕ(k)). When k is even, d needs to satisfy 2(ϕ(d)− 1)/d ≤ 1/2.
Table 3 gives us the list of integers d such that 2(ϕ(d)− 1)/d is small enough with
respect to the parity of k:

k d, d | k 2(ϕ(d)− 1)/d upper bound

odd 3 2/3 Case 1: 115 14/15

even

4 1/2

Case 2: 1/2
6 1/3
12 1/2
30 7/15

Table 3. Choices for d between 3 and 50 and corresponding coefficients.

We can notice that d = 12, 15, 30 are less interesting as they are multiples of 3
and 6 and are less efficient. Therefore, this case is interesting only if d = 3, 4, 6.
Notice that in each case Cd is an imaginary quadratic field containing either

√
−1

or
√
−3. Notice also that when d = 4, the ρ-value from Case 3 is larger than the

ρ-value from Case 2 by 1/ϕ(k), but it still provides an almost as efficient alternative.
Moreover, Case 3 has the extra advantage of generating a polynomial R with degree
ϕ(k) instead of 2ϕ(k).

Remark 5. Notice that in every case, we obtain that K should be equal to Ck(
√
−D).

In particular, this means that the properties stated in subsection 3.1 apply.

Remark 6. Here we separated three cases depending on the value of e, which
was more convenient for the proof on minimal ρ-value, but in practice it is more
convenient to start from fixed k and D. Here is our strategy to minimize ρ (Figure 4),
given D as input. Let D = 1, then if k is a multiple of 4, use Case 3 with d = 4, if
k ≡ 2 mod 4, use Case 2, and if k is odd, use Case 1. When D = 3, if d = gcd(k, 6)
is a multiple of 3, you can use Case 3 with d, else use Case 1 when k is odd and
Case 2 when k is even. For any other D, if

√
−D /∈ Ck, use Case 1 when k is odd,

and Case 2 when k is even.

Remark 7. Let l = lcm(k, 6), then the subfield method can always generate potential
families with a ρ-value of ρ = (l/3 + 2)/ϕ(l), the same as FST and KSS families.
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k

0 mod 6→
{
D = 3, Case 3, d = 6, ρ = (k/3 + 2)/ϕ(k)
D 6= 3, Case 2,

√
−D /∈ Ck, ρ = (k/2 + 1)/ϕ(k)

3 mod 6→
{
D = 3, Case 3, d = 3, ρ = (2k/3 + 2)/ϕ(k)
D 6= 3, Case 1,

√
−D /∈ Ck, ρ = (k + 1)/ϕ(k)

0 mod 4→
{
D = 1, Case 3, d = 4, ρ = (k/2 + 2)/ϕ(k)
D 6= 1, Case 2,

√
−D /∈ Ck, ρ = (k/2 + 1)/ϕ(k)

2 mod 4→
{
Case 2,

√
−D /∈ Ck, ρ = (k/2 + 1)/ϕ(k)

1 mod 2→
{
Case 1,

√
−D /∈ Ck, ρ = (k + 1)/ϕ(k)

Figure 5. Best choice of D, d to minimize ρ, according to k.

It is important to see that this method only generates potential families. We
hope that having a wide range for θ will allow to find a family among the generated
potential families. We will see in the following that, in most cases, finding a family
is not an issue. We summarize our findings in algorithm 3.1. Of course, the choice
of F and K can be adapted to a specific context (for example when having a specific
discriminant is more important than having a small ρ-value).

Algorithm 3.1: SubfieldMethod(k,D, F, e)
1 Let K be the compositum of F and Ck;
2 Let ζk be a fixed primitive k-th root of unity in K;
3 for α ∈ F do
4 θ = αζk;
5 R=minpoly(θ);
6 Let P1 ∈ Q[X] such that P1(θe) = 1/α;
7 Let P2 ∈ Q[X] such that P2(θe) = 1/(α

√
−D);

8 Let P3 ∈ Q[X] such that P3(θe) = 1/
√
−D;

9 T (X) = XP1(Xe) + 1;
10 Y (X) = XP2(Xe)− P3(Xe);
11 Let Q = (T 2 +DY 2)/4;
12 Let H = (Q+ 1− T )/R;
13 [Process the potential family] ; // subsection 3.5

We end this subsection by recalling what case is best suited to a given k (see also
Figure 5). If k is a multiple of 6 (resp. 3) then use Case 3 with d = 6 (resp. d = 3).
If you need to avoid the discriminant D = 3, you can use Case 2 (resp. Case 1) if k
is even (resp. odd) with another discriminant, but the ρ-value will increase. Else if
k is a multiple of 4 then use Case 3 with d = 4 for discriminant D = 1, and Case 2
for another discriminant. In this instance, the ρ-value only differ by 1/ϕ(k) with
Case 2 having the smallest one. Else, if k is 2 modulo 4 (resp. odd), use Case 2
(resp. Case 1).

3.3. Theoretical results. In this subsection, we compare the ρ-values we obtain
for each k with the values stated in [22, Table 8.2]. We should start with stating
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that most of the families achieving the best ρ-values are particular instances of the
subfield method (KSS families, FST families when k 6≡ 4 mod 6 for example).

The reader can check if a family can be produced with the subfield method by
checking if T has the form (bXe + a)X + 1, with e dividing k and a, b rationals.

For example, the polynomials from Example 2 can be obtained by simply choosing
θ = ζk, and the polynomials from Example 3 can be obtained by taking θ = ζl
when k 6≡ 4 mod 6, where l = lcm(6, k) and ζl is a primitive l-th root of unity in the
vector line C6ζk. It is also interesting to see that every family obtained by KSS in
[35], except for the Barreto-Naehrig family, are instances of the subfield method. In
particular, as we have shown that the subfield method never achieves ρ = 1, it seems
very unlikely to be able to find another family having this property via untargeted
enumeration.

This method of generation of curves, when compared to previous methods, has
the added advantage of generating multiple curves of the same quality regarding
their ρ-value, for almost all k and D. Therefore, attacks such as the one in [29]
targeting polynomials of a specific form are less effective, since we will usually be
able to find a family not targeted by the attack (as in subsubsection 3.4.3). The
biggest flaw of the method however is the size of the denominators of the generated
families, which sometimes make the families unusable, or less practical.

Lastly, the method generates families with an improved ρ-value compared to the
previously known families for some embedding degrees:

(1) when k = 22, 46, or more generally, k ≡ 22 mod 24,
(2) when k = 16, 28, 40, or more generally, k ≡ 4 mod 12.

However, the improvement for k = 16, 28, 40 are practically irrelevant, because the
generated families have large denominators (see the next subsection for more details),
and because the gain in ρ-value can only be obtained with D 6= 1, preventing the use
of a high-degree (quartic) twist, hence missing four-fold G2-compression techniques.

Table 4 summarizes our results, and compares them to the values from [22, Table
8.2]. A dash symbol (−) means that the case is not suited to the choice of k, and a
colored cell means that the case produced families with very large denominators in
the polynomials, making it difficult to obtain valid curve parameters.

3.4. Experimental results. In this subsection, we start by explaining our enu-
meration process. We then give more details about the cases k = 16, 28, 40, and
finally give examples of new families for k = 22, 46. We ran our experients on an
Intel Xeon Silver 4214 CPU at 2.20 GHz with 16 GB RAM with SageMath 9.7 using
Python 3.10.5.

First note that in all cases of interest, F is a quadratic imaginary field and in
most of the cases, F = Q(

√
−D). Let {1, ω} be a basis of the integer ring of F .

Usually, the basis is made of {1, (−1 +
√
−D)/2} if D = 3 mod 4, and {1,

√
−D}

otherwise. Set a, b ∈ Z. We enumerate over α ∈ F (Algorithm 3.1 step 3) of the
form α = a+ bω where −20 ≤ a, b ≤ 20 and gcd(a, b) = 1.

We observed that the period of the seed x0 (so that (Q,R, T, Y,H) take inte-
ger values) and the size of the denominators are minimized for (a, b) of smallest
coefficients (that is, |a|, |b| as small as possible). As the choice (a, b) = (1,±1)
does not produce a potential family for each D, we try many values of D un-
til we obtain (a, b) = (1,±1). For k = 22, 46, we observed for 1 ≤ D ≤ 50
and |a|, |b| ≤ 20 that each D provides many potential families. We obtained
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k ρ, Case 1 ρ, Case 2 ρ, Case 3 ρ, Previous method
7 1.333 − − 1.333, [22, 6.6]
8 − 1.250 1.500, d = 4 1.250, [22, 6.6]
9 1.667 − 1.333, d = 3 1.333, [22, 6.6]
10 − 1.500 − 1.500, [22, 6.24]
11 1.200 − − 1.200, [22, 6.6]
12 − 1.750 1.500, d = 6 1.000, [22, 6.8]
13 1.167 − − 1.167, [22, 6.6]
14 − 1.333 − 1.333, [22, 6.6]
15 2.000 − 1.500, d = 3 1.500, [22, 6.6]
16 − 1.125 1.250, d = 4 1.250, [22, 6.11]
17 1.125 − − 1.125, [22, 6.6]
18 − 1.667 1.333, d = 6 1.333, [22, 6.12]
19 1.111 − − 1.111, [22, 6.6]
20 − 1.375 1.500, d = 4 1.375, [22, 6.6]
21 1.833 − 1.333, d = 3 1.333, [22, 6.6]
22 − 1.200 − 1.300, [22, 6.3]
23 1.091 − − 1.091, [22, 6.6]
24 − 1.625 1.250, d = 6 1.250, [22, 6.6]
25 1.300 − − 1.300, [22, 6.6]
26 − 1.167 − 1.167, [22, 6.6]
27 1.556 − 1.111, d = 3 1.111, [22, 6.6]
28 − 1.250 1.333, d = 4 1.333, [22, 6.4]
29 1.071 − − 1.071, [22, 6.6]
30 − 2.000 1.500, d = 6 1.500, [22, 6.6]
31 1.067 − − 1.067, [22, 6.6]
32 − 1.063 1.125, d = 4 1.063, [22, 6.6]
33 1.700 − 1.200, d = 3 1.200, [22, 6.6]
34 − 1.125 − 1.125, [22, 6.24]
35 1.500 − − 1.500, [22, 6.6]
36 − 1.583 1.167, d = 6 1.167, [22, 6.14]
37 1.056 − − 1.056, [22, 6.6]
38 − 1.111 − 1.111, [22, 6.6]
39 1.667 − 1.167, d = 3 1.167, [22, 6.6]
40 − 1.3125 1.375, d = 4 1.375, [22, 6.11]
41 1.050 − − 1.050, [22, 6.6]
42 − 1.833 1.333, d = 6 1.333, [22, 6.6]
43 1.048 − − 1.048, [22, 6.6]
44 − 1.150 1.200, d = 4 1.150, [22, 6.6]
45 1.917 − 1.333, d = 3 1.333, [22, 6.6]
46 − 1.091 − 1.136, [22, 6.3]
47 1.043 − − 1.043, [22, 6.6]
48 − 1.562 1.125, d = 6 1.125, [22, 6.6]
49 1.190 − − 1.190, [22, 6.6]
50 − 1.300 − 1.300, [22, 6.6]

Table 4. Comparison of the ρ-values of the subfield method and
previous methods
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(a, b) = (1,±1) with D = 7 for both k = 22 (Example 6) and k = 46 (Appen-
dix A). To the contrary for k ∈ {16, 28, 40}, most of D fail and we enlarged
the search space over D. We obtain potential families for some D, k = 16 with
D ∈ {19, 35, 59, 67, 83, 115, 203, 227}, and (a, b) = (1± 1) with D = 35 and D = 227;
k = 28 with D ∈ {11, 19, 23, 43, 47, 55, 59, 67, 71, 79, 83, 103, 107, 115, 127, 131, 139},
and (a, b) = (1± 1) with D = 11 ; and k = 40 with D ∈ {11, 31, 71, 103, 143, 163},
we did not get (a, b) = (1,±1), the smallest period was reached at D = 11 with
(a, b) = (13,−9). We got (a, b) = (1,−3) with D = 103. One can observe that for
k = 16, 28, 40, the Ds that work satisfy D = 3 mod 4.

3.4.1. We reproduce the previous KSS results. Using Case 3 with d = 4, we generate
families with the same ρ-value as the KSS16 (Example 4) and KSS40 families and
the method from [22, Method 6.4], and with discriminant D = 1 as well. Using
Case 3 with d = 6, we generate families of discriminant D = 3 with the same ρ-value
as the KSS18 (Example 5), KSS36 families. Note that for k = 54, we obtain the
same three families with ρ = 10/9 as in [44] with (a, b) ∈ {(1, 1), (1,−2), (2,−1)}.

3.4.2. New families with smaller ρ of theoretical interest for k ∈ {22, 46} and
k ∈ {16, 28, 40}. We provide examples of new families with better ρ-values for
k = 22. The case k = 46 is only of theoretical interest as the polynomials have
very large coefficients. We provide the data in Appendix A. With k = 46 we select
D = 7 and (a, b) = (1, 1) in Example 17, and D = 15, (a, b) = (3, 1) in Example 18.

Example 6. k = 22, D = 7, F = Q[x]/(x2 + x+ 2), ω = (−1 +
√
−7)/2, α = 1 + ω,

(a, b) = (1, 1), θ = αζk.
• T = (X12 + 45X + 46)/46
• Y = (X12 − 4X11 − 47X − 134)/322
• R = (X20 −X19 −X18 + 3X17 −X16 − 5X15 + 7X14 + 3X13 − 17X12 +

11X11 + 23X10 + 22X9−68X8 + 24X7 + 112X6−160X5−64X4 + 384X3−
256X2 − 512X + 1024)/23
• Q = (X24 −X23 + 2X22 + 67X13 + 94X12 + 134X11 + 2048X2 + 5197X +

4096)/7406

Let H = (Q + 1 − T )/R. With x ≡ 4 mod 7, and x ≡ 13, 9 mod 23, then all
polynomials take integer values and R, Q can take prime values. With x ≡ 4 mod 7,
and x ≡ 1, 2, 3, 4, 6, 8, 12, 16, 18 mod 23, all polynomials and 23H take integer values
and R/23, Q can take prime values. The seed x0 = −0xbe503 = −779523 produces
a curve with R(x0)/23 prime of 383 bits, Q(x0) prime of 457 bits. Curves with CM
by (−1 +

√
−7)/2 have j-invariant j = −3375. The curve defined over FQ(x0) by

E : y2 = x3 − 5/7x− 2/7 has trace T (x0), and expected order.

Example 7. k = 22, D = 1, F = Q(i), i =
√
−1, α = 1 + 2i, (a, b) = (1, 2), θ = αζk.

• T = 1
6605

(
−X12 − 5148X + 6605

)
• Y = 1

13210

(
X12 − 5X11 + 11753X − 32345

)
• R = (X20 − 2X19 −X18 + 12X17 − 19X16 − 22X15 + 139X14 − 168X13 −

359X12 + 1558X11− 1321X10 + 7790X9− 8975X8− 21000X7 + 86875X6−
68750X5−296875X4 + 937500X3−390625X2−3906250X+ 9765625)/1321

• Q = 1
139603280

(
X24 − 2X23 + 5X22 + 12938X13 − 47012X12 + 64690X11

+48828125X2 − 206464378X + 244140625
)

With seeds x ≡ 1 mod 2, x ≡ 0, 3 mod 5, x ≡ 105, 286, 350, 389, 416, 485, 506, 513, 692,
736, 806 mod 1321, the polynomials take integer values and Q(x) generates primes.
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We discard x ≡ 0 mod 5 as is produces 510 | R(x). For x ≡ 513, 806 mod 1321,
R(x) takes prime values, for the other congruences, R(x)/1321 takes prime values.
The valid seeds producing prime Q(x0), R(x0) are very sparse and we did not get
r = R(x0) of 384 bits. We mention x0 = 0x1a450d = 1721613 s.t. Q(x0) is a 471-bit
prime and R(x0)/1321 is a 394-bit prime; the curve is y2 = x3 + 27x.

Example 8. k = 22, D = 3, F = Q[x]/(x2 +x+1), ω = (−1+
√
−3)/2, α = (5+4ω),

(a, b) = (5, 4), θ = αζk.
• T = 1

341901

(
−X12 + 18764460X + 341901

)
• Y = 1

683802

(
X12 − 7X11 − 18650493X + 131009319

)
• R = (X20 − 6X19 + 15X18 + 36X17 − 531X16 + 2430X15 − 3429X14 −

30456X13+254745X12−888894X11−16281X10−18666774X9+112342545X8−
282053016X7−666875349X6+9924365430X5−45541810251X4+64839187476X3+
567342890415X2 − 4765680279486X + 16679880978201)/(310 · 67)

• Q = 1
267191528688

(
X24 − 6X23 + 21X22 − 37431234X13 + 223805916X12

−786055914X11 + 350277500542221X2 − 2087000802936846X + 7355827511386641
)

With a seed x ≡ 1 mod 2, x ≡ 0 mod 3, x ≡ 0, 1 mod 7, and 2, 13, 18, 28, 30, 44, 48, 50, 51, 57,
61 mod 67, the polynomials take integer values and Q generate primes. We dis-
card x ≡ 0 mod 7 as in that case, 710 | R. When x ≡ 13, 48 mod 67, R generates
primes and H takes integer values. When x ≡ 2, 18, 28, 30, 44, 50, 51, 57, 61 mod 67,
R/67 generates primes and 67H takes integer values. The seed x0 = 0x214f5f =
2183007 ≡ 13 mod 67 gives valid parameters with Q prime of 468 bits and R prime
of 400 bits, and the curve is y2 = x3 − 1/Fq, of expected order.

Example 9. Let k = 16, D = 35, F = Q[x]/(x2 +x+9), ω = (−1+
√
−35)/2, α = ω,

(a, b) = (0, 1), θ = αζk. Case 2 gives ρ = 9/8 = 1.125 compared to the well-known
KSS16 curve (Example 4) with ρ = 5/4 = 1.25. Note that in practice, because of
the denominators and the cofactors, the ρ-value of KSS16-330 is 1.29, the ρ-value of
KSS16-766 is 1.27.

• T =
(
X9 + 424X + 19431

)
/19431

• Y =
(
X9 + 18X8 + 39286X + 27063

)
/19431

• R =
(
X16 + 3007X8 + 43046721

)
/(316 · 172 · 1272)

• Q =
(
X18 −X17 + 9X16 + 3007X10 − 78572X9 + 27063X8

+43046721X2 − 75086281X + 387420489
)
/1468303515

The constrains on the seed x are x ≡ 0 mod 32, x ≡ 3 mod 5, x ≡ 4 mod 7,
x ≡ 1, 2, 4, 8, 9, 13, 15, 16 mod 17, and x ≡ 3, 124 mod 127. With this new family we
were not able to produce any parameter sets of cryptographic size where r has 256
or 384 bits. The seeds producing curves are very sparse. Nevertheless we obtained
u0 = 0x173d4fe = 24368382, q has 412 bits and r has 346 bits (ρ = 1.19), and
u1 = 0x1bc63c0c = 465976332, q has 488 bits and r has 414 bits (ρ = 1.18). The
curve equations are given in the companion code replay_examples.sage.

3.4.3. New families performing as well as previous families for k = 18, 20. We
extend on k = 20 in Example 11 and Example 12 in subsubsection 3.4.3. See also
Example 19 for an alternative family with k = 18.

Example 10. Let k = 18, k is a multiple of 6 so let D = 3 and F = C6, ω = ζ3
k =

(1 +
√
−3)/2, e = 3. Let θ = (1 + 3ζ3

k)ζk. Then:
• T = (3X4 + 176X + 221)/221,
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• Y = (5X4 − 26X3 + 146X − 1157)/663,
• R = (X6 + 89X3 + 2197)/(133 · 172),
• Q = 1

11271

(
X8 − 5X7 + 13X6 + 89X5 − 292X4 + 1157X3 + 2197X2

−2009X + 28561)

is a family of elliptic curves with discriminantD = 3 and ρ-value ρ = 1+ 1
3 = 4

3 . With
x ≡ 1 mod 3, x ≡ 0 mod 13, x ≡ 9 mod 17, Q,R generate primes and T, Y,H =
(Q + 1 − T )/R take integer values. The seed x0 = −281 − 279 + 267 − 255 − 222

produces q prime of 638 bits and r prime of 469 bits, the curve is y2 = x3 − 3.

We investigate the KSS gap at k = 20. To benefit from the highest possible twist,
one chooses D = 1, like for k = 16. For that we run Case 3 with k = 20, d = 4 and
obtain different families. We choose the ones with the smallest denominators. We
do obtain families with deg(R) = 8, deg(Q) = 12, ρ = 3/2 = 1.5, and D = 1. We do
not reduce the ρ-value compared to the FST 6.4 family but we obtain an alternative
Q that is not vulerable to the attack of [29]. The number field defined by Q(x) has
no automorphism and admits only a quadratic subfield with ζ4. To further optimize
the arithmetic operations on the curve, we would like to enforce q ≡ 1 mod 5 so as
to define the extension Fq5 with a binomial, for a faster Frobenius map in Fp20 . In
other words, we add the condition (Q(X)− 1)/5 generates integers. Choosing r of
384 bits implies q of ≈576 bits and this size reaches the 192-bit security level. We
obtain the following two families that we call GG20a and GG20b.

Example 11 (GG20a). Let k = 20, k is a multiple of 4, let D = 1 and F = C4. Let
θ = (1− 2ζ4)ζk. Then

• T = (2X6 + 117X + 205)/205
• Y = (X6 − 5X5 − 44X − 190)/205
• R = (X8+4X7+11X6+24X5+41X4+120X3+275X2+500X+625)/25625
• Q = (X12 − 2X11 + 5X10 + 76X7 + 176X6 + 380X5 + 3125X2 + 12938X

+15625)/33620

is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/2. With
x0 mod 410 ∈ [69, 75, 79, 135, 175, 239, 299, 315, 325, 339], the conditions are met
(T, Y are integers, Q,R/λ, λH generate primes for λ a small integer cofactor). With
x0 = 1715, 1815 mod 2050, Q and R generate primes, and q = Q(x0) ≡ 1 mod 5.

Example 12 (GG20b). Let k = 20, k is a multiple of 4, let D = 1 and F = C4. Let
θ = (1 + 2ζ4)ζk. Then

• T = (−2X6 + 117X + 205)/205
• Y = (X6 − 5X5 + 44X + 190)/205
• R = (X8−4X7+11X6−24X5+41X4−120X3+275X2−500X+625)/25625
• Q = (X12 − 2X11 + 5X10 − 76X7 − 176X6 − 380X5 + 3125X2 + 12938X

+15625)/33620

is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/2. With
x0 mod 410 ∈ [71, 85, 95, 111, 171, 235, 275, 331, 335, 341], the conditions are met
(T, Y are integers, Q,R/λ, λH generate primes for λ a small integer cofactor). With
x0 = 1465, 1565 mod 2050, Q and R generate primes, and q = Q(x0) ≡ 1 mod 5.

3.5. Processing potential families. In Algorithm 2.2 and Algorithm 3.1, we
mention processing the potential families, without giving much more details. By
“processing”, we mean two things: computing the common integer seeds of the
polynomials Q, R, T , Y and H and checking that Q represents primes. We want
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Figure 6. Tree of roots of X2 +X + 223 modulo powers of 3 [43, Section 2.6].

this step to be fast since we generate a lot of potential families and we need to
quickly discard the wrong ones that do not give valid curve parameters. There are
arithmetic relations between the polynomials (Definition 3) which allow to avoid
some computations. A suitable approach is to first compute the integer seeds of T
and Y and use the relation Q = (T 2 +DY 2)/4 to find the common integer seeds of
T , Y , and Q. Then, using Remark 4, find λ such that R/λ and λH take integer
values at some of the integer seeds.

Let P be a polynomial with rational coefficients. Then there exists a unique
polynomial P ′ with integral coefficients and a unique integer ∆, called denominator
of P , such that P = P ′/∆. Therefore, the set of integer seeds of P is the set of roots
of P ′ modulo ∆. In particular, we see that the set of integer seeds of P is periodic
(for some period dividing ∆). Using the Chinese Remainder Theorem (CRT), we
can describe the roots of P ′ modulo ∆ with the roots of P ′ modulo pvalp(∆) for
each prime p dividing ∆. Moreover, since the polynomials we generate have a quite
large denominator, we had to find an efficient way of representing the set of integer
seeds in order to be able to compute and store it. In the following, we give some
information on the structure of the roots of a polynomial modulo a prime power,
and explain how this structure allows to find a compressed representation of this set.
Then we present the algorithm we designed to compute the set under its compressed
representation, and the algorithm we used to check if Q represents primes. Finally,
we give the integer seeds of the examples we introduced in the previous subsection,
as well as the value of λ we used to balance R and H.

3.5.1. Structure of the set of roots modulo a prime power. In this paragraph, we
explain that the roots of a polynomial with integral coefficients modulo successive
powers of a prime form a tree, and we present some properties of this tree. Let P
be a polynomial with integral coefficients, let p be a prime integer.

Notice that if x ∈ Z/pkZ is a root of P for an integer k ≥ 2, then x mod pk−1

is a root of P modulo pk−1. Therefore, we can see x mod pk−1 as the parent of x
in a tree containing every root of P modulo the powers of p. We give in Figure 6
an example of such a tree taken from [43, Section 2.6], and another example in
Figure 7. The tree can be represented in levels made of the nodes of same depth,
i.e. the roots of P modulo a specific power of p. We set the depth of the initial root
mod p to be 1 so that it matches the exponent p1.
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Figure 7. Trees of roots of X3 − 25X2 + 70X − 522 modulo powers of 2.

We can see from the figures that every root of P modulo p gives rise to a tree.
We can also see that there are two types of trees: one kind where each node has a
unique child, and the other kind where a node has either multiple children or none.
The behavior of the tree depends on the multiplicity of the root. In the case where
P has a simple root α0 modulo p, Hensel’s lemma [26, Section 3.4] states that each
node has a unique child, and gives an algorithm to recover it.

When P has a root α0 modulo p with multiplicity greather than 2, the following
proposition from [43, Section 2.6] states that a node in the tree above α0 has either
p children or none:

Proposition 4. Let a ∈ Z be a singular root of a polynomial P ∈ Z[X] modulo a
prime power pk. Then either a lifts to p roots modulo pk+1 or a lifts to no roots.

For example on Figure 6, 1 is a multiple root of X2 +X + 223 modulo 3, and
in Figure 7, 0 is a multiple root of X3 − 25X2 + 70X − 522. They give rise to a
non-degenerate tree. In Figure 7, 1 is a simple root, and gives rise to a degenerate
tree like a linked list.

3.5.2. Representation of the set of roots modulo a prime power. Computing the
roots of a polynomial P modulo pk, where p is a prime, means computing the k-th
level of the tree of roots of P modulo powers of p. We have seen in Figure 7 that
the number of roots can grow quickly. In our case, the polynomials that we are
interested in may have a large denominator, meaning that p can be quite large as
well. Therefore, we have to find a way to store the roots in a way minimizing the
amount of space required. For example, in Figure 6, we can represent the solutions
modulo 34 by simply giving the node with label 4 at depth 2, and saying that
x ∈ Z/34Z is a root of P if and only if x ≡ 4 mod 32. As an other example, to
represent the roots modulo 35, we can see that x ∈ Z/35Z is a solution if and only
if x ≡ 4 mod 33 or x ≡ 22 mod 33. Therefore, we can represent the roots by giving
the two nodes 4 and 22 at depth 3.

Remark 8. We can look at this representation from the point of view of p-adic
geometry ([26] for a reference). Then, saying that an integer x ∈ Z equals a modulo
pj means that x ∈ D(a, p−j) where D(a, p−j) is the disk of centre a and radius p−j
in Qp. Our representation can be interpreted as the covering of the preimage of
D(0, p−k) under P with a minimal number of disks. This point of view suggests
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that our representation will have good properties for computing inclusions and
intersections, as Qp is an ultrametric space.

Remark 9. We used this particular representation to store the minimum amount
of information possible. Therefore, it would be counterproductive to use the CRT
to reassemble the roots of P ′ modulo ∆, instead of keeping everything under this
compressed form. This means that, for example, when we use the family to generate
curves, we have to iterate on the integer seeds using the representation modulo
different prime powers, which is in fact not so difficult.

Example 13. Let P = (X2+23644019242458802X+39688175156984422)/68398769951398683.
Let P ′ = X2+23644019242458802X+39688175156984422 and ∆ = 68398769951398683 =
35 × 167772592. We find that P ′ ≡ X2 + X + 223 mod 35 and P ′ ≡ (X −
1)2 mod 167772592. Therefore, P ′ has a multiple root modulo 16777259 which
lifts modulo 167772592. Then, from Figure 6, we know that P takes integer values
at an integer x if and only if x ≡ 4, 22 mod 33 and x ≡ 1 mod 16777259. Here it is
convenient to avoid storing the 16777259 roots above 1 in the tree of roots modulo
powers of 16777259. Instead, we store triplets (4, 3, 3), (22, 3, 3) and (1, 16777259, 1)
where (x, p, j) encodes the roots in the class x mod pj that make P ′ vanish modulo
pk. Note that here we have j < k, which means that we have saved some memory
space.

3.5.3. Computing the roots of a polynomial modulo a prime power. In this paragraph,
we finally explain how to compute the set of roots of a polynomial with integral
coefficients modulo a prime power, under the representation from the last paragraph.
Let p be a prime integer and k be a positive integer. In our experiments we
encoutered some highly tricky cases and these situations led us to the following
strategy to handle these technicalities. This section can be skipped on first read.
More precisely, lifting the simple and multiple roots with a Panayi’s like algorithm1

does not end in all cases in a compressed form of roots and that caused memory
issues in our implementation.

Let us first define

(3.6) µ(P ) = sup{j ∈ Z+ | ∀x ∈ Z, P (x) ≡ 0 mod pj} .
Our Algorithm 3.2 will essentially sum up to computing µ(P ), or more realistically

a good lower approximation of µ(P ) for any P .
First, the content of the polynomial P obviously impacts µ(P ). Let ν =

valp(cont(P )), then µ(P ) ≥ ν. Moreover, µ(P/pν) = µ(P ) − ν, therefore we
only have to consider the case where p and the content of P are coprime. We have
the following:

Proposition 5. Let P be a polynomial with integral coefficients, and let p be a
prime integer such that cont(P ) and p are coprime. Let P̃ = P mod p, and let
P̃ = (Xp −X)jQ̃ where Q̃ and Xp −X are coprime in Fp[X]. Then 1 ≤ µ(P ) ≤ j.
Moreover, let Q ∈ Z[X] be a polynomial mapping to Q̃ ∈ Fp[X], and let R =
P − (Xp −X)jQ ∈ Z[X]. Then cont(R) ≥ 1, and µ(P ) ≥ min(j, µ(R)).

Proof. We first prove that µ satisfies the following:
(1) µ(P ) =∞ iff P = 0.

1we learned that this folklore algorithm is attributed to Peter Panayi who wrote a PhD thesis
entitled Computation of Leopoldt’s p-adic regulator at the University of East Anglia in 1995.
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(2) ∀P,Q ∈ Z[X], µ(PQ) ≥ µ(P ) + µ(Q).
(3) ∀P,Q ∈ Z[X], µ(P +Q) ≥ min(µ(P ), µ(Q)).

Notice that µ(P ) = min
x∈Z

νp(P (x)), where νp is the p-adic valuation on Z. Then (1)

is easily verified. Let P,Q ∈ Z[X], then

µ(PQ) = min
x∈Z

νp(PQ(x)) = min
x∈Z

(νp(P (x)) + νp(Q(x)))

≥ min
x∈Z

νp(P (x)) + min
x∈Z

νp(Q(x)) = µ(P ) + µ(Q) (2)

µ(P +Q) = min
x∈Z

νp(P (x) +Q(x)) ≥ min
x∈Z

min(νp(P (x)), νp(Q(x)))

≥ min(min
x∈Z

νp(P (x)),min
x∈Z

νp(Q(x))) = min(µ(P ), µ(Q)) (3)

Then, with the notation of the proposition, P = (Xp − X)jQ + R, so µ(P ) ≥
min(µ((Xp −X)jQ), R) = min(j, µ(R)). �

Corollary 1. Let P be a polynomial with integral coefficients, and let p be a prime
integer such that cont(P ) and p are coprime. Then there exists integers j0, j1, ...,
jj0−1 and polynomials Q0, Q1, ..., Qj0−1, R, such that

P = (Xp −X)j0Q0 + p(Xp −X)j1Q1 + ...+ pj0−1(Xp −X)jj0−1Qj0−1 + pj0R.

Moreover, µ(P ) >= min{j0, j1 + 1, ..., jj0−1 + j0 − 1}.

Generally, if we compute min{j0, j1 +1, ..., jj0−1 + j0−1}, the result will be equal
to µ(P ). During our enumeration, we never encountered a polynomial where the
two values were different. Therefore, we designed a recursive algorithm (Alg. 3.2) to
compute a good approximation of µ(P ).

Algorithm 3.2: Approx-µ(P, p, depth,m)
1 Initial call: Approx-µ(P, p, 0,+∞) Input: P ∈ Z[X], p a prime integer,

depth a variable initialized at 0 storing the global content of the
term in the recursion, m the current minimum in the recursion,
initialized at +∞

2 Let c = νp(cont(P ))

3 depth← depth+ c

4 P ← P/pc

5 Let j be the largest integer such that (Xp −X)j divides P mod p

6 m← min(m, depth+ j)

7 if m ≤ depth+ 1 // at which point the minimum stops decreasing
8 then
9 Return m

10 else
11 Compute Q ∈ Z[X] such that (Xp −X)jQ = P mod p.
12 Let R = P − (Xp −X)jQ

13 Return Approx-µ(R, p, depth,m)

Now we come back to the main algorithm (computing the roots of P modulo ∆).
The idea is that we can use µ and some substitutions to climb the tree of roots until
we find the correct congruence relations to describe the set of roots.
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Proposition 6. Let P be a polynomial with integral coefficients, and let p be a prime
integer. Let i be a positive integer. Let a be an integer such that P (a) ≡ 0 mod pi.
Let P ′ = P (piX + a). Then, µ(P ′) = max{j ∈ Z+ | ∀x ∈ Z such that x ≡
a mod pi, P (x) ≡ 0 mod pj}.

If we make two substitutions in a row, for example pX + a then pX + b, the
combined substitution is X 7→ p2X + pb+ a and the congruence relation in µ(P ′) is
x ≡ a+ pb mod p2. Therefore, this kind of substitutions allows to climb the tree of
roots modulo powers of p until we have µ(P ′) ≥ k.

We can give the idea of the algorithm with the example from Figure 6:

Example 14. Let P = X2 +X + 223, p = 3 and k = 5. We want to find the roots
of P modulo 35. We can compute µ(P ) = 0, therefore Z is not the answer. We
have P ≡ (X − 1)2 mod 3, so 1 is a multiple root of P modulo 3, and the only root.
Therefore we make the substitution P ← P (3X + 1) = 9X2 + 9X + 225, and our
result becomes {(1, 3, 1)}. Now 32 | cont(P ), so P ← P/32 = X2 + X + 25 and
k ← k − 2 = 3. Still, µ(P ) = 0 and P ≡ (X − 1)2 mod 3, so we substitute P ←
P (3X + 1) = 9X2 + 9X + 27, and our result becomes {(1 + 3, 3, 1 + 1)} = {(4, 3, 2)}.
Similarly, 32 | cont(P ), so P ← P/32 = X2 +X + 3 and k ← k − 2 = 1. We once
more have µ(P ) = 0, but this time P ≡ (X − 2)X mod 3. Since k = 1 here, it is not
necessary to continue further. The substitutions X 7→ 3X and X 7→ 3X + 2 give
the desired result of {(4 + 0, 3, 2 + 1), (4 + 2 · 32, 3, 2 + 1)} = {(4, 3, 3), (22, 3, 3)}.

Algorithm 3.3: RootsModPrimePowers(P, p, k, root, depth)
Input: P ∈ Z[X], p a prime integer, k the power of p, root and depth are

variables that store where we are in the tree of roots during the
recursion

1 Let c = νp(cont(P ))

2 P ← P/pc

3 Let µ = Approx-µ(P, p, 0,∞)

4 if k ≤ c+ µ then
5 Add (depth, root) to the list of solutions.
6 else
7 for 0 ≤ r ≤ p− 1, root of P mod p do
8 Run

RootsModPrimePowers(P (pX + r), p, k− c, root+ rpdepth, depth+ 1)

3.5.4. Checking if a polynomial represents primes. The first three conditions from
the Buniakowski–Schinzel conjecture (2.3) can be easily verified. The previous
paragraph dealt with condition 4. Therefore, we mainly need to understand how we
can verify that no prime integer divides every integer value of a polynomial P . We
can assume that we know the integer seeds of P . Let ∆ be the denominator of P .
First fix a positive integer N . Compute d the greatest common divisor of N integer
values of P . If d is 1 then there is nothing more to do. If d > 1 then let p be a
prime dividing d. There are two possibilities: p | ∆ or p - ∆. If p - ∆ then P can be
projected onto a polynomial P̃ in Fp[X] by taking its coefficients modulo p. Then

p is a divisor of every integer values of P iff P̃ evaluates to 0 at every element in Fp
iff P̃ ≡ 0 mod Xp −X in Fp[X].
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If p | ∆ then define P ′ = ∆P . Let kp be the valuation of p in ∆ and let

Lkpp = {x ∈ Z/pkpZ | P ′(x) = 0} and Lkp+1
p = {x ∈ Z/pkp+1Z | x mod pkp ∈ Lkpp }.

Then p is a divisor of every integer values of P if and only if for every x ∈ L
kp+1
p

we have P ′(x) = 0. We only have to compare Lkp+1
p and the set of roots of

P ′ modulo pkp+1. Since Lkpp and L
kp+1
p share the same representation with our

representation method, and that we mentionned in Remark 8 that computing
inclusions was not difficult, we do not have anything to add. We get the following
algorithm:
Algorithm 3.4: Ensuring gcd({f(x) | x, f(x) ∈ Z}) = 1

Input: P ∈ Q[X] a polynomial with denominator ∆, N ∈ Z, (L
kp
p )p|∆

1 d = 0;
2 for N repetitions do
3 Pick a random element π in

∏
p|∆ L

kp
p ;

4 Let x be a representant in the equivalence class CRT (π);
5 d = gcd(d, P (x));
6 if d = 1 then
7 Return True;
8 Let P be the set of prime divisors of d, trivial_gcd = True, and let i = 0;
9 while trivial_gcd and i < #P do

10 Let p = P[i] and let i = i+ 1;
11 if p | ∆ then
12 Let P ′ = ∆P ;
13 Compute Λ

kp+1
p the set of roots of P ′ modulo pkp+1;

14 trivial_gcd=not Lkpp ⊂ Λ
kp+1
p ;

15 else
16 Let P̃ be the projection of P in Fp[X];
17 trivial_gcd=not P̃ ≡ 0 mod Xp −X
18 Return trivial_gcd ;

3.5.5. Managing families with large denominators. It is important to keep in mind
that we want the families we computed to be able to generate pairing-friendly curves
of a specific size. Two main obstacles are known in the litterature (for example see
[22]): the degree of the polynomial R and the magnitude of the denominator of Q
(which is related to the denominator of every polynomial in the family). In this
paragraph, we elaborate on these obstacles and give a criterion telling if a family
will be able to produce curves of a given size. First, we have seen that the set of
integer seeds of a family is periodic. The LCM of the denominators of Q, T and Y
is a period of this set, but usually not the smallest one.

Definition 4. Let Q,R, T, Y,H be a family of pairing-friendly curves. We call Π
the smallest period of the set of integer seeds of the family. We call π the ratio of
integer seeds by period of Π: π = #{integer seeds modulo Π}/Π.

It is not difficult to see that Π is well-defined. It better describes the difficulty of
finding curves of a certain size (of q = Q(x0) and r = R(x0)) than the denominator.
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For example, among the three families with embedding degree k = 22 we provided,
Example 6 has a larger denominator than Example 7 while its period is smaller.

Let Q, R, T , Y , H be a family of pairing-friendly elliptic curves. Let d be the
degree of R, Π the smallest period of the set of seeds of the family, and π the ratio
of integer seeds per period of Π. Let n and N be two positive integers. Let λ be
the denominator of R. We want to know if there are N integer seeds x ∈ Z such
that R(x) has size n. R(x) has size n if x has size (n+ log(λ))/d (here we assume
R ≈ Xd/λ). There are approximately 2(n+log λ)/d positive integers x of the correct
size, and 2(n+log λ)/d+1 integers in total. On the other hand, we need to consider
N/π integers to find N integer roots. Therefore, we need:

N/π ≤ 2(n+log λ)/d+1,

or taking the logarithm:

d log(1/π)− log λ ≤ n+ d(1− logN).

4. Our new pairing-friendly curve families made practical

In this section we aim at instanciating our new pairing-friendly curve families
at cryptographic sizes, and implementing the optimal ate pairing on them. We
presented several new families in subsection 3.4. We focus on two families of
embedding degree k = 20 (Example 11, Example 12 that we name GG20a and
GG20b) and one of embedding k = 22 (Example 6 named GG22D7).

4.1. Finding Seeds. The first step is to get seeds x0 so that the parameters
Q(x0), R(x0)/λ are prime integers of cryptographic size. Moreover it is usefull to
be able to generate sparse seeds, that have a very small Hamming weight in (signed)
binary form. For that we use the Python/SageMath scripts available at [31] under
sage/tnfs/gen/generate_sparse_curve.py. If we target the 192-bit security
level, r should be about 384-bit long. We obtain the seeds in Table 5. For GG20a
and GG20b we present the seeds of smallest possible Hamming weight such that
q = Q(x0) is at most 576-bit long (9 limbs of 64-bits). It implies r = R(x0) of 379
or 380 bits (almost 384 bits). For GG22D7 we obtain only one seed so that r is
close to 384 bits.

curve seed log q log r ρ log qk
sec.
Fqk

GG20a −(249 + 246 + 241 + 218 + 23 + 22 + 1) 576 379 1.52 11520 196
GG20a 249 + 246 + 244 + 240 + 234 + 227 + 214 + 1 576 380 1.52 11500 196
GG20b −249 − 245 − 242 − 236 + 211 + 1 575 379 1.52 11500 196
GG20b −249 + 246 − 241 + 235 + 230 − 1 575 379 1.52 11500 196
GG20b −249 − 247 + 245 − 227 − 222 − 218 − 1 576 380 1.52 11520 196
GG22D7 −220 + 218 + 213 − 210 − 28 − 22 + 1 457 383 1.19 10054 220

Table 5. Parameters of our new curves at the 192-bit security level.

4.2. Pairing formulas on our new curves.
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4.2.1. Recap on Optimal Ate Pairing Computation. The fastest known pairing in
a standard setting is Vercauteren’s optimal ate pairing [46], a variant of the Tate
pairing. Other pairings such as α-Weil or β-Weil pairings might be competitive in
parallel computation, but we do not consider this case. First, define G1 as the order-r
subgroup over Fq, G1 = E(Fq)[r] = E[r] ∩ ker(π − [1]) where π : (x, y) 7→ (xq, yq) is
the Frobenius endomorphism on E, and define G2 as the trace-zero subgroup of
order r over Fqk , G2 = E[r]∩ker(π− [q]). With the LLL lattice reduction algorithm,
obtain short vectors of the lattice spanned by the rows of the matrix

M =



r 0 . . . . . . 0

−q 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . 1 0
0 . . . 0 −q 1


ϕ(k)×ϕ(k)

With LLL, the shortest vector has coefficients bounded by Cr1/ϕ(k) where C de-
pends on the dimension of the lattice and the LLL parameters (δ, γ). A row
(c0, c1, . . . , cϕ(k)−1) of short vectors gives the formula, with some integers m, λ,

c0 + c1q + c2q
2 + . . .+ cϕ(k)−1q

ϕ(k)−1 = λ = mr = 0 mod r .

The optimal ate pairing formula is given by Theorem 3, where fc,Q(P ) denotes a
Miller function whose divisor is div(fc,Q) = c(Q)− ([c]Q)− (c− 1)(O), evaluated at
the point P . In other words, the function fc,Q has a zero of order c at Q, a pole of
order 1 at [c]Q, and a pole of order (c− 1) at the point at infinity O. The classical
formulas are f1,Q = 1; fi+j,Q = fi,Q · fj,Q · `iQ,jQ/v(i+j)Q where `iQ,jQ denotes the
line equation through iQ and jQ, and v(i+j)Q denotes the vertical line at (i+ j)Q;
and fij,Q = f ji,Q · fj,[i]Q.

Theorem 3 ([46]). Let λ = mr with r - m and write λ =
∑l−1
i=0 ciq

i then
(4.1)

a[c0,...,cl] : G2 ×G1 → µr : (Q,P ) 7→

(
l∏
i=0

fq
i

ci,Q
(P ) ·

l−1∏
i=0

`[si+1]Q,[ciqi]Q(P )

v[si]Q(P )

)(qk−1)/r

with si =
∑l
j=i cjq

j, defines a bilinear pairing, where `Qi,Qj
(P ) denotes the line

equation through the points Qi, Qj evaluated at the coordinates of the point P , and
vQi(P ) is the vertical line through the point Qi evaluated at the coordinates of P .
Furthermore, if

mkqk−1 6≡ ((qk − 1)/r) ·
l∑
i=0

iciq
i−1 mod r ,

then the pairing is non-degenerate.

In the following subsections, we apply Theorem 3 to our new curves. The compu-
tation of a Miller function fc,Q(P ) is explained in subsection 4.4 and algorithm 4.1.
Because our curves have even embedding degrees, we omit the vertical lines vQi(P )
in the formulas (see subsubsection 4.3.1 and subsubsection 4.3.3).
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4.2.2. Optimal Ate Pairing Formulas for our new k = 20 curves. For the first k = 20
curve family (GG20a), we get

(4.2) x− q(x) + 2(q(x))6 ≡ 0 mod r(x)

hence the formula, where π(Q) = [q]Q, π6(Q) = [q6]Q:

e(P,Q) = fx,Q(P )f−1,π(Q)(P )f2,π6(Q)(P )`[x]Q,−π(Q)(P )`xQ−π(Q),π6([2]Q)(P ) .

Well-known simplifications apply: f−1,π(Q)(P ) can be dropped off, and the same for
the line `xQ−π(Q),π6([2]Q)(P ) as it will be a vertical. Moreover, f2,π6(Q)(P ) costs a
double-line step `π6(Q),π6(Q)(P ) = `q

6

Q,Q(P ). Finally,

(4.3) e(P,Q) = fx,Q(P )`q
6

Q,Q(P )`[x]Q,π(−Q)(P ) .

For the second k = 20 family (GG20b), we obtain a similar formula, only a sign
changes:

x− q(x)− 2(q(x))6 ≡ 0 mod r(x)(4.4)

e(P,Q) = fx,Q(P )`q
6

−Q,−Q(P )`[x]Q,π(−Q)(P ) .(4.5)

The final exponentiation is decomposed into two parts, called easy and hard:

q20 − 1

r
=
q20 − 1

φ20(q)

φ20(q)

r
= (q10 − 1)(q2 + 1)︸ ︷︷ ︸

easy

φ20(q)

r︸ ︷︷ ︸
hard

.

The easy part costs one inversion and a few Frobenius powers. We apply the
technique of Fuentes et al. [23] to simplify the hard pard. We note that q8 =
q6 − q4 + q2 − 1 mod Φ20(q) and after some ad-hoc improvements, we obtain the
following exponents ea, eb for GG20a, resp. GG20b that are multiples of the hard
part Φ20(q)/r and coprime to r.

ea =(x6 − 2x5 + 5x4 + 328)

× (−41q2 + xq(7− 24q5) + x2(11− 2q5) + x3q4(4− 3q5) + x4q3(2 + q5) + x5q7)

+ (x2 − 2x+ 5)

× (625q(2− q5) + 125x(4 + 3q5) + 25x2q4(11 + 2q5) + 5x3q3(7 + 24q5) + 38x4q7)

+ 6724q7

eb =(x6 − 2x5 + 5x4 − 328)

× (−41q2 + xq(7 + 24q5) + x2(11 + 2q5)− x3q4(4 + 3q5) + x4q3(−2 + q5) + x5q7)

+ (x2 − 2x+ 5)

× (−54q(q5 + 2) + 53x(−4 + 3q5) + 52x2q4(11− 2q5) + 5x3q3(7− 24q5)− 38x4q7)

+ 6724q7

4.2.3. Optimal Ate Pairing Formulas for our new k = 22 curve. For our new k = 22
curve with D = 7, we get

(4.6) x2 − xq(x) + 2(q(x))2 ≡ 0 mod r(x)

hence the optimal ate Miller loop formula

e(P,Q) = fx2,Q(P )f−x,π(Q)(P )f2,π2(Q)(P )`[x2]Q,−π([x]Q)(P )`x2Q−π([x]Q),π2([2]Q)(P )
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and the latter line can be removed as it is a vertical. Finally,

(4.7) e(P,Q) = fx2,Q(P )f−qx,Q(P )`q
2

Q,Q(P )`[x2]Q,−π([x]Q)(P ) .

Moreover one can share the computation of fx,Q inside fx2,Q:

(4.8) e(P,Q) = fxx,Q(P )fx,[x]Q(P )f−qx,Q(P )`q
2

Q,Q(P )`[x2]Q,−π([x]Q)(P ) .

For the final exponentiation, we apply the same technique ([23]) and we obtain

e =(x12 − x11 + 2x10 + 161) · (−23q8 + 11xq7 + 17x2q6 + 3x3q5 − 7x4q4 − 5x5q3

+ x6q2 + 3x7q + x8 + x9q10 + x10q9)

+ (x2 − x+ 2) · (210q7 + 29xq6 − 28x2q5 − 3 · 27x3q4 − 26x4q3 + 5 · 25x5q2

+ 7 · 24x6q − 3 · 23x7 + 17 · 22x8q10 + 11 · 2x9q9)

Finally we mention that Fouotsa et al. x-super-optimal ate pairing [20] can apply
to this curve but we did not investigate further.

4.3. Twisted curves, G2 representation, and finite field extensions.

4.3.1. Twisted curve and sparse G2 representation for k = 20. Our new GG20 curves
have j-invariant 1728 (discriminant D = 1) and short Weierstrass curve equation
E : y2 = x3 + ax (b = 0). In this case, points in G2 can be represented in sparse
form thanks to a quartic twist. There are two choices of quartic twist. Let t = T (x0)
be the trace of E over Fq and let t5 be the trace of E over Fq5 , t5 = t5− 5qt3 + 5q2t.
Let y5 be the square-free part of t25 − 4q5 = −Dy2

5 , y5 = y(t4 − 3pt2 + p2) where
t2−4q = −Dy2. The two possible quartic twist orders are q5 +1+y5 and q5 +1−y5.
By construction, one quartic twist curve has order multiple of r = R(x0) and with
our choice of y = Y (x0) and y5, this is q5 + 1 + y5.

A quartic D-twist of E over Fq5 is defined by E′D : y′2 = x′3 +a/w where the curve
coefficient a is divided by w hence the name D, and w ∈ Fq5 \Fq is such that X4−w
is irreducible over Fq5 . Let ω ∈ Fq20 such that ω4 = w and #E′D(Fq5) = q5 + 1 + y5.
Let Q′(x′, y′) ∈ E′D(Fq5). Then Q = φ(Q′) = (x′ω2, y′ω3) lies on E(Fq20). Moreover
x′ω2 is in the subfield Fq10 . The vertical line equation at Q evaluated at P is
vQ(P ) = xQ − xP = x′ω2 − xP ∈ Fq10 . Because it is in a proper subfield of
Fq20 , it becomes 1 after the easy part of the final exponentiation. As elements of
Fq20 = Fq5 [ω], x′ω2 and y′ω3 are sparse.

A quartic M-twist of E over Fq5 is defined by E′M : y2 = x3 + az where the curve
coefficient a is multiplied by z hence the name M, and z ∈ Fq5 \Fq is such that X4−z
is irreducible over Fq5 . Let ζ ∈ Fq20 such that ζ4 = z and #E′M (Fq5) = q5+1+y5. Let
Q′(x′, y′) ∈ E′M (Fq5). Then Q = φ(Q′) = (x′/ζ2, y′/ζ3) lies on E(Fq20). Moreover
x′/ζ2 is in the subfield Fq10 . The vertical line equation at Q evaluated at P is
vQ(P ) = xQ − xP = x′/ζ2 − xP ∈ Fq10 . Because it is in a proper subfield of
Fq20 , it becomes 1 after the easy part of the final exponentiation. As elements of
Fq20 = Fq5 [ζ], x′/ζ2 = x′/zζ2 and y′/ζ3 = y′/zζ are sparse.

4.3.2. Field extension representation for k = 20. Let q = 1 mod 5 and let Fq5
be defined with an irreducible binomial polynomial x5 − v in Fq[x]. Let ν be
a root of x5 − v, that is, ν = 5

√
v (for some choice of fifth root). Elements of

Fq5 = Fq[x]/(x5 − v) can be represented as degree 4 polynomials modulo x5 − v or
once ν is set, as ~a = a0 + a1ν + a2ν

2 + a3ν
3 + a4ν

4, where ai ∈ Fq. Let x4 − w be
an irreducible polynomial in Fq5 [x], where w ∈ Fq5 . Let ω be a root of x4 − w in
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Fq20 . Elements of Fq20 are represented as degree 3 polynomials modulo x4 −w with
coefficients in Fq5 or as ~a0 + ~a1ω + ~a2ω

2 + ~a3ω
3, where ~ai ∈ Fq5 .

Example 15 ((GG20b575a)). We take as example the curve GG20b whose seed is
u = −249−245−242−236 + 211 + 1. We define Fq5 = Fq[x]/(x5−2) and set ν a root
of x5− 2 in Fq5 . There are two options to define the quartic extension: on top of Fq
or on top of Fq5 . We can define Fq4 = Fq[x]/(x4 − 3) and set ωD a root of x4 − 3 in
Fq4 . We define Fq20 = Fq[ν, ωD]. The quartic D-twist is E′D : y2 = x3 + a/(3ν4)x
and the twisting map is φD : (x′, y′) 7→ (x′ω2

Dν
2, y′ω3

Dν
3).

We can also define Fq4 = Fq[x]/(x4 − 11) and set ωM a root of x4 − 11 in Fq4 .
We define Fq20 = Fq[ν, ωM ]. The quartic M-twist is E′M : y2 = x3 + a(11ν4)x and
the twisting map is φM : (x′, y′) 7→ (x′/(ω2

Mν
2), y′/(ω3

Mν
3)).

For Frobenius powers, νq = ν5 q−1
5 ν = 2

q−1
5 ν where 2

q−1
5 ∈ Fq is precomputed.

Also, ωqD = ω
4 q−1

4

D ωD = 3
q−1
4 ωD where 3

q−1
4 ∈ Fq is precomputed. Note that

3
q−1
2 = −1. In the same way, ωqM = ω

4 q−1
4

M ωM = 11
q−1
4 ωM where 11

q−1
4 ∈ Fq is

precomputed. Note that 11
q−1
2 = −1. Moreover, 11

q−1
4 = −3

q−1
4 .

A Frobenius power costs 18 multiplications in Fq (f20 = 18m), where 18 values
in Fq shall be precomputed: the (2i

q−1
5 3j

q−1
4 )0≤i≤4, 0≤j≤3, except for i = j = 0 (the

value is 1) and i = 0, j = 2 (the value is −1).
A usual alternative is to define Fq20 on top of Fq5 . Let Fq20 = Fq5 [x]/(x4 − 3ν).

Let ωD be a root in Fq20 of x4 − 3ν. The quartic D-twist is defined by E′D : y2 =
x3 + a/(3ν)x and the twisting map is φD : (x′, y′) 7→ (x′ω2

D, y
′ω3
D). Let Fq20 =

Fq5 [x]/(x4−11ν). Let ωM be a root in Fq20 of x4−11ν. The quartic M-twist is defined
by E′M : y2 = x3 + a(11ν)x and the twisting map is φM : (x′, y′) 7→ (x′/ω2

M , y
′/ω3

M ).
A Frobenius power costs f20 = 18m like before, with similar precomputations.

4.3.3. Twisted curve and sparse G2 representation for k = 22. Our new k = 22
curves E : y2 = x3 + ax + b in short Weierstrass form have a quadratic twist
defined over Fq11 . Let t be the trace of E over Fq. The trace of E over Fq11 is
t11 = t11 − 11qt9 + 44q2t7 − 77q3t5 + 55q4t3 − 11q5t. The quadratic twist of E
over Fq11 has order q11 + 1 + t11 and by construction, its order is a multiple of
r = R(x0). The quadratic M-twist is defined by E′M : y′2 = x′3 + aw2x + bw3

where w ∈ Fq11 \ Fq is not a square. Let ω in Fq22 be a root of x2 − w. Let
Q′(x′, y′) ∈ E′M (Fq11). Then Q = φ(Q′) = (x′/ω2, y′/ω3) = (x′/w, y′/w2ω) lies on
E(Fq22). More precisely x′/w is in the subfield Fq11 . The vertical line equation at Q
evaluated at P is vQ(P ) = xQ − xP = x′/w − xP ∈ Fq11 . Because it is in a proper
subfield of Fq22 , it becomes 1 after the easy part of the final exponentiation. As
elements of Fq22 = Fq11 [ω], x′/w and y′/w2ω are sparse.

4.3.4. Field extension representation for k = 22. The polynomial shape of q = Q(x0)
does not allow q = 1 mod 11 and finding an irreducible binomial polynomial is not
possible. We have chosen the alternative with a sparse polynomial of the form
x11 + v1x + v0 with tiny integers v1, v0. We represent elements of Fq11 as degree
10 polynomials modulo x11 + v1x + v0. The top extension Fq22 is represented as
a quadratic extension of Fq11 with an irreducible quadratic polynomial x2 − w,
w ∈ Fq11 .

Example 16 (GG22D7-457). With the seed x0 = −220 + 218 + 213− 210− 28− 22 + 1,
q = Q(x0) is 457-bit long. We found the irreducible polynomials x11 + x − 19
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and x11 − 2x − 2. Let ν be a root of either polynomial. Then x2 − ν defines the
quadratic extension. Let ω ∈ Fq22 such that ω2 = ν. The quadratic M-twist is
E′M : y2 = x3 + aν2x+ bν3. The twist map is φM : (x′, y′) 7→ (x′/ν, y′/ν2ω).

A Frobenius power in this case is quite tedious, as q = 3 mod 11. We obtain
f11 = 110m and f22 = 21 · 11m = 231m.

4.4. Miller function computation. Miller algorithm (algorithm 4.1) computes a
Miller function fc,Q(P ). Because our curves have even embedding degrees, we omit
the vertical lines vQi

(P ) in the formulas (see subsubsection 4.3.1 and subsubsec-
tion 4.3.3). Formulas for doubling step and addition step for our k = 20 curves can
be found in Costello, Lange and Naehrig paper [16], and for k = 22 curves, in [13].

Algorithm 4.1: MillerFunction(c, P,Q)
Input: E,Fq,Fqk , k even, P ∈ E(Fq)[r], Q ∈ E(Fqk)[r] such that

π(Q) = [q]Q in affine coord., c ∈ Z∗.
Result: f = fc,Q(P )

1 f ← 1; R← Q;
2 if c < 0 then R← −R; c← −c;
3 for b from the second most significant bit of c to the least do
4 `0 ← `R,R(P ); R← [2]R ; // Dbl step, tangent line
5 f ← f2; // sk
6 if b = 1 then
7 `1 ← `R,Q(P ); R← R+Q ; // Add step, chord line
8 f ← f · (`0 · `1) ; // mk + sparse-sparse-mk

9 else
10 f ← f · `0 ; // full-sparse-mk

11 return f ;

4.5. SageMath proof-of-concept implementation. We rely on SageMath for
the finite field extension arithmetic. We base our implementation on the MIT-
licensed library of pairings at [17]. We adapt the pairing computation on KSS16
curves to our k = 20 curves as they both have a quartic twist. More precisely we
adapt pairing.py to our needs. Our implementation it available under MIT license
at

https://gitlab.inria.fr/guillevi/pairings-on-gasnier-g-curves
We validated our pairing formulas (optimal ate Miller loop formulas, final exponen-
tiation formulas) and checked that the pairing is bilinear.

4.6. Pairing cost estimates. We reproduce the results of [1], updated. The classi-
cal strategy is used to estimate a pairing computation cost in terms of multiplications
and squarings in the base field Fq. The costs of multiplication and squaring in the
intermediate extensions are estimated in Table 6 (Fq5 and Fq20 , Fq11 and Fq22 respec-
tively). We denote mi, resp. si a multipliation, resp. squaring in Fqi . For degree 5
extension, [42] reports m5 = 13m, s5 = 13s. For degree eleven extension field Fq11 ,
the Karatsuba rought estimate is m11 ≥ 11log2 3 = 44.72 but it seems more realistic
from an implementation perspective to use [42, Eq. 6]: m11 = m5 + 2m6− 1 = 48m
where m5 = 13m and m6 = 18m. The quadratic extension Fq22 on top of Fq11 uses

https://gitlab.inria.fr/guillevi/pairings-on-gasnier-g-curves
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k mk sk fk scyclo
k ik − i1 ≈ ik

1 m s 0 − 0 25m
5 13m [42] 13s [42] 4m − 3f5 + 2m5 + 10m = 48m 73m
10 3m5 = 39m 2m5 = 26m 8m 2s5 = 26s 2m5 + 2s5 + i5 − i = 74m + 26s 125m
20 3m10 = 117m 2m10 = 78m 18m 2s10 = 52m 2m10 + 2s10 + i10 − i = 255m 280m
11 48m [42] 48s [42] 110m − 5f11 + 4m11 + 22m = 764m 789m
22 3m11 = 144m 2m11 = 96m 231m 2s11 = 96s 2m11 + 2s11 + i11 − i = 860m + 96s 981m

Table 6. Relative cost of multiplicationmk, squaring sk, Frobenius
fk, and inversion ik in finite field extensions. In the right-most
column, ik is estimated with i1 = 25m, s = m.

the usual Karatsuba formula m22 = 3m11, s22 = 2m11. The quartic extension Fq20
on top of Fq5 uses recursively the Karatsuba quadratic formulas m20 = 3m10 = 9m5,
s20 = 2m10 = 6m5.

Frobenius powers in Fq5 and Fq20 are cheap as the extensions use binomial
polynomials. One has f5 = 4m and f20 = 18m. However in Fq11 , q = 3 mod 11 and
the irreducible polynomial has the form x11−2x−2. Let ν be a root of x11−2x−2,
νq = ν11 q−3

11 ν3 = (2ν + 2)
q−3
11 ν3 so that (a0 + a1ν + . . . + a10ν

10)q = a0 + a1ν
q +

. . .+a10ν
10q = a0 +a1δ1ν

3 +a2δ2ν
6 +a3δ3ν

9 +a4δ4ν+a5δ5ν
4 +a6δ6ν

7 +a7δ7ν
10 +

a8δ8ν
2+a9δ9ν

5+a10δ10ν
8 where δ1 = (2ν+2)(q−3)/11, δi = δi1(2ν+2)b3i/11c. Indeed,

νiq = ν11i(q−3)/11ν3i = (2ν + 2)i(q−3)/11(2ν + 2)b3i/11cν3i mod 11. Precomputing the
δis, it costs 10 multiplications of a Fq coefficient ai times a Fq11 value δi, hence
110m.

Inversion in Fq5 is computed with the usual trick x−1 = xq+q
2+q3+q4/NormFq5/Fq

(x)

([38, page ix]) and the simplification xq+q
2+q3+q4 = xq(q+1)(q2+1) that costs 3 Frobe-

nius and 2 multiplications in Fq5 . Once the numerator is computed, the norm
costs 5 more multiplications in Fq as Norm(x) = x · xq+q2+q3+q4 ∈ Fq. Then five
more multiplications in Fq are required to multiply the inverse of the norm to each
of the five coefficients. The final count is 3f5 + 2m5 + 5m + 5m + i = 48m + i.
Inversion in Fq11 is x−1 = x

∑10
i=1 q

i

/NormFq11/Fq
(x) where the numerator simplifies

as q+ . . .+q10 = q(q5 +1)((q2 +1)(q+1)q+1) or q(q+1)((q4 +1)(q2 +1)q2 +1) so it
costs 5 Frobenius powers, 4 multiplications. The total cost is 5f11 +4m11 +22m+i =
764m + i.

We report in Table 7 the cost of line computation and result accumulation that
come from algorithm 4.1. Finally in Table 8 we estimate the total cost of a pairing
computation in terms of multiplications in the base field.

Table 7. Miller loop cost in Weierstrass model from [13, 16].

k curve Dbl step, tangent line
Add step, chord line

sparse-sparse-mk

full-sparse-mk
reference

2 | k y2 = x3 − 3x+ b
quadratic twist

6mk/2 + 4sk/2 + km
10mk/2 + 3sk/2

mk

mk
[13]

4 | k y2 = x3 + ax
quartic twist

2mk/4 + 8sk/4 + (k/2)m
9mk/4 + 5sk/4 + (k/2)m

6mk/4

8mk/4
[16, §4]
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Table 8. Optimal ate pairing and final exponentiation cost esti-
mates in terms of finite field multiplications. The bitsize of p has a
scale color w.r.t. its 64-bit machine word size: 512 < 9w ≤ 576 ,
448 < 8w ≤ 512 .

curve p r Miller loop final exp pairing
bits bits optimal ate easy hard total total

GG20b 575 379 17554m 507m 41997m 42504m 60058m
GG22D7 457 383 45780m 1500m 79740m 81240m 127020m

5. Conclusion

This work generalizes the KSS technique to generate complete families of pairing-
friendly curves. Every complete family of cryptographic interest listed in the
taxonomy of Freeman, Scott and Teske fall in this global approach. Our contribution
is twofold: we present a theoretical interpretation of KSS with the subfield method
and display its versatility by generating new complete families of embedding degrees
of cryptographic interest: 16, 18, 20, 22. For k = 16, k = 18, we obtain alternative
choices of comparable performances as the well-known KSS curves. For k = 20, we
improve on the previous FST 6.4 curves with parameters that are not vulnerable
to a specific STNFS attack (the polynomial Q(X) has no automorphism). Finally
for k = 22, we improve on the previously best ρ-value curves: our new family with
D = 7 has ρ = 1.2 compared to FST 6.3 with ρ = 1.3. This ρ improvement applies
to all k = 4 mod 6 curves.

The polynomials defining the new families in some cases have larger denominators
and we present an automated procedure to process them. First, we determine the
congruence conditions on the seeds x0 to generate valid parameters with prime
integers at Q(x0), R(x0), and integers at T (x0), Y (x0), H(x0) (this step may discard
many potential families). This contribution comes with a SageMath open-source
companion code available online [25]. Second we obtain seeds to generate new
instances of elliptic curves of cryptographic interest at the 192-bit security level for
k = 20, k = 22 and derive the optimal ate pairing and final exponentiation formulas.
Finally we implemented the pairing on our new curves in SageMath to validate the
formulas [30].

The paramount goal remains families of pairing-friendy curves with ρ = 1, to reach
optimal efficiency and also to satisfy new needs in recursive proofs of knowledge,
where a cycle of prime-order pairing-friendly curves is sought. Complete families with
ρ = 1 are very rare: apart from the BN family, all known families are sparse (MNT
curves, Freeman curves). Moreover, these families all have quite small embedding
degrees (k ∈ {3, 4, 6, 10, 12}). In particular, our new subfield method do not capture
them. It remains a difficult open problem to generate new pairing-friendly curves
with ρ = 1. In this work, we improved the ρ-value in certain cases (k = 22). With
the ρ = 1 goal in mind, we foresee that such extremely rare curves are not likely to
be given by complete families. We presume that new techniques to generate sparse
families of curves are to be discovered in the quest to ρ = 1.
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Appendix A. Families with k = 46

Example 17. k = 46, D = 7, F = Q[x]/(x2 + x + 2), ω = (−1 +
√
−7)/2, α = ω,

(a, b) = (0, 1), θ = αζk.
• T = 1

1934

(
X24 + 2115X + 1934

)
• Y = 1

13538

(
X24 + 4X23 + 5983X + 10394

)
• R = (X44 + X43 −X42 − 3X41 −X40 + 5X39 + 7X38 − 3X37 − 17X36 −

11X35 +23X34 +45X33−X32−91X31−89X30 +93X29 +271X28 +85X27−
457X26 − 627X25 + 287X24 + 1541X23 + 967X22 + 3082X21 + 1148X20 −
5016X19 − 7312X18 + 2720X17 + 17344X16 + 11904X15 − 22784X14 −
46592X13 − 1024X12 + 92160X11 + 94208X10 − 90112X9 − 278528X8 −
98304X7 + 458752X6 + 655360X5− 262144X4− 1572864X3− 1048576X2 +
2097152X + 4194304)/967
• Q = 1

13091246

(
X48 +X47 + 2X46 + 5197X25 + 11966X24 + 10394X23

+8388608X2 + 22705043X + 16777216
)

Seeds should satisfy x0 ≡ 3, 4 mod 7. If x0 ≡ 268, 700 mod 967 then R,Q can take
prime values andH = (Q+1−T )/R takes integer values. If x0 ≡ 12, 79, 116, 119, 310,
320, 355, 418, 475, 495, 616, 629, 799, 806, 828, 832, 837, 853, 864, 917, 923 mod 967 then
Q, R/967 can take prime values and 967H takes integer values.

Example 18. k = 46, D = 15, F = Q[x]/(x2 + x + 4), ω = (−1 +
√
−15)/2,

α = (1− ω), (a, b) = (1,−1), θ = αζk.
• T = 1

2347906338

(
X24 + 122762871X + 2347906338

)
• Y = 1

11739531690

(
X24 − 4X23 − 1442508021X + 1856854854

)
• R = X44 − 3X43 + 3X42 + 9X41 − 45X40 + 81X39 + 27X38 − 567X37 +

1539X36 − 1215X35 − 5589X34 + 24057X33 − 38637X32 − 28431X31 +
317115X30 − 780759X29 + 439587X28 + 3365793X27 − 12734901X26 +
18009945X25+22379571X24−175198383X23+391317723X22−1051190298X21+
805664556X20 + 3890148120X19 − 16504431696X18 + 26172406368X17 +
20509371072X16−218562551424X15+532631427840X14−286518974976X13−
2336231642112X12+8727808776192X11−12166036475904X10−15868743229440X9+
120602448543744X8−266594886254592X7+76169967501312X6+1371059415023616X5−

https://dspace.jaist.ac.jp/dspace/bitstream/10119/4432/1/73-48.pdf
https://dspace.jaist.ac.jp/dspace/bitstream/10119/4432/1/73-48.pdf
https://eprint.iacr.org/2018/193
https://arxiv.org/abs/0903.2785
https://arxiv.org/abs/0903.2785
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4570198050078720X4 + 5484237660094464X3 + 10968475320188928X2 −
65810851921133568X + 131621703842267136

• Q = 1
13781660430051425610

(
X48 − 3X47 + 6X46 − 928427427X25 + 8655048126X24

−5570564562X23 + 789730223053602816X2 − 1648601361930867453X + 4738381338321616896
)

Appendix B. Families with k ∈ {18, 28, 40}

Example 19. Let k = 18, D = 3, KSS18 (Example 5) was obtained with Case 3,
d = 6, (a, b) = (−3, 1). With (a, b) = (2,−3) we get a similar family, of same R and
same congruence constraint x0 ≡ 14 mod 21:

• T = 1
7

(
−3X4 − 55X + 7

)
• Y = 1

21

(
X4 − 14X3 + 23X − 259

)
• R = (X6 + 37X3 + 343)/343
• Q = 1

21

(
X8 −X7 + 7X6 + 37X5 − 46X4 + 259X3 + 343X2 − 508X + 2401

)
With x0 = −280 − 269 − 251 − 23, we get q prime of 636 bits, r prime of 472 bits,
and the curve equation is y2 = x3 + 3.

Example 20. Let k = 28, D = 11, F = Q[x]/(x2 + x + 3), ω = (−1 +
√
−11)/2,

α = ω, (a, b) = (0, 1), θ = αζk. With Case 2 one obtains
• T = 1

3237

(
X15 + 718X + 3237

)
• Y = 1

35607

(
X15 + 6X14 + 7192X + 7545

)
• R = X24 +5X22 +16X20 +35X18 +31X16−160X14−1079X12−1440X10 +

2511X8 + 25515X6 + 104976X4 + 295245X2 + 531441
• Q = 1

38419953

(
X30 +X29 + 3X28 + 2515X16 + 14384X15 + 7545X14

+4782969X2 + 13304911X + 14348907
)

Example 21. Let k = 40, D = 11, F = Q[x]/(x2 + x + 3), ω = (−1 +
√
−11)/2,

α = −2 + 9ω, (a, b) = (−2, 9), θ = αζk. With Case 2 one obtains
• T = 1

28371069490077576136284995

(
X21 − 1298983332046081026293664X + 28371069490077576136284995

)
• Y = 1

2808735879517680037492214505

(
13X21 + 530X20

+39855355663556098930752358X − 319637262613414454163936985)
• R = X32+10129X28−4828953984X24−98864151184561X20+22812836050543021631X16−

487553566564316289900625X12 − 117441085958807929614150000000X8 +
1214834336234467583095383056640625X4+591471717852556891692790576324462890625
• Q = 1

2706345537183518226950562177678693106539604970474235

(
X42 + 13X41 + 265X40

−1206178349484582845901649X22 + 79710711327112197861504716X21

−319637262613414454163936985X20+2916872719845600597075638674667015171051025390625X2

−85992012470381924311027266086623267898575772916467X
+772971270759084158225044248786759020328521728515625)

Example 22. Let k = 40, D = 103, F = Q[x]/(x2 + x+ 26), ω = (−1 +
√
−103)/2,

α = 1 + 3ω, (a, b) = (1, 3), θ = αζk. With Case 2 one obtains
• T = 1

4202620637716354992437144

(
X21 + 348732358800946792843017X + 4202620637716354992437144

)
• Y = 1

1298609777054353692663077496

(
X21 + 464X20 + 8753973634233656777717305X

+166014435121355666871597032)
• R = X32−106721X28+8492348865X24−597138774199969X20+39124717339282369409X16−

1729924748717786211487744X12 + 71274094046504250746590986240X8 −
2594810846950526949390947132112896X4+70438120351099559671412028074440523776
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• Q = 1
70571951500718036592718678035431413978034073891096

(
X42 +X41 + 232X40

+715579461729981322722401X22 + 17507947268467313555434610X21

+166014435121355666871597032X20+204060853043388611231563655694411235724546277376X2

+6060102888139979906421290805414560100332422571929X
+47342117906066157805722768121103406688094736351232)

Appendix C. Families from the Taxonomy of Freeman, Scott, and
Teske

Example 23 ([22, Contruction 6.3]). Let k = 2 mod 4, D = 1.
T = X2 + 1
Y = (X2 − 1)Xk/2

R = Φ2k(X)
Q = (Xk+4 − 2Xk+2 +Xk +X4 + 2X2 + 1)/4

Then (Q,R, T, Y ) parameterizes a complete family of pairing-friendly curves of
embedding degree k and ρ = (k/2 + 2)/ϕ(k). Because k is even, the polynomial
Q is even (all monomials of even degree) and there exists a polynomial Q0 =
(Xk/2+2−2Xk/2+1 +Xk/2 +X2 +2X+1)/4 of degree k/2+2 such that Q = Q0(X2).
The improved Kim–Barbulescu variant of [29] can apply.

Example 24 ([22, Contruction 6.6] with k = 20). Let k = 20, D = 3. Let:
T = X11 −X + 1
Y = (X11 + 2X10 +X − 1)/3
R = Φ60(X)
Q = (X − 1)2(X20 −X10 + 1)/3 +X21

= (X22 +X21 +X20 −X12 + 2X11 −X10 +X2 − 2X + 1)/3
Then (Q,R, T, Y ) parameterizes a complete family of pairing-friendly curves of
embedding degree k = 20 and ρ = (k/2 + 1)/ϕ(k) = 11/8 = 1.375.

Example 25 ([22, Contruction 6.6] with k = 22). Let k = 22, D = 3.
T = X3 + 1
Y = (2X14 − 2X11 −X3 + 1)/3
R = Φ66(X)
Q = (X3 − 1)2(X22 −X12 + 1)/3 +X3

= (X28 − 2X25 +X22 −X17 + 2X14 −X11 +X6 +X3 + 1)/3
Then (Q,R, T, Y ) parameterizes a complete family of pairing-friendly curves of
embedding degree k = 22 and ρ = (k/2 + 3)/ϕ(k) = 7/5 = 1.4.
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