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In 2010, Freeman, Scott, and Teske published a well-known taxonomy compiling the best known families of pairing-friendly elliptic curves. Since then, the research effort mostly shifted from the generation of pairing-friendly curves to the improvement of algorithms or the assessment of security parameters to resist the latest attacks on the discrete logarithm problem. Consequently, very few new families were discovered. However, the need of pairing-friendly curves of prime order in some new applications such as SNARKs has reignited the interest in the generation of pairing-friendly curves, with hope of finding families similar to the one discovered by Barreto and Naehrig.

Building on the work of Kachisa, Schaefer, and Scott, we show that some elements of extensions of a cyclotomic field have a higher probability of generating a family of pairing-friendly curves. We present a general framework which embraces the KSS families and many of the other families in the taxonomy paper, and provide an open-source SageMath implementation of our technique. We finally introduce a new family with embedding degree k = 20 which we estimate to provide a faster Miller loop compared to KSS16 and KSS18 at the 192-bit security level.

1. Introduction 1.1. Pairing-friendly curves in cryptography. Pairing-friendly curves are a keyingredient in public-key cryptography. They allow identity-based encryption [START_REF] Boneh | Identity based encryption from the Weil pairing[END_REF], short signatures [START_REF] Boneh | Short signatures from the Weil pairing[END_REF] and more flexible key-exchange protocols [START_REF] Joux | A one round protocol for tripartite Diffie-Hellman[END_REF]. A pairing is an efficient bilinear map e r : G 1 × G 2 → G T . The input groups G 1 , G 2 of points on the curve E have prime order r, and G T , the target group of same order r, embeds in an extension field F q k of F q . Usually in cryptography, G 1 is defined over F q . The pairing efficiency is determined by the size of q, the size of q k , and the availability of improvements in specific cases [START_REF] Costello | Faster pairing computations on curves with high-degree twists[END_REF].

A pairing-based cryptosystem like the tri-partite Diffie-Hellman key exchange [START_REF] Joux | A one round protocol for tripartite Diffie-Hellman[END_REF] relies on the bilinearity of the pairing: e r ([a]P, [b]Q) = e r ([b]P, [a]Q) = e r (P, Q) ab that is, the pairing allows to multiply (in the exponents) two hidden secret scalars without knowing them. This property is a major key-ingredient for zero-knowledge proof systems, the latest trend being about SNARKs (Succinct Non-Interactive ARgument of Knowledge) where a quadratic equation shall be verified [START_REF] Groth | On the size of pairing-based non-interactive arguments[END_REF]. Cryptographic elliptic curves such as the ones standardised by NIST, and the Edwards curve 25519, do not allow an efficient pairing computation. Pairing-friendly curves shall be designed on purpose, with two criteria in mind: security and efficiency.

For cryptographic applications, G 1 and G 2 should offer a standard security level against a discrete logarithm computation. This problem is well-known for plain Date: September 13, 2023.

1 elliptic curves and standard recommendations consist in taking a prime order r of 2n bits for a security level of n bits, that is, usually r is 256, resp. 384-bit long to ensure a 128-bit, resp. 192-bit security level. However there is no standard choice of size of finite field F q k yet, as the security in a finite field extension is much more difficult to analyse due to the many variants of the Number Field Sieve algorithm. In 2016, Kim and Barbulescu [START_REF] Kim | Extended tower number field sieve: A new complexity for the medium prime case[END_REF] published their Extended Tower NFS algorithm (exTNFS or TNFS for short), and they achieve the best asymptotic complexity in some particular instances of finite fields. In particular, exTNFS is expected to be very efficient in fields such as F p 12 , where the extension degree has many small divisors. The heuristic complexity of TNFS follows a sub-exponential equation 1-α where Q = q k , α = 1/3, and c varies from (32/9) 1/3 = 1.526 to (64/9) 1/3 = 1.923. This complexity is very different from the DL computation on the curve, in O( √ r). The finite field extension degree k allows to adjust the DL-security in F q k to the security on E(F q ) so as to have parameters of minimal size. Before 2016 and Kim and Barbulescu's TNFS algorithm, the best known pairing-friendly curve family was given by Barreto and Naehrig (BN) [START_REF] Paulo | Pairing-friendly elliptic curves of prime order[END_REF]: a prime-order curve of about 256 bits, where the pairing transfers the DL problem into F q 12 of about 3072 bits. The security in the three groups G 1 , G 2 and G T was believed to reach 128 bits. Nowadays these BN curves of 254 to 256 bits have about 103 bits of security in F q 12 [START_REF] Barbulescu | Updating key size estimations for pairings[END_REF].

L Q (α, c) = exp c + o(1) (ln Q) α (ln ln Q)
Most of the known pairing-friendly curves are not of prime order: BN curves are an exception. G 1 has prime order r of log 2 r bits but its elements are defined over a field F q of log 2 q bits. The parameter ρ measures the loss for G 1 elements compared to an optimal key-size:

(1.1) ρ = log q log r .

The successor curves of BN curves in cryptography are Barreto-Lynn-Scott curves (BLS) [START_REF] Paulo | On the selection of pairing-friendly groups[END_REF], where ρ = 1.5 and k = 12. One of the most widespread parameter set is BLS12-381, where r is 254-bit long, q is 381-bit long, and k = 12. Non-prime-order curves showed to have a very efficient pairing computation, and were investigated as replacements [START_REF] Guillevic | A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level[END_REF]. However with the development of cycles of pairing-friendly elliptic curves [START_REF] Ben-Sasson | Scalable zero knowledge via cycles of elliptic curves[END_REF], prime-order pairing-friendly curves are again needed. There are only three known families of such curves: Miyaji-Nakabayashi-Takano (MNT) curves [START_REF] Miyaji | Characterization of elliptic curve traces under FR-reduction[END_REF], BN curves [START_REF] Paulo | Pairing-friendly elliptic curves of prime order[END_REF] and Freeman curves [START_REF] Freeman | Constructing pairing-friendly elliptic curves with embedding degree 10[END_REF]. Moreover, generalising their ideas gave new curves but none of prime order [START_REF] Galbraith | Ordinary abelian varieties having small embedding degree[END_REF][START_REF] Scott | A new family of pairing-friendly elliptic curves[END_REF]. At the moment, only the MNT curves allow the construction of cycles of pairing-friendly curves, but their instantiation is not efficient. It is an open problem [START_REF] Chiesa | On cycles of pairing-friendly elliptic curves[END_REF][START_REF] Bellés-Muñoz | Revisiting cycles of pairingfriendly elliptic curves[END_REF] to find cycles of prime-order pairing-friendly curves at cryptographic security levels, with efficient group operations. To this aim, finding new prime-order pairing-friendly curves is a prerequisite. 1.2. Previous work on finding families of pairing-friendly curves. Pairingfriendly curves are very rare and are obtained by dedicated methods. This paper focuses on ordinary curves defined over prime fields. The first solution was given by Miyaji, Nakabayashi and Takano [START_REF] Miyaji | New explicit conditions of elliptic curve traces for FR-reduction[END_REF]. They obtain ordinary curves (MNT) of prime order and embedding degree 3, 4 and 6. The curve parameters are given by quadratic polynomials q(x), r(x) and a linear polynomial t(x). Solving a Pell equation is needed [START_REF] Karabina | On prime-order elliptic curves with embedding degrees k = 3, 4, and 6[END_REF] to obtain valid seeds u such that q(u), r(u), t(u) are valid parameters. Then a Hilbert class polynomial is required to get the curve coefficients a, b [START_REF] Sutherland | Computing Hilbert class polynomials with the chinese remainder theorem[END_REF].

Later Barreto, Lynn and Scott [START_REF] Paulo | Constructing elliptic curves with prescribed embedding degrees[END_REF] focused on curves of embedding degree multiple of 3 and j-invariant 0. They obtained a much more simple way of generating parameters. Their curves of embedding degrees 12 and 24 (BLS12, BLS24) are now widely deployed at the 128-bit and 192-bit security level respectively. In particular, BLS12-381 is on the way to standardisation (through Hashing to Elliptic Curves IETF draft [19, §8.8]). This cyclotomic polynomial technique was explored by Brezing and Weng in [START_REF] Brezing | Elliptic curves suitable for pairing based cryptography[END_REF]. The taxonomy paper of Freeman, Scott and Teske [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF] generalises the BLS technique to all curves with j(E) = 0 and any k except k = 0 mod 18, and to all curves with j(E) = 1728 and any k except k = 0 mod 8. These techniques fail at certain embedding degrees: when k = 0 mod 18 with j(E) = 0 (BLS), when k = 0 mod 8 with j(E) = 1728 (BW). The BLS issue was fixed at k = 0 mod 18 with the Aurifeuillean factorisation of cyclotomic polynomials [START_REF] Scott | A new family of pairing-friendly elliptic curves[END_REF]. In 2008, Kachisa, Schaefer and Scott [START_REF] Ezekiel | Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field[END_REF] published another method that obtains a factorisation of cyclotomic polynomials evaluated at sparse polynomials of degree at least 3. This new technique provides pairing-friendly curves of embedding degrees 8, [START_REF] Costello | Faster pairing computations on curves with high-degree twists[END_REF][START_REF] Enge | Courbes Algébriques et Cryptologie[END_REF][START_REF] Guillevic | Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation[END_REF][START_REF] Karabina | On prime-order elliptic curves with embedding degrees k = 3, 4, and 6[END_REF][START_REF] Miyaji | New explicit conditions of elliptic curve traces for FR-reduction[END_REF], filling some of the gaps at k = 0 mod 8 and k = 0 mod 18.

1.3. Contributions. In this paper, we revisit the KSS construction and expose a generalisation. Like in previous works [START_REF] Galbraith | Ordinary abelian varieties having small embedding degree[END_REF][START_REF] Scott | A new family of pairing-friendly elliptic curves[END_REF], we obtained new interesting families of pairing-friendly curves, but did not get any of prime order. Our contribution is twofold: first we narrow the exhaustive and time-consuming search of KSS, so that we obtain new KSS-like curves at new embedding degrees in a few seconds on a laptop. Second, we generalise the technique and explore other discriminants and settings. Our outcome on the constructive side is to provide new interesting pairing-friendly curves at the 192-bit security level. On the other side, we show that there is no pairing-friendly curve of prime order obtained with our generalised KSS technique. This article comes with with a SageMath open-source companion code available online [START_REF] Gasnier | Sagemath code for the subfield method[END_REF] [START_REF] Guillevic | Sagemath code for pairing computations[END_REF]. 1.4. Organisation of the paper. The notation and definitions are introduced in section 2, and well-known constructions are recalled. The notions of a pairingfriendly curve and a family of pairing-friendly curves are defined at first, after which the work of Brezing and Weng [START_REF] Brezing | Elliptic curves suitable for pairing based cryptography[END_REF] and Kachisa, Schaefer and Scott [START_REF] Ezekiel | Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field[END_REF] are recalled. Our new construction method is presented at the beginning of section 3. Then follows theoretical results and more practical results, as well as some algorithmic ideas on the processing of potential families. Finally in section 4, two of the new families are examined. We show that the families contain curves which can be used at the 192-bit security level, and give an estimation of the cost of computing the pairing application on these curves.

Preliminaries

2.1. Notation and pairing-friendly curves. We start by recalling some facts on elliptic curves. We will use the same notation as in the taxonomy article of Freeman, Scott and Teske [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]. Let F q be the finite field of size q and characteristic p = 2, 3, we denote F q its algebraic closure. We call E : y 2 = x 3 + Ax + B an elliptic curve over F q under short Weierstrass form, where A, B ∈ F q are such that 4A 3 + 27B 2 = 0. We use the notation E/F q to denote such a curve. We denote E(F q ) the subgroup of F q -rational points of E and #E(F q ) its order. For any integer r, we denote E[r] the subgroup of r-torsion points of E (defined over F q ) and E(F q )[r] the subgroup of F q -rational points of E[r]. We define the trace t of E as t = q + 1 -#E(F q ). The Hasse-Weil bound says that |t| ≤ 2 √ q. We say that E is ordinary if gcd(t, q) = 1 otherwise E is supersingular. Let End(E) be the set of F q -endomorphisms of E, then End(E) is strictly larger than Z, and we say that E has complex multiplication, or that E is a CM curve. Furthermore, End(E) is either an order of a quadratic imaginary number field or an order of a quaternion algebra, depending on whether E is ordinary or supersingular (respectively). If E/F q is ordinary, we call CM discriminant of E the squarefree part of the nonnegative integer 4q -t 2 . Note that it is different from the discriminant of the quadratic imaginary field K containing End(E): with usual definitions, denoting D the CM discriminant, we have D = -disc(K) if D ≡ 3 mod 4 and D = -disc(K)/4 otherwise.

Let E/F q be an elliptic curve over a finite field. A pairing on E is a non-degenerate bilinear map defined over a subgroup G of E with values in F q * . Let e r denote a pairing such that e r :

E[r] × E[r] -→ F q (µ r ) * .
It is well known that one can often use e r to embed E(F q )[r] in F q (µ r ) * . We define k the embedding degree of E with respect to r as the index of the extension F q (µ r ) over F q . We will omit r when it can be determined from the context. Since solving the discrete logarithm problem inside the group of invertible elements of a field can be done in subexponential time, the existence of such an embedding can be a liability for cryptographic use when k is small [START_REF] Menezes | Reducing elliptic curve logarithms to logarithms in a finite field[END_REF]. For cryptographic use, we need to ensure that k is large enough, so that the discrete logarithm has the same security level on the curve and in the field F q k . The minimal embedding degree depends on the security level, and on the ρ-value of the curve ρ = log q/ log r. Because of the new Tower Number Field Sieve algorithm of [START_REF] Barbulescu | The tower number field sieve[END_REF], and Kim's extended variant [START_REF] Kim | Extended tower number field sieve: A new complexity for the medium prime case[END_REF], the sizes recommended in [22, Table 1.1] are no longer up-to-date. There is not a strong consensus on the sizes for the usual security levels yet, though the following parameters tend to become very common [START_REF] Barbulescu | Updating key size estimations for pairings[END_REF][START_REF] Guillevic | On the alpha value of polynomials in the tower number field sieve algorithm[END_REF][START_REF] Guillevic | A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level[END_REF][START_REF] Guillevic | Pairing-friendly curves[END_REF]: We use the definition from [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF] for pairing-friendly curves:

Definition 1. Let E/F q be an elliptic curve. We say that E is pairing-friendly if:

• there is a prime r > √ q dividing #E(F q ),

• the embedding degree of E with respect to r is less than log(r)/8.

It should be mentioned that supersingular curves have a very particular behavior regarding their embedding degree.

Theorem 1 ([39]

). Let E/F q be a supersingular elliptic curve. Then E is pairingfriendly with embedding degree k ≤ 6. This means that supersingular curves can be interesting for small embedding degrees, but can not be used for higher ones. Since we aim at providing a method to generate pairing-friendly curves with an arbitrary embedding degree k, we will focus on ordinary curves.

2.2.

Criteria to Generate Ordinary Pairing-Friendly Curves. While supersingular curves are always pairing-friendly, ordinary curves often are not. A result by Balasubramanian and Koblitz [START_REF] Balasubramanian | The improbability that an elliptic curve has subexponential discrete log problem under the Menezes -Okamoto -Vanstone algorithm[END_REF] shows that the probability of a randomly chosen ordinary curve over F q to have an embedding degree bounded by log(q) 2 is extremely small when r ≈ q, for q a prime integer. Therefore, it is completely hopeless to try to randomly find ordinary pairing-friendly curves, and one has to find specific methods to generate them. A very common way to do so is to generate integers q, t and r representing the cardinal of the base field, the trace of the curve and the (prime) order of the subgroup of the curve that can be embedded, and to recover the coefficients of the curve using the CM algorithm. This will require that the discriminant D of the curve is sufficiently small to be able to execute the CM algorithm. According to [START_REF] Sutherland | Computing Hilbert class polynomials with the chinese remainder theorem[END_REF], D ≤ 10 18 is manageable. Moreover, we also have to state the conditions on q, t and r required for ensuring the existence of a curve E over F q with trace t, embedding degree k with respect to r and discriminant D. The following proposition shows that the embedding degree k depends only on r and q: Proposition 1 ( [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]). The following conditions are equivalent:

• E has embedding degree k with respect to r.

• k is the smallest integer such that r divides q k -1.

• q has order k in (Z/rZ) * .

The following theorem sums up the conditions on q, r and t: [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]). Fix k a positive integer and D ≤ 10 18 a squarefree positive integer. Let q, r, t be integers such that:

Theorem 2 ([
(1) q is a positive prime power.

(2) r is a positive prime.

(3) t is coprime to q.

(4) r divides q + 1 -t.

(5) r divides q k -1 and r does not divide q k -1 for every k < k.

(6) 4q -t 2 = Dy 2 for some integer y (called CM equation). Then there exists an ordinary elliptic curve E/F q with trace t, having a subgroup of rational points of order r, with embedding degree k and discriminant D.

Proof. Conditions 1, 3 and 6 imply that there exists an ordinary elliptic curve E over F q with trace t and discriminant D, that can be recovered with the complex multiplication method [START_REF] Enge | Courbes Algébriques et Cryptologie[END_REF]. Condition 6 shows that |t| ≤ 2 √ q.

Conditions 2 and 4 imply that there exists a subgroup of E(F q ) of prime order r (required for cryptographic applications), and condition 5 implies that the embedding degree of E with respect to r is k. Some conditions can be formulated slightly differently. First, if one defines h to be the cofactor of r in q + 1 -t, such that q + 1 -t = hr, one obtains a new CM equation for condition 6:

(6') Dy 2 = 4hr -(t -2) 2
Then, Freeman, Scott and Teske also modify condition 5 by using the cyclotomic polynomial Φ k :

Proposition 2 ([22, Prop. 2.4]).
Let k be an integer, and E/F q be an elliptic curve such that #E(F q ) = hr, with r prime. Let t be the trace of E. Assume that r k.

Then condition 5 is equivalent to r | Φ k (t -1).
Remark 1. The proposition implies as well that if r is not a prime but satisfies the other conditions from Theorem 2, then denoting r the largest prime divisor of r, the integers q, r and t describe a pairing-friendly curve with embedding degree k, as r | r | Φ k (t -1).

In our cryptographic context, r is greater than k, so we replace the condition 5 by the more convenient equation:

(5') (r | Φ k (t -1))
The conditions from Theorem 2 do not take into account the first condition r ≥ √ q from Definition 1. This is equivalent to asking that the ρ-value log q/ log r is less than 2. In general, unless there is a particular reason to do otherwise, the curve with the smallest ρ-value available should always be preferred.

2.3. Families of pairing-friendly elliptic curves. Another interesting problem is to generate families of pairing-friendly elliptic curves. Searching for families of curves rather than a single curve is a common idea which has two main purposes: easing the generation of a curve of specified security level, or the generation of multiple curves, and finding curves with a ρ-value significantly smaller than 2 [22, Sections 4-6]. To define families of curves with one-parameter x, we follow [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF] and use polynomials Q, R and T in Q[X] instead of the previous integers q, r and t.

When evaluating the polynomials at x 0 ∈ Z, one hopes that Q(x 0 ), R(x 0 ) and T (x 0 ) satisfy the conditions of Theorem 2. To achieve this, similar conditions on Q, R and T shall be set. With our representation, Q(x) needs to take an infinite number of prime (or prime power) values at integers. We also want R(x) to take prime values up to a small cofactor. However, for now very little is known about prime values of polynomials. There is a conjecture by Buniakowski and Schinzel:

Buniakowski-Schinzel Conjecture. Let f be a polynomial in Q[X].
Then f takes an infinite number of prime values if and only if:

• f is non-constant, • f has positive leading coefficient, • f is irreducible,
• f (x) ∈ Z for some x ∈ Z, (which implies that it happens for an infinite number of x ∈ Z),

• gcd({f (x) | x, f (x) ∈ Z}) = 1.
In the following, we will assume that the conjecture is true, and will say that a polynomial f represents primes if it satisfies the conditions of the conjecture. Polynomials taking integer values at integers will be very useful for defining families of curves, so we define:

Definition 2 ( [22, Definition 2.6]). Let f be a polynomial in Q[X], we say that f is integer-valued if f (x) ∈ Z whenever x ∈ Z.
We are now ready to define families of curves, inspired by [22, Definition 2.7]: Definition 3. Let k > 0 be an integer and D be a positive squarefree integer, and let Q, R and T be polynomials in Q[X]. We say that Q, R and T parameterize a complete family of elliptic curves with embedding degree k and discriminant D if:

(1) Q represents primes;

(2) R is non-constant, irreducible and has positive leading coefficient;

(3) There exists a polynomial

H ∈ Q[X] such that HR = Q + 1 -T ; (4) R divides Φ k (T -1)
, with Φ k the k-th cyclotomic polynomial;

(5) There exists a polynomial Y ∈ Q[X] such that DY 2 = 4Q -T 2 ; (6) Q, R, T , Y , H all take an integer value at a common integer. We may also say that (Q, R, T , Y ) or (Q, R, T, Y, H) parameterizes the family. We also define the notion of potential family: if the polynomials Q, R, T , Y and H satisfy condition 2 to 5, we say that they form a potential family of pairing-friendly elliptic curves.

We define the ρ-value of a family as ρ = deg Q/ deg R so that the ρ-values of the curves that the family generates are close to the ρ-value of the family asymptotically.

Remark 2. In [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF], a more general notion of a family is defined. In this article, we are only interested in complete families, so we did not recall their definition of a family. In the following, we will use "family" to mean "complete family of pairing-friendly elliptic curves".

Remark 3. Notice that the third condition of Theorem 2 has not been adapted. Indeed, since deg Q = 2 deg T and since we asked Q to represent primes so that Q(x 0 ) can easily be a prime, we will only look for Q(x 0 ) prime. Then, it is obvious that Q(x 0 ) and T (x 0 ) are coprime because of their sizes.

Let Q, R, T , Y and H be as above, and let x 0 be an integer. For (Q(x 0 ), R(x 0 ), T (x 0 )) to define a pairing-friendly elliptic curve, the values need to satisfy the conditions of Theorem 2. In particular, Y (x 0 ), T (x 0 ) and H(x 0 ) need to be integers simultaneously, while Q(x 0 ) needs to be a prime and R(x 0 ) needs to be a prime up to a small cofactor. It sometimes happen that there is no such x 0 ∈ Z, even when every polynomial takes an integer value at -at least-one integer. This precision is all the more important as we are going to introduce new families with polynomials with large denominators, which increases the difficulty of finding a shared seed x 0 . Remark 4. We stress that conditions 1 to 5 give only mild constraints on R and H. If (Q, R, T, Y, H) is a potential family, for every rational λ ∈ Q, another potential family is (Q, λR, T, Y, 1 λ H). We will exploit this property later in this work. 2.4. The Brezing-Weng method. Condition 4 of Definition 3 suggests that the number field defined by the irreducible polynomial R contains the k-th cyclotomic field, which we will denote C k . The Brezing-Weng method described in [START_REF] Paulo | Constructing elliptic curves with prescribed embedding degrees[END_REF] and [START_REF] Brezing | Elliptic curves suitable for pairing based cryptography[END_REF] is a method for constructing families of curves using this observation: it relies on finding a polynomial R, and a polynomial T mapping to

ζ k + 1 in Q[X]/ R where ζ k is a primitive k-th root of unity in Q[X]/ R .
Similarly to what happens with the integers, we have 

DY 2 = 4HR -(T -2) 2 , so we know that Y maps to (T -2)/ √ -D in Q[X]/ R . Algorithm
that K = Q[X]/ R contains √ -D and C k . 2 Fix a k-th root of unity ζ k ∈ K. 3 Let T ∈ Q[X] be a polynomial mapping to ζ k + 1 in K. 4 Let Y ∈ Q[X] be a polynomial mapping to T -2 √ -D in K. 5 Q = (T 2 + DY 2 )/4 ∈ Q[X]; H = (Q + 1 -T )/R ∈ Q[X] 6 [Process the potential family]
// see subsection 3.5

The goal of the last step (step 6) of Algorithm 2.1 is to check if conditions (1) and ( 6) of Definition 3 can be met. We expand on our processing method adapted to our new potential families in subsection 3.5.

As we can always choose T and Y to have degree strictly less than R, the method generates families with ρ-value strictly less than 2. In general, there is no particular reason why the polynomials T and Y should have degree less than deg R -1, but for particular choices of R, the ρ-value can decrease significantly. Below, we give examples of such families.

Example 1. From [START_REF] Brezing | Elliptic curves suitable for pairing based cryptography[END_REF] and [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]Construction 6.2].

Let k be odd and k < 1000. Let:

• R = Φ 4k (X), • T = -X 2 + 1, • Y = X k (X 2 + 1), • Q = 1 4 (X 2k+4 + 2X 2k+2 + X 2k + X 4 -2X 2 + 1
). Then (Q, R, T, Y ) parameterizes a family of pairing-friendly elliptic curves with embedding degree k and discriminant 1. Its ρ-value is k+2 ϕ(k) where ϕ is Euler's totient function.

The polynomials Q, R, T and H = (Q + 1 -T )/R are even, and

Y is odd. Therefore, denoting R(X) = R (X 2 ), Q(X) = Q (X 2 ), T (X) = T (X 2 ) and Y = XY (X 2 ), for every α ∈ N, the substitution X 2 → αX 2 yields: 4Q (αX 2 ) -T (αX 2 ) 2 = αX 2 Y (αX 2 ).
Therefore, (Q (αX 2 ), R (αX 2 ), T (αX 2 ), XY (αX 2 )) is a potential family of elliptic curves with degree k, discriminant α, and ρ-value k+2 ϕ(k) as well. This method is used to modify the discriminant of the family to avoid attacks targeting specific discriminants.

We give an example of a similar family achieving a better ρ-value for k ≡ 3 mod 4.

Example 2 (From [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]Constructions 6.20]). Let k ≡ 3 mod 4 and k < 1000. Let:

• R = Φ 4k (X), • T = X k+1 + 1, • Y = X k + X, • Q = 1 4 (X 2k+2 + X 2k + 4X k+1 + X 2 + 1
). Then (Q, R, T, Y ) parameterizes a potential family of pairing-friendly elliptic curves with embedding degree k and discriminant 1. Its ρ-value is k+1 ϕ(k) .

Unfortunately, the polynomials (Q, R, T, Y ) only define a potential family because 2 divides the integer values of Q. A solution to obtain a family of curves is to use the previous substitution method for a suitable α (for example, α = 3). As a result, the discriminant will once again be multiplied by α.

We now state a very popular family of pairing-friendly elliptic curves of discriminant 3. The popular BLS12 and BLS24 curves fall in the case k ≡ 0 mod 6 of this family. The polynomials stated below give the best known ρ-values for many embedding degrees (see [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]Table 8.2]).

Example 3 (From [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]Construction 6.6]). Let k be an integer with k ≤ 1000 and 18 k. Let Q, R and T be defined as in Table 2: Then (Q, R, T ) defines a complete family of pairing-friendly elliptic curves with embedding degree k and discriminant 3. Let l = lcm(k, 6), then the ρ-value of any such family is

(l/3 + 6)/ϕ(l) if k ≡ 4 mod 6 and (l/3 + 2)/ϕ(l) otherwise. k R(X) T (X) Q(X) 1 mod 6 Φ 6k (X) -X k+1 + X + 1 (X + 1) 2 (X 2k -X k + 1)/3 -X 2k+1 2 mod 6 Φ 3k (X) X k/2+1 -X + 1 (X -1) 2 (X k -X k/2 + 1)/3 + X k+1 3 mod 18 Φ 2k (X) X k/3+1 + 1 (X 2 -X + 1) 2 (X 2k/3 -X k/3 + 1)/3 + X k/3+1 9, 15 mod 18 Φ 2k (X) -X k/3+1 + X + 1 (X + 1) 2 (X 2k/3 -X k/3 + 1)/3 -X 2k/3+1 4 mod 6 Φ 3k (X) X 3 + 1 (X 3 -1) 2 (X k -X k/2 + 1)/3 + X 3 5 mod 6 Φ 6k (X) X k+1 + 1 (X 2 -X + 1)(X 2k -X k + 1)/3 + X k+1 0 mod 6 Φ k (X) X + 1 (X -1) 2 (X k/3 -X k/6 + 1)/3 + X
Table 2. Construction 6.6 from [22, Sect. 6], formulas for k = 3 mod 6 from ePrint.

2.5. The Kachisa-Schaefer-Scott Method. The previous families were all cyclotomic, meaning that R was a cyclotomic polynomial. There have been some attempts to apply the Brezing-Weng method with a non-cyclotomic polynomial R, such as the Barreto-Naehrig family [START_REF] Paulo | Pairing-friendly elliptic curves of prime order[END_REF], or the Kachisa-Schaefer-Scott (KSS) families [START_REF] Ezekiel | Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field[END_REF]. In the next sections, we will extend the method of Kachisa et al., so we recall briefly their results. The KSS method consists in taking R as the minimal polynomial of an element of a cyclotomic field. Using this method, Kachisa et al. found some interesting families via enumeration (see Algorithm 2.2). KSS families are particularly interesting because they fill most of the gaps left by the cyclotomic methods: in Example 3, we have seen that the method does not work when k is a multiple of 18 and produces a larger ρ-value for k ≡ 4 mod 6, while the KSS method was successful for k = 18, 36, with the expected ρ-value (k/3 + 2)/ϕ(k), and for for k = 16, 40, a ρ-value of (k/2 + 2)/ϕ(k). The first two families are given in Example 4 and Example 5.

Example 4 (KSS16). Let:

• R = X 8 + 48x 4 + 625, • T = 1 35 (2X 5 + 41X + 35), • Y = 1 35 X 5 -5X 4 + 38X -120 , • Q = 1 980 (X 10 +2X 9 +5X 8 +48X 6 +152X 5 +240X 4 +625X 2 +2398X +3125). Then (Q, R, T, Y
) parameterizes a complete family of elliptic curves with embedding degree k = 16, discriminant 1 and ρ-value 5/4.

Example 5 (KSS18). Let:

• R = X 6 + 37X 3 + 343, • T = 1 7 (X 4 + 16X + 7), • Y = 1 21 -5X 4 -14X 3 -94X -259 , • Q = 1 21 (X 8 + 5X 7 + 7X 6 + 37X 5 + 188X 4 + 259X 3 + 343X 2 + 1763X + 2401). Then (Q, R, T, Y
) parameterizes a complete family of elliptic curves with embedding degree k = 18, discriminant 3 and ρ-value 4/3.

Could these examples have been obtained with the Brezing-Weng method? Yes, if the ad hoc choices of R and T were given as input. Nevertheless, the Brezing-Weng is in some sense incomplete, as it does not provide a way to find R and T : they are used in the method as if they were parameters. The difficulty is to characterize the polynomials which could be suitable choices for R, as Step 1 of the Brezing-Weng method (Algorithm 2.1) mostly put constraints on the number field that R generates. The initial way to overcome this obstacle was to work with cyclotomic polynomials

Algorithm 2.2: Outline of KSS's algorithm

Input: k the embedding degree, D ∈ {1, 3} the discriminant

1 Let l = lcm(3, k) if D = 3 or l = lcm(4, k) if D = 1,
and ζ l be a fixed primitive l-th root of unity in C l ;

2 for θ an integer linear combination of (ζ i l ) i=0,...,ϕ(l)-1 do 3 R=minpoly(θ);

4 for ζ k a primitive k-th root of the unity in C l do 5 Let T ∈ Q[X] such that T (θ) = ζ k + 1; 6 Let Y ∈ Q[X] such that Y (θ) = (ζ k -1)/ √ -D; 7 Let Q = (T 2 + DY 2 )/4; 8 Let H = (Q + 1 -T )/R; 9
[Process the potential family] ; // see subsection 3.5

for R (Barreto-Lynn-Scott, Brezing-Weng). This is however quite restrictive and does not offer the diversity we could have hoped for. For example, all families in the previous examples have a discriminant of 1 or 3. Moreover, a better choice of R could generate more efficient families.

To improve on the Brezing-Weng method, how to search for a better, noncyclotomic polynomial R generating a cyclotomic field containing √ -1 or √ -3 (or any √ -D)? Two paths arised: trying to find U (X) such that Φ l (U (X)) factors for a chosen l and R is such a factor [START_REF] Paulo | Pairing-friendly elliptic curves of prime order[END_REF][START_REF] Scott | A new family of pairing-friendly elliptic curves[END_REF], or taking R as the minimal polynomial of an element in a cyclotomic field C l (KSS [START_REF] Ezekiel | Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field[END_REF]). In KSS's case, the authors designed Algorithm 2.2. Define θ and ζ k as in Algorithm 2.2. KSS's algorithm relies on the equivalence of giving ourselves R and T , or θ and

ζ k (when Q[X]/ R = C l is fixed).
In practice, the representation by θ and ζ k is more adapted to enumeration (over the

a i in θ = ϕ(l)-1 i=0 a i ζ i l ).
Unfortunately, KSS reported that bruteforce enumeration (step 2) did not work well, and they had to restrict themselves to the elements θ having a special form, which they selected using trial and error. Their method was effective as they were able to find some interesting curves. However, it is possible to improve their enumeration technique, as we will explain in the next section.

Results

In this section, our goal is to improve on the KSS method and generate new families with ρ-values as small as possible. We introduce a new enumeration method which allows to compute families very quickly with ρ-values depending uniquely on the embedding degree k and the discriminant D. Then, we present the results of the new enumeration method.

3.1. Properties of the number-theoretic representation. We will work in a slightly more general context than KSS. Fix k ≥ 7 and D > 0, and let K be any Galois extension of 1).

Q containing C k ( √ -D) (the compositum of C k and Q( √ -D), Figure 
Let ζ k be any primitive k-th root of unity in K, and let

τ = ζ k + 1 and γ = (ζ k -1)/ √ -D. Let θ ∈ K such that the minimal polynomial of θ has degree [K : Q].
This is equivalent to asking that θ generate the whole field, most elements of the field satisfy this property. We will note R θ the minimal polynomial of θ, T θ the polynomial

Q C k Q( √ -D) C k ( √ -D) K Figure 1. Our setting: K is a Galois extension of C k ( √ -D).
mapping θ to τ , Y θ the polynomial mapping θ to γ, and Q θ = (T 2 θ + DY 2 θ )/4. We will drop the indices when θ is clear from context.

We consider how affine transformations of θ affect the generated families. It is easy to see that adding a rational λ only induces the substitution X → X -λ.

Multiplying by an integer is not much more interesting, but allows to simplify the enumeration process:

Proposition 3. Let N be an integer, if (R θ , T θ , Y θ , Q θ ) is a family of curves then (R N θ , T N θ , Y N θ , Q N θ ) is a family with the same ρ-value. Proof. It is easy to show that R N θ = N deg R R θ (X/N ), T N θ = T θ (X/N ), Y N θ = Y θ (X/N ), and therefore Q N θ = Q θ (X/N ).
Every corresponding polynomial has the same degree so the potential families have the same ρ-value. It is clear that Q(X/N ) is irreducible if and only if Q is irreducible, and that if Q represents primes then Q(X/N ) represents primes as well (notice that Q is a weighted sum of squares, so N < 0 does not change the sign of the leading coefficient). Proposition 3 is useful because it shows we only have to consider integer linear combinations of elements of a basis of K as candidates for θ in our enumeration. However, the polynomials generated may have a large denominator.

We finally mention that in the context of the Brezing-Weng method, the degree of

Q is deg Q = 2 max(deg T, deg Y ).
Then, the problem of generating a potential family with small ρ-value can be seen as a particular instance of the following problem: Problem 1. Let K be a number field of degree d over Q, let n be an integer, and let τ and γ be elements of K. Find an element θ ∈ K such that there exists polynomials Y and T satisfying:

• Y (θ) = γ, • T (θ) = τ , • deg Y ≤ n and deg T ≤ n.
In the general case, it seems unlikely to be able to find a solution when n < d -1, and even more for n ≤ (d + ε)/2. However, in our particular instance, many families with ρ-value significantly smaller than 2 have been found. In the following, we will explain which mathematical property of τ and γ allows to find families with small ρ-value in our specific setting and propose a method to compute such families.

3.2. Subfield method. Fix k ≥ 7 and D. Let F be a number field containing √ -D, and let K be the compositum of F and C k . We can see K as a F -vector space, and we can also see C k as a subfield of K. Then, the vector line

F ζ k = {αζ k ; α ∈ F } contains ζ k and ζ k / √ -D.
This method relies on the idea that elements of F will be represented by polynomials of small degree, and the polynomial corresponding to the multiplication by α ∈ F as well.

We take θ ∈ F ζ k , that is we force θ to be of the form θ = αζ k , and let α = θ/ζ k ∈ F . Notice that θ k = α k ∈ F , and most commonly α k will generate F , or equivalently Q(α k ) = F . Then, let e be the minimal divisor of k such that θ e ∈ F and θ e generates F . Now let P 1 , P 2 , P 3 be the polynomials such that:

P 1 (θ e ) = 1/α , P 2 (θ e ) = 1/(α √ -D) , P 3 (θ e ) = 1/ √ -D .
Notice that P 1 , P 2 and P 3 have degree at most [F : Q] -1 (we will have equality in most cases). Now, notice that:

P 1 (θ e )θ + 1 = θ/α + 1 = ζ k + 1 , P 2 (θ e )θ -P 3 (θ e ) = ζ k / √ -D -1/ √ -D = (ζ k -1)/ √ -D .
Therefore we can choose T (X) = P 1 (X e )X and Y (X) = P 2 (X e )X -P 3 (X e ), which have degree at most (generally equal to) e([F : Q] -1) + 1. Let R be the minimal polynomial of θ. This method generates potential families with ρ-value:

(3.1) ρ ≤ 2e([F : Q] -1) + 2 [K : Q] .
Generally, Eq. (3.1) is an equality (in fact we did not encountered any counterexample in our enumeration). From now on, we will assume that Eq. (3.1) is an equality, and try to choose F so that ρ is minimal. Notice that a decomposition of the extension degree of K over Q with the intermediate field

F gives [K : Q] = [K : F ][F : Q] and it follows from Eq. (3.1) that ρ = 2e [F : Q] -1 [K : Q] + 2 [K : Q] = 2e [F : Q] -1 [K : F ][F : Q] + 2 [K : Q] = 2e [K : F ] 1 - 1 [F : Q] + 2 [K : Q] . (3.2) The term 2e [K:F ] 1 -1 [F :Q]
is dominant in this sum. Therefore, when e is fixed, we should try to maximize [K : F ] and minimize [F : Q]. In the following three cases, we give the optimized ρ-value for different choices of e.

Case 1. When e = k, that is, the minimal power of θ such that it belongs to F is θ k ∈ F , the extension diagram is the following (Figure 2). From the diagram 2(a) we deduce that the choice F = Q( √ -D) contributes to minimizing the ρ-value. In that case, it would be more favorable if √ -D were not an element of C k , so that Case 2. When k is even, then θ k/2 = -α k/2 which will generally be a generator of F . Therefore, the decrease of e to e = k/2 is free, as we do not have to make any further assumption on F . The diagram will be exactly the same as in Case 1, and in Eq. (3.2), e = k/2 instead. In this case,

[K : F ] = ϕ(k) (and not ϕ(k)/2) (see Figure 2(b)). Then, from Eq.(3.2) with e = k, [K : F ] = ϕ(k), [F : Q] = 2, [K : Q] = 2ϕ(k), (3.3) ρ = 2k ϕ(k) 1 - 1 2 + 2 2ϕ(k) = k + 1 ϕ(k) . Q C k Q( √ -D) F K (a) General setting Q C k √ -D Q( √ -D) = F K = C k ( √ -D) 2 ϕ(k) 2 ϕ(k) (b) Optimized setting
(3.4) ρ = 2k/2 ϕ(k) 1 - 1 2 + 2 2ϕ(k) = k/2 + 1 ϕ(k) . Case 3. Let d be a divisor of k, d ≥ 3. If we want that Q(θ k/d ) = F , then ζ k/d k
= ζ d has to be an element of F , and F has to be an algebraic extension of C d . This changes the extension diagram to Figure 3(a). Here from Figure 3(a) we deduce that F should be the compositum of Q( √ -D) and C d . However, in that case, it would be better if √ -D were an element of

Q C k C d Q( √ -D) F K (a) General setting Q Q( √ -D) F = C d √ -D K = C k 2 ϕ(d)/2 ϕ(k)/ϕ(d) (b) Optimized setting
C d to minimize [F : Q] (here [K : F ] is already bounded by [C k : C d ]) (Figure 3(b)). With e = k/d, [K : F ] = ϕ(k)/ϕ(d), [F : Q] = ϕ(d) and [K : Q] = ϕ(k), (3.5) ρ = 2k/d ϕ(k)/ϕ(d) 1 - 1 ϕ(d) + 2 ϕ(k) = 2(ϕ(d) -1) d k ϕ(k) + 2 ϕ(k) .
We need to compare Case 3 to the first two cases. When k is odd, we mostly need to find which d satisfies 2(ϕ(d) -1)/d ≤ 1 (we authorize equality as the ρ-value We can notice that d = 12, 15, 30 are less interesting as they are multiples of 3 and 6 and are less efficient. Therefore, this case is interesting only if d = 3, 4, 6. Notice that in each case C d is an imaginary quadratic field containing either √ -1 or √ -3. Notice also that when d = 4, the ρ-value from Case 3 is larger than the ρ-value from Case 2 by 1/ϕ(k), but it still provides an almost as efficient alternative. Moreover, Case 3 has the extra advantage of generating a polynomial R with degree ϕ(k) instead of 2ϕ(k).

D D = 1 →    k = 0 mod 4, Case 3, d = 4, ρ = (k/2 + 2)/ϕ(k) k = 2 mod 4, Case 2, √ -D / ∈ C k , ρ = (k/2 + 1)/ϕ(k) k = 1 mod 2, Case 1, √ -D / ∈ C k , ρ = (k + 1)/ϕ(k) D = 3 →        k = 0 mod 6, Case 3, d = 6, ρ = (k/3 + 2)/ϕ(k) k = 3 mod 6, Case 3, d = 3, ρ = (2k/3 + 2)/ϕ(k) k = 2, 4 mod 6, Case 2, √ -D / ∈ C k , ρ = (k/2 + 1)/ϕ(k) k = 1, 5 mod 6, Case 1, √ -D / ∈ C k , ρ = (k + 1)/ϕ(k) other D → k = 0 mod 2, Case 2, √ -D / ∈ C k , ρ = (k/2 + 1)/ϕ(k) k = 1 mod 2, Case 1, √ -D / ∈ C k , ρ = (k + 1)/ϕ(k)
Remark 5. Notice that in every case, we obtain that K should be equal to C k ( √ -D). In particular, this means that the properties stated in subsection 3.1 apply. Remark 6. Here we separated three cases depending on the value of e, which was more convenient for the proof on minimal ρ-value, but in practice it is more convenient to start from fixed k and D. Here is our strategy to minimize ρ (Figure 4 Remark 7. Let l = lcm(k, 6), then the subfield method can always generate potential families with a ρ-value of ρ = (l/3 + 2)/ϕ(l), the same as FST and KSS families. It is important to see that this method only generates potential families. We hope that having a wide range for θ will allow to find a family among the generated potential families. We will see in the following that, in most cases, finding a family is not an issue. We summarize our findings in algorithm 3.1. Of course, the choice of F and K can be adapted to a specific context (for example when having a specific discriminant is more important than having a small ρ-value). 

k 0 mod 6 → D = 3, Case 3, d = 6, ρ = (k/3 + 2)/ϕ(k) D = 3, Case 2, √ -D / ∈ C k , ρ = (k/2 + 1)/ϕ(k) 3 mod 6 → D = 3, Case 3, d = 3, ρ = (2k/3 + 2)/ϕ(k) D = 3, Case 1, √ -D / ∈ C k , ρ = (k + 1)/ϕ(k) 0 mod 4 → D = 1, Case 3, d = 4, ρ = (k/2 + 2)/ϕ(k) D = 1, Case 2, √ -D / ∈ C k , ρ = (k/2 + 1)/ϕ(k) 2 mod 4 → Case 2, √ -D / ∈ C k , ρ = (k/2 + 1)/ϕ(k) 1 mod 2 → Case 1, √ -D / ∈ C k , ρ = (k + 1)/ϕ(k)
6 Let P 1 ∈ Q[X] such that P 1 (θ e ) = 1/α; 7 Let P 2 ∈ Q[X] such that P 2 (θ e ) = 1/(α √ -D); 8 Let P 3 ∈ Q[X] such that P 3 (θ e ) = 1/ √ -D; 9 T (X) = XP 1 (X e ) + 1; 10 Y (X) = XP 2 (X e ) -P 3 (X e ); 11 Let Q = (T 2 + DY 2 )/4; 12 Let H = (Q + 1 -T )/R; 13 
[Process the potential family] ; // subsection 3.5

We end this subsection by recalling what case is best suited to a given k (see also Figure 5). If k is a multiple of 6 (resp. 

Theoretical results.

In this subsection, we compare the ρ-values we obtain for each k with the values stated in [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]Table 8.2]. We should start with stating that most of the families achieving the best ρ-values are particular instances of the subfield method (KSS families, FST families when k ≡ 4 mod 6 for example).

The reader can check if a family can be produced with the subfield method by checking if T has the form (bX e + a)X + 1, with e dividing k and a, b rationals.

For example, the polynomials from Example 2 can be obtained by simply choosing θ = ζ k , and the polynomials from Example 3 can be obtained by taking θ = ζ l when k ≡ 4 mod 6, where l = lcm(6, k) and ζ l is a primitive l-th root of unity in the vector line C 6 ζ k . It is also interesting to see that every family obtained by KSS in [START_REF] Ezekiel | Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field[END_REF], except for the Barreto-Naehrig family, are instances of the subfield method. In particular, as we have shown that the subfield method never achieves ρ = 1, it seems very unlikely to be able to find another family having this property via untargeted enumeration.

This method of generation of curves, when compared to previous methods, has the added advantage of generating multiple curves of the same quality regarding their ρ-value, for almost all k and D. Therefore, attacks such as the one in [START_REF] Guillevic | A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level[END_REF] targeting polynomials of a specific form are less effective, since we will usually be able to find a family not targeted by the attack (as in subsubsection 3.4.3). The biggest flaw of the method however is the size of the denominators of the generated families, which sometimes make the families unusable, or less practical.

Lastly, the method generates families with an improved ρ-value compared to the previously known families for some embedding degrees:

(1) when k = 22, 46, or more generally, k ≡ 22 mod 24, (2) when k = 16, 28, 40, or more generally, k ≡ 4 mod 12.

However, the improvement for k = 16, 28, 40 are practically irrelevant, because the generated families have large denominators (see the next subsection for more details), and because the gain in ρ-value can only be obtained with D = 1, preventing the use of a high-degree (quartic) twist, hence missing four-fold G 2 -compression techniques.

Table 4 summarizes our results, and compares them to the values from [22, Table 8.2]. A dash symbol (-) means that the case is not suited to the choice of k, and a colored cell means that the case produced families with very large denominators in the polynomials, making it difficult to obtain valid curve parameters. We observed that the period of the seed x 0 (so that (Q, R, T, Y, H) take integer values) and the size of the denominators are minimized for (a, b) of smallest coefficients (that is, |a|, |b| as small as possible). As the choice (a, b) = (1, ±1) does not produce a potential family for each D, we try many values of D until we obtain (a, b) = (1, ±1). For k = 22, 46, we observed for take prime values. The seed x 0 = -0xbe503 = -779523 produces a curve with R(x 0 )/23 prime of 383 bits, Q(x 0 ) prime of 457 bits. Curves with CM by (-1 + √ -7)/2 have j-invariant j = -3375. The curve defined over F Q(x0) by E : y 2 = x 3 -5/7x -2/7 has trace T (x 0 ), and expected order.

6. k = 22, D = 7, F = Q[x]/(x 2 + x + 2), ω = (-1 + √ -7)/2, α = 1 + ω, (a, b) = (1, 1), θ = αζ k . • T = (X 12 + 45X + 46)/46 • Y = (X 12 -4X 11 -47X -134)/322 • R = (X 20 -X 19 -X 18 + 3X
Example 7. k = 22, D = 1, F = Q(i), i = √ -1, α = 1 + 2i, (a, b) = (1, 2), θ = αζ k . • T = 1 6605 -X 12 -5148X + 6605 • Y = 1 13210 X 12 -5X 11 + 11753X -32345 • R = (X 20 -2X 19 -X 18 + 12X 17 -19X 16 -22X 15 + 139X 14 -168X 13 - 359X 12 + 1558X 11 -1321X 10 + 7790X 9 -8975X 8 -21000X 7 + 86875X 6 - 68750X 5 -296875X 4 + 937500X 3 -390625X 2 -3906250X + 9765625)/1321 • Q = 1 139603280 X 24 -2X 23 + 5X 22 + 12938X 13 -47012X 12 + 64690X 11 +48828125X 2 -206464378X + 244140625
With seeds x ≡ 1 mod 2, x ≡ 0, 3 mod 5, x ≡ 105, 286, 350, 389, 416, 485, 506, 513, 692, 736, 806 mod 1321, the polynomials take integer values and Q(x) generates primes.

We discard x ≡ 0 mod 5 as is produces 5 10 | R(x). For x ≡ 513, 806 mod 1321, R(x) takes prime values, for the other congruences, R(x)/1321 takes prime values. The valid seeds producing prime Q(x 0 ), R(x 0 ) are very sparse and we did not get r = R(x 0 ) of 384 bits. We mention x 0 = 0x1a450d = 1721613 s.t. Q(x 0 ) is a 471-bit prime and R(x 0 )/1321 is a 394-bit prime; the curve is

y 2 = x 3 + 27x. Example 8. k = 22, D = 3, F = Q[x]/(x 2 + x + 1), ω = (-1 + √ -3)/2, α = (5 + 4ω), (a, b) = (5, 4), θ = αζ k . • T = 1 341901 -X 12 + 18764460X + 341901 • Y = 1 683802 X 12 -7X 11 -18650493X + 131009319 • R = (X 20 -6X 19 + 15X 18 + 36X 17 -531X 16 + 2430X 15 -3429X 14 - 30456X 13 +254745X 12 -888894X 11 -16281X 10 -18666774X 9 +112342545X 8 - 282053016X 7 -666875349X 6 +9924365430X 5 -45541810251X 4 +64839187476X 3 + 567342890415X 2 -4765680279486X + 16679880978201)/(3 10 • 67) • Q = 1 267191528688 X 24 -6X 23 + 21X 22 -37431234X 13 + 223805916X 12 -786055914X 11 + 350277500542221X 2 -2087000802936846X + 7355827511386641
With a seed x ≡ 1 mod 2, x ≡ 0 mod 3, x ≡ 0, 1 mod 7, and 2, 13, 18, 28, 30, 44, 48, 50, 51, 57, 61 mod 67, the polynomials take integer values and Q generate primes. We discard x ≡ 0 mod 7 as in that case, 7 10 | R. When x ≡ 13, 48 mod 67, R generates primes and H takes integer values. When x ≡ 2, 18, 28, 30, 44, 50, 51, 57, 61 mod 67, R/67 generates primes and 67H takes integer values. The seed x 0 = 0x214f5f = 2183007 ≡ 13 mod 67 gives valid parameters with Q prime of 468 bits and R prime of 400 bits, and the curve is y 2 = x 3 -1/F q , of expected order. • T = X 9 + 424X + 19431 /19431

• Y = X 9 + 18X 8 + 39286X + 27063 /19431 • R = X 16 + 3007X 8 + 43046721 /(3 16 • 17 2 • 127 2 ) • Q = X 18 -X 17 + 9X 16 + 3007X 10 -78572X 9 + 27063X 8 +43046721X 2 -75086281X + 387420489 /1468303515
The constrains on the seed x are x ≡ 0 mod 3 2 , x ≡ 3 mod 5, x ≡ 4 mod 7,

x ≡ 1, 2, 4, 8, 9, 13, 15, 16 mod 17, and x ≡ 3, 124 mod 127. With this new family we were not able to produce any parameter sets of cryptographic size where r has 256 or 384 bits. The seeds producing curves are very sparse. Nevertheless we obtained u 0 = 0x173d4fe = 24368382, q has 412 bits and r has 346 bits (ρ = 1.19), and u 1 = 0x1bc63c0c = 465976332, q has 488 bits and r has 414 bits (ρ = 1.18). The curve equations are given in the companion code replay_examples.sage. 

• Y = (5X 4 -26X 3 + 146X -1157)/663, • R = (X 6 + 89X 3 + 2197)/(13 3 • 17 2 ), • Q = 1 11271 X 8 -5X 7 + 13X 6 + 89X 5 -292X 4 + 1157X 3 + 2197X 2 -2009X + 28561)
is a family of elliptic curves with discriminant D = 3 and ρ-value ρ = 1+ 1 3 = 4 3 . With x ≡ 1 mod 3, x ≡ 0 mod 13, x ≡ 9 mod 17, Q, R generate primes and T, Y, H = (Q + 1 -T )/R take integer values. The seed x 0 = -2 81 -2 79 + 2 67 -2 55 -2 22 produces q prime of 638 bits and r prime of 469 bits, the curve is y 2 = x 3 -3.

We investigate the KSS gap at k = 20. To benefit from the highest possible twist, one chooses D = 1, like for k = 16. For that we run Case 3 with k = 20, d = 4 and obtain different families. We choose the ones with the smallest denominators. We do obtain families with deg(R) = 8, deg(Q) = 12, ρ = 3/2 = 1.5, and D = 1. We do not reduce the ρ-value compared to the FST 6.4 family but we obtain an alternative Q that is not vulerable to the attack of [START_REF] Guillevic | A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level[END_REF]. The number field defined by Q(x) has no automorphism and admits only a quadratic subfield with ζ 4 . To further optimize the arithmetic operations on the curve, we would like to enforce q ≡ 1 mod 5 so as to define the extension F q 5 with a binomial, for a faster Frobenius map in F p 20 . In other words, we add the condition (Q(X) -1)/5 generates integers. Choosing r of 384 bits implies q of ≈576 bits and this size reaches the 192-bit security level. We obtain the following two families that we call GG20a and GG20b.

Example 11 (GG20a). Let k = 20, k is a multiple of 4, let D = 1 and F = C 4 . Let θ = (1 -2ζ 4 )ζ k . Then • T = (2X 6 + 117X + 205)/205 • Y = (X 6 -5X 5 -44X -190)/205 • R = (X 8 +4X 7 +11X 6 +24X 5 +41X 4 +120X 3 +275X 2 +500X +625)/25625 • Q = (X 12 -2X 11 + 5X 10 + 76X 7 + 176X 6 + 380X 5 + 3125X 2 + 12938X +15625)
/33620 is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/2. With x 0 mod 410 ∈ [69, 75, 79, 135, 175, 239, 299, 315, 325, 339], the conditions are met (T, Y are integers, Q, R/λ, λH generate primes for λ a small integer cofactor). With x 0 = 1715, 1815 mod 2050, Q and R generate primes, and q = Q(x 0 ) ≡ 1 mod 5.

Example 12 (GG20b). Let k = 20, k is a multiple of 4, let D = 1 and F = C 4 . Let θ = (1 + 2ζ 4 )ζ k . Then • T = (-2X 6 + 117X + 205)/205 • Y = (X 6 -5X 5 + 44X + 190)/205 • R = (X 8 -4X 7 +11X 6 -24X 5 +41X 4 -120X 3 +275X 2 -500X +625)/25625 • Q = (X 12 -2X 11 + 5X 10 -76X 7 -176X 6 -380X 5 + 3125X 2 + 12938X +15625)
/33620 is a family of elliptic curves with discriminant D = 1 and ρ-value ρ = 3/2. With x 0 mod 410 ∈ [71, 85,95,111,171,235,275,331,335,341], the conditions are met (T, Y are integers, Q, R/λ, λH generate primes for λ a small integer cofactor). With x 0 = 1465, 1565 mod 2050, Q and R generate primes, and q = Q(x 0 ) ≡ 1 mod 5.

3.5. Processing potential families. In Algorithm 2.2 and Algorithm 3.1, we mention processing the potential families, without giving much more details. By "processing", we mean two things: computing the common integer seeds of the polynomials Q, R, T , Y and H and checking that Q represents primes. We want this step to be fast since we generate a lot of potential families and we need to quickly discard the wrong ones that do not give valid curve parameters. There are arithmetic relations between the polynomials (Definition 3) which allow to avoid some computations. A suitable approach is to first compute the integer seeds of T and Y and use the relation Q = (T 2 + DY 2 )/4 to find the common integer seeds of T , Y , and Q. Then, using Remark 4, find λ such that R/λ and λH take integer values at some of the integer seeds.

Let P be a polynomial with rational coefficients. Then there exists a unique polynomial P with integral coefficients and a unique integer ∆, called denominator of P , such that P = P /∆. Therefore, the set of integer seeds of P is the set of roots of P modulo ∆. In particular, we see that the set of integer seeds of P is periodic (for some period dividing ∆). Using the Chinese Remainder Theorem (CRT), we can describe the roots of P modulo ∆ with the roots of P modulo p valp(∆) for each prime p dividing ∆. Moreover, since the polynomials we generate have a quite large denominator, we had to find an efficient way of representing the set of integer seeds in order to be able to compute and store it. In the following, we give some information on the structure of the roots of a polynomial modulo a prime power, and explain how this structure allows to find a compressed representation of this set. Then we present the algorithm we designed to compute the set under its compressed representation, and the algorithm we used to check if Q represents primes. Finally, we give the integer seeds of the examples we introduced in the previous subsection, as well as the value of λ we used to balance R and H.

3.5.1.

Structure of the set of roots modulo a prime power. In this paragraph, we explain that the roots of a polynomial with integral coefficients modulo successive powers of a prime form a tree, and we present some properties of this tree. Let P be a polynomial with integral coefficients, let p be a prime integer.

Notice that if x ∈ Z/p k Z is a root of P for an integer k ≥ 2, then x mod p k-1 is a root of P modulo p k-1 . Therefore, we can see x mod p k-1 as the parent of x in a tree containing every root of P modulo the powers of p. We give in Figure 6 an example of such a tree taken from [43, Section 2.6], and another example in Figure 7. The tree can be represented in levels made of the nodes of same depth, i.e. the roots of P modulo a specific power of p. We set the depth of the initial root mod p to be 1 so that it matches the exponent p 1 . We can see from the figures that every root of P modulo p gives rise to a tree. We can also see that there are two types of trees: one kind where each node has a unique child, and the other kind where a node has either multiple children or none. The behavior of the tree depends on the multiplicity of the root. In the case where P has a simple root α 0 modulo p, Hensel's lemma [START_REF] Fernando | p-adic Numbers[END_REF]Section 3.4] states that each node has a unique child, and gives an algorithm to recover it.

When P has a root α 0 modulo p with multiplicity greather than 2, the following proposition from [START_REF] Niven | An Introduction to the Theory of Numbers[END_REF]Section 2.6] states that a node in the tree above α 0 has either p children or none: Proposition 4. Let a ∈ Z be a singular root of a polynomial P ∈ Z[X] modulo a prime power p k . Then either a lifts to p roots modulo p k+1 or a lifts to no roots.

For example on Figure 6, 1 is a multiple root of X 2 + X + 223 modulo 3, and in Figure 7, 0 is a multiple root of X 3 -25X 2 + 70X -522. They give rise to a non-degenerate tree. In Figure 7, 1 is a simple root, and gives rise to a degenerate tree like a linked list.

3.5.2. Representation of the set of roots modulo a prime power. Computing the roots of a polynomial P modulo p k , where p is a prime, means computing the k-th level of the tree of roots of P modulo powers of p. We have seen in Figure 7 that the number of roots can grow quickly. In our case, the polynomials that we are interested in may have a large denominator, meaning that p can be quite large as well. Therefore, we have to find a way to store the roots in a way minimizing the amount of space required. For example, in Figure 6, we can represent the solutions modulo 3 4 by simply giving the node with label 4 at depth 2, and saying that x ∈ Z/3 4 Z is a root of P if and only if x ≡ 4 mod 3 2 . As an other example, to represent the roots modulo 3 5 , we can see that x ∈ Z/3 5 Z is a solution if and only if x ≡ 4 mod 3 3 or x ≡ 22 mod 3 3 . Therefore, we can represent the roots by giving the two nodes 4 and 22 at depth 3.

Remark 8. We can look at this representation from the point of view of p-adic geometry ( [START_REF] Fernando | p-adic Numbers[END_REF] for a reference). Then, saying that an integer x ∈ Z equals a modulo p j means that x ∈ D(a, p -j ) where D(a, p -j ) is the disk of centre a and radius p -j in Q p . Our representation can be interpreted as the covering of the preimage of D(0, p -k ) under P with a minimal number of disks. This point of view suggests that our representation will have good properties for computing inclusions and intersections, as Q p is an ultrametric space.

Remark 9. We used this particular representation to store the minimum amount of information possible. Therefore, it would be counterproductive to use the CRT to reassemble the roots of P modulo ∆, instead of keeping everything under this compressed form. This means that, for example, when we use the family to generate curves, we have to iterate on the integer seeds using the representation modulo different prime powers, which is in fact not so difficult.

Example 13. Let P = (X 2 +23644019242458802X+39688175156984422)/68398769951398683. Let P = X 2 +23644019242458802X+39688175156984422 and ∆ = 68398769951398683 = 3 5 × 16777259 2 . We find that P ≡ X 2 + X + 223 mod 3 5 and P ≡ (X -1) 2 mod 16777259 2 . Therefore, P has a multiple root modulo 16777259 which lifts modulo 16777259 2 . Then, from Figure 6, we know that P takes integer values at an integer x if and only if x ≡ 4, 22 mod 3 3 and x ≡ 1 mod 16777259. Here it is convenient to avoid storing the 16777259 roots above 1 in the tree of roots modulo powers of 16777259. Instead, we store triplets (4, 3, 3), [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF][START_REF] Barbulescu | Updating key size estimations for pairings[END_REF][START_REF] Barbulescu | Updating key size estimations for pairings[END_REF] and (1, 16777259, 1) where (x, p, j) encodes the roots in the class x mod p j that make P vanish modulo p k . Note that here we have j < k, which means that we have saved some memory space.

3.5.3.

Computing the roots of a polynomial modulo a prime power. In this paragraph, we finally explain how to compute the set of roots of a polynomial with integral coefficients modulo a prime power, under the representation from the last paragraph. Let p be a prime integer and k be a positive integer. In our experiments we encoutered some highly tricky cases and these situations led us to the following strategy to handle these technicalities. This section can be skipped on first read. More precisely, lifting the simple and multiple roots with a Panayi's like algorithm 1 does not end in all cases in a compressed form of roots and that caused memory issues in our implementation.

Let us first define

(3.6) µ(P ) = sup{j ∈ Z + | ∀x ∈ Z, P (x) ≡ 0 mod p j } .
Our Algorithm 3.2 will essentially sum up to computing µ(P ), or more realistically a good lower approximation of µ(P ) for any P .

First, the content of the polynomial P obviously impacts µ(P ). Let ν = val p (cont(P )), then µ(P ) ≥ ν. Moreover, µ(P/p ν ) = µ(P ) -ν, therefore we only have to consider the case where p and the content of P are coprime. We have the following: Proposition 5. Let P be a polynomial with integral coefficients, and let p be a prime integer such that cont(P ) and p are coprime. Let P = P mod p, and let

P = (X p -X) j Q where Q and X p -X are coprime in F p [X]. Then 1 ≤ µ(P ) ≤ j. Moreover, let Q ∈ Z[X] be a polynomial mapping to Q ∈ F p [X], and let R = P -(X p -X) j Q ∈ Z[X]. Then cont(R) ≥ 1, and µ(P ) ≥ min(j, µ(R)).
Proof. We first prove that µ satisfies the following:

(1) µ(P ) = ∞ iff P = 0.

1 we learned that this folklore algorithm is attributed to Peter Panayi who wrote a PhD thesis entitled Computation of Leopoldt's p-adic regulator at the University of East Anglia in 1995.

(

) ∀P, Q ∈ Z[X], µ(P Q) ≥ µ(P ) + µ(Q). (3) ∀P, Q ∈ Z[X], µ(P + Q) ≥ min(µ(P ), µ(Q)). Notice that µ(P ) = min x∈Z ν p (P (x)) 2 
, where ν p is the p-adic valuation on Z. Then ( 1)

is easily verified. Let P, Q ∈ Z[X], then µ(P Q) = min x∈Z ν p (P Q(x)) = min x∈Z (ν p (P (x)) + ν p (Q(x))) ≥ min x∈Z ν p (P (x)) + min x∈Z ν p (Q(x)) = µ(P ) + µ(Q) (2) µ(P + Q) = min x∈Z ν p (P (x) + Q(x)) ≥ min x∈Z min(ν p (P (x)), ν p (Q(x))) ≥ min(min x∈Z ν p (P (x)), min x∈Z ν p (Q(x))) = min(µ(P ), µ(Q)) (3)
Then, with the notation of the proposition,

P = (X p -X) j Q + R, so µ(P ) ≥ min(µ((X p -X) j Q), R) = min(j, µ(R)).
Corollary 1. Let P be a polynomial with integral coefficients, and let p be a prime integer such that cont(P ) and p are coprime. Then there exists integers j 0 , j 1 , ..., j j0-1 and polynomials

Q 0 , Q 1 , ..., Q j0-1 , R, such that P = (X p -X) j0 Q 0 + p(X p -X) j1 Q 1 + ... + p j0-1 (X p -X) jj 0 -1 Q j0-1 + p j0 R.
Moreover, µ(P ) >= min{j 0 , j 1 + 1, ..., j j0-1 + j 0 -1}.

Generally, if we compute min{j 0 , j 1 + 1, ..., j j0-1 + j 0 -1}, the result will be equal to µ(P ). During our enumeration, we never encountered a polynomial where the two values were different. Therefore, we designed a recursive algorithm (Alg. 3.2) to compute a good approximation of µ(P ). Algorithm 3.2: Approx-µ(P, p, depth, m) 1 Initial call: Approx-µ(P, p, 0, +∞) Input: P ∈ Z[X], p a prime integer, depth a variable initialized at 0 storing the global content of the term in the recursion, m the current minimum in the recursion, initialized at +∞ 2 Let c = ν p (cont(P )) 3 depth ← depth + c 4 P ← P/p c 5 Let j be the largest integer such that (X p -X) j divides P mod p 6 m ← min(m, depth + j)

7 if m ≤ depth + 1
// at which point the minimum stops decreasing 8 then

9 Return m else Compute Q ∈ Z[X] such that (X p -X) j Q = P mod p. Let R = P -(X p -X) j Q Return Approx-µ(R, p, depth, m)
Now we come back to the main algorithm (computing the roots of P modulo ∆). The idea is that we can use µ and some substitutions to climb the tree of roots until we find the correct congruence relations to describe the set of roots. Proposition 6. Let P be a polynomial with integral coefficients, and let p be a prime integer. Let i be a positive integer. Let a be an integer such that P (a) ≡ 0 mod p i . Let P = P (p i X + a). Then, µ(P ) = max{j ∈ Z + | ∀x ∈ Z such that x ≡ a mod p i , P (x) ≡ 0 mod p j }.

If we make two substitutions in a row, for example pX + a then pX + b, the combined substitution is X → p 2 X + pb + a and the congruence relation in µ(P ) is x ≡ a + pb mod p 2 . Therefore, this kind of substitutions allows to climb the tree of roots modulo powers of p until we have µ(P ) ≥ k.

We can give the idea of the algorithm with the example from Figure 6:

Example 14. Let P = X 2 + X + 223, p = 3 and k = 5. We want to find the roots of P modulo 3 5 . We can compute µ(P ) = 0, therefore Z is not the answer. We have P ≡ (X -1) 2 mod 3, so 1 is a multiple root of P modulo 3, and the only root. Therefore we make the substitution P ← P (3X + 1) = 9X 2 + 9X + 225, and our result becomes {(1, 3, 1)}. Now 3 2 | cont(P ), so P ← P/3 2 = X 2 + X + 25 and k ← k -2 = 3. Still, µ(P ) = 0 and P ≡ (X -1) 2 mod 3, so we substitute P ← P (3X + 1) = 9X 2 + 9X + 27, and our result becomes {(1

+ 3, 3, 1 + 1)} = {(4, 3, 2)}.
Similarly, 3 2 | cont(P ), so P ← P/3 2 = X 2 + X + 3 and k ← k -2 = 1. We once more have µ(P ) = 0, but this time P ≡ (X -2)X mod 3. Since k = 1 here, it is not necessary to continue further. The substitutions X → 3X and X → 3X + 2 give the desired result of {(4 + 0, 3, 2 + 1), (4

+ 2 • 3 2 , 3, 2 + 1)} = {(4, 3 , 3), (22, 3, 3)}. 
Algorithm 3.3: RootsModPrimePowers(P, p, k, root, depth)

Input: P ∈ Z[X]
, p a prime integer, k the power of p, root and depth are variables that store where we are in the tree of roots during the recursion 1 Let c = ν p (cont(P )) 2 P ← P/p c 3 Let µ = Approx-µ(P, p, 0, ∞)

4 if k ≤ c + µ then 5
Add (depth, root) to the list of solutions. 6 else 7 for 0 ≤ r ≤ p -1, root of P mod p do 8 Run RootsModPrimePowers(P (pX + r), p, k -c, root + rp depth , depth + 1) 3.5.4. Checking if a polynomial represents primes. The first three conditions from the Buniakowski-Schinzel conjecture (2.3) can be easily verified. The previous paragraph dealt with condition 4. Therefore, we mainly need to understand how we can verify that no prime integer divides every integer value of a polynomial P . We can assume that we know the integer seeds of P . Let ∆ be the denominator of P . First fix a positive integer N . Compute d the greatest common divisor of N integer values of P . If d is 1 then there is nothing more to do. If d > 1 then let p be a prime dividing d. There are two possibilities: p | ∆ or p ∆. If p ∆ then P can be projected onto a polynomial P in F p [X] by taking its coefficients modulo p. Then p is a divisor of every integer values of P iff P evaluates to 0 at every element in

F p iff P ≡ 0 mod X p -X in F p [X].
If p | ∆ then define P = ∆P . Let k p be the valuation of p in ∆ and let

L kp p = {x ∈ Z/p kp Z | P (x) = 0} and L kp+1 p = {x ∈ Z/p kp+1 Z | x mod p kp ∈ L kp p }.
Then p is a divisor of every integer values of P if and only if for every x ∈ L share the same representation with our representation method, and that we mentionned in Remark 8 that computing inclusions was not difficult, we do not have anything to add. We get the following algorithm: Let P be the projection of P in F p [X]; 17 trivial_gcd=not P ≡ 0 mod X p -X 18 Return trivial_gcd ; 3.5.5. Managing families with large denominators. It is important to keep in mind that we want the families we computed to be able to generate pairing-friendly curves of a specific size. Two main obstacles are known in the litterature (for example see [START_REF] Freeman | A taxonomy of pairing-friendly elliptic curves[END_REF]): the degree of the polynomial R and the magnitude of the denominator of Q (which is related to the denominator of every polynomial in the family). In this paragraph, we elaborate on these obstacles and give a criterion telling if a family will be able to produce curves of a given size. First, we have seen that the set of integer seeds of a family is periodic. The LCM of the denominators of Q, T and Y is a period of this set, but usually not the smallest one. Definition 4. Let Q, R, T, Y, H be a family of pairing-friendly curves. We call Π the smallest period of the set of integer seeds of the family. We call π the ratio of integer seeds by period of Π: π = #{integer seeds modulo Π}/Π. It is not difficult to see that Π is well-defined. It better describes the difficulty of finding curves of a certain size (of q = Q(x 0 ) and r = R(x 0 )) than the denominator.

Algorithm 3.4: Ensuring gcd({f (x) | x, f (x) ∈ Z}) = 1 Input: P ∈ Q[X] a polynomial with denominator ∆, N ∈ Z, (L kp p ) p|∆ 1 d = 0; 2 for N repetitions do
For example, among the three families with embedding degree k = 22 we provided, Example 6 has a larger denominator than Example 7 while its period is smaller.

Let Q, R, T , Y , H be a family of pairing-friendly elliptic curves. Let d be the degree of R, Π the smallest period of the set of seeds of the family, and π the ratio of integer seeds per period of Π. Let n and N be two positive integers. Let λ be the denominator of R. We want to know if there are N integer seeds x ∈ Z such that R(x) has size n. R(x) has size n if x has size (n + log(λ))/d (here we assume R ≈ X d /λ). There are approximately 2 (n+log λ)/d positive integers x of the correct size, and 2 (n+log λ)/d+1 integers in total. On the other hand, we need to consider N/π integers to find N integer roots. Therefore, we need:

N/π ≤ 2 (n+log λ)/d+1 ,
or taking the logarithm:

d log(1/π) -log λ ≤ n + d(1 -log N ).

Our new pairing-friendly curve families made practical

In this section we aim at instanciating our new pairing-friendly curve families at cryptographic sizes, and implementing the optimal ate pairing on them. We presented several new families in subsection 3.4. We focus on two families of embedding degree k = 20 (Example 11, Example 12 that we name GG20a and GG20b) and one of embedding k = 22 (Example 6 named GG22D7). 4.1. Finding Seeds. The first step is to get seeds x 0 so that the parameters Q(x 0 ), R(x 0 )/λ are prime integers of cryptographic size. Moreover it is usefull to be able to generate sparse seeds, that have a very small Hamming weight in (signed) binary form. For that we use the Python/SageMath scripts available at [START_REF] Guillevic | SageMath-Python[END_REF] under sage/tnfs/gen/generate_sparse_curve.py. If we target the 192-bit security level, r should be about 384-bit long. We obtain the seeds in Table 5. For GG20a and GG20b we present the seeds of smallest possible Hamming weight such that q = Q(x 0 ) is at most 576-bit long (9 limbs of 64-bits). It implies r = R(x 0 ) of 379 or 380 bits (almost 384 bits). For GG22D7 we obtain only one seed so that r is close to 384 bits. curve seed log q log r ρ log q k sec. [START_REF] Vercauteren | Optimal pairings[END_REF], a variant of the Tate pairing. Other pairings such as α-Weil or β-Weil pairings might be competitive in parallel computation, but we do not consider this case. First, define G 1 as the order-r subgroup over

F q k GG20a -(
F q , G 1 = E(F q )[r] = E[r] ∩ ker(π -[1]
) where π : (x, y) → (x q , y q ) is the Frobenius endomorphism on E, and define G 2 as the trace-zero subgroup of order r over

F q k , G 2 = E[r] ∩ ker(π -[q]
). With the LLL lattice reduction algorithm, obtain short vectors of the lattice spanned by the rows of the matrix

M =          r 0 . . . . . . 0 -q 1 . . . . . . 0 . . . . . . . . . . . . . . . . . . . . . 1 0 0 . . . 0 -q 1          ϕ(k)×ϕ(k)
With LLL, the shortest vector has coefficients bounded by Cr 1/ϕ(k) where C depends on the dimension of the lattice and the LLL parameters (δ, γ). A row (c 0 , c 1 , . . . , c ϕ(k)-1 ) of short vectors gives the formula, with some integers m, λ,

c 0 + c 1 q + c 2 q 2 + . . . + c ϕ(k)-1 q ϕ(k)-1 = λ = mr = 0 mod r .
The optimal ate pairing formula is given by Theorem 3, where f c,Q (P ) denotes a Miller function whose divisor is div( 

f c,Q ) = c(Q) -([c]Q) -(c - 
= 1; f i+j,Q = f i,Q • f j,Q • iQ,jQ /v (i+j)Q
where iQ,jQ denotes the line equation through iQ and jQ, and v (i+j)Q denotes the vertical line at (i + j)Q; and

f ij,Q = f j i,Q • f j,[i]Q .
Theorem 3 ([46]). Let λ = mr with r m and write λ = l-1 i=0 c i q i then (4.1)

a [c0,...,c l ] : G 2 × G 1 → µ r : (Q, P ) → l i=0 f q i ci,Q (P ) • l-1 i=0 [si+1]Q,[ciq i ]Q (P ) v [si]Q (P ) (q k -1)/r
with s i = l j=i c j q j , defines a bilinear pairing, where Qi,Qj (P ) denotes the line equation through the points Q i , Q j evaluated at the coordinates of the point P , and v Qi (P ) is the vertical line through the point Q i evaluated at the coordinates of P . Furthermore, if

mkq k-1 ≡ ((q k -1)/r) • l i=0 ic i q i-1 mod r ,
then the pairing is non-degenerate.

In the following subsections, we apply Theorem 3 to our new curves. The computation of a Miller function f c,Q (P ) is explained in subsection 4.4 and algorithm 4.1. Because our curves have even embedding degrees, we omit the vertical lines v Qi (P ) in the formulas (see subsubsection 4.3.1 and subsubsection 4.3.3). x -q(x) + 2(q(x)) 6 ≡ 0 mod r(x)

hence the formula, where

π(Q) = [q]Q, π 6 (Q) = [q 6 ]Q: e(P, Q) = f x,Q (P )f -1,π(Q) (P )f 2,π 6 (Q) (P ) [x]Q,-π(Q) (P ) xQ-π(Q),π 6 ([2]Q) (P ) .
Well-known simplifications apply: f -1,π(Q) (P ) can be dropped off, and the same for the line xQ-π(Q),π 6 ([2]Q) (P ) as it will be a vertical. Moreover, f 2,π 6 (Q) (P ) costs a double-line step π 6 (Q),π 6 (Q) (P ) = q 6 Q,Q (P ). Finally,

(4.3) e(P, Q) = f x,Q (P ) q 6 Q,Q (P ) [x]Q,π(-Q) (P ) .
For the second k = 20 family (GG20b), we obtain a similar formula, only a sign changes:

x -q(x) -2(q(x)) 6 ≡ 0 mod r(x) (4.4)

e(P, Q) = f x,Q (P ) q 6 -Q,-Q (P ) [x]Q,π(-Q) (P ) . (4.5)
The final exponentiation is decomposed into two parts, called easy and hard:

q 20 -1 r = q 20 -1 φ 20 (q)
φ 20 (q) r = (q 10 -1)(q 2 + 1) easy φ 20 (q) r hard .

The easy part costs one inversion and a few Frobenius powers. We apply the technique of Fuentes et al. [START_REF] Fuentes-Castañeda | Faster hashing to G 2[END_REF] to simplify the hard pard. We note that q 8 = q 6 -q 4 + q 2 -1 mod Φ 20 (q) and after some ad-hoc improvements, we obtain the following exponents e a , e b for GG20a, resp. GG20b that are multiples of the hard part Φ 20 (q)/r and coprime to r. e a =(x 6 -2x 5 + 5x 4 + 328)

× (-41q 2 + xq(7 -24q 5 ) + x 2 (11 -2q 5 ) + x 3 q 4 (4 -3q 5 ) + x 4 q 3 (2 + q 5 ) + x 5 q 7 ) + (x 2 -2x + 5)

× (625q(2 -q 5 ) + 125x(4 + 3q 5 ) + 25x 2 q 4 (11 + 2q 5 ) + 5x 3 q 3 (7 + 24q 5 ) + 38x 4 q 7 ) + 6724q 7 e b =(x 6 -2x 5 + 5x 4 -328)

× (-41q 2 + xq(7 + 24q 5 ) + x 2 (11 + 2q 5 ) -x 3 q 4 (4 + 3q 5 ) + x 4 q 3 (-2 + q 5 ) + x 5 q 7 ) + (x 2 -2x + 5) × (-5 4 q(q 5 + 2) + 5 3 x(-4 + 3q 5 ) + 5 2 x 2 q 4 (11 -2q 5 ) + 5x 3 q 3 (7 -24q 5 ) -38x 4 q 7 ) + 6724q x 2 -xq(x) + 2(q(x)) 2 ≡ 0 mod r(x)

hence the optimal ate Miller loop formula

e(P, Q) = f x 2 ,Q (P )f -x,π(Q) (P )f 2,π 2 (Q) (P ) [x 2 ]Q,-π([x]Q) (P ) x 2 Q-π([x]Q),π 2 ([2]Q) (P )
and the latter line can be removed as it is a vertical. Finally, (4.7)

e(P, Q) = f x 2 ,Q (P )f -q x,Q (P ) q 2 Q,Q (P ) [x 2 ]Q,-π([x]Q) (P ) . Moreover one can share the computation of f x,Q inside f x 2 ,Q : (4.8) e(P, Q) = f x x,Q (P )f x,[x]Q (P )f -q x,Q (P ) q 2 Q,Q (P ) [x 2 ]Q,-π([x]Q) (P )
. For the final exponentiation, we apply the same technique ( [START_REF] Fuentes-Castañeda | Faster hashing to G 2[END_REF]) and we obtain e =(x 12 -x 11 + 2x 10 + 161) • (-23q 8 + 11xq 7 + 17x 2 q 6 + 3x 3 q 5 -7x 4 q 4 -5x 5 q 3 + x 6 q 2 + 3x 7 q + x 8 + x 9 q 10 + x 10 q 9 ) + (x 2 -x + 2) • (2 10 q 7 + 2 9 xq 6 -2 8 x 2 q 5 -3 • 2 7 x 3 q 4 -2 6 x 4 q 3 + 5

• 2 5 x 5 q 2 + 7 • 2 4 x 6 q -3 • 2 3 x 7 + 17 • 2 2 x 8 q 10 + 11 • 2x 9 q 9 )
Finally we mention that Fouotsa et al. x-super-optimal ate pairing [START_REF] Fouotsa | x-superoptimal pairings on elliptic curves with odd prime embedding degrees: Bw13-p310 and bw19-p286[END_REF] can apply to this curve but we did not investigate further. ). In this case, points in G 2 can be represented in sparse form thanks to a quartic twist. There are two choices of quartic twist. Let t = T (x 0 ) be the trace of E over F q and let t 5 be the trace of E over F q 5 , t 5 = t 5 -5qt 3 + 5q 2 t. Let y 5 be the square-free part of t 2 5 -4q 5 = -Dy 2 5 , y 5 = y(t 4 -3pt 2 + p 2 ) where t 2 -4q = -Dy 2 . The two possible quartic twist orders are q 5 + 1 + y 5 and q 5 + 1 -y 5 . By construction, one quartic twist curve has order multiple of r = R(x 0 ) and with our choice of y = Y (x 0 ) and y 5 , this is q 5 + 1 + y 5 .

A quartic D-twist of E over F q 5 is defined by E D : y 2 = x 3 +a/w where the curve coefficient a is divided by w hence the name D, and w ∈ F q 5 \ F q is such that X 4 -w is irreducible over F q 5 . Let ω ∈ F q 20 such that ω 4 = w and #E D (F q 5 ) = q 5 + 1 + y 5 . Let Q (x , y ) ∈ E D (F q 5 ). Then Q = φ(Q ) = (x ω 2 , y ω 3 ) lies on E(F q 20 ). Moreover x ω 2 is in the subfield F q 10 . The vertical line equation at Q evaluated at P is v Q (P ) = x Q -x P = x ω 2 -x P ∈ F q 10 . Because it is in a proper subfield of F q 20 , it becomes 1 after the easy part of the final exponentiation. As elements of F q 20 = F q 5 [ω], x ω 2 and y ω 3 are sparse.

A quartic M-twist of E over F q 5 is defined by E M : y 2 = x 3 + az where the curve coefficient a is multiplied by z hence the name M, and z ∈ F q 5 \F q is such that X 4 -z is irreducible over 10 . Because it is in a proper subfield of F q 20 , it becomes 1 after the easy part of the final exponentiation. As elements of F q 20 = F q 5 [ζ], x /ζ 2 = x /zζ 2 and y /ζ 3 = y /zζ are sparse. 4.3.2. Field extension representation for k = 20. Let q = 1 mod 5 and let F q 5 be defined with an irreducible binomial polynomial x 5 -v in F q [x]. Let ν be a root of x 5 -v, that is, ν = 5 √ v (for some choice of fifth root). Elements of F q 5 = F q [x]/(x 5 -v) can be represented as degree 4 polynomials modulo x 5 -v or once ν is set, as a = a 0 + a 1 ν + a 2 ν 2 + a 3 ν 3 + a 4 ν 4 , where a i ∈ F q . Let x 4 -w be an irreducible polynomial in F q 5 [x], where w ∈ F q 5 . Let ω be a root of x 4 -w in F q 20 . Elements of F q 20 are represented as degree 3 polynomials modulo x 4 -w with coefficients in F q 5 or as a 0 + a 1 ω + a 2 ω 2 + a 3 ω 3 , where a i ∈ F q 5 . Example 15 ((GG20b575a)). We take as example the curve GG20b whose seed is u = -2 49 -2 45 -2 42 -2 36 + 2 11 + 1. We define F q 5 = F q [x]/(x 5 -2) and set ν a root of x 5 -2 in F q 5 . There are two options to define the quartic extension: on top of F q or on top of F q 5 . We can define F q 4 = F q [x]/(x 4 -3) and set ω D a root of x 4 -3 in F q 4 . We define F q 20 = F q [ν, ω D ]. The quartic D-twist is E D : y 2 = x 3 + a/(3ν 4 )x and the twisting map is φ D : (x , y ) → (x ω 2 D ν 2 , y ω 3 D ν 3 ). We can also define F q 4 = F q [x]/(x 4 -11) and set ω M a root of x 4 -11 in F q 4 . We define

F q 5 . Let ζ ∈ F q 20 such that ζ 4 = z and #E M (F q 5 ) = q 5 +1+y 5 . Let Q (x , y ) ∈ E M (F q 5 ). Then Q = φ(Q ) = (x /ζ 2 , y /ζ 3 ) lies on E(F q 20 ). Moreover x /ζ 2 is in the subfield F q 10 . The vertical line equation at Q evaluated at P is v Q (P ) = x Q -x P = x /ζ 2 -x P ∈ F q
F q 20 = F q [ν, ω M ]. The quartic M-twist is E M : y 2 = x 3 + a(11ν 4 )x and the twisting map is φ M : (x , y ) → (x /(ω 2 M ν 2 ), y /(ω 3 M ν 3 )). For Frobenius powers, ν q = ν 5 q-1 5 ν = 2 q-1 5 ν where 2 q-1 5 ∈ F q is precomputed. Also, ω q D = ω 4 q-1 4 D ω D = 3 q-1 4 ω D where 3 q-1 4 
∈ F q is precomputed. Note that

3 q-1 2 
= -1. In the same way, ω q M = ω

4 q-1 4 M ω M = 11 q-1 4 ω M where 11 q-1 4 
∈ F q is precomputed. Note that 11 q-1 2

= -1. Moreover, 11

q-1 4

= -3

q-1 4 . A Frobenius power costs 18 multiplications in F q (f 20 = 18m), where 18 values in F q shall be precomputed: the (2 i q-1 5 3 j q-1 4 ) 0≤i≤4, 0≤j≤3 , except for i = j = 0 (the value is 1) and i = 0, j = 2 (the value is -1).

A usual alternative is to define F q 20 on top of F q 5 . Let F q 20 = F q 5 [x]/(x 4 -3ν). Let ω D be a root in F q 20 of x 4 -3ν. The quartic D-twist is defined by E D : y 2 = x 3 + a/(3ν)x and the twisting map is φ

D : (x , y ) → (x ω 2 D , y ω 3 D ). Let F q 20 = F q 5 [x]/(x 4 -11ν).
Let ω M be a root in F q 20 of x 4 -11ν. The quartic M-twist is defined by E M : y 2 = x 3 + a(11ν)x and the twisting map is φ M : (x , y ) → (x /ω 2 M , y /ω 3 M ). A Frobenius power costs f 20 = 18m like before, with similar precomputations. 4.3.3. Twisted curve and sparse G 2 representation for k = 22. Our new k = 22 curves E : y 2 = x 3 + ax + b in short Weierstrass form have a quadratic twist defined over F q 11 . Let t be the trace of E over F q . The trace of E over F q 11 is t 11 = t 11 -11qt 9 + 44q 2 t 7 -77q 3 t 5 + 55q 4 t 3 -11q 5 t. The quadratic twist of E over F q 11 has order q 11 + 1 + t 11 and by construction, its order is a multiple of r = R(x 0 ). The quadratic M-twist is defined by E M : y 2 = x 3 + aw 2 x + bw 3 where w ∈ F q 11 \ F q is not a square. Let ω in F q 22 be a root of x 2 -w. Let Q (x , y ) ∈ E M (F q 11 ). Then Q = φ(Q ) = (x /ω 2 , y /ω 3 ) = (x /w, y /w 2 ω) lies on E(F q 22 ). More precisely x /w is in the subfield F q 11 . The vertical line equation at Q evaluated at P is v Q (P ) = x Q -x P = x /w -x P ∈ F q 11 . Because it is in a proper subfield of F q 22 , it becomes 1 after the easy part of the final exponentiation. As elements of F q 22 = F q 11 [ω], x /w and y /w 2 ω are sparse. 4.3.4. Field extension representation for k = 22. The polynomial shape of q = Q(x 0 ) does not allow q = 1 mod 11 and finding an irreducible binomial polynomial is not possible. We have chosen the alternative with a sparse polynomial of the form x 11 + v 1 x + v 0 with tiny integers v 1 , v 0 . We represent elements of F q 11 as degree 10 polynomials modulo x 11 + v 1 x + v 0 . The top extension F q 22 is represented as a quadratic extension of F q 11 with an irreducible quadratic polynomial x 2 -w, w ∈ F q 11 . Example 16 (GG22D7-457). With the seed x 0 = -2 20 + 2 18 + 2 13 -2 10 -2 8 -2 2 + 1, q = Q(x 0 ) is 457-bit long. We found the irreducible polynomials x 11 + x -19 and x 11 -2x -2. Let ν be a root of either polynomial. Then x 2 -ν defines the quadratic extension. Let ω ∈ F q 22 such that ω 2 = ν. The quadratic M-twist is E M : y 2 = x 3 + aν 2 x + bν 3 . The twist map is φ M : (x , y ) → (x /ν, y /ν 2 ω).

A Frobenius power in this case is quite tedious, as q = 3 mod 11. We obtain f 11 = 110m and f 22 = 21 • 11m = 231m. 4.4. Miller function computation. Miller algorithm (algorithm 4.1) computes a Miller function f c,Q (P ). Because our curves have even embedding degrees, we omit the vertical lines v Qi (P ) in the formulas (see subsubsection 4.3.1 and subsubsection 4.3.3). Formulas for doubling step and addition step for our k = 20 curves can be found in Costello, Lange and Naehrig paper [START_REF] Costello | Faster pairing computations on curves with high-degree twists[END_REF], and for k = 22 curves, in [START_REF] Chatterjee | Efficient computation of Tate pairing in projective coordinate over general characteristic fields[END_REF]. Input: E, F q , F q k , k even, P ∈ E(F q )[r], Q ∈ E(F q k )[r] such that π(Q) = [q]Q in affine coord., c ∈ Z * . Result: f = f c,Q (P ) // full-sparse-m k 11 return f ; 4.5. SageMath proof-of-concept implementation. We rely on SageMath for the finite field extension arithmetic. We base our implementation on the MITlicensed library of pairings at [START_REF] El | Families of SNARK-friendly 2-chains of elliptic curves[END_REF]. We adapt the pairing computation on KSS16 curves to our k = 20 curves as they both have a quartic twist. More precisely we adapt pairing.py to our needs. Our implementation it available under MIT license at https://gitlab.inria.fr/guillevi/pairings-on-gasnier-g-curves We validated our pairing formulas (optimal ate Miller loop formulas, final exponentiation formulas) and checked that the pairing is bilinear. 4.6. Pairing cost estimates. We reproduce the results of [START_REF] Aranha | A short-list of pairing-friendly curves resistant to the special TNFS at the 192-bit security level[END_REF], updated. The classical strategy is used to estimate a pairing computation cost in terms of multiplications and squarings in the base field F q . The costs of multiplication and squaring in the intermediate extensions are estimated in Table 6 (F q 5 and F q 20 , F q 11 and F q 22 respectively). We denote m i , resp. s i a multipliation, resp. squaring in F q i . For degree 5 extension, [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] reports m 5 = 13m, s 5 = 13s. For degree eleven extension field F q 11 , the Karatsuba rought estimate is m 11 ≥ 11 log 2 3 = 44.72 but it seems more realistic from an implementation perspective to use [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF]Eq. 6]: m 11 = m 5 + 2m 6 -1 = 48m where m 5 = 13m and m 6 = 18m. The quadratic extension F q 22 on top of

1 f ← 1; R ← Q; 2 if c < 0 then R ← -R; c ← -c;
F q 11 uses k m k s k f k s cyclo k i k -i 1 ≈ i k 1 m s 0 - 0 25m 5
13m [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] 13s [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] 4m -3f 5 + 2m 5 + 10m = 48m 73m 3m 5 = 39m 2m 5 = 26m 8m 2s 5 = 26s 2m 5 + 2s 5 + i 5 -i = 74m + 26s 125m 3m 10 = 117m 2m 10 = 78m 18m 2s 10 = 52m 2m 10 + 2s 10 + i 10 -i = 255m 280m 48m [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] 48s [START_REF] Montgomery | Five, six, and seven-term Karatsuba-like formulae[END_REF] 110m -5f 11 + 4m 11 + 22m = 764m 789m 3m 11 = 144m 2m 11 = 96m 231m 2s 11 = 96s 2m 11 + 2s 11 + i 11 -i = 860m + 96s 981m Table 6. Relative cost of multiplication m k , squaring s k , Frobenius f k , and inversion i k in finite field extensions. In the right-most column, i k is estimated with i 1 = 25m, s = m.

the usual Karatsuba formula m 22 = 3m 11 , s 22 = 2m 11 . The quartic extension F q 20 on top of F q 5 uses recursively the Karatsuba quadratic formulas m 20 = 3m 10 = 9m 5 , s 20 = 2m 10 = 6m 5 .

Frobenius powers in F q 5 and F q 20 are cheap as the extensions use binomial polynomials. One has f 5 = 4m and f 20 = 18m. However in F q 11 , q = 3 mod 11 and the irreducible polynomial has the form x 11 -2x -2. Let ν be a root of x 11 -2x -2, ν q = ν 11 q-3 11 ν 3 = (2ν + 2)

q-3 11 ν 3 so that (a 0 + a 1 ν + . . . + a 10 ν 10 ) q = a 0 + a 1 ν q + . . . + a 10 ν 10q = a 0 + a 1 δ 1 ν 3 + a 2 δ 2 ν 6 + a 3 δ 3 ν 9 + a 4 δ 4 ν + a 5 δ 5 ν 4 + a 6 δ 6 ν 7 + a 7 δ 7 ν 10 + a 8 δ 8 ν 2 +a 9 δ 9 ν 5 +a 10 δ 10 ν 8 where δ 1 = (2ν +2) (q-3)/11 , δ i = δ i 1 (2ν +2) 3i/11 . Indeed, ν iq = ν 11i(q-3)/11 ν 3i = (2ν + 2) i(q-3)/11 (2ν + 2) 3i/11 ν 3i mod 11 . Precomputing the δ i s, it costs 10 multiplications of a F q coefficient a i times a F q 11 value δ i , hence 110m.

Inversion in F q 5 is computed with the usual trick x -1 = x q+q 2 +q 3 +q 4 / Norm F q 5 /Fq (x) ([38, page ix]) and the simplification x q+q 2 +q 3 +q 4 = x q(q+1)(q 2 +1) that costs 3 Frobenius and 2 multiplications in F q 5 . Once the numerator is computed, the norm costs 5 more multiplications in F q as Norm(x) = x • x q+q 2 +q 3 +q 4 ∈ F q . Then five more multiplications in F q are required to multiply the inverse of the norm to each of the five coefficients. The final count is 3f 5 + 2m 5 + 5m + 5m + i = 48m + i. Inversion in F q 11 is x -1 = x 10 i=1 q i / Norm F q 11 /Fq (x) where the numerator simplifies as q + . . . + q 10 = q(q 5 + 1)((q 2 + 1)(q + 1)q + 1) or q(q + 1)((q 4 + 1)(q 2 + 1)q 2 + 1) so it costs 5 Frobenius powers, 4 multiplications. The total cost is 5f 11 +4m 11 +22m+i = 764m + i.

We report in Table 7 the cost of line computation and result accumulation that come from algorithm 4.1. Finally in Table 8 we estimate the total cost of a pairing computation in terms of multiplications in the base field. 

Conclusion

This work generalizes the KSS technique to generate complete families of pairingfriendly curves. Every complete family of cryptographic interest listed in the taxonomy of Freeman, Scott and Teske fall in this global approach. Our contribution is twofold: we present a theoretical interpretation of KSS with the subfield method and display its versatility by generating new complete families of embedding degrees of cryptographic interest: 16, 18, 20, 22. For k = 16, k = 18, we obtain alternative choices of comparable performances as the well-known KSS curves. For k = 20, we improve on the previous FST 6. [START_REF] Barbulescu | The tower number field sieve[END_REF] curves with parameters that are not vulnerable to a specific STNFS attack (the polynomial Q(X) has no automorphism). Finally for k = 22, we improve on the previously best ρ-value curves: our new family with D = 7 has ρ = 1.2 compared to FST 6.3 with ρ = 1.3. This ρ improvement applies to all k = 4 mod 6 curves.

The polynomials defining the new families in some cases have larger denominators and we present an automated procedure to process them. First, we determine the congruence conditions on the seeds x 0 to generate valid parameters with prime integers at Q(x 0 ), R(x 0 ), and integers at T (x 0 ), Y (x 0 ), H(x 0 ) (this step may discard many potential families). This contribution comes with a SageMath open-source companion code available online [START_REF] Gasnier | Sagemath code for the subfield method[END_REF]. Second we obtain seeds to generate new instances of elliptic curves of cryptographic interest at the 192-bit security level for k = 20, k = 22 and derive the optimal ate pairing and final exponentiation formulas. Finally we implemented the pairing on our new curves in SageMath to validate the formulas [START_REF] Guillevic | Sagemath code for pairing computations[END_REF].

The paramount goal remains families of pairing-friendy curves with ρ = 1, to reach optimal efficiency and also to satisfy new needs in recursive proofs of knowledge, where a cycle of prime-order pairing-friendly curves is sought. Complete families with ρ = 1 are very rare: apart from the BN family, all known families are sparse (MNT curves, Freeman curves). Moreover, these families all have quite small embedding degrees (k ∈ {3, 4, 6, 10, 12}). In particular, our new subfield method do not capture them. It remains a difficult open problem to generate new pairing-friendly curves with ρ = 1. In this work, we improved the ρ-value in certain cases (k = 22). With the ρ = 1 goal in mind, we foresee that such extremely rare curves are not likely to be given by complete families. We presume that new techniques to generate sparse families of curves are to be discovered in the quest to ρ = 1.
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 2 Figure 2. General and optimized setting for Case 1.
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 3 Figure 3. General and optimized setting for Case 3.
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 4 Figure 4. Best choice of k, d to minimize ρ, according to D.

  ), given D as input. Let D = 1, then if k is a multiple of 4, use Case 3 with d = 4, if k ≡ 2 mod 4, use Case 2, and if k is odd, use Case 1. When D = 3, if d = gcd(k, 6) is a multiple of 3, you can use Case 3 with d, else use Case 1 when k is odd and Case 2 when k is even. For any other D, if √ -D / ∈ C k , use Case 1 when k is odd, and Case 2 when k is even.

Figure 5 .

 5 Figure 5. Best choice of D, d to minimize ρ, according to k.

Algorithm 3 . 1 : 4 θ = αζ k ; 5 R=minpoly

 3145 SubfieldMethod(k, D, F, e) 1 Let K be the compositum of F and C k ; 2 Let ζ k be a fixed primitive k-th root of unity in K; 3 for α ∈ F do

  3) then use Case 3 with d = 6 (resp. d = 3). If you need to avoid the discriminant D = 3, you can use Case 2 (resp. Case 1) if k is even (resp. odd) with another discriminant, but the ρ-value will increase. Else if k is a multiple of 4 then use Case 3 with d = 4 for discriminant D = 1, and Case 2 for another discriminant. In this instance, the ρ-value only differ by 1/ϕ(k) with Case 2 having the smallest one. Else, if k is 2 modulo 4 (resp. odd), use Case 2 (resp. Case 1).

3. 4 .

 4 Experimental results. In this subsection, we start by explaining our enumeration process. We then give more details about the cases k = 16, 28, 40, and finally give examples of new families for k = 22, 46. We ran our experients on an Intel Xeon Silver 4214 CPU at 2.20 GHz with 16 GB RAM with SageMath 9.7 using Python 3.10.5.First note that in all cases of interest, F is a quadratic imaginary field and in most of the cases,F = Q( √ -D). Let {1,ω} be a basis of the integer ring of F . Usually, the basis is made of {1, (-1 + √ -D)/2} if D = 3 mod 4, and {1, √ -D} otherwise. Set a, b ∈ Z. We enumerate over α ∈ F (Algorithm 3.1 step 3) of the form α = a + bω where -20 ≤ a, b ≤ 20 and gcd(a, b) = 1.

3 . 4 . 1 .

 341 (a, b) = (1, ±1) with D = 7 for both k = 22 (Example 6) and k = 46 (Appendix A). To the contrary for k ∈ {16, 28, 40}, most of D fail and we enlarged the search space over D. We obtain potential families for some D, k = 16 with D ∈ {19, 35, 59, 67, 83, 115, 203, 227}, and (a, b) = (1 ± 1) with D = 35 and D = 227; k = 28 with D ∈ {11, 19, 23, 43, 47, 55, 59, 67, 71, 79, 83, 103, 107, 115, 127, 131, 139}, and (a, b) = (1 ± 1) with D = 11 ; and k = 40 with D ∈ {11, 31, 71, 103, 143, 163}, we did not get (a, b) = (1, ±1), the smallest period was reached at D = 11 with (a, b) = (13, -9). We got (a, b) = (1, -3) with D = 103. One can observe that for k = 16, 28, 40, the Ds that work satisfy D = 3 mod 4. We reproduce the previous KSS results. Using Case 3 with d = 4, we generate families with the same ρ-value as the KSS16 (Example 4) and KSS40 families and the method from [22, Method 6.4], and with discriminant D = 1 as well. Using Case 3 with d = 6, we generate families of discriminant D = 3 with the same ρ-value as the KSS18 (Example 5), KSS36 families. Note that for k = 54, we obtain the same three families with ρ = 10/9 as in [44] with (a, b) ∈ {(1, 1), (1, -2), (2, -1)}.

3. 4 . 2 .

 42 New families with smaller ρ of theoretical interest for k ∈ {22, 46} and k ∈ {16, 28, 40}. We provide examples of new families with better ρ-values for k = 22. The case k = 46 is only of theoretical interest as the polynomials have very large coefficients. We provide the data in Appendix A. With k = 46 we select D = 7 and (a, b) = (1, 1) in Example 17, and D = 15, (a, b) = (3, 1) in Example 18.

Example

  

Example 9 .

 9 Let k = 16, D = 35, F = Q[x]/(x 2 + x + 9), ω = (-1 + √ -35)/2, α = ω, (a, b) = (0, 1), θ = αζ k . Case 2 gives ρ = 9/8 = 1.125 compared to the well-known KSS16 curve (Example 4) with ρ = 5/4 = 1.25. Note that in practice, because of the denominators and the cofactors, the ρ-value of KSS16-330 is 1.29, the ρ-value of KSS16-766 is 1.27.
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 43 New families performing as well as previous families for k = 18, 20. We extend on k = 20 in Example 11 and Example 12 in subsubsection 3.4.3. See also Example 19 for an alternative family with k = 18. Example 10. Let k = 18, k is a multiple of 6 so let D = 3 and F = C 6 , ω = ζ 3 k = (1 + √ -3)/2, e = 3. Let θ = (1 + 3ζ 3 k )ζ k . Then: • T = (3X 4 + 176X + 221)/221,

5 Figure 7 .

 57 Figure 7. Trees of roots of X 3 -25X 2 + 70X -522 modulo powers of 2.

  P (x) = 0. We only have to compare L kp+1 p and the set of roots of P modulo p kp+1 . Since L kp p and L kp+1 p

3; 4 5 d 7 Return True; 8 11 if p | ∆ then 12 Let

 45781112 Pick a random element π in p|∆ L kp p Let x be a representant in the equivalence class CRT (π); = gcd(d, P (x)); 6 if d = 1 then Let P be the set of prime divisors of d, trivial_gcd = True, and let i = 0; 9 while trivial_gcd and i < #P do 10 Let p = P[i] and let i = i + 1; roots of P modulo p kp+1 ;

  1)(O), evaluated at the point P . In other words, the function f c,Q has a zero of order c at Q, a pole of order 1 at [c]Q, and a pole of order (c -1) at the point at infinity O. The classical formulas are f 1,Q

4. 2 . 2 .

 22 Optimal Ate Pairing Formulas for our new k = 20 curves. For the first k = 20 curve family (GG20a), we get (4.2)

7

 7 
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 23 Optimal Ate Pairing Formulas for our new k = 22 curve. For our new k = 22 curve with D = 7, we get (4.6)

4. 3 .

 3 Twisted curves, G 2 representation, and finite field extensions. 4.3.1. Twisted curve and sparse G 2 representation for k = 20. Our new GG20 curves have j-invariant 1728 (discriminant D = 1) and short Weierstrass curve equation E : y 2 = x 3 + ax (b = 0

Algorithm 4 . 1 :

 41 MillerFunction(c, P, Q)

3 4 0 5 f ← f 2 ; // s k 6 if b = 1 then 7 1 8 f 9 else 10 f

 3452678910 for b from the second most significant bit of c to the leastdo ← R,R (P ); R ← [2]R ; // Dbl step, tangent line ← R,Q (P ); R ← R + Q ; // Add step, chord line ← f • ( 0 • 1 ) ; // m k + sparse-sparse-m k ← f • 0 ;

Table 1 .

 1 Bit

sizes of curve parameters and corresponding embedding degrees to obtain commonly desired levels of security.

  2.1 exploits these ideas.

	Algorithm 2.1: Brezing-Weng method
	Input: k > 0 and D > 0 squarefree.
	Output: Polynomials Q, R, T , Y , H generating a family of elliptic curves
	with discriminant D and embedding degree k.
	1 Let R ∈ Z[X] be an irreducible polynomial with positive leading coefficient
	such

Table 3

 3 

	odd	3 15	2/3 14/15	Case 1: 1
		4	1/2	
	even	6 12	1/3 1/2	Case 2: 1/2
		30	7/15	

gives us the list of integers d such that 2(ϕ(d) -1)/d is small enough with respect to the parity of k: k d, d | k 2(ϕ(d) -1)/d upper bound

Table 3 .

 3 Choices for d between 3 and 50 and corresponding coefficients.

Table 4 .

 4 1 ≤ D ≤ 50 and |a|, |b| ≤ 20 that each D provides many potential families. We obtained Comparison of the ρ-values of the subfield method and previous methods

	k ρ, Case 1 ρ, Case 2	ρ, Case 3	ρ, Previous method
	7	1.333	-	-	1.333, [22, 6.6]
	8	-	1.250	1.500, d = 4 1.250, [22, 6.6]
	9	1.667	-	1.333, d = 3 1.333, [22, 6.6]
		-	1.500	-	1.500, [22, 6.24]
		1.200	-	-	1.200, [22, 6.6]
		-	1.750	1.500, d = 6 1.000, [22, 6.8]
		1.167	-	-	1.167, [22, 6.6]
		-	1.333	-	1.333, [22, 6.6]
		2.000	-	1.500, d = 3 1.500, [22, 6.6]
		-	1.125	1.250, d = 4 1.250, [22, 6.11]
		1.125	-	-	1.125, [22, 6.6]
		-	1.667	1.333, d = 6 1.333, [22, 6.12]
		1.111	-	-	1.111, [22, 6.6]
		-	1.375	1.500, d = 4 1.375, [22, 6.6]
		1.833	-	1.333, d = 3 1.333, [22, 6.6]
		-	1.200	-	1.300, [22, 6.3]
		1.091	-	-	1.091, [22, 6.6]
		-	1.625	1.250, d = 6 1.250, [22, 6.6]
		1.300	-	-	1.300, [22, 6.6]
		-	1.167	-	1.167, [22, 6.6]
		1.556	-	1.111, d = 3 1.111, [22, 6.6]
		-	1.250	1.333, d = 4 1.333, [22, 6.4]
		1.071	-	-	1.071, [22, 6.6]
		-	2.000	1.500, d = 6 1.500, [22, 6.6]
		1.067	-	-	1.067, [22, 6.6]
		-	1.063	1.125, d = 4 1.063, [22, 6.6]
		1.700	-	1.200, d = 3 1.200, [22, 6.6]
		-	1.125	-	1.125, [22, 6.24]
		1.500	-	-	1.500, [22, 6.6]
		-	1.583	1.167, d = 6 1.167, [22, 6.14]
		1.056	-	-	1.056, [22, 6.6]
		-	1.111	-	1.111, [22, 6.6]
		1.667	-	1.167, d = 3 1.167, [22, 6.6]
		-	1.3125	1.375, d = 4 1.375, [22, 6.11]
		1.050	-	-	1.050, [22, 6.6]
		-	1.833	1.333, d = 6 1.333, [22, 6.6]
		1.048	-	-	1.048, [22, 6.6]
		-	1.150	1.200, d = 4 1.150, [22, 6.6]
		1.917	-	1.333, d = 3 1.333, [22, 6.6]
		-	1.091	-	1.136, [22, 6.3]
		1.043	-	-	1.043, [22, 6.6]
		-	1.562	1.125, d = 6 1.125, [22, 6.6]
		1.190	-	-	1.190, [22, 6.6]
		-	1.300	-	1.300, [22, 6.6]

  17 -X16 -5X 15 + 7X 14 + 3X13 -17X 12 + 11X 11 + 23X 10 + 22X 9 -68X 8 + 24X 7 + 112X 6 -160X 5 -64X 4 + 384X 3 -256X 2 -512X + 1024)/23 • Q = (X 24 -X 23 + 2X 22 + 67X 13 + 94X 12 + 134X 11 + 2048X 2 + 5197X + 4096)/7406 Let H = (Q + 1 -T )/R. With x ≡ 4 mod 7, and x ≡ 13, 9 mod 23, then all polynomials take integer values and R, Q can take prime values. With x ≡ 4 mod 7, and x ≡ 1, 2, 3, 4, 6, 8, 12, 16, 18 mod 23, all polynomials and 23H take integer values and R/23, Q can

  Tree of roots of X 2 + X + 223 modulo powers of 3 [43, Section 2.6].

	4 85 166 31 112 193 58 139 220 22 103 184 49 130 211 76 157 238	mod
	4	31	58	13	40	67	22	49	76	mod
		4			13			22		mod
		1			4			7		mod
					1					mod 3
	Figure 6.									

Table 5 .

 5 2 49 + 2 46 + 2 41 + 2 18 + 2 3 + 2 2 + 1) 576 379 1.52 11520 196 GG20a 2 49 + 2 46 + 2 44 + 2 40 + 2 34 + 2 27 + 2 14 + 1 576 380 1.52 11500 196 GG20b -2 49 -2 45 -2 42 -2 36 + 2 11 + 1 Parameters of our new curves at the 192-bit security level. 4.2. Pairing formulas on our new curves. 4.2.1. Recap on Optimal Ate Pairing Computation. The fastest known pairing in a standard setting is Vercauteren's optimal ate pairing

	575 379 1.52 11500 196

Table 7 .

 7 Miller loop cost in Weierstrass model from[START_REF] Chatterjee | Efficient computation of Tate pairing in projective coordinate over general characteristic fields[END_REF][START_REF] Costello | Faster pairing computations on curves with high-degree twists[END_REF].

	k	curve	Dbl step, tangent line Add step, chord line	sparse-sparse-m k full-sparse-m k	reference
	2 | k	y 2 = x 3 -3x + b quadratic twist	6m k/2 + 4s k/2 + km 10m k/2 + 3s k/2	m k m k	[13]
	4 | k	y 2 = x 3 + ax quartic twist	2m k/4 + 8s k/4 + (k/2)m 9m k/4 + 5s k/4 + (k/2)m	6m k/4 8m k/4	[16, §4]

Table 8 .

 8 Optimal ate pairing and final exponentiation cost estimates in terms of finite field multiplications. The bitsize of p has a scale color w.r.t. its 64-bit machine word size: 512 < 9w ≤ 576 , 448 < 8w ≤ 512 .

	curve	p bits bits optimal ate r Miller loop	easy	final exp hard	total	pairing total
	GG20b	575 379	17554m	507m 41997m 42504m 60058m
	GG22D7 457 383	45780m	1500m 79740m 81240m 127020m

• T = 1 1934 X 24 + 2115X + 1934 • Y = 1 13538 X 24 + 4X 23 + 5983X + 10394 • R = (X 44 + X 43 -X 42 -3X 41 -X 40 + 5X 39 + 7X 38 

we get q prime of 636 bits, r prime of 472 bits, and the curve equation is 

Then (Q, R, T, Y ) parameterizes a complete family of pairing-friendly curves of embedding degree k and ρ = (k/2 + 2)/ϕ(k). Because k is even, the polynomial Q is even (all monomials of even degree) and there exists a polynomial T = X 3 + 1 Y = (2X 14 -2X 11 -X 3 + 1)/3 R = Φ 66 (X) Q = (X 3 -1) 2 (X 22 -X 12 + 1)/3 + X 3 = (X 28 -2X 25 + X 22 -X 17 + 2X 14 -X 11 + X 6 + X 3 + 1)/3 Then (Q, R, T, Y ) parameterizes a complete family of pairing-friendly curves of embedding degree k = 22 and ρ = (k/2 + 3)/ϕ(k) = 7/5 = 1.4.
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