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Dear Editors, 20 

 21 

Double haploid (DH) technology is a powerful way to improve plant breeding efficiency (Jacquier et 22 

al., 2020). DH breeding based on in planta haploid induction represents the most attractive way to 23 

induce haploid plants because it leads to seed-based haploid embryo formation, without the need of 24 

labor-intensive in vitro embryo rescue (Jacquier et al., 2020). This strategy has recently become 25 

even more attractive since, in combination with CRISPR-Cas9 technology, it allows gene editing of 26 

non-transformable elite lines and the immediate recovery of homozygous mutants (Kelliher et al., 27 

2019). However, the availability of in planta haploid induction systems is presently limited to a 28 

handful of crop species (Jacquier et al., 2020). In this work, mutation of KOKOPELLI (AtKPL) was 29 

found to be able to triggers maternal haploid induction in Arabidopsis Thaliana.  30 

The identification of DOMAIN OF UNKNOWN FUNCTION 679 membrane proteins (DMP) as 31 

molecular players contributing to in planta haploid induction in maize (Zhong et al., 2019), allowed 32 

the successful translation of the haploid induction property to Arabidopsis (Zhong et al., 2020) and 33 

rapidly to many dicot crops such as tomato, Brassica napus, Nicotiana tabacum, Brassica oleracea 34 

and potato (Zhong et al., 2022a; Zhong et al., 2022b; Zhao et al., 2022; Zhang et al., 2022). In 35 

addition to producing haploid embryos, knocking-out the two orthologous DMP genes in Arabidopsis 36 

(Atdmp8/9) was found to lead to double fertilization defects and seed abortions (Cyprys et al., 2019; 37 

Zhong et al., 2020). More precisely, the Arabidopsis Atdmp8/9 double mutation led to preferential 38 

single fertilization of the central cell suggesting a role in the interaction of male and female gametes 39 

(Takahashi et al., 2018; Cyprys et al., 2019). 40 

In order to identify additional genes exploitable for in planta haploid induction, we 41 

hypothesized that other mutants impaired in gamete interactions might also induce haploid embryos. 42 

We thus searched for genes in the Arabidopsis male gametophyte that lead to single fertilization 43 

events when mutated, similarly to what had been reported for the Atdmp8/9 mutant. We selected 44 

AtKPL (KOKOPELLI, AT5G63720) gene (Ron et al., 2010; Maruyama et al., 2013) for haploid 45 

induction tests. In order to unambiguously detect maternal haploid induction, a female tester line 46 

was created that combines both a recessive phenotypic marker, i.e. absence of trichomes due to the 47 

glabra1 mutation, and an F1 hybrid genetic background between the Columbia-0 (Col-0) and 48 

Landsberg erecta (Ler) accessions (gl1_Col/gl1_Ler) (Figure 1a). Haploid inducing capacity of Atkpl 49 

mutants was evaluated by the following pipeline (Figure 1a): (1) Mutant pollens were deposited on 50 

pistils of the gl1_Col/gl1_Ler tester line, (2) the offspring were germinated and screened for absence 51 

of trichomes indicating a putative desired maternal haploid seedling, or an undesired self-pollination 52 

of the female tester line (contamination) (Figure 1a); (3) a first distinction between haploids and 53 

contaminations by selfing of the gl1_Col/gl1_Ler tester female parent was based on two typical 54 

haploid phenotypes: sterility (absence of silique) and smaller organs (Figure 1a-b); (4) haploidy was 55 

further assessed by flow cytometry (Figure 1a, c) and (5) confirmed genetically using 83 single 56 

nucleotide polymorphisms (SNPs) markers distributed on all 5 Arabidopsis thaliana chromosomes. 57 
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These 83 SNPs are at a heterozygous state in the female tester line, and are thus expected to 58 

behave like homozygous markers in maternal haploid plantlets (Figure 1a, d). 59 

Two independent mutant T-DNA insertion lines for AtKPL were evaluated (Atkpl-1 and Atkpl-60 

2 in WS-4 and Ler genetic background, respectively) (Ron et al., 2010), and the Atdmp8/9 double 61 

mutant (col0 background) was used as positive control for haploid induction. Using the pipeline 62 

described above, the previously reported haploid induction capacity for Atdmp8/9 double mutant 63 

(Zhong et al., 2020) was confirmed since 9/490 plants screened were found to be haploid, i.e. a 64 

haploid induction rate (HIR) of 1.87% (Figure 1e). Interestingly, haploid induction was also observed 65 

for both Atkpl-1 and Atkpl-2, with 4 haploids among 1179 plants (HIR 0.34%) and 1 haploid among 66 

1389 plant (HIR 0.07%), respectively (Figure 1e). Since the three tested mutants (Atdmp8/9, Atkpl-1 67 

and Atkpl-2) were in different genetic backgrounds, three different wild-type accessions, Col-0, WS-68 

4 and Ler, were evaluated for their HIR, and no haploid were scored out of 1840, 1738 and 1468 69 

plants, respectively (Figure 1e). Thus, the HIR of atkpl-1 is statistically significant in comparison to 70 

the HIR of WS-4 wild-type plants (Kruskall-Wallis, p-value = 0.049). All plants classified as haploids 71 

passed all steps of the pipeline. The final genetic analyses for haploid plants revealed that (1) all 72 

markers were detected as at the “homozygous” state confirming the haploid status of those plants, 73 

and (2) 100% of SNPs that could be attributed to a parent came from the maternal parent (Figure 74 

1d). Thus, pollination using Atkpl-1 and Atkpl-2 mutant pollen produces true maternal haploid plants. 75 

Altogether, these results demonstrate that inactivation of AtKPL triggers in planta maternal 76 

haploid induction and that Atkpl mutants could be used as haploid inducer lines. The higher HIR of 77 

Atkpl-1 (0.34%) as compared to Atkpl-2 (0.07%) might come from difference in allele strength, since 78 

Ron et al., (2010) showed Atkpl-1 has more severed reduced seed set as compared to Atkpl-2. The 79 

fact that both the Atdmp8/9 double mutant and Atkpl single mutant are impaired in double 80 

fertilization, tends to support that single fertilization is an important feature for in planta haploid 81 

induction. Interestingly, a double mutation in the egg cell specific endopeptidase genes 82 

Atecs1/Atecs2 leads to preferential fertilization of the central cell (Jiang et al., 2022), and is able to 83 

confer haploid induction capacity (Mao et al., 2022). Contrary to Atdmp8/9 and Atkpl, Atecs1/Atecs2 84 

acts from the female side, and thus reinforces the hypothesis that disruption of double fertilization, 85 

and probably preferential fertilization of the central cell over the egg cell, is a prerequisite for or a 86 

sufficient trigger of haploid induction. It would be interesting to test if combinations of these 87 

mutations have additive or synergistic effects on HIR. 88 

Although the ~0.34% HIR of Atkpl-1 is quite low for an application in plant breeding, this may 89 

be different in other species. For example, maize Zmdmp mutants have a HIR of 0.15% compared 90 

to a HIR of ~2% for dmp mutants in dicots. In addition, the possible synergy of the kpl mutation with 91 

other mutations needs to be explored. Indeed, although the maize Zmdmp single mutant has a very 92 

low HIR (~0.15%), its combination with a mutation in MATRILINEAL / NOT-LIKE-DAD / 93 

ZmPHOSPHOLIPASE-A1 (MTL/NLD/ZmPLA1) leads to a synergistic effect boosting the HIR to 3-4 94 

times (Jacquier et al., 2020). Taken together, both the per se evaluation of kokopelli mutants in other 95 

species and the interaction of kpl mutation with other mutants drives the interest in this new player in 96 
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haploid induction. The identification of AtKPL orthologs in other species appears straight forward 97 

despite the presence of recent duplications in some species, as illustrated by the phylogenetic tree 98 

in Figure 1f, which depicts some crop plants only. The presence of orthologous genes in both 99 

monocotyledonous and dicotyledonous plants can be thus leveraged for setting-up or improving in 100 

planta haploid induction capacity in crops lacking this breeding tool. 101 

 102 

 103 

Legend Figure 1  104 

Atkpl triggers maternal haploid plants. 105 

(a) Workflow used to assess maternal haploid induction. Pollen from mutants to be tested were used 106 

to pollinate the glabra (absence of trichomes) maternal tester line, which is a F1 hybrid between Col-107 

0 and Ler accessions. A first phenotypic screen based on absence of trichome allowed selection of 108 

putative haploid plants, which were further validated using sterility criteria, flow cytometry, and 109 

genotyping of 83 SNP markers with genome-wide distribution. (b) Representative illustration of 110 

diploid plants (left), as compared to the smaller haploid plants (right). (c) Representative ploidy 111 

verification of haploid and diploid sibling using flow cytometry for Atkpl-1, Atkpl-2 and Atdmp8/9. The 112 

X axes depict the DNA content for nuclei (DAPI fluorescence signal), whereas the Y axis represents 113 

the number of nuclei. (d) Genotyping results to confirm haploidy and maternal origin of putative 114 

haploid plants (sterile glabra). m= numbers of markers for which it was possible to track 115 

unambiguously their parental origin. 1= Example of diploid plant resulted from undesired selfing of 116 

maternal tester line. na= non-applicable. (e) Haploid Induction Rate (HIR). 2= independent crosses 117 

are emasculated inflorescence (~1 to 4 siliques) pollinated with a unique male parent. * P<0.05, 118 

Kruskall-Wallis statistical test. (f) Phylogenetic tree of KOKOPELLI proteins in selected crops. 119 
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Figure1. Atkpl triggers maternal haploid plants. 

(a) Workflow used to assess maternal haploid induction. Pollen from mutants to be tested were 

used to pollinate the glabra (absence of trichomes) maternal tester line, which is a F1 hybrid 

between Col-0 and Ler accessions. A first phenotypic screen based on absence of trichome 

allowed selection of putative haploid plants, which were further validated using sterility criteria, 

flow cytometry, and genotyping of 83 SNP markers with genome-wide distribution. (b) 

Representative illustration of diploid plants (left), as compared to the smaller haploid plants 

(right). (c) Representative ploidy verification of haploid and diploid sibling using flow cytometry 

for Atkpl-1, Atkpl-2 and Atdmp8/9. The X axes depict the DNA content for nuclei (DAPI 

fluorescence signal), whereas the Y axis represents the number of nuclei. (d) Genotyping 

results to confirm haploidy and maternal origin of putative haploid plants (sterile glabra). m= 

numbers of markers for which it was possible to track unambiguously their parental origin. 1= 

Example of diploid plant resulted from undesired selfing of maternal tester line. na= non-

applicable. (e) Haploid Induction Rate (HIR). 2= independent crosses are emasculated 

inflorescence (~1 to 4 siliques) pollinated with a unique male parent. * P<0.05, Kruskall-Wallis 

statistical test. (f) Phylogenetic tree of KOKOPELLI proteins in selected crops. 
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