Céline Chevalier
email: celine.chevalier@ens.fr

Paul Hermouet
email: paul.hermouet@ens.fr

Quoc-Huy Vu
email: quoc.huy.vu@ens.fr

Semi-Quantum Copy-Protection and More

Properties of quantum mechanics have enabled the emergence of quantum cryptographic protocols achieving important goals which are proven to be impossible classically. Unfortunately, this usually comes at the cost of needing quantum power from every party in the protocol, while arguably a more realistic scenario would be a network of classical clients, classically interacting with a quantum server.

In this paper, we focus on copy-protection, which is a quantum primitive that allows a program to be evaluated, but not copied, and has shown interest especially due to its links to other unclonable cryptographic primitives. Our main contribution is to show how to dequantize quantum copy-protection schemes constructed from hidden coset states, by giving a construction for classically-instructed remote state preparation for coset states, which preserves hardness properties of hidden coset states. We then apply this dequantizer to obtain semi-quantum cryptographic protocols for copy-protection and tokenized signatures with strong unforgeability. In the process, we present the first secure copy-protection scheme for point functions in the plain model and a new direct product hardness property of coset states which immediately implies a strongly unforgeable tokenized signature scheme.

⋆ Work done while at CRED and DIENS. 1 This is called hybrid quantum cryptography in [AGKZ20]. coset state |A s,s ′ ⟩, outputs two (possibly entangled) quantum states and sends them to Bob and Charlie respectively. Finally, Bob and Charlie both get the description of the subspace A, and we say that the game is won if Bob outputs a vector in A + s and Charlie outputs a vector in A ⊥ + s ′ . Due to these unclonability properties, the coset state idea has shown a broad range of applications to signature tokens, unclonable decryptors, copy-protection [CLLZ21], classical proof of quantum knowledge [VZ21], and unclonable encryption [AKL + 22].

The main distinction between random BB84 states and hidden coset states is the (un)learnability with verification oracles. Given access to membership oracles that check whether an input vector is in the primal coset or in the dual coset, a hidden coset state still maintains its unclonability properties. On the other hand, giving access to similar oracles to an adversary in the context of BB84 states would allow this adversary to break the unclonability property of BB84 states, thus making the resulting protocols insecure. This explains why coset states have more applications, mostly in the public-key setting. Indeed, to the best of our knowledge, all known provably secure copy-protection schemes with standard malicious security are based on hidden coset states [CLLZ21, AKL + 22]. 2

Using application-specific approaches, Shmueli further gives several semi-quantum protocols from coset states for public-key quantum money in [Shm22a] and tokenized signatures in [Shm22b]. Even though both are based on hidden coset states, his constructions are tailor-made for these applications. For example, in the case of semi-quantum tokenized signature, the signature generation process in Shmueli's protocol ([Shm22b]) is defined specifically for the application, and it is quite different from the quantum construction given in [CLLZ21]. On the other hand, modularity and generic approaches are highly desirable in cryptography, and thus our second question in this work is:

Can we construct classically-instructed remote state preparation for coset states which preserves hidden coset states unclonable properties, which can be used to generically dequantize quantum protocols based on coset states?

Our Results

We answer these two open questions affirmatively. We first give an answer to the second question, by constructing a classically-instructed remote state preparation for coset states, based on the existence of indistinguishability obfuscation for classical circuits, and on that the Learning With Errors [Reg05] problem. The main feature of our protocol is that it preserves unclonability properties of ideal random coset states, including the direct product hardness and monogamy-of-entanglement property, which are the core ingredients of unclonable cryptography.

Theorem 1 (Informal). Assume that LWE is sub-exponentially hard for quantum computers and that indistinguishability obfuscation for classical circuits exists with sub-exponential security against quantum polynomial-time adversaries. Then, there is a classically-instructed remote state preparation protocol for coset states with negligible soundness (as defined in Section 4.1).

Our protocol is a multi-round protocol between classical Alice and quantum polynomial-time Bob that allows Alice to delegate the construction of hidden coset states to Bob. Furthermore, Alice knows the description of the constructed coset states (which reside on Bob's device), while 2 Technical Overview

Our Remote Coset State Preparation Protocol and Its Application to

Copy-Protection

In this section, we give an overview of our remote coset state preparation protocol and its proof of soundness. To give the reader a glimpse of the functionality of our protocol and how it can be used as a generic compiler to obtain semi-quantum copy-protection, we first start by analysing security requirements for several existing quantum copy-protection schemes based on coset states.

Introduction

Quantum mechanical effects have enabled the construction of cryptographic primitives that are impossible classically. In particular, the no-cloning principle of quantum mechanics, which means that an unknown quantum state cannot be copied in general, has given rise to many wonderful primitives such as quantum money [Wie83, AC12], quantum lightning [Zha19], quantum copyprotection [Aar09], one-shot signatures [BS17, AGKZ20], secure software leasing [AL21], unclonable encryption [BL20] and many more. By standard definition, these quantum primitives can be seen as cryptographic protocols requiring quantum communication to transfer the quantumly encoded program between parties, and of course, local quantum computation from the parties. These notions thus have been mostly considered in the context of users having quantum machines with quantum communication.

Semi-quantum cryptography. 1 Besides the fact that there is a fundamental difference between classical and quantum communication, a more realistic and practical scenario would be a classical communication network with classical clients interacting with a single powerful quantum server. Therefore, ideally, for both theoretical and practical reasons, we might want to minimize the required model and use local quantum computation and only classical communication. In this research direction, an emerging field of "dequantizing" quantum cryptographic protocols has shown that it is possible to use local quantum computation and classical communication to obtain cryptographic constructions which are otherwise classically impossible [Mah18b, BCM + 18, RS20, AGKZ20, KNY21, HMNY21, Shm22a, Shm22b, GMP22]. In the following, we call these dequantized protocols semiquantum protocols, i.e., cryptographic protocols between classical clients interacting with a quantum server via classical communication. Perhaps the most striking example of quantum cryptography is the notion of quantum copyprotection, introduced by Aaronson [Aar09]. Informally, quantum copy-protection allows a program to be encoded in a quantum state in such a way that the program can be evaluated, but not copied. It is also interesting to highlight the relation between copy-protection and other unclonable cryptography functionalities. Indeed, Ananth and Kaleoglu [AK21] show that the existence of an unclonable encryption scheme with a strong security property implies the existence of copy-protection of point-functions. Sattath and Wyborski [SW22] show that copy-protection of a certain family of functions allows for the construction of unclonable decryptors. We thus explore the possibility of constructing semi-quantum copy-protection in this work.

Semi-quantum copy-protection. Until now, semi-quantum copy-protection has essentially been wide open. The first and the only known semi-quantum copy-protection scheme is given in the recent work of [GMP22]. Building on techniques introduced in [Mah18b, BCM + 18, GV19], the authors of [GMP22] show how to construct a classically-instructed parallel remote state preparation of BB84 states, which are the four following states: {|0⟩ , |1⟩ , |+⟩ , |-⟩} where |±⟩ := 1 √ 2 (|0⟩ ± |1⟩), and whose unclonability property is based on the idea of conjugate coding. By applying this remote state preparation protocol to the construction of copy-protection of point functions in [CMP20], they also give a construction for semi-quantum copy-protection (of point functions). However, while [GMP22]'s framework is generic and applicable to many other quantum cryptography constructions, [GMP22] remote state preparation protocol for BB84 states and its applicability (including their semi-quantum copy-protection of point functions) suffer from several limitations. Firstly, [GMP22] remote state preparation protocol for BB84 states only achieve inverse polynomial security, and inherently, their dequantized protocols also only have inverse polynomial security. Secondly, we do not know how to construct copy-protection with standard malicious security from BB84 states in the plain model. We therefore ask the following question:

Can we construct semi-quantum copy-protection with standard security?

Semi-quantum unclonable cryptography from coset states. Given a subspace A ⊆ F n 2 , the corresponding subspace state is defined as a uniform superposition over all vectors in the subspace A, i.e., |A⟩ := 1 √ |A| v∈A |v⟩. The idea of using hidden subspace state to construct quantum cryptographic primitives was first proposed by Aaronson and Christiano in [AC12] in the oracle model where the parties have access to some membership checking oracles. This idea was realized subsequently in the plain model using indistinguishability obfuscation by Zhandry [Zha19]. The subspace state idea was later generalized to coset states in [CLLZ21, VZ21], which can be seen as quantum one-time pad encrypted subspace states. Formally, for a subspace A ⊆ F n 2 and two vectors s, s ′ ∈ F n 2 , the corresponding coset state is defined as |A s,s ′ ⟩ := 1 √ |A| x∈A (-1) ⟨x,s ′ ⟩ |x + s⟩. Coset states possess strong unclonability properties, the so-called direct product hardness and monogamy-of-entanglement [CLLZ21]. The former states that any query-bounded adversary with quantum access to oracles of membership in A + s and A ⊥ + s ′ cannot produce, except with negligible probability, a pair (v, w) ∈ (A + s) × (A ⊥ + s ′). On the other hand, the latter can be described as a cooperative game between three adversaries Alice, Bob and Charlie with a challenger, in which the adversaries have negligible winning probability. The game is as follows: Alice is given a random Bob himself does not, and no-cloning also applies to these states. 3 Hence, the situation at the end of this protocol is equivalent to one where Alice sent hidden coset states to Bob, allowing us to dequantize existing unclonable cryptography protocols from coset states in a generic and modular way, without requiring new security properties or changing the constructions (apart from making them semi-quantum).

In particular, to demonstrate the modularity of our dequantizer protocol, we construct a quantum copy-protection of point functions in the plain model whose security is also based on the idea of hidden coset states to which we can apply our dequantizer. We note that before our work, no copy-protection scheme for point functions in the plain model with negligible security was known. In fact, our copy-protection scheme is almost identical to that for pseudorandom functions given in [CLLZ21]. We observe that by making few modifications to their proof, we obtain a copyprotection of point functions with a non-trivial challenge distribution (first defined in [CMP20]) in the security definition.4

Theorem 2 (Informal). Assume the existence of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation for the class of unpredictable distributions. Then, there is a secure copy-protection scheme for point-functions in the plain model.

By applying our dequantizer protocol to this construction, we also obtain a semi-quantum copyprotection of point functions in the plain model, with standard security. Indeed, our dequantizer is readily applicable to existing constructions of single decryptor, copy-protection of pseudorandom functions [CLLZ21], and copy-protection of digital signatures [LLQZ22], allowing us to obtain semi-quantum counterpart of these protocols, thus answering our first question.

Corollary 1 (Informal). Assume that LWE is sub-exponentially hard for quantum computers and that indistinguishability obfuscation for classical circuits exists with sub-exponential security against quantum polynomial-time adversaries. Then, there is a semi-quantum copy-protection from coset states for certain class of functions, including: (decrypting) public-key encryption, (signing) signatures, (evaluating) pseudorandom functions, and (evaluating) point functions.

To broaden the applicability of our semi-quantum protocol, we also present in this work a semi-quantum tokenized signature scheme with strong unforgeability (i.e., no efficient adversary can output two different signatures even for the same message). Previous constructions of [CLLZ21] and [Shm22b] do not consider strong unforgeability and are only proven to be weakly unforgeable. Our quantum protocol of strongly unforgeable tokenized signature scheme is indeed the same as the one for weak unforgeability given in [CLLZ21]. Applying our remote coset state preparation protocol immediately yields a semi-quantum tokenized signatures. Our technical contribution is a new direct product hardness of hidden coset states, which is a generalization of the direct product hardness given in [CLLZ21]. Informally, we show that any query-bounded adversary given a random coset state |A s,s ′ ⟩ cannot produce a pair of different vectors (v, w) in either (A + s) × (A + s) or (A ⊥ + s ′) × (A ⊥ + s ′). This allows us to achieve strong unforgeability.

Theorem 3 (Informal). Assume that LWE is sub-exponentially hard for quantum computers and that indistinguishability obfuscation for classical circuits exists with sub-exponential security against quantum polynomial-time adversaries. Then, there is a semi-quantum tokenized signature scheme with strong unforgeability.

Organization

The remaining of the paper is organized as follows. In Section 2 we explain the main ideas in our construction and the overview of the proof of soundness of our protocol. The preliminaries are given in Section 3. In Section 4, we present our construction of classically-instructed remote state preparation for coset states with correctness proof. The formal proof of soundness of our protocol is given in Section 5. These parts contain the main technical contribution of our paper. In Section 6, we present our construction for quantum copy-protection of point functions, and show how to apply our remote state preparation protocol to obtain a semi-quantum copy-protection construction. The constructions of quantum and semi-quantum strongly unforgeable tokenized signature are given in Section 7.

Related Work

One can see our remote coset preparation protocol as an interactive protocol between a classical verifier and an (untrusted) prover, in which the verifier classically instructs the prover to prepare some hidden quantum states, which satisfy certain properties. This is highly relevant to a series of works starting with [BCM + 18, Mah18b, Mah18b] that have developed techniques to allow the verifier to force the prover to behave in a certain way. We note that the former kind of protocols is implied by the latter, while the other direction is not true. For example, in our protocol, it is still possible that the prover does not behave in an expected way, but its output at the end of the protocol still satisfies the defined property.

The first semi-quantum protocol that provably forces a quantum prover to prepare a certain quantum state is the single-qubit remote state preparation protocol of [GV19] (see also [CCKW19] for a related result). [MV21] gives a protocol that allows a classical verifier to certify that a quantum prover must have prepared and measured a Bell state, i.e., an entangled 2-qubit quantum state. Finally, [GMP22], by developing new techniques to show a n-fold parallel rigidity proof, gives the first parallel remote BB84 state preparation protocol. At the heart of the security proof of these protocols lies a rigidity argument. The idea of rigidity, first formally introduced by Mayers and Yao [MY04], is that certain games can be used to "self-test" quantum states: if such a game is won with high enough probability, then the self-test property tells us that the players must hold some quantum state, up to local isometry. Their proof technique is also the backbone of our soundness proof presented later in Section 5. The most interesting point of the [GMP22] protocol is that it allows to dequantize a number of BB84 states-based quantum cryptographic primitives, yielding a generic and modular way of translating these protocols to a setting where only classical communication is used. The downside of the [GMP22] protocol is that it only achieves inverse polynomial soundness, which means that their dequantized protocols can only achieve inverse polynomial security at most, even if the original quantum protocols have negligible security. We note that all known self-testing protocols are developed for BB84 states and its variants, and before our work, there is no self-testing protocol for coset states (even with inverse polynomial security).

In addition to this line of work focused on rigidity statements, application-specific semi-quantum protocols were considered for quantum money [RS20, Shm22a], certified deletion [HMNY21], secure software leasing [KNY21], and tokenized signature [Shm22b]. The common points of these protocols are that: (i) their approaches are less generic and modular than the [GMP22] protocol and the protocol we present in this work; (ii) new analysis are required for each application. However, we note that all these application-specific semi-quantum protocols achieve negligible security, as they do not prove that the prover in their protocol behave in a certain way, but only that the output of the prover at the end satisfies certain properties. This is also the approach that we take in this work, which we describe in more details in Section 2.

Readers who are familiar with the context might think that our dequantization of coset state generation protocol with monogamy-of-entanglement property can be achieved readily from previous works by Shmueli ([Shm22a,Shm22b]). However, this is not quite true, due to the fact that Shmueli's works only show coset state delegation protocols with direct product hardness properties, and not monogamy-of-entanglement properties. These two kinds of unclonability properties are very different in their nature: while direct product hardness can be used in the constructions of quantum money and tokenized signatures (where there is only a single adversary playing the unclonability game), we do not know how to use it in the context of quantum copy-protection (where there are two or more adversaries simultaneously playing the unclonability game). In fact, direct product hardness does not imply monogamy-of-entanglement, and the former will be trivially broken if one casts it under the monogamy-of-entanglement game. We refer the readers to [CLLZ21] for detailed definitions and applications of these two unclonability properties. For the application of tokenized signatures, our dequantizer protocol preserves the same direct product hardness property of ideal hidden coset states, which allows us to dequantize quantum protocols in a generic way. [Shm22b]'s protocol for semi-quantum tokenized signatures requires a new direct product hardness and a different signing procedure (compared to the quantum version of [CLLZ21]), but it is unlikely that the same protocol can be shown to achieve strong unforgeability.

Copy-Protection of Point Functions. The first construction for copy-protection of point functions was presented in [CMP20], is based on BB84 states and its security is proven in the quantum random oracle model. However, [CMP20]'s construction only achieves constant security. If we consider a weaker security notion, so-called secure software leasing [AL21], [BJL + 21] shows that we can even construct secure software leasing of point functions unconditionally in the plain model with negligible security.

On the other hand, copy-protection with negligible security against malicious adversaries are only known for pseudorandom functions, single-decryptor, point functions and digital signatures [CLLZ21, AKL + 22, LLQZ22]. While the copy-protection schemes for pseudorandom functions, digital signatures and single-decryptor are secure in the plain model [CLLZ21, LLQZ22], the security of the construction for point functions is proven in the quantum random oracle model [AKL + 22]. These latter constructions are all based on the idea of hidden coset states. In a recent work, [AKL23] gives another construction for copy-protection of single-bit point functions in the quantum random oracle model based on BB84 states. In this work, we build upon the copy-protection construction of pseudorandom functions [CLLZ21] to construct copy-protection of point functions in the plain model with negligible security.

Tokenized Signatures. The notion of tokenized signatures was introduced in the work of , and the first instantiation was given in [CLLZ21] based on quantum-secure indistinguishability obfuscation and injective one-way functions. A dequantized construction of tokenized signatures was given in [Shm22b], assuming subexponentially quantum-secure indistinguishability obfuscation and quantum hardness of the LWE problem. However, the constructions given in [CLLZ21, Shm22b] have only been proven weakly unforgeable.

Security Requirements. For our discussion, we focus on the copy-protection of pseudorandom functions scheme in the plain model and the single-decryptor scheme in the plain model presented in [CLLZ21]. The common point is that security of these constructions all reduce to a monogamy-ofentanglement property of coset states [CLLZ21, CV22]. Informally, this property states that a triple of quantum algorithms Alice, Bob and Charlie cannot cooperatively win the following monogamy game with a challenger, except with negligible probability. The challenger first prepares a uniformly random coset state |A s,s ′ ⟩ and gives the state to Alice. Alice outputs two (possibly entangled) quantum states and sends them to Bob and Charlie respectively. No communication is allowed between Bob and Charlie. Finally, Bob and Charlie both get the description of the subspace A. The game is won if Bob outputs a vector in A + s and Charlie outputs a vector in A ⊥ + s ′ , where A ⊥ denote the dual subspace of A.

If our goal is to design a semi-quantum protocol for preparing coset states such that it can be used in a plug-and-play manner for the aforementioned protocols, our protocol needs to have the following properties:

• Correctness. If the prover is honest, at the end of the protocol execution, the prover must have a hidden coset state |A s,s ′ ⟩ in its registers.

• Soundness. No (computationally bounded) prover after interacting with the classical verifier in the protocol, can win the monogamy-of-entanglement game described above (with a single modification in the first step of the game: instead of sending the coset state to the prover, we run the protocol). For a formal definition of the soundness, see Definition 3. We note that the soundness property also implies the blindness property: an untrusted prover cannot know the description of A and s, s ′ through the interaction.

The first attempt. Having described all requirements needed, we now turn into our protocol construction. Our starting point is the recent coset state delegation protocol introduced by Shmueli in [Shm22a], which uses hybrid quantum homomorphic encryption (QFHE)5 and indistinguishability obfuscation (iO) as the building blocks. The idea is indeed very simple: the verifier can simply send an (encrypted) classical description of a random subspace to the prover, and ask the prover to homomorphically generate the subspace state using the quantum homomorphic encryption. By the property of the hybrid QFHE, the subspace state is one-time pad encrypted with random Pauli keys, which is exactly equivalent to a random coset state. More formally, the scheme is as follows.

1. The classical verifier V samples a random λ 2 -dimensional subspace A ⊆ F λ 2 (represented by a matrix M A ∈ {0, 1} λ 2 ×λ), and sends (M px A , ct px) to the prover P, an encryption of the matrix M A under QFHE.

2. P homomorphically evaluates the circuit C, which is a quantum circuit that gets as input the classical description of a subspace A ⊆ F λ 2 and generates a uniform superposition over A. P obtains a homomorphically evaluated ciphertext

(|A x,z ⟩ , ct x,z) ← QFHE.Eval pk, (M px A , ct px), C ,
and sends the classical part ct x,z to V.

3. V decrypts (x, z) ← QFHE.Decrypt(sk, ct x,z) and sends obfuscated membership check programs iO(A + x), iO(A ⊥ + z) to P.

Unfortunately, there is an efficient "splitting" attack that breaks the monogamy game described above (even if the adversary does not receive the description of A in the question phase): a malicious prover can adversarially homomorphically compute two vectors, one in A + x, the other in A ⊥ + z, thus trivially breaking the monogamy of entanglement. Intuitively, the attack is possible due to the fact that there is no mechanism to verify the quantum homomorphic evaluation. (Here, we need to have a classical verification procedure for a quantum statement, which is not an NP or QMA statement.) However, as we will see later in the proof of soundness, we do not need a notion of quantum homomorphic evaluation verification for our protocol. Instead, we will show that a weak notion of verification, in which the malicious prover is forced to homomorphically compute a state that is close to ideal coset states (and it can freely evaluate to obtain other things), is enough to obtain the monogamy-of-entanglement property. The weak notion of verification we are seeking is stated in the form of a self-testing argument, which leads us to the second attempt.

The second attempt: running self-testing protocol under QFHE. Our second attempt is be based on the recent [GV19, GMP22] self-testing protocols for BB84 states. At first sight, it is not clear how one can directly obtain a self-testing protocol for coset states from these protocols. One of our technical contributions is the following observation: in the self-testing protocol for BB84 states of [GMP22], instead of asking the prover P to prepare its own states (which are polynomially many |+⟩ states if P is honest), the verifier V can send the input to P using QFHE. In particular, V sends encryption of M 0 , which is the all-zero matrix. P homomorphic evaluates a quantum circuit C on the received ciphertext such that if the input matrix is all-zero, C evaluates to a uniform superposition over F λ 2 , which is product of |+⟩ states. Under QFHE encryption, the quantum part of the evaluated ciphertext is product of random |±⟩ states. P then uses this in the [GMP22] self-testing protocol. We will show that an honest prover P using product of |+⟩ states as in the [GMP22] protocol or P using product of |±⟩ states does not change the correctness of the protocol, while its soundness is maintained (since the soundness does not depend on which input the prover has used in the protocol execution).

We now briefly give a description of the [GMP22] self-testing protocol, which is an n-fold parallel of the single-qubit self-testing protocol from [GV19], and explain later how to go from self-testing for BB84 states to self-testing for coset states using QFHE. The main cryptographic primitive underlying the [GMP22] protocol (as well as other self-testing protocols [GV19, MV21]) is the so-called extended noisy trapdoor claw-free function (ENTCF) family6 , which can be constructed assuming the quantum hardness of LWE [Mah18b]. An ENTCF family is a family of functions indexed by a set of keys K 0 ∪ K 1 . K 0 and K 1 are disjoint sets of keys with the property that the two sets are computationally indistinguishable.

1. For a given basis choice θ ∈ {0, 1} (where "0" corresponds to the computational and "1" to the Hadamard basis), the verifier V samples a key k ∈ K θ , alongside some trapdoor information t.

V sends k to the prover P and keeps t private.

2. The verifier and prover then interact classically.

3. For us, the most relevant part is the last round of the protocol, i.e., the last message from the verifier to the prover and back. Before the last round, the remaining quantum state of an honest prover is the single-qubit state |v⟩ θ for v ∈ {0, 1}, where |v⟩ θ is a conjugate encoding of v in the basis θ:

if θ = 0, |v⟩ θ = |v⟩, otherwise |v⟩ θ = 1 √ 2 (|0⟩ + (-1) v |1⟩).
From the transcript and the trapdoor information, the verifier can compute v; in contrast, the prover, which does not know the trapdoor, cannot efficiently compute θ or v. In the last round, the verifier sends θ to the prover, who returns v ′ ∈ {0, 1}; the verifier then checks whether v ′ = v. The honest prover would generate v ′ by measuring its remaining qubit |v⟩ θ in the basis θ and therefore always pass the verifier's check.

In the [GMP22] test protocol, V runs n independent copies of [GV19] in parallel, except that the basis choice θ i is the same for each copy. Next, from the [GMP22] protocol, we describe a self-testing protocol for coset states.

Assume that now the verifier has private input which is a description of a coset state (A, x, z). We modify the verification procedure of the [GMP22] test protocol in the last round as follows. Let ⃗ v be the last message sent by P to V in the protocol above. If θ = 0 (note that the basis choice is the same for n copies), V checks if ⃗ v ∈ A + x, otherwise, it decodes7 ⃗ v to get a vector ⃗ w and checks if ⃗ w ∈ A ⊥ + z. An honest prover would use the coset state |A x,z ⟩, which it obtains after running the [Shm22a] protocol described above, as the input to this self-testing protocol. The honest prover would have measured its state in the computational basis when θ = 0, and in the Hadamard basis when θ = 1. Thus, any honest prover would pass this self-testing protocol for coset states with probability 1.

The crucial point is that, since the prover's input in both the [GMP22] self-testing protocol and the self-testing protocol for coset states described above is encrypted under QFHE, and the fact that the two protocols are identical from the prover point's of view (except the last verification procedure, which is hidden from the prover), the two protocols are computationally indistinguishable. In other words, any computationally bounded prover cannot distinguish if it is playing in the [GMP22] self-testing protocol or the coset-state self-testing protocol. This allows us to "embed" a self-testing for coset states into self-testing for BB84 states and to carry the rigidity argument of the [GMP22] protocol to our setting. Note that in our protocol, we need to run both kind of tests, as self-testing for coset states alone is not enough to establish a rigidity argument. We elaborate more on this later in Section 2.2. For time being, let's say we have showed that if the prover P passes the verification, it must have "used" a coset state in the self-testing protocol (with inverse polynomial soundness).

Our final protocol. However, our ultimate goal is to perform a remote state preparation protocol (and not just self-testing, as the states used for the self-testing protocol will be destroyed due to the measurements). Our final step would be to run this coset-state self-testing protocol in the n-over-2n cut-and-choose fashion: the verifier first sends 2n encrypted coset states and |+⟩ to the prover, and it picks n instances uniformly at random for the self-testing protocol. The remaining n instances are used as the output of the final protocol. Building on the simple but powerful "quantum cut-and-choose" formalism of Bouman and Fehr [BF10], we can show that if the prover passes all the test instances, it must have at least 1 coset state in its registers at the end of the protocol (with inverse polynomial soundness). Notably, we will show that even if we only obtain inverse polynomial soundness at this step, our final protocol still achieves negligible security for a monogamy-of-entanglement game, which is the main property used in many copy-protection schemes. (An overview of the soundness proof is given below in Section 2.2.)

Our final protocol (Protocol 5) works as follows:

(1) The verifier first sends homomorphic encryption that allows the prover to either construct coset states or BB84 states.

(2) The prover is asked to homomorphically evaluate the instructed circuits and return classical encryption of the one-time pads of the homomorphic encryption, and keep the quantum parts.

(3) Next, the prover and the verifier run a number of self-testing rounds (Protocol 3), in which each test round consists of testing either BB84 states (Protocol 1) or coset states (Protocol 2), forming several test blocks. (In particular, a test block consists of a number of BB84 states testing rounds, and one coset states testing round.) All the BB84 states are consumed after this step, while only half of the coset states are consumed.

(4) Once the verifier is convinced, the verifier runs the coset states generation round on the remaining half of the coset states, in which the verifier sends back to the prover obfuscation of the membership checking programs. The final state of the prover can then be used in coset states based constructions. To be more precise, the output state of a single run of our protocol would satisfy the monogamy-of-entanglement property that we described above. If a quantum copy-protection scheme requires n random coset states, we can simply run our protocol n times (with independent randomness for each instance).

Soundness Proof

In this overview, we only give a brief intuition for the monogamy-of-entanglement soundness of our protocol. However, we note that the same proof technique can be used to show a direct product soundness.

Rigidity argument for the [GMP22] self-testing protocol. Since the soundness proof uses the rigidity argument of the [GMP22] protocol as the backbone, we briefly recall it here. Consider the last round of the [GMP22] self-testing protocol: at the start, the prover has a state σ (θ,⃗ v) , which it produced as a result of the previous rounds of the protocol. Upon receiving θ ∈ {0, 1} the prover measures a binary observable Z i (if θ = 0) or X i (if θ = 1) and returns the outcome v ′ i , one for each copy. Let Z(⃗ a) := Z a 1 1 • • • Z an n , similarly for X(⃗ b). The main goal of the [GMP22] soundness proof is to show that when acting on the prover's (unknown) state σ (θ) (where σ (θ) is like σ (θ,⃗ v) , but averaged over all ⃗ v), the operators {Z(⃗ a)X(⃗ b)} behave essentially like Pauli operators. Formally, this means showing that on average over ⃗ a, ⃗ b ∈ {0, 1} n ,

Tr Z(⃗ a)X(⃗ b)Z(⃗ a)X(⃗ b)σ (θ) ≈ (-1) ⃗ a• ⃗ b .
(1)

Rigidity argument for our coset-state self-testing protocol. Using the [GMP22] rigidity argument, we now turn into our coset-state self-testing protocol. Crucially, since the two protocols are identical from the prover's point of view, and the fact that the input of the prover is encrypted, Equation (1) also carries to the coset-state self-testing. Specifically, it means that under the isometry V , the prover's observables in the coset-state self-testing protocol also behave like Pauli observables (Lemma 14). Roughly speaking, the isometry "teleport" the prover's state into a "concrete" state by means of EPR pairs. In our case, the concrete state would be (close to) a mixed state of vectors v ∈ A + x if θ = 0, or v ′ ∈ A ⊥ + z if θ = 1 (up to some classical post-processing), for a coset state instance (A, x, z) (Lemma 16). This means that we can fix a prover P and consider a "hypothetical" quantum verifier, which runs the purified version of the protocol with P, that is, we do not measure to get the prover's classical message as in the original protocol, but only do a projective measurement at the end for the verification. Then under the isometry V , if θ = 0, we should obtain a state that is close to |A + x⟩, and if θ = 1, a state that is close to |A ⊥ + z⟩. In other words, consider that we run P with θ = 0 in superposition, check the obtained state is |A + x⟩, then undo the prover computation (described by a unitary), then run P with θ = 1 in superposition, check the obtained state is |A ⊥ + z⟩. If both checks pass, it is easy to see that the prover must have a coset state |A x,z ⟩ in its registers.

Note that this does not constitute a classical verification of QFHE. What it says is that after the evaluation and if P passes verification with overwhelming probability it is necessary that it must have a coset state in its register up to an isometry.

We stress that the above rigidity statement has 1/poly(n) closeness, due to the 1/poly(n) closeness in the rigidity argument of the [GMP22] protocol.

Going from self-testing to remote state preparation. We then simply run the self-testing protocol sequentially in the cut-and-choose style. Say we have 2N coset state instances, and we run the self-testing protocol over N instances, chosen uniformly at random. The remaining N instances are the output of the protocol. By a particular "quantum sample-and-estimate" strategy defined in [BF10], it means that after running the self-testing rounds, the prover has at least one coset state |A x,z ⟩ among N remaining coset state instances in its registers, with inverse polynomial closeness. We can write the prover's state at this step as (inverse polynomially δ-close to) |A x,z ⟩ ⊗ ρ, where ρ can depend on the protocol's transcript and the encryption of (A, x, z) (Proposition 2).

Establishing a monogamy-of-entanglement property. In this final step, we want to show that now if the prover involves in a monogamy-of-entanglement game, it would have negligible probability of winning. The security game is defined as follows (Definition 3).

1. The prover and the verifier jointly execute our semi-quantum protocol to obtain (supposedly) N coset states, which are hidden but kept by the prover.

2. The prover and the verifier play the monogamy game using the output of the semi-quantum protocol:

(a) The prover splits its state into a bipartite state and sends each part to Bob and Charlie, respectively. No communication is allowed between Bob and Charlie.

(b) The verifier sends the description of the subspace to both Bob and Charlie.

(c) Bob and Charlie are asked to output N vectors belonging to N cosets (for Bob), and N dual cosets (for Charlie).

However, our current situation is different from the standard monogamy game setting in which the prover only has the coset state, while here the prover also has an auxiliary state that depends on the coset state description. (Even worse, it might be possible that the prover can have two copies of the coset state after the interactive protocol.) The proof of the standard monogamy game does not carry over directly. Hence, for our monogamy-of-entanglement proof, new ideas are needed.

Injecting quantumness into the reduction. Our idea is to consider an intermediate game as follows.

1. The prover and the verifier jointly execute our semi-quantum protocol.

2. After finishing the protocol execution, the verifier asks the prover to send it a coset state among the remaining coset state instances uniformly at random.

3. Upon receiving a quantum state from the prover, the verifier verifies whether the received state is indeed the expected coset state, then it sends it back unmodified to the prover.

4. The prover and the verifier play the monogamy game.

Here we make few notes. First, with probability 1 N the coset state instance that the verifier asked is (A, x, z). It is easy to see that with probability (1-δ) N , which is non-negligible, any adversary for the original security experiment can be turned into an adversary for this experiment with identical winning probability. Secondly, defining this intermediate game is possible because of our rigidity argument above. Indeed, only in this step we inject quantumness into the reduction and make it a quantum verifier.

The proof continues with the following steps (which are formally described as a series of hybrids in the proof of Theorem 4).

• We make another important observation that when considering only the coset instance (A, x, z), it is exactly the same as the public-key semi-quantum protocol introduced by Shmueli in [Shm22a].

We then follow proof strategies in previous works and carefully modify the experiment to remove the QFHE secret key (corresponding to this coset instance (A, x, z)) from the reduction. This is essentially done by changing the obfuscated membership checking programs sent to the prover in the last step of the protocol, using the following two techniques: subspace-hiding obfuscation [Zha19], and complexity leveraging to blindly sample the obfuscations [Shm22a].

To use Shmueli's complexity leveraging technique, we will need sub-exponential security of the building blocks (which include the QFHE and the indistinguishability obfuscation).

• Then we make a final change in the reduction: upon receiving the coset state from the prover and if the check passes, the verifier keeps the received coset state in its internal memory, and send back to the prover another random coset state |A ′ x ′ ,z ′ ⟩. In the monogamy game, instead of sending a description of A (as a basis matrix), the verifier sends a description of A ′ . Note that now the winning condition is also changed subject to this change in the challenge coset. We can think of |A ′

x ′ ,z ′ ⟩ as the challenge of the original monogamy-of-entanglement game (with quantum communication).

• In this final experiment, if the prover managed to win the monogamy game, it means that Bob has successfully output a vector v ∈ A ′ + x ′ , and Charlie has successfully output a vector w ∈ A ′⊥ + z ′ . The verifier then outputs v, w and wins the monogamy game with quantum communication. We conclude that no efficient prover can win this experiment except with negligible probability.

• The last part of the proof is to show that this final experiment is computationally indistinguishable from the previous experiment (in which the QFHE secret key was removed). We do this by invoking the security of the QFHE. However, there is a subtlety that needs to be taken care of. That is, even if we do not use the QFHE secret key in the reduction at this step, the adversary still receives predicate programs on the ciphertext, which are the obfuscated membership checking programs. Thus, we cannot simply send a uniformly random coset state |A ′ x ′ ,z ′ ⟩ to the prover. In the protocol, we change the obfuscation programs so that both |A x,z ⟩ and |A ′

x ′ ,z ′ ⟩ make the programs accept. We refer to the formal construction and proof for the description of how these obfuscation programs are generated. Once this is shown, we can complete the proof.

Copy-Protection of Point Functions

Next, we give some intuition and obstacles behind our construction of copy-protection of point functions in this section. Informally, a copy-protection scheme of point functions is composed of a protection algorithm that takes as input a point function and returns a quantum encoding of this function; and an evaluation algorithm that takes as input the encoding and an input point and evaluates the function on this point. The (anti-piracy) security of such a scheme is defined through a game played by three adversaries Alice, non-communicating Bob and Charlie, where Alice is asked to "split" the quantum encoding into a two-register quantum state and to send one register to Bob and the other one to Charlie. In order to win the game, Bob and Charlie then must correctly evaluate the point function on two challenge inputs sampled from a certain distribution. The most natural distribution to take is the one that yields two inputs (x B , x C) such that (x B , x C) equals to either (y, y), (x 1 , y), (y, x 2), or (x 1 , x 2), each with probability 1 4 , where y is the protected point and x 1 , x 2 are uniformly sampled.

A natural idea to construct copy-protection of point functions would be as follows. In order to protect a point y, sample a pseudorandom function (PRF) secret key k, protect it using the PRF copy-protection scheme to get ρ k , and let the copy-protection of y be (ρ k , PRF(k, y)). The evaluation of an input x then consists, given a copy-protection of a point (ρ, z), on using the PRF copy-protection's evaluation procedure to compute PRF(k, x) and returning whether the outcome is z or not. At first glance, it may look like this idea has good chances to result in a secure scheme, since copy-protection of PRFs with a strong security property was shown in [CLLZ21]. This so-called indistinguishable anti-piracy security of copy-protection of PRFs is defined as a game between a challenger and three adversaries Alice, Bob and Charlie. Bob and Charlie are not given a challenge only, but a pair (x, z) such that z is either PRF(k, x), or a uniformly random string, depending on the challenger's random coins. Then they are asked to return the value of the coins.

Unfortunately, we do not know how to reduce the security of our protocol directly to the indistinguishable anti-piracy security of copy-protection of PRFs, and thus we need to make few modifications to the indistinguishable anti-piracy game described above in order to carry out the reduction: (i) first, we change the definition by allowing Alice to have access to the z part of each challenge pair before she sends the bipartite state to Bob and Charlie; (ii) secondly, it is no longer the z part of the challenge that is either real or random, but the x part. More precisely, the challenge pairs (x, z) become such that z is an image of the PRF and x is either its pre-image or a uniformly random string. Furthermore, the image value z is sent to Alice and thus it is the same for both Bob and Charlie, only the x values are sampled independently based on the challenger's random coins. Even though we conjecture that our construction is secure if the underlying copy-protection of PRF scheme has security with respect to these modifications, it turns out that we have incompatible distributions when we do the reduction. The reason is essentially that, in order to prove the security, we do a reduction to the monogamy-of-entanglement of coset states (Definition 24). In this game, Bob and Charlie must each return a vector from different spaces, which -in the reduction -they extract from the challenge they are given. Because of our last change, they receive the same challenge with probability 1/4, and then they return the same vector with probability 1/4. Unfortunately, this does not lead to any contradiction. Indeed, the same problem occurs as long as Bob and Charlie are given the same challenge with non-negligible probability.

Instead, in this work, we use another challenge distribution first defined in [CMP20] -namely the distribution that yields either (y, x 2), (x 1 , y), or (x 1 , x 2), each with probability 1 3 . In this challenge distribution, Bob and Charlie never receive the same challenge, and thus it allows us to apply the extracting technique described above to finish the security proof. We refer the reader to Section 6 for a formal description of the construction, and we note that even though the challenge distribution that we use is less ideal, it is still a non-trivial challenge distribution in the context of copy-protection of point functions.

Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. The notation negl(λ) denotes any function f such that f (λ) = λ -ω(1) , and poly(λ) denotes any function

f such that f (λ) = O(λ c) for some c > 0. For a, b ∈ R, [a, b] := { x ∈ R | a ≤ x ≤ b } and a, b := { x ∈ Z | a ≤ x ≤ b }
will denote the closed real and integer interval with endpoints a and b. With an abuse of notation, we will write n as shorthand for 0, n -1 . For a set I = {i 1 , . . . , i ℓ } ⊆ n and a n-bit string x ∈ {0, 1} n , we write x|

I := x i 1 • • • x i ℓ .
When sampling uniformly at random a value a from a set U, we employ the notation a $ ← U. When sampling a value a from a probabilistic algorithm A, we employ the notation a ← A. Let |•| denote either the length of a string, or the cardinal of a finite set, or the absolute value. By PPT we mean a polynomial-time non-uniform family of probabilistic circuits, and by QPT we mean a polynomial-time family of quantum circuits. For a probabilistic algorithm f , we write f (x; r) to denote the computation of f on input x with randomness r drawn uniformly at random. We sometimes omit the randomness and just write f (x).

Quantum Computation

We assume familiarity with quantum information and computation, and refer to [NC11] and Appendix A.1 for the definition of basic concepts.

We The single qubit Pauli operators are σ X = (0 1 1 0) and σ Z = 1 0 0 -1 . The Hadamard basis states are written as |(-

) b ⟩ = 1 √ 2 (|0⟩ + (-1) b |1⟩).
An observable on H is a Hermitian linear operator on H. A binary observable is an observable that only has eigenvalues ∈ {-1, 1}. For a binary observable O and b ∈ {0, 1}, we denote by O (b) the projector onto the (-1) b -eigenspace of O. For any procedure which takes a quantum state as input and produces a bit (or more generally an integer) as output, e.g., by measuring the input state, we denote the probability distribution over outputs b on input state ψ by Pr

[b | ψ].
We will borrow the notation of [GMP22, MV21], and also include some technical lemmas from the preliminaries of those papers, which are used later in our proof for semi-quantum copy-protection construction in Section 4.

Sampling in a Quantum Population

In this paper, we also use a generic framework presented in [BF10] for analyzing cut-and-choose strategies applied to quantum states. We briefly recall the framework in Appendix A.3.

Cryptographic Primitives

We will use several cryptographic primitives in this paper: (i) indistinguishability obfuscation iO, (ii) pseudorandom functions PRF, (iii) leveled hybrid quantum fully homomorphic encryption QFHE := ⟨KeyGen, Encrypt, QOTP, Eval, Decrypt⟩. We refer to Appendix A for formal definitions of these primitives.

Extended Trapdoor Claw-free Functions

Our remote state preparation protocol is based on a cryptographic primitive called extended noisy trapdoor claw free function families (ENTCF families), which are defined in [Mah18b,Section 4] and can be constructed from the Learning with Errors assumption [Reg05, BCM + 18]. We use the same notation as in [Mah18b,Section 4], with the exception that we write K 0 instead of K G and K 1 instead of K F . In addition, we also define the following functions for convenience: (This is well-defined because f k,0 and f k,1 form an injective pair.)

Definition 1 (Decoding maps, [MV21, Definition 2.1]).

For a key

k ∈ K 0 ∪ K 1 , an image y ∈ Y, a bit b ∈ {0, 1}, and a pre-image x ∈ X , we define Chk(k, y, b, x) to return 1 if y ∈ Supp(f k,b (x)),

For a key

k ∈ K 0 ∪ K 1 and a y ∈ Y, we define xb (k, y) by the condition y ∈ Supp(f k,b (x b (k, y))), and xb (k, y) = ⊥ if y / ∈ ∪ x Supp(f k,b (x)). For k ∈ K 0 , we also use the shorthand x(k, y) := xb (k,y) (k, y).

For a key

k ∈ K 1 , a y ∈ Y, and a d ∈ {0, 1} w , we define û(k, y, d) by the condition d • (x 0 (k, y) ⊕ x1 (k, y)) = û(k, y, d).
The above decoding maps applied to vector inputs are understood to act in an element-wise fashion. For example, for

⃗ k ∈ K ×n 1 , ⃗ y ∈ Y ×n , and ⃗ d ∈ {0, 1} w×n , we denote by û(⃗ k, ⃗ y, ⃗ d) ∈ {0, 1} n the string defined by û(⃗ k, ⃗ y, ⃗ d) i := û(k i , y i , d i).

Remote Coset State Preparation Protocol

In this section, we introduce our protocol for remote hidden coset state preparation. We first give a definition of completeness and soundness in Section 4.1. Our construction is given in Section 4.2, followed by proof of correctness in Section 4.3 and proof of soundness in Section 5.

Definitions Definition 2 (Remote Coset State Preparation Protocol). A remote coset state preparation

protocol is an interactive classical communication protocol between a PPT verifier (or sender, denoted as V) and a QPT prover (or receiver, denoted as P) such that at the end of the protocol, the verifier obtains a list T ⊂ N of classical description of cosets {S i , α i , β i } i∈T and the prover outputs a quantum state ψ. The two parties also obtain a common output which is obfuscated membership checking programs of S i + α i and S ⊥ i + β i for all i ∈ T . We denote an execution of the protocol as

({S i , α i , β i } i∈T , ψ, {P 0,i , P 1,i } i∈T) ← ⟨P(1 λ), V(1 λ)⟩,
where P 0,i is an obfuscated membership checking program of S i + α i and P 1,i is an obfuscated membership checking program of S ⊥ i + β i . Note that {P 0,i , P 1,i } i∈T is the common output of both parties. When it is clear from the context, we omit the common output and just write

({S i , α i , β i } i∈T , ψ) ← ⟨P(1 λ), V(1 λ)⟩.
The protocol is correct if the protocol does not abort and at the end of the execution, there exists a negligible function ε(λ) such that

Pr ψ ≈ ε i∈T |S i,α i ,β i ⟩ ≥ 1 -negl(λ),
where the probability is taken over randomness of the verifier V.

We now formally define the notions of soundness of remote coset state preparation protocol. We will give two different definitions: one for the monogamy-of-entanglement property (Definition 3), and another for the direct product hardness property (Definition 4).

Definition 3 (Monogamy-of-Entanglement Soundness). Let ({S

i , α i , β i } i∈T , ψ) ← ⟨P λ (ρ λ), V(1 λ)⟩
be an execution of a remote coset state preparation protocol between a QPT prover P = {P λ , ρ λ } λ∈N and a PPT verifier V, after which V outputs {S i , α i , β i } i∈T and P outputs a state ψ. The prover (now modeled as a triple algorithm (P, B, C)) then interacts with the verifier in the following monogamy game.

The prover applies a CPTP map to split ψ into a bipartite state ψ BC ; it sends the register B to

B and the register C to C. No communication is allowed between B and C after this phase.

2. Question. The verifier sends the description of {S i } i∈T , to both B and C.

Answer. B returns s

(i) 1 ∈ F n 2 and C returns s (i) 2 ∈ F n 2 for all i ∈ T .
The prover (P, B, C) wins if and only if s

(i) 1 ∈ S i + α i and s (i)
2 ∈ S ⊥ i + β i for all i ∈ T . Let SMCosetMonogamy(P, λ) be a random variable which takes the value 1 if the game above is won by the prover (P, B, C), and takes the value 0 otherwise.

The protocol is secure if the winning probability of any QPT adversary is negligible. Formally, for any QPT malicious prover, the protocol is computationally sound with the monogamy-ofentanglement property if

Pr[SMCosetMonogamy(P, λ) = 1] ≤ negl(λ). Definition 4 (Direct Product Soundness). Let ({S i , α i , β i } i∈T , ψ) ← ⟨P λ (ρ λ), V(1 λ)⟩ be
an execution of a remote coset state preparation protocol between a QPT prover P = {P λ , ρ λ } λ∈N and a PPT verifier V, after which V outputs {S i , α i , β i } i∈T and P outputs a state ψ. The prover then outputs {(v i , w i) i∈T }. The prover wins if and only if for all i ∈ T , either:

(i) (v i , w i) ∈ (A i + s i) × (A i + s i) and v i ̸ = w i ; (ii) or (v i , w i) ∈ (A ⊥ i + s ′ i) × (A ⊥ i + s ′ i) and v i ̸ = w i ; (iii) or (v i , w i) ∈ (A i + s i) × (A ⊥ i + s ′ i).
Let SMDirectProduct(P, λ) be a random variable which takes the value 1 if the game above is won by the prover P, and takes the value 0 otherwise. The protocol is secure if the winning probability of any QPT adversary is negligible. Formally, for any QPT malicious prover, the protocol is computationally sound with the direct product hardness property if

Pr[SMDirectProduct(P, λ) = 1] ≤ negl(λ).

Construction

Notation. Our Protocol 1 and Protocol 2 will be (almost) a parallel repetition of a sub-protocol. We make use of vector notation to denote tuples of items corresponding to the different copies of the sub-protocol. For example, if each of the n parallel sub-protocols requires a key k i , we denote

⃗ k = (k 1 , . . . , k n).
A function that takes as input a single value can be extended to input vectors in the obvious way: for example, if f takes as input a single key k, then we write f (⃗ k) for the vector (f (k 1), . . . , f (k n)). We will also use ⃗ 0 and ⃗ 1 for the bit strings consisting only of 0 and 1, respectively (and whose length will be clear from the context), and ⃗ 1 i ∈ {0, 1} n for the bit string whose i-th bit is 1 and whose remaining bits are 0. Let n the length of a vector in a coset state (i.e., if v ∈ A then |v| = n). In our constructions below, we set n := 2λ.

Ingredients. Our constructions use the following building blocks:

• A quantum hybrid fully homomorphic encryption scheme QFHE := ⟨KeyGen, QOTP, Encrypt, Eval, Decrypt⟩, with sub-exponential advantage security.

• A post-quantum secure indistinguishability obfuscation scheme iO.

• A post-quantum secure extended noisy trapdoor claw-free function (ENTCF) family (F, G).

Our main protocol's construction is given in Protocol 5. The protocol involves two parties: a QPT prover (or receiver, denoted as P), and a PPT verifier (or sender, denoted as V).

Protocol 1: Semi-Quantum Protocol: BB84 Test Round Input. The verifier initially receives Pauli keys (α, β) with α, β ∈ {0, 1} n as private inputs.

1. The verifier selects a uniformly random basis θ $ ← {0, 1}, where 0 corresponds to the computational and 1 to the Hadamard basis.

The verifier samples keys and trapdoors

{(k i , t i)} n i=1 by computing (k i , t i) ← Gen K θ (1 λ).
(k i , t i , b i , x i) = 0 for any i ∈ 1, n .
(b) For a Hadamard round: the verifier receives {d i } n i=1 from the prover with d i ∈ {0, 1} w (for some w depends on the security parameter λ). The verifier sends q = θ to the prover, and receives answers {v i } n i=1 with v i ∈ {0, 1}. The verifier performs the following: 1. The verifier selects a uniformly random basis θ $ ← {0, 1}, where 0 corresponds to the computational and 1 to the Hadamard basis.

• If q = θ = 0, set flag bb84 ← flag Had and abort if b(k i , y i) ̸ = v i for some i ∈ 1, n . • If q = θ = 1, set flag bb84 ← flag Had and abort if û(k i , y i , d i) ̸ = v i ⊕ β i for some i ∈ 1, n .

The verifier samples keys and trapdoors

{(k i , t i)} n i=1 by computing (k i , t i) ← Gen K θ (1 λ
). The verifier then sends {k i } n i=1 to the prover (but keeps the trapdoors {t i } n i=1 private). 3. The verifier receives {y i } n i=1 where y i ∈ Y from the prover. 4. The verifier sends "Hadamard round" as the round type to the prover.

The verifier receives {d i } n

i=1 from the prover with d i ∈ {0, 1} w (for some w depends on the security parameter λ). The verifier sends q = θ to the prover, and receives answers {v i } n i=1 with v i ∈ {0, 1}. The verifier performs the following:

• If q = θ = 0, let ⃗ v := v 1 . . . v n . Set flag coset ← flag Had and abort if ⃗ v / ∈ A + α. • If q = θ = 1, let s i ← v i ⊕ û(k i , y i , d i)
{(α i , β i)} M 2 i=1 corresponds to M 2 BB84 instances.
1. The verifier privately samples B $ ← 1, M -1 (this determines the number of BB84 test rounds that will be performed).

2. The verifier performs BM executions of Protocol 1 (with corresponding private inputs {(α i , β i)}) with the prover. The verifier aborts if Protocol 1 aborts for some execution.

3. The verifier privately samples R $ ← 1, M and executes Protocol 1 with the prover R -1 times (with corresponding private inputs {(α i , β i)}). Then the verifier executes Protocol 2 with the prover (with private inputs (A, α ′ , β ′)) and aborts if Protocol 2 aborts.

Protocol 4: Semi-Quantum Protocol: Self-Testing (with Soundness Amplification)

Let N := λ the number of iterations.

Input. The verifier initially receives

{(A i , α ′ i , β ′ i)} N i=1 and {(α i , β i)} N M 2
i=1 as private inputs. Each tuple in the first set corresponds to a coset-state instance, and each tuple in the second set corresponds to a BB84 instance. The verifier and the prover sequentially run Protocol 3 N times as follows.

1. For each run, the verifier and the prover interactively run Protocol 3 with one coset state instance

(A i , α ′ i , β ′ i) and M 2 BB84 instances {(α i , β i)} M 2 i=1
, each is picked uniformly at random from the input sets. (If some instance has been picked before, it will be excluded).

2. The verifier aborts unless Protocol 3 does not abort in all N iterations. 1. Coset-state instances. For each i ∈ 1, 2N , the verifier samples a random n 2 -dimensional subspace S i ⊆ F n 2 , described by a matrix

M S i ∈ {0, 1} n 2 ×n . Samples Pauli keys p α i $ ← {0, 1} n 2 2 to encrypt M pα i S i ← QFHE.QOTP(p α i , M S i), and then (pk i , sk i) ← QFHE.KeyGen(1 λ , 1 ℓ(λ)) for some polynomial ℓ(•), ct i ← QFHE.Encrypt(pk i , p α i). 2. n-qubit BB84 instances. For each i ∈ 1, N M 2 , the verifier samples Pauli keys p α i $ ← {0, 1} n 2 2 to encrypt M pα i 0 ← QFHE.QOTP(p α i , M 0) (here, M 0 is the all-zero vector of length n 2
2), and then

(pk i , sk i) ← QFHE.KeyGen(1 λ , 1 ℓ(λ)), ct i ← QFHE.Encrypt(pk i , p α i). 3. For each index i ∈ 1, 2N + N M 2 ,
the verifier picks uniformly at random one instance from either the set of (encrypted) coset states or the set of (encrypted) n-qubit BB84 states prepared above. For each index i, denote the i-th instance as (pk i , M pα i , ct i) with secrets (sk i , S i). (If this instance is from the set of n-qubit BB84 states, we understand that S i = M 0 .)

The verifier sends {pk

i , M pα i , ct i } 2N +N M 2 i=1
to the prover.

Prover's homomorphic evaluation 5. Let C the quantum circuit that for an input matrix M ∈ {0, 1} n 2 ×n , outputs a uniform superposition of its row span, except that if M = M 0 , it outputs a uniform superposition of all vectors in the space F n 2 . The prover homomorphically evaluates

C for each i ∈ 1, 2N + N M 2 : (|S i,α i ,β i ⟩ , ct i,α i ,β i) ← QFHE.Eval pk i , (M pα i , ct i), C
, saves the quantum part |S i,α i ,β i ⟩ and sends the classical part ct i,α i ,β i to the verifier.

Self-testing for the prover.

For each

i ∈ 1, 2N + N M 2 , the verifier decrypts (α i , β i) ← QFHE.Decrypt(sk i , ct i,α i ,β i). For
all coset-state instances, if α i ∈ S i , the protocol is terminated.

7. The verifier then runs Protocol 4 with these N M 2 prepared BB84 instances and N coset-state instances, where each coset-state instance is picked uniformly at random among 2N prepared instances. (If some instance has been picked before, it will be excluded). It aborts if Protocol 4 aborts.

Coset-state generation.

The verifier samples a random

n 2 -dimensional coset (Ŝ, α, β) ⊆ F n 2 independently. a Let M Ŝ , M Ŝ⊥ ∈ {0, 1}
n 2 ×n bases for Ŝ and Ŝ⊥ , respectively. 9. Let T the set of indexes of the remaining N instances of the coset-states which have not been used in the self-testing protocol above. For each i ∈ T , the verifier does the following:

(a) Let M S ⊥ i ∈ {0, 1} n 2 ×n a basis for S ⊥ i (as a matrix). Compute indistin- guishability obfuscations P 0,i ← iO iO(M S i + α i) ∨ iO(M Ŝ + α) and P 1,i ← iO iO(M S ⊥ i + β i) ∨ iO(M Ŝ⊥ + β) , all with appropriate padding. b (b) Record {(α i , β i , S i)} i∈T .
(c) Send T and {P 0,i , P 1,i } i∈T to the prover.

The output of the prover is {P 0,i , P 1,i , |S i,α i ,β i ⟩} i∈T where |T | = N . a This step is merely an artifact that we will need later for the security proof. b Here, we understand that for any two programs C, C ′ with binary output, iO

(C ∨ C ′)(x) outputs C(x) ∨ C ′ (x).
Notation. For each execution of Protocol 5, we abuse the notation and denote (|A s,s ′ ⟩ , R 0 , R 1) the state obtained by the receiver, where R b the obfuscated membership checking programs, computed by concatenating all the obfuscated programs P b,i in Protocol 5, and (A, s, s ′) the "coset" (which in fact consists of polynomial many different real cosets) obtained by the sender. That is, we consider the whole output state of the protocol as a single unclonable state (which we also call "coset state"). This notation will only be used later when we describe the applications of our protocol in the context of semi-quantum copy-protection (Section 6) and semi-quantum tokenized signatures (Section 7).

Proof of Correctness

Proposition 1. There exists a QPT prover that is accepted in Protocol 5 with probability negligibly close to 1 in the security parameter λ. Furthermore, the final quantum state of such a prover at the end of Protocol 5 is (negligibly close to) a product of N hidden coset states:

i∈T |S i,α i ,β i ⟩ , (2
)
where {(S i , α i , β i)} i∈T are recorded by the verifier at the end of Protocol 5.

Proof. The proof of correctness includes three steps: (1) If the prover ran honestly then its output after the homomorphic evaluation step has negligible trace distance to (QOTP encrypted of) BB84 states and coset states;

(2) The self-test protocol passes (that is, the protocol does not terminate at this step) with probability negligibly close to 1; (3) In the last step of coset-state generation, after discarding all BB84 states, the output of the prover at the end of Protocol 5 has negligible trace distance to the state described in Equation (2). We give a full proof in Appendix B.1.

Proof of Soundness

In this section, we prove soundness of Protocol 5, following the steps outlined in Section 2.2:

1. First, we show a ridigity argument (with inverse polynomial soundness) for our self-testing protocol (Protocol 3).

2. We show that any malicious prover in our remote state preparation protocol must have also constructed a hidden random coset state up to some inverse polynomial error. The formal statement is given in Proposition 2 in Section 5.1. This final step reduces to a particular "quantum sample-and-estimate strategy", which is a quantum counterpart of the classical "cut-and-choose" as defined by Bouman and Fehr [BF10].

3. We then show the soundness of our final protocol (Protocol 5), which is stated as a monogamy-ofentanglement game, in Section 5.2. Notably, even if our rigidity statement achieves only inverse polynomial soundness, we show that our protocol achieves negligible security in this monogamy game.

Informally, a prover that succeeds in Protocol 5 has negligible probability of winning a monogamyof-entanglement game for coset states, which is formally stated as Theorem 4. This means that if we consider the output of our final protocol as a single unclonable state, the situation at the end of Protocol 5 is essentially identical to one in which the verifier has sent a hidden coset state to the prover via a quantum channel, whose security is based on the monogamy-of-entanglement of coset states defined in Definition 24. Finally, to extend the applicability of our protocol to other constructions whose security proofs are based on the direct product hardness of random coset states, we show that the same proof strategy of Theorem 4 can be used to show a direct product soundness of our protocol, which is formally stated as Theorem 5 in Section 5.3.

Self-Testing Protocol Soundness

In order to prove Proposition 2, we first show a rigidity argument for our self-testing protocol (Protocol 3). We state in this section the following proposition.

Proposition 2. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such that if the verifier executes Protocol 5 with an efficient quantum prover whose success probability is lower-bounded by an inverse polynomial, the following holds. We denote by ϕ T SV P the verifier and prover's joint final state at the end of Protocol 5, where T is the set of coset states obtained by the verifier, S is set to |⊥⟩⟨⊥| by the verifier if the protocol aborts and |⊤⟩⟨⊤| otherwise, V is the register in which the verifier records the set T , and P is the prover's registers. Then, denoting the probability of success as Pr[⊤], and writing

ϕ T SV P = Pr[⊤]|⊤⟩⟨⊤| S ⊗ ϕ T V P |⊤ + (1 -Pr[⊤])|⊥⟩⟨⊥| ⊗ ϕ T V P |⊥ .
Then there exists a coset instance (A, α, β) in T such that the state ϕ T V P |⊤ conditioned on acceptance satisfies:

ϕ T V P |⊤ c ≈ 1/poly(λ) |T ⟩⟨T | V ⊗ |A α,β ⟩⟨A α,β | ⊗ ρ, (3
)
for some auxiliary state ρ.

Due to the space limitations, we defer the proof of this proposition to Appendix B.2.

Monogamy-of-Entanglement Soundness of Protocol 5

We now formally define the notion of soundness for our protocol, which is described as a coset monogamy game similar to Definition 24.

Theorem 4. Protocol 5 is computationally sound, according to Definition 3.

Proof. Let P = {P λ , ρ λ } λ∈N a quantum polynomial time adversary that succeeds in the game SMCosetMonogamy with some non-negligible probability

ε = {ε λ } λ∈N . Let ({S i , α i , β i } i∈T , ψ) ← ⟨P λ (ρ λ), V(1 λ)⟩.
This means that P = (P, B, C) is able to output a pair (s

(i) 1 , s (i) 2) ∈ (S i + α i) × (S ⊥ i + β i)
for all i ∈ T in the monogamy game defined in Definition 3. Let δ ′ ∈ (0, 1] the sub-exponential security level of the QFHE (that is, any QPT adversary cannot break the semantic security of the QFHE with advantage bigger than 2 λ δ ′

), and denote δ := δ ′ 2 . We next describe a sequence of hybrid experiments.8 Game G 0 : This is the original experiment.

We define G 0 as the original attack, where P interacts with the verifier in Protocol 5 and wins the monogamy game SMCosetMonogamy. We say G 0 is successful if SMCosetMonogamy(P, λ) = 1. The experiment G 0 is thus successful with probability ε.

Game G 1 : Changing the success definition of the experiment.

Pick a random index i ∈ T , for shorthand, denote this coset instance as (S, α, β), and the adversary's corresponding output in the monogamy game is (s 1 , s 2). In the current hybrid, the experiment is defined to be successful if s 1 ∈ S + α and s 2 ∈ S ⊥ + β. In particular, in the current hybrid, we only consider the monogamy game for a random instance among |T | coset instances. (The other instances are not considered). Apparently, G 1 is successful with probability at least ε. From now on, we only consider this coset instance in later hybrids, and all the changes are only applied to this instance.

Game G 2 : Injecting quantum communication into the interaction between the prover and the verifier.

This hybrid is identical to G 1 except that now we consider the verifier as a QPT algorithm instead of a PPT algorithm, and we make an additional round of interaction using quantum communication in the protocol. (Think about the verifier now as a QPT challenger of the experiment.) In particular, right after the last step of Protocol 5 (step 9c), we ask the prover to send the coset state |S α,β ⟩ to the verifier. Denote this state as |$⟩. The verifier then does the following:

• Verify the received coset state:

(a) Checks that the output qubit of the computation iO(S + α)(|$⟩)9 is 1.

(b) Execute Hadamard transform H ⊗λ on |$⟩ to obtain |$ ′ ⟩ and then check the output qubit of the computation iO(S ⊥ + β)(|$ ′ ⟩) is 1.

• If any of these checks returns 0, abort and declare the game as a failure.

• Execute H ⊗λ again on |$ ′ ⟩ to obtain |$ ′′ ⟩ and send |$ ′′ ⟩ back to the prover.

From Proposition 2, it follows that with probability at least 1/ |T |, the adversary's output state ϕ is inverse polynomially ϵ-close to |S α,β ⟩ ⊗ ρ for some auxiliary state ρ. It means that when it is asked, the adversary can always send a state |$⟩ that is inverse polynomially ϵ-close to |S α,β ⟩ to the challenger.

Note that the quantum verification described above executes only on the register containing |$⟩ and thus commutes with any other quantum operation on a register entangled with it at the point where P finishes executing the real protocol Protocol 5. Thus after finishing the above additional interaction, the adversary's state is unchanged, if the verification passed.

The probability that the adversary does not fail in the experiment is 1 -ϵ. It is then clear that, for any adversary that wins the G 1 with probability ε, it wins G 2 with probability at least

ε ′ := ε(1 -ϵ)/ |T |. Thus, the success probability of G 2 is ε ′ for some non-negligible ε ′ .
Game G 3 : Removing subspace information from obfuscated circuits.

This hybrid is identical to G 2 , with the only difference is that when the verifier returns the obfuscations P 0 , P 1 in the last step of Protocol 5 (Step 9c), the obfuscations are changed: We sample two random (λ

-λ δ)-dimensional subspaces T 0 , T 1 ⊆ F λ 2 subjected to T ⊥ 1 ⊆ S ⊆ T 0 . The verifier uses iO(T 0 + α) instead of iO(S + α), and iO(T 1 + β) instead of iO(S ⊥ + β).
It is easy to see that any QPT distinguisher between G 2 and G 3 can be transformed into a QPT distinguisher between obfuscations of the original functions S + α, S ⊥ + β and obfuscations of T 0 + α, T 1 + β. By the subspace hiding property of indistinguishability obfuscators (Lemma 6), the success probabilities of G 2 and G 3 are thus negligibly close. Thus the successful probability of G 3 is at least ε ′ -negl(λ).

Game G 4 : Computing the obfuscations with less information on α, β.

This hybrid is identical to G 3 , with a modification in the way we check membership in each of the cosets: Let B 0 a basis for T 0 , and B 1 a basis for T ⊥ 1 , and let y α , y β ∈ {0, 1} λ-λ δ defined as y α := B 0 • α and y β := B 1 • β. iO(T 0 + α) is changed to be an obfuscation of a circuit that for an input u ∈ {0, 1} λ checks whether B 0 • u = y α . iO(T 1 + β) is changed to be an obfuscation of a circuit that for an input u ∈ {0, 1} λ checks whether

B 1 • u = y β .
One can verify that the functionality of the obfuscated circuits iO(T 0 + α), iO(T 1 + β) did not change, and thus by the security of the indistinguishability obfuscation schemes, the distributions are indistinguishable and the success probability of G 4 is ε ′ -negl(λ).

Game G 5 : Reordering the sampling process of the subspaces S, T 0 , T 1 .

This hybrid is identical to G 4 , except that we change the order of the subspaces sampling process. In the previous hybrid, we sample a random λ 2 -dimensional subspace S ⊆ F λ 2 then two random (λ -λ δ)-dimensional subspaces T 0 , T 1 subjected to T ⊥ 1 ⊆ S ⊆ T 0 . In the current hybrid, we first

sample two random (λ -λ δ)-dimensional subspaces T 0 , T 1 ⊆ F n 2 subjected to T ⊥ 1 ⊆ T 0 , then sample a random λ 2 -dimensional subspace S ⊆ F n 2 subjected to T ⊥ 1 ⊆ S ⊆ T 0 .
Since the distribution of (S, T 0 , T 1) in both hybrids are identical, the success probability of G 5 is ε ′ -negl(λ).

Game G 6 : Fixing the subspace T 0 , T 1 .

In the subspace sampling process described in the previous hybrid, T 0 and T 1 are sampled before everything else. Thus we can perform an averaging argument on the sampling of T 0 , T 1 to take the samples that maximize the success probability of the previous hybrid. Fix these samples of T 0 , T 1 and define G 6 with respect to these samples. It is clear that the success probability of G 6 is ε ′ -negl(λ).

Game G 7 : Removing the QFHE secret key from the reduction.

This hybrid is identical to G 6 with one change: In step 6, when the verifier decrypts the QFHE classical part to get the Pauli keys α, β, the current hybrid does not decrypt to get α, β and instead it samples uniformly random α ′ , β ′ ∈ {0, 1} λ and computes

y ′ α := B 0 • α ′ , y ′ β := B 1 • β ′ .
The verifier then use these strings as y α , y β in the construction of the obfuscations iO(T 0 + α), iO(T 1 + β), respectively.

We note that this change is only done for the specific coset instance under the consideration, for the other instances, the verifier still decrypts normally using the corresponding QFHE secret key.

Since α ′ , β ′ are chosen uniformly at random, for fixed bases B 0 , B 1 , y ′ α , y ′ β are also uniformly random. Observe that conditioned on the probabilistic event y ′ α = y α and y ′ β = y β (for which to happen, the probability is exactly 2 -2λ δ), the current and previous hybrids distribute identically. It follows that the success probability in G 7 is at least 2

-2λ δ • (ε ′ -negl(λ)) > 2 -3λ δ .
Game G 8 : Clearing all given knowledge on S and reducing to the original monogamy-of-entanglement game defined in Definition 24.

This hybrid is identical to G 7 , except that we make two additional changes as follows. -In the additional quantum communication round that we added after the end of Protocol 5 (see hybrid G 2), instead of sending back the original state |$⟩, the verifier send | Ŝα, β ⟩. Recall that the coset (Ŝ, α, β) is the one the verifier sampled independently in step 8.

-In the step 2 in the monogamy game (Definition 3), when the challenger (i.e., the verifier) sends the description of the subspace S to both adversaries B, C, it sends Ŝ instead.

-Consequently, the winning condition is changed to be that B outputs a vector in Ŝ + α and C outputs a vector in Ŝ⊥ + β. We make few observations on the distribution in the current hybrid. First, in order to execute G 8 , there is no need to know the secret key (corresponding to the coset instance under the consideration) of the QFHE scheme. However, one needs to care when invoking the semantic security of the QFHE, because even there is no need for the secret key, the adversary is still given a "predicate" check on the ciphertext, that is the obfuscation. Thus, to use the security of the QFHE, it is necessary to use two plaintexts such that the obfuscation evaluation on the ciphertext of these two plaintexts are identical. Our obfuscations (P 0,i , P 1,i) were generated so that this condition is satisfied.

Secondly, the obfuscation distribution does not change from the description above, and we can see that in the previous hybrid, the adversary obtains a quantum one-time pad encryption of |S⟩, while in the current hybrid, the adversary obtains a quantum one-time pad of | Ŝ⟩. More precisely, the adversary in the current hybrid receives an encryption of | Ŝ⟩ that is | Ŝα, β ⟩ and an encryption of some Pauli keys (α, β) that are different from (α, β) with overwhelming probability. But because of the semantic security of QFHE.Encrypt (see Definition 21), this is indistinguishable from having | Ŝα, β ⟩ and an actual encryption of (α, β).

From these observations, it follows that we can invoke the security of the QFHE to argue the indistinguishability of the current and previous hybrids, and in particular the indistinguishability between their success probabilities. Using the sub-exponential-advantage security of the QFHE, we have the success probability of

G 8 is > 2 -3λ δ -2 -2λ δ ′ > 2 -3λ δ -1
. At this point of the proof, we can reduce the success probability of an adversary in G 8 to the monogamy-of-entanglement game defined in Definition 24. We note that the coset game in Definition 24 can achieve sub-exponentially negligible security, say 2 -4λ δ , if we assume subexponential security of the building blocks (i.e., the indistinguishability obfuscation scheme). Now, any QPT adversary of G 8 can be used to construct a QPT adversary for the coset game defined in Definition 24 as follows. Specifically, the reduction receives a challenge coset state | Ŝα, β ⟩ and the obfuscated membership checking programs iO(Ŝ + α), iO(Ŝ⊥ + β) from its challenger in the coset game in Definition 24. The reduction runs Protocol 5 with the adversary. Note that the reduction (playing the role of the verifier in Protocol 5) only needs iO(Ŝ + α) and iO(Ŝ⊥ + β) to perfectly simulate the protocol with the adversary. Furthermore, it uses | Ŝα, β ⟩ in the experiment described above instead of generating the state on its own, when it needs to send a coset state back to the adversary. When the reduction receives Ŝ from its challenger, it sends Ŝ to B, C, and finally the reduction outputs whatever B and C output. (Formally, the reduction now consists of two non-communicating reductions, each interacts with B and C respectively.) This is exactly in contradiction to strong monogamy-of-entanglement security as we presented above.

Direct Product Soundness of Protocol 5

In this section, we argue that our Protocol 5 also satisfies a direct product soundness as ideal random coset states. This allows us to dequantize quantum protocols whose security proofs are based on the direct product hardness of coset states.

Theorem 5. Protocol 5 is computationally sound, according to Definition 4. Proof (sketch). The proof of Theorem 5 follows identically to that of Theorem 4, except that in the last hybrid (Game G 8), we reduce to the direct product hardness of random coset states as stated in Theorem 13.

(Semi-Quantum) Copy-Protection of Point Functions

In this section, we give a construction of quantum copy-protection of point functions and we also show how to instantiate a semi-quantum copy-protection scheme by applying our remote state preparation protocol Protocol 5 to this quantum copy-protection scheme. We note that our semi-quantum copy-protection scheme is interactive, while its quantum version is non-interactive.

We first recall security definition of (semi-)quantum copy-protection of point functions in Section 6.1, and present our constructions in Section 6.2, followed by a sketch of security proofs. (The formal proofs are given in Appendix D.)

Definition

Recall that a point functions family {PF y } y∈X is indexed by points y ∈ X and a point function PF y returns 1 on input y and 0 on any other input.

We give a security definition for copy-protection of point functions by instantiating the general definition of copy-protection (see Appendix A.9) with the following family: F := {PF y } y∈{0,1} n , where each function f = PF y in the family is described by d f := y. For the anti-piracy security, we will consider the function distribution D f := U({0, 1} n): the uniform distribution over {0, 1} n ; and the family of distributions X := {X y } y∈{0,1} n such that for any y ∈ {0, 1} n , X y :

• samples x $ ← {0, 1} n and yields (y, x) with probability 1/3;

• samples x $ ← {0, 1} n and yields (x, y) with probability 1/3;

• samples x, x ′ $
← {0, 1} n and yields (x, x ′) with probability 1/3.

Constructions

Let {PF y } y∈{0,1} n be the family to be copy-protected, where n := n(λ) is a polynomial in λ. We define ℓ 0 , ℓ 1 , ℓ 2 such that n = ℓ 0 + ℓ 1 + ℓ 2 and ℓ 2 -ℓ 0 is large enough. For this construction, we need three pseudorandom functions (PRFs):

• A puncturable extracting PRF PRF 1 : K 1 × {0, 1} n → {0, 1} m with error 2 -λ-1
, where m is a polynomial in λ and n ≥ m + 2λ + 4.

• A puncturable injective PRF PRF 2 : K 2 × {0, 1} ℓ 2 → {0, 1} ℓ 1 with failure probability 2 -λ , with ℓ 1 ≥ 2ℓ 2 + λ. • A puncturable PRF PRF 3 : K 3 × {0, 1} ℓ 1 → {0, 1} ℓ 2 .
Construction 1: Quantum Copy-Protection of Point Functions

PF.Protect(y):

-Sample ℓ 0 random coset states {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , where each subspace

A i ⊆ F n 2 if of dimension n 2 . -For each coset state |A i,s i ,s ′ i ⟩, prepare the obfuscated membership programs R 0 i = iO(A i + s i) and R 1 i = iO(A ⊥ i + s ′ i). -Sample k i ← PRF i .KeyGen(1 λ) for i ∈ {1, 2, 3}.
-Prepare the program P ← iO(P), where P is described in Figure 1.

-Compute z := PRF 1 (k 1 , y). -Return ρ y := {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z . PF.Eval(ρ y , x): -Parse ρ y = {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z . -Parse x as x := x 0 ∥x 1 ∥x 2 .
-For each i ∈ 1, ℓ 0 , if x 0,i = 1, apply H ⊗n to |A i,s i ,s ′ i ⟩; if x 0,i = 0, leave the state unchanged.

-Let σ be the resulting state (which can be interpreted as a superposition over tuples of ℓ 0 vectors). Run P coherently on input x and σ, and measure the final output register to obtain z ′ .

-Return 1 if z ′ = z, otherwise return 0.

Hardcoded: Keys (k1, k2, k3) ∈ K1 × K2 × K3, programs R 0 i , R 1 i for all i ∈ 1, ℓ0 . On input x = x0∥x1∥x2 and vectors v0, v1, • • • , v ℓ 0 where each vi ∈ F n 2 , do the following: The semi-quantum copy-protection scheme for point functions is presented in Construction 2, which is essentially obtained by applying our compiler in Section 4 to Construction 1.

1. (Hidden Trigger Mode) If PRF3(k3, x1) ⊕ x2 = x0∥Q ′ and x1 = PRF2(k2, x0∥Q ′): treat Q ′ as a classical circuit and output Q ′ (v1, • • • , v ℓ 0). 2. (Normal Mode) If for all i ∈ 1, ℓ0 , R x i i (vi) = 1, then output PRF1(k1, x). Otherwise, output ⊥.
Construction 2: Semi-Quantum Copy-Protection of Point Functions PF.Protect(y): This is now an interactive protocol between a sender and a receiver. The sender does the following: -Run Protocol 5 independently ℓ 0 times with the receiver to obtain

{A i , s i , s ′ i } i∈ 1,ℓ 0 , {(R 0 i , R 1 i)} i∈ 1,ℓ 0 .
The receiver obtains the corresponding {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 . -Sample PRF keys k i for PRF i with i ∈ {1, 2, 3}.

-Prepare the program P ← iO(P), where P is described in Figure 1.

-Compute z := PRF 1 (k 1 , y).

-Send P, z to the receiver.

PF.Eval(ρ y , x):

-Parse ρ y = {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z . -Parse x as x := x 0 ∥x 1 ∥x 2 .
-For each i ∈ 1, ℓ 0 , if x 0,i = 1, apply H ⊗n to |A i,s i ,s ′ i ⟩; if x 0,i = 0, leave the state unchanged.

-Let σ be the resulting state (which can be interpreted as a superposition over tuples of ℓ 0 vectors). Run P coherently on input x and σ, and measure the final output register to obtain z ′ .

-Return 1 if z ′ = z, otherwise return 0.

Theorem 6. Assuming the existence of post-quantum indistinguishability obfuscation, one-way functions, and compute-and-compare obfuscation for the class of unpredictable distributions, Construction 1 and Construction 2 have correctness and anti-piracy security.

The correctness of our protocols follows directly from the correctness of the copy-protection of PRFs construction of [CLLZ21, Lemma 7.13].

The security of our protocols relies on a new security notion for (semi-quantum) single-decryptors. We recall its definitions and introduce this new security notion -which we call anti-piracy security (real-or-random style) -in Appendix C. We show that the [CLLZ21]'s single-decryptor scheme also achieves this new security definition. The security proof of our constructions then follows the same strategy as that of copy-protection of PRFs given in [CLLZ21], except that we reduce security to our new single-decryptors definitions. We refer the reader to Appendix D for a detailed proof.

(Semi-quantum) Strongly Unforgeable Tokenized Digital Signatures

In this section, we present a quantum construction of tokenized digital signatures with strong unforgeability security and its semi-quantum counterpart, using our compiler presented in Section 4. The outline of this section is as follows. We first recall definitions of tokenized signatures in Section 7.1. Constructions of (semi-quantum) strongly unforgeable tokenized digital signatures and its proof of security are given in Section 7.2 and Section 7.3.

Definitions

A formal definition of tokenized digital signature is given below.

Definition 5 (Tokenized Digital Signature [BS17]).

A quantum tokenized digital signature scheme consists of four QPT algorithms qTDS = ⟨KeyGen, TokenGen, Sign, TokenVerif, Verif⟩ with the following properties:

• (vk, sk) ← KeyGen(1 λ). On input the security parameter λ, the key generation algorithm KeyGen outputs a classical verification key vk and a secret key sk.

• sig ← TokenGen(sk). On input the secret key sk, the token generation algorithm TokenGen outputs a signing token sig. We emphasize that if TokenGen is called ℓ times, it outputs different states sig 1 , . . . , sig ℓ .

• σ ← Sign(m, sig). On input a message m ∈ {0, 1} * and a signing token sig, the signing algorithm Sign outputs a classical signature σ ∈ {0, 1} p(λ) .

• (b, sig ′) ← TokenVerif(vk, sig). On input the verification key vk, and a signing token sig, the token verification TokenVerif outputs a single bit b ∈ {0, 1}, and a post-verified token sig ′ .

• b ← Verif(vk, m, σ). On input the verification key vk, a message m and a classical signature σ, the verification algorithm outputs a bit b ∈ {0, 1}.

A tokenized digital signature scheme qTDS must satisfy the following requirements for all λ ∈ N.

• Correctness. For every message m ∈ {0, 1} * , we have that

Pr Verif(vk, Sign(m, sig)) = 1 | (vk, sk) ← KeyGen(1 λ); sig ← TokenGen(sk) = 1,
where the probability is taken over randomness of KeyGen and TokenGen.

• (Strong) Unforgeability. We introduce the algorithm Verif k which takes as input the verification key vk and k pairs (m 1 , σ 1), . . . , (m k , σ k) and returns 1 if and only if: (1) all the messages are distinct, that is, m i ̸ = m j for all 1 ≤ i ̸ = j ≤ k; and (2) all the pairs pass the verification, that is, Verif(vk, m i , σ i) = 1 for all i ∈ 1, k . For every ℓ ∈ N, no QPT adversary A can sign ℓ + 1 different messages by using the verification key and ℓ signing tokens, except with negligible probability:

Adv qTDS (λ, A) := Pr Verif ℓ+1 (vk, A(vk, sig 1 ⊗ • • • ⊗ sig ℓ)) ≤ negl(λ).
We also say that qTDS is strongly unforgeable if we only require that k pairs of message/signature are distinct, that is (m i , σ i) ̸ = (m j , σ j) for all 1 ≤ i ̸ = j ≤ k.

• Testability. The token testing algorithm TokenVerif, unlike the signing algorithm, does not consume the signing token. If a signing token passes this test, the post-verified token also passes the test, and it can be used to sign a document. That is,

Pr TokenVerif(sig) = (1, sig) | (vk, sk) $ ← KeyGen(1 λ); sig $ ← TokenGen(sk) = 1.
Furthermore, for any QPT adversary A with access to a verification key vk and polynomially many signing tokens, which generates a message m and a state sig, we have that:

Pr Verif(vk, m, Sign(m, sig ′)) = 1 | (1, sig ′) ← TokenVerif(sig) ≥ 1 -negl(λ), Pr TokenVerif(vk, sig ′) = 1 | (1, sig ′) ← TokenVerif(sig) ≥ 1 -negl(λ).
A definition for a strongly unforgeable semi-quantum tokenized signature is given below. We note that our definition is similar to the one for weak unforgeability given in [Shm22b].

Definition 6 (Semi-Quantum Tokenized Digital Signature). A semi-quantum tokenized signature scheme consists of five QPT algorithms sqTDS = ⟨Send, Rec, Sign, TokenVerif, Verif⟩ with the following properties:

• (vk, sig) ← ⟨Send, Rec⟩(1 λ). On input the security parameter λ, a classical-communication protocol between Send and Rec outputs a classical verification key pk and a signing token sig. We emphasize that Send is a PPT algorithm.

• σ ← Sign(m, sig). On input a message m ∈ {0, 1} and a signing token sig, the signing algorithm Sign outputs a classical signature σ ∈ {0, 1} p(λ) .

• (b, sig ′) ← TokenVerif(vk, sig). On input the verification key vk, and a signing token sig, the token verification TokenVerif outputs a single bit b ∈ {0, 1}, and a post-verified token sig ′ .

• b ← Verif(vk, m, σ). On input the verification key vk, a message m and a classical signature σ, the verification algorithm outputs a bit b ∈ {0, 1}.

A semi-quantum tokenized digital signature scheme sqTDS must satisfy the following requirements for all λ ∈ N.

• Correctness. For every message m ∈ {0, 1}, we have that

Pr (vk,sig)←⟨Send,Rec⟩(1 λ)
Verif(vk, Sign(m, sig)) = 1 ≥ 1 -negl(λ).

• (Strong) Unforgeability. sqTDS is strongly unforgeable if for every QPT adversary

A = {A λ , ρ λ } λ∈N , Adv sqTDS (λ, A) := Pr ∀b ∈ {0, 1} : Verif(pk, m b , σ b) = 1 ∧ (m 0 , σ 0) ̸ = (m 1 , σ 1) (vk, sig) ← ⟨Send, A⟩(1 λ) {(m b , σ b)} b∈{0,1} ← A(ρ λ)
≤ negl(λ).

• Testability. The token testing algorithm TokenVerif, unlike the signing algorithm, does not consume the signing token. If a signing token passes this test, the post-verified token also passes the test, and it can be used to sign a document. That is, for any QPT adversary A,

Pr TokenVerif(sig ′) = (1, sig ′) (vk, sig) ← ⟨Send, A⟩(1 λ) (1, sig ′) ← TokenVerif(vk, sig) ≥ 1 -negl(λ).
Furthermore, for every m ∈ {0, 1}, we have that:

Pr Verif(vk, m, Sign(m, sig ′)) = 1 (vk, sig) ← ⟨Send, A⟩(1 λ) (1, sig ′) ← TokenVerif(vk, sig) ≥ 1 -negl(λ).

Strongly Unforgeable Tokenized Digital Signatures

Following [BS17], we first define a notion of one-bit one-time strongly unforgeable tokenized digital signatures. Then, using the construction given in [BS17], one can obtain a full-fledged strongly unforgeable scheme by combining a one-bit one-time strongly unforgeable scheme with any classical strongly unforgeable digital signature scheme against quantum attacks.

Definition 7. A tokenized digital signature scheme qTDS is one-bit one-time strongly unforgeable if for every λ, for every QPT adversary A, we have that

Pr    m 0 , m 1 ∈ {0, 1} ∧ Verif 2 (vk, m 0 , σ 0 , m 1 , σ 1) = 1 ∧ (m 0 , σ 0) ̸ = (m 1 , σ 1) (vk, sk) $ ← KeyGen(1 λ) sig $ ← TokenGen(sk) (m 0 , σ 0 , m 1 , σ 1) ← A(vk, sig)    ≤ negl(λ).
Furthermore, let Adv 1-qTDS (λ, A) denote the above probability. We say that qTDS is δ-strongly unforgeable, for some concrete negligible function δ(λ), if for all QPT adversary A, the advantage Adv 1-qTDS (λ, A) is smaller than δ(λ) Ω(1) .

The following theorem, whose proof is given in [BS17], says that one-bit one-time strong unforgeability is sufficient to achieve a full-fledged strong unforgeability.

Theorem 7 ([BS17, Theorem 13] 10).

A one-bit one-time strongly unforgeable tokenized digital signature scheme implies a full-fledged strongly unforgeable tokenized digital signature scheme, assuming the existence of a strongly unforgeable quantum-secure digital signature scheme.

Construction. Next, we give a construction of one-bit one-time strongly unforgeable digital signatures from hidden coset states in Construction 3. This construction is identical to the one for weak unforgeability in [CLLZ21].

Construction 3: A one-bit one-time strongly unforgeable scheme from hidden coset states

KeyGen(1 λ) : Set n = poly(λ). -Sample uniformly A ⊆ F n 2 of dimension n 2 . -Sample s, s ′ $ ← F n 2 .
-Output sk := (A, s, s ′) (where by A we mean a description of the subspace A), and vk := (iO(P A+s), iO(P A ⊥ +s ′)).

TokenGen(sk) : Take as input sk of the form (A, s, s ′).

-Output sig := |A s,s ′ ⟩.

Sign(m, sig) : Take as input m ∈ {0, 1}, and a state sig on n qubits.

-Compute H ⊗n sig if m = 1, otherwise do nothing to the quantum state.

-Measure the state in the computational basis. Let σ be the outcome.

-Output (m, σ).

Verif(vk, (m, σ)) : Parse vk as (C 0 , C 1) where C 0 and C 1 are circuits.

-Output C m (σ).

TokenVerif(vk, sig) : Parse vk as (C 0 , C 1) where C 0 and C 1 are circuits.

-Let V i be the unitary implementing the following operation:

V i |v, z⟩ → |v, z ⊕ C i (v)⟩ . Compute sig ′ := (H ⊗n ⊗ I)V 1 (H ⊗n ⊗ I)V 0 sig ⊗ |0⟩.
-Measure the last register in the computational basis.

-If the outcome is 1, return (0, sig ′). Otherwise, return (1, sig ′).

Theorem 8. Assuming the existence of quantum-secure indistinguishability obfuscation and quantumsecure injective one-way functions, the scheme given in Construction 3 is a one-bit one-time strongly unforgeable tokenized digital signature scheme.

Proof. The proof of this theorem follows immediately from Theorem 13.

Semi-Quantum Strongly Unforgeable Tokenized Digital Signatures

Our remote coset state preparation protocol (Protocol 5) directly gives a semi-quantum tokenized signature scheme in the plain model. The formal description of the scheme is given in Construction 4, whose security proof follows immediately from Theorem 5. We note that our semi-quantum protocol has the same signing, verification and token verification algorithms as its quantum counterpart described in Construction 3.

A Preliminaries

A.1 Quantum Computation Quantum gates. We refer to the following well-known unitary gates:

• Pauli gates: X : |a⟩ → |1 -a⟩, Z : |a⟩ → (-1) a |a⟩ and Y := iXZ, for each a ∈ {0, 1}.

• Hadamard gate: (i) Efficient unitaries: a family of unitaries {U λ ∈ U(H λ)} λ∈N is efficient if there exists a (classical) polynomial-time Turing machine M that, on input 1 λ , outputs a description of a circuit (with a fixed gate set) that implements the unitary.

H : |a⟩ → 1 √ 2 |0⟩ + (-1) a √ 2 |1⟩,
(ii) Efficient isometries: a family of isometries {V λ :

H A λ → H B λ } λ∈N is efficient if there exists an efficient family of unitaries {U λ ∈ U(H B λ)} λ∈N such that V λ = U λ (I A λ ⊗ |0 k(λ) ⟩), where k(λ) = dim(H B λ) -dim(H A λ). (
U † (σ Z ⊗ I)U λ (|ψ⟩ A |0⟩ B) = (Z λ |ψ⟩ A) ⊗ |0⟩ B . (4) (iv) Efficient measurements: a family of measurements {M λ = {M (i) λ ∈ L(H A λ)} i∈A } λ∈N is efficient if the isometry |ψ⟩ → i∈A |i⟩ ⊗ M (i) λ |ψ⟩ (5)
is efficient.

A.1.2 Distance Measures

Definition 9 (Norms). Let A ∈ L(H) with singular values λ 1 , . . . , λ n ≥ 0. Then, the trace norm is defined as

∥A∥ 1 = i λ i .
Definition 10 (Trace distance). For two quantum states ρ, σ ∈ Pos(H), the trace distance between them is ∆ (ρ, σ) := 1 2 ∥ρ -σ∥ 1 .

Definition 11 (Approximate equality, [MV21, Definition 2.8 and Definition 2.14]). We overload the symbol "≈" in the following ways (leaving the dependence on the security parameter implicit in the quantities on the left):

1. Complex numbers: For a, b ∈ C we define:

a ≈ ϵ b ⇐⇒ |a -b| = O(ϵ) + negl(λ) .
2. Operators: For A, B ∈ L(H), we define:

A ≈ ϵ B ⇐⇒ ∥A -B∥ 2 1 = O(ϵ) + negl(λ) .
(We will most frequently use this for (possibly subnormalised) quantum states A, B ∈ Pos(H).)

3. Operators on a state: For A, B ∈ L(H) and ψ ∈ Pos(H), we define:

A ≈ ϵ,ψ B ⇐⇒ Tr (A -B) † (A -B)ψ = O(ϵ) + negl(λ) .

Computationally indistinguishable states:

For two (families of not necessarily normalised) states ψ, ψ ′ ∈ Pos(H) which are computationally indistinguishable up to δ (i.e., no QPT distinguisher has advantage exceeding δ in distinguishing ψ from ψ ′11), we write:

ψ c ≈ δ ψ ′ .

A.3 Sampling in a Quantum Population

In this section, we describe a generic framework presented in [BF10] for analyzing cut-and-choose strategies applied to quantum states.

A.3.1 Classical Sampling Stratiegies

Let q := (q 1 , . . . , q n) ∈ Ω n be a string of length n. We consider the problem of estimating the relative Hamming weight of a substring ω(q| t) by only looking at the substring q| t of q, for a subset t ⊂ 1, n . We consider sampling strategies Ψ := (P T , P S , f), where P T is an (independently sampled) distribution over subsets t ⊆ 1, n , P S is a distribution over seeds s ∈ S, and f : Then we define the classical error probability of strategy Ψ as follows.

{(t, v) : t ⊂ 1, n , v ∈ Ω t } × S → R
Definition 12 (Classical Error Probability). The classical error probability of a sampling strategy Ψ := (P T , P S , f) is defined as the following value, parameterized by 0 < δ < 1:

ε δ classical (Ψ) := max q∈Ω n Pr t←P T ,s←P S q / ∈ B δ t,s (Ψ) .

A.3.2 Quantum Sampling Strategies

Now, let A := A 1 , . . . , A n be an n-partite quantum system where the state space of each system A i equals H A i = C d with d = |Ω|, and let {|a⟩} a∈Ω be a fixed orthonormal basis of C d . A may be entangled with another system E, and we write the purified state on A and E as |ψ⟩ AE . We consider the problem of testing whether the state on A is close to the all-zero reference state |0⟩ A 1 . . . |0⟩ An .

There is a natural way to apply any sampling strategy Ψ = (P T , P S , f) to this setting: sample t, s according to P T , P S , measure subsystems A i for i ∈ 1, t in basis {|a⟩} a to observe q| t ∈ Ω |t| , and compute an estimate f (t, q| t , s).

In order to analyze the effect of this strategy, we first consider the mixed state on registers T (holding the subset t), S (holding the seed s), and A, E that results from sampling t and s according to P T S := P T P S ρ T SAE := t,s

P T S (t, s) |t, s⟩ ⟨t, s| T S ⊗ |ψ⟩ ⟨ψ| AE .
Next, we compare this state to an ideal state, parameterized by 0 < δ < 1, of the form

ρ T SAE := t,s P T S (t, s) |t, s⟩ ⟨t, s| T S ⊗ | ψ ts ⟩ ⟨ ψ ts | AE with |ψ ts ⟩ AE ∈ span B δ t,s ⊗ H E , where span B δ t,s := span {|b⟩ : b ∈ B δ t,s } = span ({|b⟩ : |ω(b| t) -f (t, b| t , s)| < δ}) .
That is, ρ T SAE is a state such that it holds with certainty that the state on registers A| t E, after having measured A| t and observing q| t , is in a superposition of states with relative Hamming weight δ-close to f (t, q| t , s). This leads us to the definition of the quantum error probability of strategy Ψ.

Definition 13 (Quantum Error Probability). The quantum error probability of a sampling strategy Ψ := (P T , P S , f) is defined as the following value, parameterized by 0 < δ < 1:

ε δ quantum (Ψ) := max H E max |ψ⟩ AE min ρ T SAE ∆ (ρ T SAE , ρ T SAE) ,
where the first max is over all finite-dimensional registers E, the second max is over all state |ψ⟩ AE and the min is over all ideal state ρ T SAE of the form described above.

Finally, we relate the classical and quantum error probabilities.

Theorem 9 ([BF10]

). For any sampling strategy Ψ and δ > 0,

ε δ quantum (Ψ) ≤ ε δ classical (Ψ).
Remark In this work, we will only need to analyze one simple sample-and-estimate strategy Ψ uniform := (P T , P S , f), where P T is the uniform distribution over subsets t ⊆ 1, n , P S is empty and f (t, q| t) = ω(q| t). That is, f receives a uniformly random subset q| t of q, and outputs the relative Hamming weight of q| t as its guess for the relative Hamming weight of q| t . The classical error probability of this strategy can be bound using Hoeffding inequalities, which is done in [BF10, Appendix B.3], where it is shown to be bounded by 4 exp(-nδ 2 32) for parameter δ. Thus, we have the following corollary of Theorem 9.

Corollary 2. The quantum error probability of Ψ uniform with parameter δ is

ε δ quantum (Ψ uniform) ≤ 2 exp(-nδ 2 64).

A.4 Indistinguishability Obfuscation

Definition 14 (Indistinguishability Obfuscator [BGI + 01]). A uniform PPT machine iO is called an indistinguishability obfuscator for a classical circuit class {C λ } if the following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ C λ , for all input x, we have that

Pr C ′ (x) = C(x) | C ′ ← iO(λ, C) = 1.
• For any (not necessarily uniform) distinguisher D, for all security parameters λ ∈ N, for all pairs of circuits C 0 , C 1 ∈ C λ , we have that if C 0 (x) = C 1 (x) for all inputs x, then

Adv iO (λ, A) := |Pr[D(iO(λ, C 0)) = 1] -Pr[D(iO(λ, C 1)) = 1]| ≤ negl(λ).
We further say that iO is δ-secure, for some concrete negligible function δ(λ), if for all QPT adversaries A, the advantage Adv iO (λ, A) is smaller than δ(λ) Ω(1) .

Quantum-secure instantiations.

There has been recent progress in constructing quantum-secure indistinguishability obfuscation schemes [GP20, BDGM20] from cryptographic assumptions that conjecturally hold against quantum adversaries. In [Zha19,Shm22a], it is shown that indistinguishability obfuscation schemes have the property of subspace hiding.

Lemma 6 ([Zha19, Shm22a]). Let iO an indistinguishability obfuscation scheme, and assume that injective one-way functions exist. Let S = {S λ } λ∈N a subspace S ⊆ F λ 2 . For a subspace S ′ , denote by C S ′ a classical circuit that checks membership in S ′ . Then, for every constant δ ∈ (0, 1] we have the following indistinguishability:

{iO(C S λ)} λ∈N c ≈ 0 {iO(C T) | T $ ← S S λ } λ∈N ,
where S S λ is the set of all subspaces of dimension λ -λ δ that contain S λ .

A.5 Compute-and-Compare Obfuscation

Definition 15 (Compute-and-Compare Programs). Given a function f : {0, 1} ℓ in → {0, 1} ℓout along with a target value y ∈ {0, 1} ℓout and a message m ∈ {0, 1} ℓmsg , we define the compute-andcompare program:

CC[f, y, m](x) := m if f (x) = y, ⊥ otherwise .
Definition 16 (Unpredictable Distribution). Let D := {D λ } λ∈N be a distribution over pairs of the form (CC[f, y, m], aux) where CC[f, y, m] is a compute-and-compare program and aux is some (possibly quantum) auxiliary information. We say that D is an unpredictable distribution if for all QPT algorithm A, we have that

Pr (CC[f,y,m],aux)←D λ A(1 λ , f, aux) = y ≤ negl(λ).
Definition 17 (Compute-and-Compare Obfuscator). A PPT algorithm CC.Obf is said to be a compute-and-compare obfuscator for a family of unpredictable distributions D := {D λ } if for all λ ∈ N:

• CC.Obf is functionality preserving: for all x

Pr CC.Obf(1 λ , CC[f, y, m])(x) = CC[f, y, m](x) ≥ 1 -negl(λ)
• CC.Obf has distributional indistinguishability: there exists a QPT simulator S such that

CC.Obf(1 λ , C), aux ≈ c S(1 λ , C.param), aux ,
where (C, aux) ← D λ .

A.6 Puncturable Pseudorandom Function

A pseudorandom function (PRF) system [GGM84] consists of a keyed function F and a set of keys K such that for a randomly chosen key k ∈ K, the output of the function F (k, x) for any input x in the input space X "looks" random to a QPT adversary, even when given a polynomially many evaluations of F (k, •). Puncturable PRFs have an additional property that some keys can be generated punctured at some point, so that they allow to evaluate the PRF at all points except for the punctured points. Furthermore, even with the punctured key, the PRF evaluation at a punctured point still looks random. Punctured PRFs are originally introduced in [BW13, BGI14, KPTZ13], who observed that it is possible to construct such puncturable PRFs for the construction from [GGM84], which can be based on any one-way function [HILL99].

Definition 18 (Puncturable Pseudorandom Function).

A pseudorandom function PRF : K × X → Y is a puncturable pseudorandom function if there is an addition key space K p and three PPT algorithms pPRF = ⟨KeyGen, Puncture, Eval⟩ such that:

• k ← KeyGen(1 λ).
The key generation algorithm KeyGen takes the security parameter 1 λ as input and outputs a random key k ∈ K.

• k{x} ← Puncture(k, x). The puncturing algorithm Puncture takes as input a PRF key k ∈ K and x ∈ X , and outputs a key k{x} ∈ K p .

• y ← Eval(k{x}, x ′). The evaluation algorithm takes as input a punctured key k{x} ∈ K p and x ′ ∈ X , and outputs a classical string y ∈ Y.

We require the following properties of pPRF.

• Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr ∀x ′ ∈ X \ {x} : Eval(k{x}, x ′) = Eval(k, x ′) k $ ← KeyGen(1 λ) k{x} $ ← Puncture(k, x) = 1.
• Pseudorandom at punctured points. For every QPT adversary A := (A 1 , A 2), and every λ ∈ N, the following holds:

Pr      1 ← A 2 (k{x * }, y, τ) (x * , τ) ← A 1 (1 λ , τ) k $ ← KeyGen(1 λ) k{x * } $ ← Puncture(k, x *) y ← Eval(k, x *)      -Pr       1 ← A 2 (k{x * }, y, τ) (x * , τ) ← A 1 (1 λ , τ) k $ ← KeyGen(1 λ) k{x * } $ ← Puncture(k, x *) y $ ← Y       ≤ negl(λ),
where the probability is taken over the randomness of KeyGen, Puncture, and A 1 .

Denote the above probability as Adv pPRF (λ, A). We further say that pPRF is δ-secure, for some concrete negligible function δ(λ), if for all QPT adversaries A, the advantage Adv pPRF (λ, A) is smaller than δ(λ) Ω(1) .

The following definitions are taken from [CLLZ21].

Definition 19 (Statistically injective PRF). A family of statistically injective (puncturable) pseudorandom functions with (negligible) failure probability ε(•) is a (puncturable) pseudorandom

functions family PRF such that with probability 1-ε(λ) over the random choice of key k ← KeyGen(1 λ), we have that PRF(k, •) is injective.

Definition 20 (Extracting PRF). A family of extracting (puncturable) pseudorandom functions with error ε(•) for min-entropy k(•) is a (puncturable) pseudorandom functions family PRF mapping n(λ) bits to m(λ) bits such that for all λ ∈ N, if X is any distribution over n(λ) bits with min-entropy greater than k(λ), then the statistical distance between (k, PRF(k, X)) and

(k, r ← {0, 1} m(λ)) is at most ε(•),
where k ← KeyGen(1 λ).

A.7 Leveled Hybrid Quantum Fully Homomorphic Encryption

We rely on quantum fully homomorphic encryption of a specific structure, which was defined in [Shm22a].

Definition 21 (Leveled Hybrid Quantum Fully Homomorphic Encryption).

A hybrid leveled quantum fully homomorphic encryption scheme is given by QFHE := ⟨KeyGen, Encrypt, QOTP, Eval, Decrypt⟩ with the following syntax:

• (pk, sk) ← KeyGen(1 λ , 1 ℓ). A PPT algorithm that given a security parameter λ ∈ N and target circuit bound ℓ ∈ N, outputs a classical key pair (pk, sk).

• |ψ⟩ (x,z) ← QOTP((x, z), |ψ⟩). A QPT algorithm that takes as input an n-qubit quantum state |ψ⟩ and classical strings as quantum OTPs x, z ∈ {0, 1} n and outputs its QOTP transformation |ψ⟩ (x,z)

:= (⊗ i∈ n Z z i) • (⊗ i∈ n X x i) |ψ⟩.
We often call these one-time pads (x, z) the Pauli keys. Furthermore, if |ψ⟩ is a classical string m, we ignore the Pauli key z and write QOTP(x, m) whose output is x ⊕ m.

• ct ← Encrypt(pk, x). A PPT algorithm that takes as input a classical string x ∈ {0, 1} * and the public key pk and outputs a classical ciphertext ct.

• x ← Decrypt(sk, ct). A PPT algorithm that takes as input a classical ciphertext ct and the secret key sk and outputs a classical string x. (pk, (|ψ⟩ (x,z) , ct x,z), C). A QPT algorithm that takes as input a general quantum circuit C, a quantum one-time pad encrypted state |ψ⟩ (x,z) and a classical ciphertext ct x,z of the pads. The evaluation outputs a QOTP encryption of some quantum state |ϕ⟩ encrypted under new keys (x ′ , z ′) and a classical ciphertext ct x ′ ,z ′ .

• (|ϕ⟩ (x ′ ,z ′) , ct x ′ ,z ′) ← Eval
The scheme satisfies the following.

• Semantic Security. For every polynomials m(•), ℓ(•), and QPT algorithm A := {A λ , ρ λ } λ∈N there exists a negligible function negl(•) such that

Pr      1 ← A 2 (m 0 ⊕ x, ct x) (m 0 , m 1) ← A 1 (1 λ) (pk, sk) $ ← KeyGen(1 λ , 1 ℓ(λ)) x $ ← {0, 1} m(λ) ct x ← Encrypt(pk, x)      -Pr      1 ← A 2 (m 1 ⊕ x, ct x) (m 0 , m 1) ← A 1 (1 λ) (pk, sk) $ ← KeyGen(1 λ , 1 ℓ(λ)) x $ ← {0, 1} m(λ) ct x ← Encrypt(pk, x)      ≤ 1 2 + negl(λ),
where λ ∈ N and m 0 , m 1 ∈ {0, 1} m(λ) .

-Denote the above probability as Adv QFHE (λ, A). We further say that QFHE is δ-secure, for some concrete negligible function δ(λ), if for all QPT adversaries A, the advantage Adv QFHE (λ, A) is smaller than δ(λ) Ω(1) .

• Homomorphism. For every polynomial ℓ := ℓ(λ) there is a negligible function negl(•) such that the following holds. Let (pk, sk) ← KeyGen(1 λ , 1 ℓ), let x, z equal-length strings, let ct x,z ← Encrypt(pk, (x, z)), let C a quantum circuit of size ≤ ℓ, let |ψ⟩ a |x|-qubit state input for C. Then, ∆ (D 0 , D 1) ≤ negl(λ), where D 0 , D 1 are defined as follows.

-

D 0 : The output state is |ψ ′ ⟩ ← C(|ψ⟩).
-D 1 : The output state generated by first evaluating (|ϕ⟩

(x ′ ,z ′) , ct x ′ ,z ′) ← Eval pk, (|ψ⟩ (x,z) , ct x,z), C , and then decrypting (x ′ , z ′) ← Decrypt(sk, ct x ′ ,z ′), |ϕ⟩ ← QOTP (x ′ , z ′), |ϕ⟩ (x ′ ,z ′) .
Quantum-secure instantiations. Quantum Leveled Fully-Homomorphic encryption with the hybrid structure follows from the work of Mahadev [Mah18a] and Brakerski [Bra18], and can be based on the quantum hardness of Learning with Errors [Reg05]. Consequently, constructing QFHE that has hybrid structure, leveled, and has sub-exponential advantage security can be based on assuming LWE with sub-exponential indistinguishability.

A.8 Coset States

This section is taken verbatim from

[CLLZ21]. For any subspace A ⊆ F n 2 , its complement is A ⊥ := {b ∈ F n 2 | ⟨a, b⟩ = 0, ∀a ∈ A}.
We have that dim(A) + dim(A ⊥) = n. We also let |A| := 2 dim(A) denote the size of the subspace A.

Definition 22 (Subspace States). For any subspace A ⊆ F n

2 , the subspace state |A⟩ is defined as

|A⟩ := 1 |A| a∈A |a⟩ .
Note that given A, the subspace state |A⟩ can be constructed efficiently.

Definition 23 (Coset States). For any subspace

A ⊆ F n 2 , vectors s, s ′ ∈ F n 2 , the coset state |A s,s ′ ⟩ is defined as |A s,s ′ ⟩ := 1 |A| a∈A (-1) ⟨a,s ′ ⟩ |a + s⟩ .
Note that given |A⟩ and s, s ′ , the coset state |A s,s ′ ⟩ can be constructed efficiently. Furthermore, for a subspace A and vectors s, s ′ , we define A + s := {v + s | v ∈ A}, and

A ⊥ + s ′ := {w + s ′ | w ∈ A ⊥ }.
When it is clear from the context, for ease of notation, we will write A + s to mean the program that checks membership in A + s. For example, we will often write iO(A + s) to mean an indistinguishability obfuscation of the program that checks membership in A + s.

A.8.1 Strong Monogamy-of-Entanglement Property

Coset states satisfy the following strong monogamy-of-entanglement property, which will be used as the main tool in our construction for copy-protection.

Definition 24 (Coset-Monogamy Game [CLLZ21, CV22]). The coset mongamy game between a challenger and a QPT adversary

(A 0 , A 1 , A 2) is defined as follows.
1. Preparation. The challenger picks a uniformly random subspace A ⊆ F λ 2 of dimension λ 2 , and two uniformly random vectors s, s

′ ∈ F n 2 . It sends |A, s, s ′ ⟩ , iO(A + s), iO(A ⊥ + s ′) to the adversary A 0 .

The adversary applies a quantum channel: Φ : H

A → H B ⊗ H C where H A = (C 2) ⊗λ and H B , H C are arbitrary. It then computes ρ BC := Φ(|A s,s ′ ⟩⟨A s,s ′ |⊗|iO(A + s), iO(A ⊥ + s ′)⟩⟨iO(A + s), iO(A ⊥ + s ′)|).
It sends registers B to A 1 and C to A 2 , respectively.

Question. The challenger sends the description of A, in the form of a basis for it, to both

A 1 and A 2 . 4. Answer. A 1 returns s 1 ∈ F n 2 and A 2 returns s 2 ∈ F n 2 .
The adversary (A 0 , A 1 , A 2) wins if and only if s 1 ∈ A+s and s 2 ∈ A ⊥ +s ′ . Let CosetMonogamy((A 0 , A 1 , A 2), λ) be a random variable which takes the value 1 if the game above is won by adversary (A 0 , A 1 , A 2), and takes the value 0 otherwise.

Theorem 10 ([CLLZ21, Theorem 4.18]). Assuming the existence of post-quantum indistinguishability obfuscation and one-way functions, then there exists a negligible function negl(•), for any QPT adversary

(A 0 , A 1 , A 2), Pr [CosetMonogamy((A 0 , A 1 , A 2), λ)] ≤ negl(λ).

A.9 Copy-Protection

In the following, we assume that F is such that each function f in the family has the same domain X and the same codomain Y and has a classical description d f (polynomial in λ) that allows for an efficient computation of f . We define below copy-protection schemes similarly as in [AKL + 22].

Definition 25 (Copy-Protection Scheme of a Family F). A copy-protection scheme is a tuple of algorithms ⟨Protect, Eval⟩ with the following properties:

• ρ f ← Protect(1 λ , d f).
On input the description d f of a function f ∈ F, the quantum protection algorithm outputs a quantum state ρ f .

• y ← Eval(1 λ , ρ, x). On input a quantum state ρ and an input x ∈ X , the quantum evaluation algorithm outputs an image y ∈ Y.

We ask a copy-protection scheme to have correctness and anti-piracy security. We define these two notions below.

Definition 26 (Correctness of a Copy-Protection Scheme). A copy-protection scheme has correctness if the quantum protection of a function f computes f on every x with overwhelming probability.

∀f ∈ F, ∀x ∈ X , Pr Eval(1 λ , ρ f , x) = f (x) : ρ f ← Protect(1 λ , d f)
Definition 27 (Piracy Game for Copy-Protection). We define below a piracy game for copyprotection, parameterized by a copy-protection scheme CP = ⟨Protect, Eval⟩, a security parameter λ, a function distribution D f and a family of distribution X = {X f } f ∈F . This game is between a challenger and an adversary represented by three algorithms (A 0 , A 1 , A 2).

• Setup phase: The challenger samples f ← F, then sends

ρ f ← Protect(1 λ , d f) to A 0 .
• Splitting phase: A 0 prepares a bipartite quantum state σ 12 , then sends σ 1 to A 1 and σ 2 to A 2 .

• Challenge phase: The challenger samples (x 1 , x 2) ← X f , then sends x 1 to A 1 and x 2 to A 2 .

• Answer phase: A 1 returns y 1 and A 2 returns y 2 .

For i ∈ {1, 2}, we say that A i answers correctly if

y i = f (x i). A 0 , A 1 , A 2 win the game if both A 1
and A 2 answer correctly.

We denote the random variable that indicates whether an adversary (A 0 , A 1 , A 2) wins the game or not as CP-AP

⟨Protect,Eval⟩ D f ,X (1 λ , (A 0 , A 1 , A 2)).
Trivial Adversary. As noted in [CMP20] and [AKL + 22], an adversary can always win the game with a trivial probability (that we define formally in the next paragraph) by applying the following strategy: A 0 just forwards the quantum protection state to A 1 or A 2 and nothing to the other one. The one who receives the state can answer the challenge with probability close to 1 using the Eval algorithm, and the other one returns the optimal answer given their challenge.

Thus, given a family F, a function distribution D f and a family of challenge distribution X = {X f } f ∈F , we define the trivial probability of winning the piracy game as

p trivial D f ,{X f } f ∈F := max i∈{1,2} E d f ∈D f max y∈Y Pr[y | x i]
Definition 28 (δ-Anti-Piracy Security). A copy-protection scheme ⟨Protect, Eval⟩ has δ-antipiracy security with respect to the function distribution D f and the family of challenge distribution X = {X f } f ∈F if no QPT adversary A 0 , A 1 , A 2 can win the anti-piracy game parametrized by the function distribution D f and the family of challenge distribution X with probability significantly greater than δ.

More precisely, for any QPT adversary

(A 0 , A 1 , A 2) Pr CP-AP ⟨Protect,Eval⟩ D f ,X (1 λ , (A 0 , A 1 , A 2)) = 1 ≤ δ + negl(λ).
Definition 29 (Anti-Piracy Security). Whenever a single-decryptor has δ-anti-piracy security with respect to a function distribution D f and a family of challenge distribution X = {X f } f ∈F with δ = p trivial D f ,X , we simply write that it has anti-piracy security.

Remark 2. We can define the notions of semi-quantum copy-protection schemes, correctness and anti-piracy security in a similar way by just replacing the Protect algorithm by an interactive Protect protocol in Definition 25, Definition 26 and Definition 27.

Remark 3. For ease of notations, we will use f and d f indifferently, and we will not write the dependance on λ when clear from the context.

B Proof of Correctness and Soundness of our Semi-Quantum Copy-Protection Scheme

B.1 Proof of Correctness

Proof of Proposition 1. The proof of correctness includes three steps: (1) If the prover ran honestly then its output after the homomorphic evaluation step has negligible trace distance to (QOTP encrypted of) BB84 states and coset states;

(2) The self-test protocol passes (that is, the protocol does not terminate at this step) with probability negligibly close to 1; (3) In the last step of coset-state generation, after discarding all BB84 states, the output of the prover at the end of Protocol 5 has negligible trace distance to the state described in Equation (2). We describe the honest strategy. By the statistical correctness of the homomorphic encryption, at the end of step 5 of Protocol 5, the i-th quantum state that an honest prover holds in its quantumevaluated registers has negligible trace distance to either n j=1 |(-1) β i,j ⟩ (if the corresponding instance is a n-qubit BB84 state) or |S i,α i ,β i ⟩ (if the corresponding instance is a coset state). That is, this negligible distance holds with probability 1 over the previous messages of the protocol.

For each coset-state instance i, we claim that the probability for such honest prover to have α i ∈ S i is negligible. It follows from the fact that if α i ∈ S i , we have that |S i,α i ,β i ⟩ = |S i,0,β i ⟩. By just measuring this state in the computational basis, we get a non-zero vector s ∈ S i with overwhelming probability, even without knowing S i or the QFHE secret key. This violates the semantic security of the QFHE, because S i is a subspace of dimension n 2 chosen uniformly at random, for any vector s ∈ F n 2 , the probability that s ∈ S i is negligible. It means that Protocol 5 terminates at step 6 with negligible probability.

Next, we show that an honest prover succeeds in the self-test rounds of Protocol 5 with probability negligibly close to 1. An honest prover behaves the same way in each execution of Protocol 1 and Protocol 2. Hence, to show that an honest prover succeeds in Protocol 3 with probability negligibly close to 1, it suffices to describe honest strategies for Protocol 1 and Protocol 2 that succeed with probability negligibly close to 1. We note that Protocol 4 is N sequential repetition of Protocol 3, and thus the completeness of Protocol 4 is also negligibly close to 1.

Claim 1. There exists a QPT prover that is accepted in Protocol 1 with probability negligibly close to 1.

Proof. In Protocol 1, the prover receives n keys k 1 , . . . , k n and returns answers for each key k j individually. Since the verifier's checks are independent for each j, we only need to describe an honest procedure for one key k j that succeeds in the verifier's checks for that j with probability negligibly close to 1. The honest strategy for a single key k j is adapted from the one in [GV19, MV21, GMP22]. We spell out the details below.

From now on, for simplicity, we drop the subscript i and understand that we are considering the i-th instance. First, note that at the beginning of Protocol 1, for a given key k j ∈ K θ , the prover is having the state |(-) β j ⟩ = Z β j |(-) 0 ⟩ in his quantum registers. The prover then adjoins a uniform superposition over all x ∈ X , evaluate f k j in superposition to obtain the following state:

1 2 |X | b∈{0,1} x∈X ,y∈Y f k j ,b (x)(y)Z β j |b⟩ |x⟩ |y⟩
Preparing this state can be efficiently done (up to negligible error) using the Samp procedure from the definition of ENTCF families ([BCM + 18, Definition 3.1] and [Mah18b,Definition 4.2]). The prover then measures the "image register" (i.e., the register that stores y) to obtain an image y j ∈ Y and sends this back to the verifier. The post-measurement state for each j is

   | b(k j , y j)⟩ |x(k j , y j)⟩ if k j ∈ K 0 , 1 √ 2 |0⟩ |x 0 (k j , y j)⟩ + (-1) β j |1⟩ |x 1 (k j , y j)⟩ if k j ∈ K 1 . (13
)
If the verifier selects a "pre-image round", the prover measures both registers in the computational basis and returns the result. From the states in Equation (13) it is clear that the prover succeeds with probability negligibly close to 1 in the pre-image round.

If the verifier selects a "Hadamard round", the prover measures the "x-register" in the Hadamard basis to obtain d j and returns this to the verifier. We introduce the shorthand b j := b(k j , y j) and u j := û(k j , y j , d j). At this point, the prover's state for each j is (up to a global phase):

|b j ⟩ if k j ∈ K 0 , |(-) u j ⊕β j ⟩ if k j ∈ K 1 . (14
)
The prover now receives a question q = θ and measures the remaining qubit in the computational basis if q = 0 and in the Hadamard basis if q = 1. Then it is clear from the expression for the prover's remaining qubit in Equation (14) that the prover will pass the verifier's check.

Claim 2. There exists a QPT prover that is accepted in Protocol 2 with probability negligibly close to 1.

Proof. At the beginning of each instance of Protocol 2, the prover is having the state |A α,β ⟩ with α, β ∈ {0, 1} n . The honest strategy for the prover in Protocol 2 is similar to the honest strategy for Protocol 1 described in Claim 1: the prover uses the ENTCF family to commits to each qubit of the state |A α,β ⟩ using the corresponding function key. A formal description of the commitment process is given in [Mah18b, Section 5.1]. In the last round, if q = θ = 0, the prover measures each qubit in the computational basis and in the Hadamard basis if q = θ = 1. It equivalents to either measure the state |A α,β ⟩ in the computational basis if q = 0 and in the Hadamard basis if q = 1. Since the prover applies the same strategy for each qubit in the state, here we describe the state commitment process for the j-th qubit of the state |A α,β ⟩. For a given key k j ∈ K θ , we can write the prover's coset state as

b j ∈{0,1} γ b j |b j ⟩ |ψ b j ⟩
The prover then adjoins a uniform superposition over all x ∈ X , evaluate

f k j in superposition to obtain 1 |X | b j ∈{0,1} x∈X ,y∈Y γ b j f k j ,b j (x)(y) |b j ⟩ |ψ b j ⟩ |x⟩ |y⟩ (15)
The prover then measures the "y-register" to obtain an image y j ∈ Y and sends this back to the verifier. The post-measurement state for each j is

| b(k j , y j)⟩ |ψ b j ⟩ |x(k j , y j)⟩ if k j ∈ K 0 , b j ∈{0,1} γ b j |b j ⟩ |ψ b j ⟩ |x b j (k j , y j)⟩ if k j ∈ K 1 . (16
)
We note that the verifier always sends "Hadamard round" as the round type in Protocol 2. The prover measures the "x-register" in the Hadamard basis to obtain d j and returns this to the verifier.

The prover now receives a question q = θ and measures the j-th qubit in the computational basis if q = 0 and in the Hadamard basis if q = 1. Recall that we denote u j := û(k j , y j , d j). At this point, the prover's state (before the measurement) is (up to a global phase):

|b j ⟩ |ψ b j ⟩ if k j ∈ K 0 , (X u j H ⊗ I) |b j ⟩ |ψ b j ⟩ if k j ∈ K 1 . (17
)
The prover measures the j-th qubit and returns a bit v j to the verifier. It is clear from Equation (17) that: (1) if the coset state is measured in the computational basis (corresponding to the case q = 0), the verifier obtains a vector v ∈ A + α; or (2) the coset state is measured in the Hadamard basis (corresponding to the case q = 1), the verifier obtains a vector s ∈ A ⊥ + β. This concludes the proof of the claim.

Having described the honest behavior for the self-test step, we finish the proof of correctness.

B.2 Proof of Soundness: Proof of Proposition 2

The rigidity argument we establish in this section for Protocol 3 will be based on the n-fold parallel rigidity proof from [GMP22]. We will make frequent use of some technical lemmas from the proof of that paper. We note that in our actual proof, we also need to slightly modify the proof outlined above to address for the fact that our self-testing protocol is composed with a state preparation round done by homomorphic encryption.

B.2.1 Devices

We model the actions of a general prover by a "device". This formalizes all possible actions that can be taken by the prover to compute his answers to the verifier in Protocol 1 and Protocol 2. By Naimark's theorem, up to adding dimensions to the prover's Hilbert space, we can assume without loss of generality that the prover only performs projective measurements (instead of more general POVMs).

Definition 30 (Devices [GMP22]).

A device D := (S, Π, M, P) is specified by the following:

1. A set S = {ψ (⃗ θ) } ⃗ θ∈{0,1} n of states ψ (⃗ θ) ∈ D(H D ⊗ H Y),
ψ (⃗ θ) = ⃗ y∈Y n ψ (⃗ θ) ⃗ y ⊗ |⃗ y⟩⟨⃗ y| Y . (18
)
In the context of Protocol 1 and Protocol 2, ψ (⃗ θ) is the prover's state after returning ⃗ y for the case where the verifier makes basis choices ⃗ θ.12 Each ψ (⃗ θ) also implicitly depends on the specific keys chosen by the verifier (not just the basis choice ⃗ θ); all the statements we make hold on average over key choices (for a fixed basis choice ⃗ θ). Furthermore, since Protocol 1 and Protocol 2 are actually used as sub-protocols in a bigger protocol (Protocol 5), ψ (⃗ θ) also depends on all messages exchanged (before the executions of these sub-protocols) in Protocol 5; for clarity we suppress this dependence from the notation, as we will see later these dependencies do not affect the rigidity proofs of these sub-protocols.

In the case of Protocol 1, a projective measurement Π on H

D ⊗ H Y : Π =    Π (⃗ b,⃗ x) = ⃗ y Π (⃗ b,⃗ x) ⃗ y ⊗ |⃗ y⟩⟨⃗ y| Y    ⃗ b∈{0,1} n ; ⃗ x∈X n . (19
)
This is the measurement used by the prover to compute his answer (⃗ b, ⃗ x) in the pre-image challenge.

3. In the case of Protocol 2, Π is the identity operator I on H D ⊗ H Y . This is because in Protocol 2, there is no pre-image challenge.

A projective measurement M on

H D ⊗ H Y : M =    M (⃗ d) = ⃗ y M (⃗ d) ⃗ y ⊗ |⃗ y⟩⟨⃗ y| Y    ⃗ d∈{0,1} w×n . (20
)
This is the measurement used by the prover to compute his answer ⃗ d in the Hadamard challenge. We use an additional Hilbert spaces H R to record the outcomes of measuring M and write the post-measurement state after applying M to ψ (⃗ θ) as

σ (⃗ θ) := ⃗ y, ⃗ d M (⃗ d) ⃗ y ψ (⃗ θ) ⃗ y M (⃗ d) ⃗ y ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| Y R . (21
)
5. A set P = {P q }, where for each q ∈ {0, 1}, P q is a projective measurement on H D ⊗ H Y ⊗ H R :

P q =      P (⃗ v) q = ⃗ y, ⃗ d P (⃗ v) q,⃗ y, ⃗ d ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| Y R      ⃗ v∈{0,1} n . (22
)
Now D ′ coherently evaluates the (efficient) Chk-function on the Y -register of Π (⃗ b,⃗ x) ψ (⃗ θ) Π (⃗ b,⃗ x) and the new register containing (b i , x i) for all i ∈ 1, n . If Chk succeeds, D ′ applies U † Π to the state, traces out the ancillary register R, and uses this as ψ ′(⃗ θ) . Otherwise, D ′ repeats the process up to polynomially (in the security parameter) many times, and aborts if the Chk procedure never succeeds. Since γ P (D bb84) is defined as the maximum failure probability of the pre-image test, and the Chk procedure fails if the pre-image check fails on any qubit, the probability of the Chk procedure failing is at most n • γ P (D bb84) = O(γ P (D bb84)) by a union bound.

If 1 -γ P (D bb84) is negligible, the trace distance bound between ψ (⃗ θ) and ψ ′(⃗ θ) is trivially satisfied. If 1-γ P (D bb84) is non-negligible, the probability that Chk fails polynomially many times is negligible. Furthermore, by definition of the ENTCF family, the Chk procedure requires only the function key and not the trapdoor, which implies that it can be computed efficiently by the prover D ′ . It means that D ′ is efficient and perfect.

Fix ⃗ θ. By Definition 11, we need to show ψ ′(⃗ θ) -ψ (⃗ θ) 1

≈ γ P (Dbb84) 1/2 0. Since the probability of the Chk to succeed is at least 1 -O(γ P (D bb84)), by the gentle measurement lemma ([Wil11]), the post-measurement state after Chk has succeeded is O(γ P (D bb84) 1/2)-close in trace distance to

U Π (|0⟩⟨0| R ⊗ ψ (⃗ θ))U † Π .
Because the trace distance is unitarily invariant, this implies that the state ψ ′ (⃗ θ) is also O(γ P (D bb84) 1/2)-close in trace distance to ψ (⃗ θ) .

B.2.3 Rigidity Proof of Protocol 1

The rigidity proof of Protocol 1 follows identically from that of [GMP22]. In this section, we recall definitions and related technical lemmas from [GMP22] that are needed for our proof later. The main difference lies in the last verification procedure, in which our verification procedure also involves the Pauli keys from the QFHE. However, one can easily inspect their proof and see that this difference does not change most part of the proof. This essentially follows from the fact that the one-time pads (and generally, the homomorphic enryption) are independent of all the messages and verifier's secrets in the execution of Protocol 1, it only is used in the verification of the verifier as its secret input. When the difference appears, we will re-prove the lemma with respect to our protocol.

Definition 34 (Observables). For a device D := (S, Π, M, P) with projective measurements as in Definition 30 and ⃗ β ∈ {0, 1} n , we define the following binary observables:

Z i = ⃗ v (-1) v i P (⃗ v) 0 , (28
)
X i = ⃗ v (-1) v i P (⃗ v) 1 , (29
) Xi = ⃗ v,⃗ y, ⃗ d (-1) β i ⊕v i ⊕û(k i ,y i ,d i) P (⃗ v) 1,⃗ y, ⃗ d ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| Y R . (30
)
We further use the following notation for products of observables: for ⃗ a ∈ {0, 1} n , we define

Z(⃗ a) := Z a 1 1 . . . Z an n = ⃗ v (-1) ⃗ a•⃗ v P (⃗ v) 0 , (31
)
and likewise for X(⃗ a) and X(⃗ a). It is easy to see that

X(⃗ a) ⃗ y, ⃗ d = (-1) ⃗ a•(⃗ β⊕û(⃗ k,⃗ y, ⃗ d)) X(⃗ a) ⃗ y, ⃗ d . (32
)
Remark 4. Xi is not an observable that an efficient prover can implement because it depends on û(k, y, d), which requires the trapdoor information to be computed efficiently, and the Pauli key β, which the prover only has an encryption of it. Intuitively, while X i describes the prover's answer, Xi describes whether that answer is accepted by the verifier.

Definition 35 (Partial post-measurement states). For k ∈ K 0 ∪ K 1 , v ∈ {0, 1} and β ∈ {0, 1} define the set V β,k,v ⊆ Y × {0, 1} w by the following condition:

(y, d) ∈ V β,k,v iff b(k, y) = v if k ∈ K 0 , û(k, y, d) = v ⊕ β if k ∈ K 1 . (33
)
Then for ⃗ β, ⃗ k, ⃗ θ, ⃗ v we define

σ (⃗ β, ⃗ θ,⃗ v) = y 1 ,d 1 ∈V β 1 ,k 1 ,v 1 • • • yn,dn∈V βn,kn,vn σ (⃗ θ) ⃗ y, ⃗ d ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| . (34
)
Further for ⃗ a ∈ {0, 1} n we define

σ (⃗ β, ⃗ θ,v,⃗ a) := ⃗ v: ⃗ v•⃗ a=v σ (⃗ β, ⃗ θ,⃗ v) . (35
)
Remark 5. In the following, once ⃗ β is fixed, we can drop ⃗ β from these notations and simply write σ (⃗ θ,⃗ v) and σ (⃗ θ,v,⃗ a) . The reason is that as we explained above, the involvement of ⃗ β is primarily a technicality needed because of our protocol construction, but does not affect the modular proofs we present here. Another way to see it is to consider ⃗ β as a part of the trapdoor information ⃗ t. Then we can write û′ (k, y, d) := û(k, y, d) ⊕ β and define (y, d) ∈ V k,v if û′ (k, y, d) = v when k ∈ K 1 . For any statement involving these states, we understand that there is some ⃗ β known by the verifier and these states are defined with respect to this ⃗ β.

Intuitively, when ⃗ θ = ⃗ 0, then for any ⃗ a ∈ {0, 1} n , σ (⃗ 0,v,⃗ a) is that part of the state σ (⃗ 0) for which the honest device would receive outcome v when measuring the observable Z(⃗ a). The following lemma shows what outcomes a successful device must produce when measuring the observables from Definition 34 on the partial post-measurement states from Definition 35.

Lemma 8 ([GMP22, Corollary 4.18]). Consider an efficient device D = (S, Π, M, P) and a bit v ∈ {0, 1}.

For any

⃗ θ, ⃗ a ∈ {0, 1} n such that θ i = 0 if a i = 1, then: Z(⃗ a) ≈ γ H (Dbb84),σ (⃗ θ,v,⃗ a) (-1) v I . (36
)
2. For any ⃗ θ, ⃗ a ∈ {0, 1} n such that θ i = 1 if a i = 1, then:

X(⃗ a) ≈ γ H (Dbb84),σ (⃗ θ,v,⃗ a) (-1) v I . (37
)
Next, we define isometries Ṽ , V which can be shown to map the prover's observables to the corresponding Pauli observables.

:= E ⃗ a, ⃗ b∈{0,1} n X(⃗ a) ⃗ y, ⃗ d Z(⃗ b) ⃗ y, ⃗ d D ⊗ σ X (⃗ a)σ Z (⃗ b) A |φ⟩ D ⊗ |Φ + ⟩ ⊗n AQ , (38
)
where

|Φ + ⟩ = |00⟩+|11⟩ √
2 denotes an EPR pair, and |Φ + ⟩ ⊗n AQ is distributed between A and Q such that every EPR pair has one qubit in either system. We can combine the different V y,d into one isometry

Ṽ := ⃗ y, ⃗ d Ṽ⃗ y, ⃗ d ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| : H D ⊗ H Y ⊗ H R → H D ⊗ H Y ⊗ H R ⊗ H A ⊗ H Q . (39
)
We similarly define

V ⃗ y, ⃗ d |φ⟩ D := E ⃗ a, ⃗ b∈{0,1} n X(⃗ a) ⃗ y, ⃗ d Z(⃗ b) ⃗ y, ⃗ d D ⊗ σ X (⃗ a)σ Z (⃗ b) A |φ⟩ D ⊗ |Φ + ⟩ ⊗n AQ (40
)
and

V := ⃗ y, ⃗ d V ⃗ y, ⃗ d ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| . (41
)
The following lemma relates Ṽ and V .

Lemma 9. For any keys ⃗ k ∈ K n 1 and ⃗ β ∈ {0, 1} n :

V ⃗ y, ⃗ d = σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β A ⊗ σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β Q Ṽ⃗ y, ⃗ d . (42
)
Proof. For any state |φ⟩ D , we have:

σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β A ⊗ σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β Q Ṽ⃗ y, ⃗ d |φ⟩ D = E a,b∈{0,1} n X(⃗ a) ⃗ y, ⃗ d Z(⃗ b) ⃗ y, ⃗ d D |φ⟩ D ⊗ σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β σ X (⃗ a)σ Z (⃗ b) A ⊗ σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β Q |Φ + ⟩ ⊗n AQ Repeatedly using that (σ Z) A |Φ + ⟩ AQ = (σ Z) Q |Φ + ⟩ AQ : = E a,b∈{0,1} n X(⃗ a) ⃗ y, ⃗ d Z(⃗ b) ⃗ y, ⃗ d D |φ⟩ D ⊗ σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β σ X (⃗ a)σ Z (⃗ b)σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β A |Φ + ⟩ ⊗n AQ Since σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β σ X (⃗ a)σ Z (⃗ b)σ Z û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ β = (-1) ⃗ a•(û(⃗ k,⃗ y, ⃗ d)⊕ ⃗ β) σ X (⃗ a)σ Z (⃗ b): = E a,b∈{0,1} n (-1) ⃗ a•(û(⃗ k,⃗ y, ⃗ d)⊕ ⃗ β) X(⃗ a) ⃗ y, ⃗ d Z(⃗ b) ⃗ y, ⃗ d D |φ⟩ D ⊗ σ X (⃗ a)σ Z (⃗ b) A |Φ + ⟩ ⊗n AQ 52
Recalling from Definition 34 that (-1)

⃗ a•(û(⃗ k,⃗ y, ⃗ d)⊕ ⃗ β) X(⃗ a) ⃗ y, ⃗ d = X(⃗ a) ⃗ y, ⃗ d : = E a,b∈{0,1} n X(⃗ a) ⃗ y, ⃗ d Z(⃗ b) ⃗ y, ⃗ d D |φ⟩ D ⊗ σ X (⃗ a)σ Z (⃗ b) A |Φ + ⟩ ⊗n AQ = V |φ⟩ D .
We then show that the isometry Ṽ maps the observables X(⃗ a)Z(⃗ b) to the corresponding Pauli observables.

Lemma 10 ([GMP22, Lemma 4.28]). For an efficient perfect device D = (S, Π, M, P) and any ⃗ a, ⃗ b ∈ {0, 1} n we have

Tr Ṽ † σ X (⃗ a)σ Z (⃗ b) † Q Ṽ X(⃗ a) DY R Z(⃗ b) DY R σ (⃗ 1) DY R ≈ n 1/2 γ H (Dbb84) 1/8 1 . (43
)
By combining Lemma 9 and Lemma 10 we can show that the isometry V maps the observables X(⃗ a)Z(⃗ b) to the corresponding Pauli observables.

Lemma 11 ([GMP22, Proposition 4.29]). For an efficient perfect device D = (S, Π, M, P) and any ⃗ a, ⃗ b ∈ {0, 1} n we have

V X(⃗ a)Z(⃗ b)V † ≈ n 1/2 γ H (Dbb84) 1/8 ,V σ (⃗ 1) V † σ X (⃗ a)σ Z (⃗ b) Q ⊗ I Y RDA .
(44)

B.2.4 Rigidity Proof of Protocol 2

Having established a characterization of the prover's observables X(⃗ a)Z(⃗ b) in Protocol 1, we now use this to characterize the prover's behavior in Protocol 2.

Step 1: Modeling. First, we introduce the corresponding notion of post-measurement states for an efficient device of Protocol 2. Note that the two protocols are identical from the prover's point of view when the round type is the Hadamard round, and the marginal observables from Definition 34 are defined for Hadamard round. Thus we can use the same notation of marginal observables from Definition 34 (in particular, we only need the efficient observables X(⃗ a) and Z(⃗ b)) for an efficient device in Protocol 2.

Definition 37. For ⃗ k ∈ (K 0 ∪ K 1) n , ⃗ v ∈ {0, 1} n and A ⊆ F n 2 , ⃗ α, ⃗ β ∈ {0, 1} n define the set V A,⃗ α, ⃗ β, ⃗ k,⃗ v ⊆ Y n × {0, 1}
w×n by the following condition:

(⃗ y, ⃗ d) ∈ V A,⃗ α, ⃗ β, ⃗ k,⃗ v iff b(⃗ k, ⃗ y) = ⃗ v ∈ A + ⃗ α if ⃗ k ∈ K n 0 , û(⃗ k, ⃗ y, ⃗ d) ⊕ ⃗ v ∈ A ⊥ + ⃗ β if ⃗ k ∈ K n 1 . (45
) Then for ⃗ α, ⃗ β, ⃗ k, ⃗ θ ∈ { ⃗ 0, ⃗ 1}, ⃗ v we define σ (A,⃗ α, ⃗ β, ⃗ θ,⃗ v) = ⃗ y, ⃗ d∈V A,⃗ α, ⃗ β, ⃗ k,⃗ v σ (⃗ θ) ⃗ y, ⃗ d ⊗ |⃗ y, ⃗ d⟩⟨⃗ y, ⃗ d| . (46
)
By the same argument as in Remark 5, we can write σ (⃗ θ,⃗ v) for simplicity.

We note that different from Definition 35, we only consider two basis choices ⃗ θ = ⃗ 0 or ⃗ θ = ⃗ 1, whereas the post-measurement states in Definition 35 can be defined with respect to any basis choice. Similar to Lemma 8, we analyze what outcomes a successful device must produce when measuring the observables from Definition 34 on the post-measurement states from Definition 37.

Lemma 12. For any efficient device D = (S, Π, M, P), a coset state description (A, α, β):

⃗ v∈S 0 Tr Z (v i) i σ (⃗ 0,⃗ v) ≈ γ H (Dcoset) 1 , (47) ⃗ v∈S 1 Tr X (v i) i σ (⃗ 1,⃗ v) ≈ γ H (Dcoset) 1 , (48
)
where S 0 := A + α and S 1 :

= A ⊥ + β -û(⃗ k, ⃗ y, ⃗ d).
Proof. We first prove Equation (47). Since the case q = θ = 0 occurs with probability 1/2 in Protocol 2, the device's failure probability in this case can be at most 2γ H (D coset). Furthermore, since the device only succeeds if v i = b(k i , y i) and ⃗ v ∈ A + α for all i ∈ 1, n in the protocol, it means that the device succeeds with probability at least 1 -2γ H (D). Now comparing the definition of σ (⃗ 0,⃗ v) with the verifier's checks in the protocol, this means that for all i ∈ 1, n :

v∈S 0 Tr Z (v i) i σ (⃗ 0,⃗ v) ≥ 1 -2γ H (D) .
For the inequality in the other direction, we note that since Z

(v i) i
is a projector, we immediately have

⃗ v∈S 0 Tr Z (v i) i σ (⃗ 0,⃗ v) ≤ ⃗ v∈S 0 Tr σ (⃗ 0,⃗ v) = Tr σ (⃗ 0) = 1,
finishing the proof of Equation (47).

The proof of Equation (48) is completely analogous, combining with the fact that if

⃗ v+ û(⃗ k, ⃗ y, ⃗ d) ∈ A ⊥ + β iff ⃗ v ∈ A ⊥ + β -û(⃗ k, ⃗ y, ⃗ d).
Step 2: Relating Protocol 1 and Protocol 2. We relate the prover's operators and states in Protocol 1 and Protocol 2 by the following lemmas.

Lemma 13. For any efficient devices D, D ′ with the notation given in Definition 30. Assume that D is a device of Protocol 1 with corresponding states (ψ (⃗ θ) , σ (⃗ θ)) and D ′ is a device of Protocol 2 with corresponding states

(ψ ′(⃗ θ ′) , σ ′(⃗ θ ′)). Then ψ (⃗ θ) c ≈ 0 ψ ′(⃗ θ ′) , (49
) and σ (⃗ θ) c ≈ 0 σ (⃗ θ ′) . (50
)
Proof. At the beginning of each protocol's execution: in Protocol 1, the device's state is (encrypted) BB84 states, while in Protocol 2, the device's state is (encrypted) coset states. Furthermore, note that executing Protocol 1 or Protocol 2 does not require the secret key of the QFHE encryption scheme. Equation (49) then follows directly from semantic security of the QFHE encryption scheme.

Proof. We first prove the first statement. It is easy to check that ⃗ v∈V |⃗ v⟩⟨⃗ v|⊗ σ

(v i) Z,i Q
is a projector, so we can expand the definition of the state-dependent distance and compute:

Tr      ⃗ v∈S 0 |⃗ v⟩⟨⃗ v| ⊗ σ (v i) Z,i Q -I   †   ⃗ v∈S 0 |⃗ v⟩⟨⃗ v| ⊗ σ (v i) Z,i Q -I   ⃗ v ′ ∈S 0 |⃗ v ′ ⟩⟨⃗ v ′ | ⊗ V σ (⃗ 0,⃗ v ′) V †    = Tr     I - ⃗ v∈S 0 |⃗ v⟩⟨⃗ v| ⊗ σ (v i) Z,i Q   ⃗ v ′ ∈S 0 |⃗ v ′ ⟩⟨⃗ v ′ | ⊗ V σ (⃗ 0,⃗ v ′) V †   = 1 - ⃗ v∈S 0 Tr   |⃗ v⟩⟨⃗ v| ⊗ σ (v i) Z,i Q ⃗ v ′ ∈S 0 |⃗ v ′ ⟩⟨⃗ v ′ | ⊗ V σ (⃗ 0,⃗ v ′) V †   = 1 - ⃗ v∈S 0 Tr σ (v i) Z,i Q V σ (⃗ 0,⃗ v) V † ,
To show the first part of the lemma, we need to show that

⃗ v∈S 0 Tr σ (v i) Z,i Q V σ (⃗ 0,⃗ v) V † ≈ ε 1 . (55
)
For this, recall from Lemma 14 that we have

V Z i V † ≈ n 1/8 γ H (D) 1/32 ,V σ (⃗ 1) V † (σ Z,i) Q ⊗ I Y RDA . (56
)
For shorthand, write γ := n 1/8 γ H (D) 1/32 . Since V and Z i are efficient, by the lifting lemma (Lemma 3) and the fact that σ (⃗ 0) c ≈ 0 σ (⃗ 1) , this implies that:

V Z i V † ≈ γ 1/4 ,V σ (⃗ 0) V † (σ Z,i) Q ⊗ I Y RDA . (57
)
Using Lemma 4 and Lemma 5, we get:

⃗ v∈S 0 V Z (v i) i V † ≈ γ 1/4 , ⃗ v∈S 0 V σ (⃗ 0,⃗ v) V † ⃗ v∈S 0 σ (v i) Z,i Q ⊗ I Y RDA . (58
)
Using the replacement lemma (Lemma 1), we obtain

⃗ v∈S 0 Tr σ (v i) Z,i Q V σ (⃗ 0,v i , ⃗ 1 i) V † ≈ γ 1/8 ⃗ v∈S 0 Tr V Z (v i) i V † V σ (⃗ 0,⃗ v) V † (59) = ⃗ v∈S 0 Tr Z (v i) i σ (⃗ 0,⃗ v) (60) ≈ γ H (D) 1 , (61
)
where the last line follows from Equation (47). Set ε := γ 1/8 , this finishes the proof of the first statement.

For the second statement, we can perform the same calculation, but use Equation (48).

Lemma 16. For an efficient perfect device D = (S, Π, M, P), a coset state description (A, α, β)

and ⃗ θ ∈ { ⃗ 0, ⃗ 1}, there exists a set of subnormalized states {ρ (⃗ θ,⃗ v) i } ⃗ v∈S i where S i for i ∈ {0, 1} are defined as in Lemma 15 such that

⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ V σ (⃗ θ,⃗ v) V † ≈ 2nε ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i Q ⊗ ρ (⃗ θ,⃗ v) i , (62
)
where i = 0 if ⃗ θ = ⃗ 0 and i = 1 if ⃗ θ = ⃗ 1.
Proof. We define the shorthand

M (θ) = Z if θ = 0 , X if θ = 1 .
Applying Lemma 15 and Lemma 2 to get

⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ V σ (⃗ θ,⃗ v) V † ≈ ε   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ σ (v 1) M (θ 1),1 Q   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ V σ (⃗ θ,⃗ v) V †   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ σ (v 1) M (θ 1),1 Q  
We repeat this for the remaining indices j = 2, . . . , n. Since there are in total n steps, the total approximation error will be nε. We then have

⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ V σ (⃗ θ,⃗ v) V † ≈ nε   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ σ (v 1) M (θ 1),1 Q   . . .   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ σ (vn) M (θn),n Q   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ V σ (⃗ θ,⃗ v) V †   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ σ (v 1) M (θ 1),1 Q   . . .   ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ σ (vn) M (θn),n Q   = ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗   j σ (v j) M (θ j),j   Q V σ (⃗ θ,⃗ v) V †   j σ (v j) M (θ j),j   Q . Now noting that j σ (v j) M (θ j),j = (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i , we obtain = ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i Q ⊗ ⟨v| (H ⊗n) i Q V σ (⃗ θ,⃗ v) V † (H ⊗n) i |v⟩ Q = ⃗ v∈S i |⃗ v⟩⟨⃗ v| ⊗ (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i Q ⊗ Tr Q (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i Q V σ (⃗ θ,⃗ v) V † (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i Q Lemma 18.
For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such that if the verifier executes Protocol 3 with an efficient quantum prover whose success probability is lowerbounded by an inverse polynomial, the following holds. Let (A, α, β) the private input of the verifier for the coset instance. Denoting the probability that the protocol does not abort as Pr [⊤], and let ψ the initial state of the prover. Then, with probability Pr [⊤], we have

ψ c ≈ ε |A α,β ⟩ ⊗ ρ, (65
)
for some auxiliary state ρ, and the approximation error ε is inverse polynomial on the security parameter λ.

Proof. Essentially, we can see Protocol 3 as a cut-and-choose protocol in which the number of evaluation instances is 1 and the number of check instances is M 2 -1. We then can reduce this lemma to Lemma 17 using the same argument as in [GMP22, Theorem 4.33]. We omit the details.

Remark 7. We make few comments on the inverse polynomial soundness. 13 First of all, what the soundness lemma (Lemma 18) says is effectively the same as a typical self-testing statement, which is that: if the prover succeeds with probability 1 -ε in the protocol, the state it used in the protocol must be, up to an isometry, poly(ε)-close to ideal (in our setting, the closeness is measured by computational distinguishability rather than trace distance, as in typical self-testing settings). Now, in practice, we would have to estimate ε by doing many runs of the protocol. In particular, we would need about 1/ε 2 repetitions to have high (that is, 1 -negl(λ)) confidence that the prover's success probability is 1 -ε. This implies that if we want ε to be negligible, we would have to do superpolynomial-many repetitions of the protocol and since this is not efficient, we are limited to ε = 1/poly(λ). It is from doing this 1/ε 2 repetitions that we go from the original self-testing statement (Lemma 17) to the statement that characterizes the prover's state in the actual protocol.

We now finish this section with the proof of Proposition 2.

Proof of Proposition 2. Since in the final protocol (Protocol 5), we run N instances over 2N possible instances of the self-testing protocol (Protocol 3) (in the cut-and-choose fashion), we can invoke techniques developed in [BF10] to relate quantum sampling to classical sampling and conclude Proposition 2.

In particular, consider the following interaction between a quantum prover P and a challenger V.

1. P and V jointly execute Protocol 5. Let T be the set of N indices chosen uniformly at random by V in N runs of the self-testing protocol.

2. Let X i be the outcome of each of N runs of the self-testing protocol. V verifies that X i = accept for all i ∈ T , and aborts otherwise.

This is a natural quantum analogue of the following classical sampling experiment ([BF10, Example 1]) on a length-2N bitstring X to test if X is close to the all-zero string:

1. randomly select a size-N subset T ⊂ 1, 2N , 2. compute ω(X| T), and accept if the estimate vanishes and else reject.

C.2 Anti-Piracy Game of Single-Decryptor (Real-or-Random Style)

We present below an anti-piracy game of single-decryptors in the real-or-random CPA style, parameterized by a single-decryptor scheme E = ⟨Setup, QKeyGen, Encrypt, Decrypt⟩, a security parameter λ. This game is between a challenger and an adversary represented by three QPT algorithms (A 0 , A 1 , A 2).

• Setup phase:

-The challenger samples (sk, pk) ← Setup(1 λ).

-The challenger samples ρ sk ← QKeyGen(sk).

-The challenger sends (pk, ρ sk) to A 0 .

• Splitting phase:

-A 0 prepares a bipartite quantum state σ 12 .

-A 0 sends σ 1 to A 1 and σ 2 to A 2 .

-A 0 sends a challenge message m 0 to the challenger.

• Challenge phase:

-A 1 sends a message m 1 to the challenger, and A 2 sends a message m 2 to the challenger.

- -The challenger sends c 1 to A 1 and c 2 to A 2 .

• Answer phase:

-For i ∈ {1, 2}: A i outputs a bit b ′ i .

The adversary wins the game if A 1 and A 2 both make a correct guess, that is b ′ i = b i for i ∈ {1, 2}. We denote the random variable that indicates whether an adversary (A 0 , A 1 , A 2) wins the game or not as SD-AP-RoR

E D (1 λ , (A 0 , A 1 , A 2)).
Definition 39 (Anti-Piracy Security, Real-or-Random style). A single-decryptor scheme has anti-piracy security (real-or-random style) if no QPT adversary (A 0 , A 1 , A 2) can win the anti-piracy game (real-or-random style) with a probability significantly greater than 2/3. More precisely, for any QPT adversary

(A 0 , A 1 , A 2) Pr SD-AP-RoR E D (1 λ , (A 0 , A 1 , A 2)) = 1 ≤ 2/3 + negl(λ).
We observe that the construction of single-decryptor given in [CLLZ21] also satisfies our definition of anti-piracy in the real-or-random style. For completeness, we recall their construction below.

• Answer phase:

-

A 1 returns b ′ 1 and A 2 returns b ′ 2 . -The adversary wins if b ′ 1 = b 1 and b ′ 2 = b 2 . Game G 1 :
In this game, we replace x 1 , x 2 by the trigger inputs. The trigger's inputs lemma (Lemma 19) implies that G 1 is negligibly close to G 0 .

• Setup phase: The challenger does the following:

-Sample ℓ 0 random cosets {A i , s i , s ′ i } i∈ 1,ℓ 0 , and prepare the associated coset states {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 and the obfuscated membership programs {(R 0

i , R 1 i)} i∈ 1,ℓ 0 . -Sample k i ← PRF i .KeyGen(1 λ) for i ∈ {1, 2, 3}.
-Generate the obfuscated program P ← iO(P).

-Sample y $ ← {0, 1} n , compute z := PRF 1 (k 1 , y).
-Send ρ y := {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z to A 0 . • Splitting phase: A 0 prepares a bipartite quantum state σ 12 , then sends σ 1 to A 1 and σ 2 to A 2 .

• Challenge phase:

-The challenger samples

(b 1 , b 2) $ ← D 1/3 .
-For i ∈ {1, 2}: * If b i = 0: the challenger sets x i := y and z i := z. * Otherwise, the challenger samples

x i $ ← {0, 1} n and computes z i ← PRF 1 (k 1 , x i). * In both case, the challenger computes x ′ i ← GenTrigger(x i,0 , z i , k 2 , k 3 , {A i,s i ,s ′ i } i∈ 1,ℓ 0). -The challenge sends x ′ 1 to A 1 and x ′ 2 to A 2 . • Answer phase: -A 1 returns b ′ 1 and A 2 returns b ′ 2 . -The adversary wins if b ′ 1 = b 1 and b ′ 2 = b 2 . Game G 2 :
In this game, we replace z, z 1 , z 2 by uniformly random strings. Since all the inputs have enough min-entropy ℓ 1 + ℓ 2 ≥ m + 2λ + 4 and PRF 1 is extracting, the outcomes z, z 1 , z 2 are statistically close to independently random outcomes. Thus G 2 is negligibly close to G 1 .

• Setup phase: The challenger does the following:

-Sample ℓ 0 random cosets {A i , s i , s ′ i } i∈ 1,ℓ 0 , and prepare the associated coset states {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 and the obfuscated membership programs {(R 0

i , R 1 i)} i∈ 1,ℓ 0 . -Sample k i ← PRF i .KeyGen(1 λ) for i ∈ {1, 2, 3}.
-Generate the obfuscated program P ← iO(P). -Send ρ y := {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z to A 0 . • Splitting phase: A 0 prepares a bipartite quantum state σ 12 , then sends σ 1 to A 1 and σ 2 to A 2 .

• Challenge phase:

-The challenger samples (b 1 , b 2) $ ← D 1/3 .

-For i ∈ {1, 2}: * If b i = 0: the challenger sets x i := y and z i := z. * Otherwise, the challenger samples x i $ ← {0, 1} n and samples z i $ ← {0, 1} m . * In both case, the challenger computes x ′ i ← GenTrigger(x i,0 , z i , k 2 , k 3 , {A i,s i ,s ′ i } i∈ 1,ℓ 0). -The challenge sends x ′ 1 to A 1 and x ′ 2 to A 2 .

• Answer phase:

-A 1 returns b ′ 1 and A 2 returns b ′ 2 . -The adversary wins if b ′ 1 = b 1 and b ′ 2 = b 2 . Game G 3 : This game has exactly the same distribution as that of G 2 . We only change the order in which some values are sampled, and recognize that certain procedures become identical to encryptions in the single-decryptor encryption scheme ⟨SD.Setup, SD.QKeyGen, SD.Encrypt, SD.Decrypt⟩ from Appendix C. Thus, the probability of winning in G 3 is the same as in G 2 .

• Setup phase: The challenger does the following:

-Run SD.Setup(1 λ) to obtain ℓ 0 random cosets {A i , s i , s ′ i } i∈ 1,ℓ 0 , the associated coset states {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 and the obfuscated membership programs {(R 0 i , R 1 i)} i∈ 1,ℓ 0 . Let ρ sk := {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 . -Sample k i ← PRF i .KeyGen(1 λ) for i ∈ {1, 2, 3}.

-Generate the obfuscated program P ← iO(P).

-Sample y $ ← {0, 1} n , sample z $ ← {0, 1} m .
-Send ρ y := {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z to A 0 . • Splitting phase: A 0 prepares a bipartite quantum state σ 12 , then sends σ 1 to A 1 and σ 2 to A 2 . Reduction to Single-Decryptor's Piracy Game. Assume that there exists a QPT adversary (A 0 , A 1 , A 2) who wins the last hybrid G 3 with advantage δ. We construct an adversary (B 0 , B 1 , B 2) who wins the piracy game of the Single-Decryptor scheme with the same advantage δ.

•

• Setup phase: The challenger samples (sk, pk) ← Setup(1 λ), then samples ρ sk ← QKeyGen(sk) and finally sends (pk, ρ sk) to B 0 .

• Splitting phase: -B 0 samples k i ← PRF i .KeyGen(1 λ) for i ∈ {1, 2, 3} and use these keys and pk to prepare the obfuscated program P ← iO(P);

-Then B 0 samples z $ ← {0, 1} m and runs A 0 on (ρ sk , P, z) to get σ 12 ;

-Finally, B 0 sends σ ′ 1 := (σ 1 , k 2 , k 3) to B 1 , σ ′ 2 := (σ 2 , k 2 , k 3) to B 2 and z as the challenge message to its challenger.

• Challenge phase: For i ∈ {1, 2}:

-B i samples z i $ ← {0, 1} m and sends z i as the challenge message to its challenger. Upon receiving the challenge ciphertext c i , B i parses c i as (x i,0 , Q), then prepares x ′ i := (x i,0 ||x ′ i,1 ||x ′ i,2) as in GenTrigger: x ′ i,1 := PRF 2 (k 2 , x i,0 ||Q) and x ′ i,2 := PRF 3 (k 3 , x ′ i,1) ⊕ (x i,0 ||Q). • Answer phase: For i ∈ {1, 2}:

-B i runs A i on (σ i , x ′ i) and returns the outcome b ′ i ;

The adversary B = (B 0 , B 1 , B 2) perfectly simulates (A 0 , A 1 , A 2), and thus B breaks the antipiracy security of the single-decryptor scheme with the same probability δ, which completes the proof.

E Direct Product Hardness of Coset States

Informally, the computational direct product hardness [CLLZ21] states that given |A s,s ′ ⟩ and programs iO(P A+s) and iO(P A ⊥ +s ′) for uniformly random A ⊆ F n 2 , s, s ′ ∈ F n 2 , no QPT adversary can produce a pair (v, w) ∈ (A + s) × (A ⊥ + s ′), except with negligible probability in n, where P A+s and P A ⊥ +s ′ are programs that check membership in the cosets A + s and A ⊥ + s ′ , respectively. This direct product hardness is at the heart of the tokenized signature construction presented in [CLLZ21]. The notion of quantum tokens for digital signatures was initiated by . In a (weakly unforgeable) tokenized digital signature scheme, a signer who gets one copy of the signing token sig can sign a single bit b using a QPT algorithm Sign(b, sig) whose output is a classical signature. The correctness guarantees that the verification will accept the result as a signature on b. We note that the signing algorithm is a unitary and will produce a superposition of all valid signatures of b; to obtain a classical signature, a destructive measurement to the state is necessary which leads to a collapse of the token state. Thus, a signing token sig can only be used to produce one classical signature of a single bit and any attempt to produce a classical signature of the other bit would fail. We refer the reader to Section 7 for formal definitions and constructions of tokenized signatures.

We now elaborate on the main motivation for seeking a stronger direct product hardness of coset states. Consider the construction of tokenized digital signatures in [CLLZ21]: very roughly, the signing token is |A s,s ′ ⟩, one can measure the state in the computational basis to obtain a signature for 0, and measure the state in the Hadamard basis to obtain a signature for 1. Security of this scheme follows directly from the aforementioned direct product hardness of coset states. However, [CLLZ21] is only weakly unforgeable.

To construct strongly unforgeable tokenized digital signatures (where it is computationally hard to generate two different signatures of the same message, given a single signing token), we would need a variant of the computational direct product theorem, where the task is now to find a pair of vectors (v, w) ∈ (A + s) × (A + s) or (v, w) ∈ (A ⊥ + s ′) × (A ⊥ + s ′) such that v ̸ = w. Combining this variant with [CLLZ21]'s direct product hardness would immediately yield a strongly unforgeable tokenized signature scheme.

Next, we give some intuition behind the proof of [CLLZ21]'s direct product hardness of coset states, and then explain why it does not straightforwardly give rise to a proof for the direct product hardness variant we are seeking. Recall that for [CLLZ21]'s direct product hardness, the task is to find a pair of non-zero vectors (v, w) ∈ (A + s) × (A ⊥ + s ′) given a random coset state |A s,s ′ ⟩ and its (obfuscated) membership checking programs. The proof of this direct product hardness is done in the following way. We assume that A ⊆ F n 2 has dimension n 2 .

• Replace iO(P A+s) by iO(P B+s) for a uniformly random superspace B of A, where dim(B) = 3n 4 . Similarly, replace iO(P A ⊥ +s ′) by iO(P C ⊥ +s ′) for a uniformly random superspace C ⊥ of A ⊥ , where dim(C ⊥) = 3n 4 . This modification is indistinguishable due to the subspace hiding property of iO.

• Argue that the task of finding a pair of vectors in (A + s) × (A ⊥ + s ′) given |A s,s ′ ⟩ , B, C for a uniformly random subspace C ⊆ A ⊆ B is as hard as the task of finding a pair of vectors in (à + z) × (à + z ′) given | Ãz,z ′ ⟩ for some uniformly random subspace à of dimension n 4 . The crucial observation is that, since B + s = B + s + t for any vector t ∈ B, the programs P B+s and P B+s+t are functionally equivalent. So, an adversary who receives iO(P B+s) cannot distinguish this from iO(P B+s+t) for any t. We can think of t as a randomizing masking of s, which removes the adversary's knowledge about the membership programs.

• The latter task of finding such a pair of vectors corresponding to Ã, z, z ′ is information-theoretically hard (it would even be hard with black-box access to the membership checking oracles for à + z and Ã⊥ + z ′).

In our variant of direct product hardness, the task is now to find a pair of vectors (v, w) ∈ (A + s) × (A + s) or (v, w) ∈ (A ⊥ + s ′) × (A ⊥ + s ′) such that v ̸ = w. Applying the same reduction above allows us to reduce this task to the task of finding a pair of different vectors v, w ∈ A + s given |A s,s ′ ⟩ , B, C such that C ⊆ A ⊆ B. Unfortunately, we cannot directly reduce this task to the information-theoretic direct product theorem. The reason is that the adversary can just measure the state in the computational basis (or in the Hadamard basis if the task is to find a pair of different vectors in A ⊥ + s ′) to obtain a random vector v ∈ A + s, sample a non-zero vector c ∈ C and output (v, c + v). Since c ∈ C ⊆ A, we have that c + v is also in A + s. This shows that the adversary can win the game without violating any complexity-theoretic arguments. Overcoming this technical hurdle requires a more involved analysis. We refer to subsequent sections for a formal description and proofs.

E.1 Information-Theoretic Direct Product Hardness -A Variant

Theorem 11. Let A ⊆ F n 2 be a uniformly random subspace of dimension n/2, and s, s ′ be uniformly random in F n 2 . Let ϵ > 0 such that 1/ϵ = o 2 n/2 . Let Λ(A, s) := (A + s) × (A + s), and Λ(A ⊥ , s ′) := (A ⊥ + s ′) × (A ⊥ + s ′).

Claim 5 (From G 2 to G 3). For any QPT adversary A, we have that |Adv 2 (A) -Adv 3 (A)| ≤ Adv iO (λ, A).

Proof. We note that both P B (•-t) and P B (•-s) compute the same functionality, since for any vector w B ∈ B, we have B + w B is the same as B. By security of iO, the two games are computationally indistinguishable.

Game G 4 : This is identical to G 3 , except that now the obfuscation iO(P A ⊥ +s ′) is replaced by iO(P A ⊥ (• -s ′)).

Claim 6 (From G 3 to G 4). For any QPT adversary A, we have that

|Adv 3 (A) -Adv 4 (A)| ≤ Adv iO (λ, A).
Proof. We note that both P A ⊥ +s ′ and P A ⊥ (• -s ′) compute the same functionality, since any vector v ∈ A ⊥ + s ′ if and only if v -s ′ ∈ A ⊥ . By security of iO, the two games are computationally indistinguishable.

Game G 5 : This is identical to G 4 , except that now the challenger samples uniformly at random a superspace C ⊥ of A ⊥ of dimension 7n 8 , and the obfuscation iO(P A ⊥ (• -s ′)) is replaced by iO(P C ⊥ (• -s ′)).

Claim 7 (From G 4 to G 5). For any QPT adversary A, we have that |Adv 4 (A) -Adv 5 (A)| ≤ Adv iO (λ, A).

Proof. Since C ⊥ is a superspace of A ⊥ of dimension 7n 8 , by security of subspace hiding obfuscation, the two games are computationally indistinguishable.

Game G 6 : This is identical to G 5 , except that now the challenger samples uniformly at random an element w C ⊥ from C ⊥ , and the obfuscation iO(P C ⊥ (• -s ′) is replaced by iO(P C ⊥ (• -t ′)), where t ′ = s ′ + w C ⊥ .

Claim 8 (From G 5 to G 6). For any QPT adversary A, we have that |Adv 5 (A) -Adv 6 (A)| ≤ Adv iO (λ, A).

Proof. We note that both P C ⊥ (• -t ′) and P C ⊥ (• -s ′) compute the same functionality, since for any vector w C ⊥ ∈ C ⊥ , we have C ⊥ + w C ⊥ is the same as C ⊥ . By security of iO, the two games are computationally indistinguishable. Game G 7 : This is identical to G 6 , except that now we change the winning condition of the hybrid: instead of asking the adversary to output two vectors v, w ∈ Λ(A, s) such that v| T ̸ = w| T , we ask the adversary to output two vectors v, w ∈ Λ(A, s) such that v| T ̸ = w| T and v -w ∈ (A \ C), where C, the dual subspace of C ⊥ , is of dimension n 8 .

Claim 9 (From G 6 to G 7). For any QPT adversary A, if Adv 6 (A) is non-negligible, then there exists a non-negligible function ε = ε(λ) such that Adv 7 (A) ≥ ε.

• B receives (v, w) from A, and outputs (T -1 (v), T -1 (w))). First, notice that where z = T (s) and z ′ = (T -1) T (s ′). Furthermore, notice that T (A) is a uniformly random subspace between C and B, and that z and z ′ are uniformly random vectors in F n 2 . We argue that: (i) T (t) is distributed as a uniformly random element of B + z.

(ii) (T -1) T (t ′) is distributed as a uniformly random element of C ⊥ + z ′ .

For (i), notice that

 use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to differentiate between distinct spaces. The map Tr : L(H) → C denotes the trace, and Tr B : L(H A ⊗H B) → L(H A) is the partial trace over subsystem B. Pos(H) denotes the set of positive semidefinite operators on H, and D(H) = {A ∈ Pos(H) | Tr[A] = 1} is the set of density matrices on H.

 and 0 otherwise. (This definition is as in [Mah18b, Definition 4.1 and 4.2].) 2. For a key k ∈ K 0 and a y ∈ Y, we define b(k, y) by the condition y ∈ ∪ x Supp f k, b(k,y) (x) .

Protocol 2 :

 2 Semi-Quantum Protocol: Coset-state Test Round Input. The verifier initially receives a subspace A ⊆ F n 2 and Pauli keys (α, β) with α, β ∈ {0, 1} n as private inputs.

Fig. 1 .

 1 Fig. 1. Program P.

 for each a ∈ {0, 1}. • Rotation gates: R ϕ : |a⟩ → e iaϕ |a⟩, for each a ∈ {0, 1}. We obtain the T gate where ϕ = π 4 , the phase gate P where ϕ = π 2 . • Controlled gates: for any k-qubit unitary quantum gate U, we define the controlled-U as: Ctrl-U : |a⟩ |x⟩ → |a⟩ U a |x⟩, for each a ∈ {0, 1} and x ∈ {0, 1} k . In particular, we write the controlled-NOT gate as CNOT : |a⟩ |b⟩ → |a⟩ |b ⊕ a⟩. • Toffoli gates: CCNOT : |a, b, c⟩ → |a, b, c ⊕ (a • b)⟩ for each (a, b, c) ∈ {0, 1} 3 .

 The challenger then generates ciphertexts c 1 , c 2 as follows. * c 1 = Encrypt(pk, m 0) and c 2 = Encrypt(pk, m 2) with probability 1/3. Set b 1 = 0 and b 2 = 1. * c 1 = Encrypt(pk, m 1) and c 2 = Encrypt(pk, m 0) with probability 1/3. Set b 1 = 1 and b 2 = 0. * c 1 = Encrypt(pk, m 1) and c 2 = Encrypt(pk, m 2) with probability 1/3. Set b 1 = 1 and b 2 = 1.

 Challenge phase -The challenger samples (b 1 , b 2) $ ← D 1/3 . -For i ∈ {1, 2}: * If b i = 0: the challenger sets z i := z. * Otherwise, the challenger samples z i $ ← {0, 1} m . * In both case, the challenger computes (x i , Q) ← SD.Encrypt(pk, z i). * Finally, the challenger computes x ′ i as in GenTrigger using x i,0 and Q. -The challenge sends x ′ 1 to A 1 and x ′ 2 to A 2 . • Answer phase -A 1 returns b ′ 1 and A 2 returns b ′ 2 . -The adversary wins if b ′ 1 = b 1 and b ′ 2 = b 2 .

U

 T |A s,s ′ ⟩ = U T v∈A (-1) ⟨v,s ′ ⟩ |v + s⟩ = v∈A (-1) ⟨v,s ′ ⟩ |T (v) + T (s)⟩ = w∈T (A) (-1) ⟨T -1 (w),s ′ ⟩ |w + T (s)⟩ = w∈T (A) (-1) ⟨w,(T -1) T (s ′)⟩ |w + T (s)⟩ = |T (A) z,z ′ ⟩ ,

T

 (t) = T (s + w B *) = T (s) + T (w B *) = z + T (w B *),where w B * is uniformly random in B * . Since T is an isomorphism with T (B *) = B, T (w B *) is uniformly random in B. Thus, T (t) is distributed as a uniformly random element in B + z.For (ii), notice that(T -1) T (t ′) = (T -1) T (s ′ + w C ⊥ *) = (T -1) T (s ′) + (T -1) T (w C ⊥ *) = z ′ + (T -1) T (w C ⊥ *), where w C ⊥ * is uniformly random in C ⊥ * . Let x ∈ C, then ⟨(T -1) T (w C ⊥ *), x⟩ = ⟨w C ⊥ * , T -1 (x)⟩ = 0,where the last equality follows becausew C ⊥ * ∈ C ⊥ * and T -1 (C) = C * . Thus (T -1) T (w C ⊥ *) belongs to C ⊥ . Since (T -1) T is a bijection, (T -1) T (w C ⊥ *) is uniformly random in C ⊥ . It follows that (T -1) T (t ′) is distributed as a uniformly random element in C ⊥ + z ′ .Hence, A receives the correct distribution, and thus, with probability p, A returns a pair (v, w) ∈ Λ(T (A), z) satisfying v| T ̸ = w| T and v -w ∈ (T (A) \ C).Notice that:• If v ∈ T (A) + z, where z = T (s), then T -1 (v) ∈ A + s. • If v -w ∈ (T (A) \ C), then v -w / ∈ C. Thus, we have T -1 (v) -T -1 (w) = T -1 (v -w) / ∈ T -1 (C) = C * .Since C * is the subspace of vectors such that the last 7n/8 entries are zero, we also have that T -1 (v)| T ̸ = T -1 (w)| T .

 The verifier then sends {k i } n i=1 to the prover (but keeps the trapdoors {t i } n i=1 private). 3. The verifier receives {y i } n i=1 where y i ∈ Y from the prover. 4. The verifier selects a round type ∈ {pre-image round, Hadamard round} uniformly at random and sends the round type to the prover. 1}, and x i ∈ X . The verifier sets flag bb84 ← flag Pre and aborts if Chk

(a) For a pre-image round: the verifier receives {(b i , x i)} n i=1 from the prover, with b i ∈ {0,

 The verifier initially receives a subspace A ⊆ F n 2 and Pauli keys (α ′ , β ′) and {(α i , β i)} M 2 i=1 with α ′ , β ′ , α i , β i ∈ {0, 1} n as private inputs. Note that (A, α ′ , β ′) corresponds to one coset-state instance, and

and let s := s 1 . . . s n . Set flag coset ← flag Had and abort if ⃗ s / ∈ A ⊥ + β. Protocol 3: Semi-Quantum Protocol: Self-Testing

Let M 2 the maximum number of test rounds (for M ∈ N).

Input.

 iii) Efficient observables: a family of binary observables {Z λ : Herm(H A λ)} λ∈N is efficient if there exists a family of Hilbert spaces H B λ with dim(H B λ) = poly(λ), and a family of efficient unitaries {U λ ∈ U(H A λ ⊗ H B λ)} λ∈N such that for any |ψ⟩ A ∈ H A :

 is a function that takes the subset t, the substring v, and a seed s, and outputs an estimate for the relative Hamming weight of the remaining string. For a fixed subset t, seed s, and a parameter δ, define B δ t,s (Ψ) ⊆ Ω n as

	B δ t,s := {b ∈ Ω

n : |ω(b| t) -f (t, b| t , s)| < δ}.

 1. The results presented here immediately generalize from the all-zero reference state |0⟩ . . . |0⟩ to an arbitrary reference state |φ⟩ A of the form |φ⟩ A = U 1 |0⟩ . . . U n |0⟩ for unitary operators U i acting on C d . Indeed, the generalization follows simply by a suitable change of basis, defined by the U i 's.

 where dim(H Y) = |Y| n and the states are classical on H Y :

Definition 36 (Rounding isometries [GMP22]).

 For a device D with associated Hilbert space H D and ⃗ y ∈ Y ×n , d ∈ {0, 1} w×n , we define the isometry Ṽy,d : H D → H D ⊗ H A ⊗ H Q by the following action on an arbitrary state |φ⟩ D :

	Ṽ⃗ y, ⃗ d |φ⟩ D

The only known exception is the construction of copy-protection of single-bit point functions in the quantum random oracle model based on BB84 states[AKL23]. In this work, we focus only on constructions in the plain model.

These coset states actually satisfy a strong monogamy-of-entanglement property, which we elaborate later in Section 2.

We emphasize that we use the same challenge distribution as in [CMP20]. While being non-trivial, this is not the natural challenge distribution for point functions.

A hybrid QFHE scheme is one where every encryption of a quantum state |ψ⟩ consists of a quantum one-time pad encryption of |ψ⟩ with Pauli keys (x, z) ∈ {0, 1} * , and ctx,z which is a classical FHE encryption of the Pauli keys.

We refer the reader to[Mah18b, Section 4] for further details on ENTCF families.

We omit the details of this decoding procedure, and refer the reader to Section 4.2. We note that with the trapdoor t, this procedure can be implemented efficiently by the verifier.

Some hybrids follow from the proof strategy given in [Shm22a].

We are running a classical function on a quantum input, which can be interpreted as running a classical function in superposition.

While the statement of [BS17, Theorem 13] only applies to weak unforgeability, the same proof extends to strong unforgeability.

A distinguisher D is a CPTP map from the input state to a classical single-qubit state (i.e. a distribution over {0, 1}). The distinguishability is the trace distance between D(ψ) and D(ψ ′).

In Protocol 1, the only two basis choices are ⃗ θ = ⃗ 0 and ⃗ θ = ⃗ 1. However, ψ(⃗ θ) is still well-defined as the state that the prover (who is defined in terms of the quantum circuits he runs on a given input) would prepare if given keys of basis choice ⃗ θ, even though this never occurs in Protocol 1. This is different from Protocol 2, as it is crucial for the verifier's procedure in Protocol 2 to use only ⃗ 0 or ⃗ 1 as the basis choice. Otherwise the protocol would be "undefined".

We thank Alexandru Gheorghiu for providing us this insightful comments.

Acknowledgements

This work was supported in part by the French ANR projects CryptiQ (ANR-18-CE39-0015) and SecNISQ (ANR-21-CE47-0014). QHV was supported in part by the French ANR project TCS-NISQ (ANR-22-CE47-0004), and by the PEPR integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030. The authors would like to thank Thomas Vidick for discussions on the proof of Theorem 13, Christian Majenz for discussions on copy-protection of point functions, Alexandru Gheorghiu for very helpful explanations on the [GMP22] remote state preparation protocol, as well as the anonymous reviewers for useful comments.

Construction 4: Our semi-quantum tokenized signature scheme Token Generation Protocol. The input of the protocol is the security parameter λ ∈ N.

-Run Protocol 5 between a classical sender and a quantum receiver. Send is the sender's procedure in the protocol and Rec is the receiver's procedure in the protocol.

-The output of the protocol is vk := (R 0 , R 1) and sig := |A s,s ′ ⟩ using the notation in Section 4.

Sign(m, sig) : Take as input m ∈ {0, 1}, and a state sig on n qubits.

-Compute H ⊗n sig if m = 1, otherwise do nothing to the quantum state.

-Measure the state in the computational basis. Let σ be the outcome.

-Output (m, σ).

Verif (vk, (m, σ)) : Parse vk as (R 0 , R 1) where R 0 and R 1 are circuits.

-Output R m (σ).

TokenVerif(vk, sig) : Parse vk as (R 0 , R 1) where R 0 and R 1 are circuits.

-Let V i be the unitary implementing the following operation:

-Measure the last register in the computational basis.

-If the outcome is 1, return (0, sig ′). Otherwise, return (1, sig ′).

We can also define computational indistinguishability with respect to non-uniform QPT algorithms with quantum advice, denoted by A := {A λ , ϕ λ } λ∈N , where each A λ is the classical description of a poly(λ)-size quantum circuit, and ϕ λ is some (not necessarily efficiently computable) nonuniform poly(λ)-qubit quantum advice. In this work, we implicitly consider computational indistinguishability with respect to non-uniform QPT adversaries with quantum advice, unless stated explicitly otherwise.

If we write ≈ 0 , we mean that the quantities are negligibly close. All asymptotic statements are understood to be in the limits ϵ → 0 and λ → ∞.

We include a copy of some technical lemmas on state-dependent operator relations using computational indistinguishability from [MV21] in Appendix A.2 for the reader's convenience.

A.2 Properties of the State-Dependent Distance

A feature of the state-dependent distance is that if two operators are close in the state-dependent distance, we can replace one operator by the other acting on either side of the state.

The following lemma allows us to replace computationally indistinguishable states with one another in the state-dependent distance. This means that if two states are computationally indistinguishable and a state-dependent operator relation holds for one of the states, we can "lift" this relation to the other state, provided the operators are efficient.

Lemma 3 (Lifting lemma [MV21, Lemma 2.25])

Let A be an efficient binary observable on H, B an efficient binary observable on H ′ , and V : H → H ′ an efficient isometry. Then:

Finally, we recall some further miscellaneous properties of the state-dependent distance.

Lemma 4 ([MV21, Lemma 2.18]). Let ψ i ∈ Pos(H) for i ∈ {1, . . . , n} with constant n, and

In the context of Protocol 1 and Protocol 2, given question q, the prover will measure {P

q } and return the outcome ⃗ v as his answer.

Definition 31 (Efficient devices).

A device is called efficient if the states ψ (⃗ θ) can be prepared efficiently and the measurements Π, M , and P q can be performed efficiently (in the sense of Definition 8).

B.2.2 Success Probabilities of a Device

During the self-testing protocol (Protocol 3), the verifier applies certain checks to the answers given by the prover. If the prover fails these checks, the verifier sets a flag to flag Pre or flag Had then aborts. Here, we define the probabilities that the prover passes these checks and relate these probabilities in both protocols Protocol 1 and Protocol 2.

Definition 32 (Success probabilities). For any device D := (S, Π, M, P) we define γ P (D bb84) as the device's failure probability in a pre-image round, γ H (D bb84) as the failure probability in a Hadamard round in Protocol 1 and γ H (D coset) as the failure probability in a Hadamard round in Protocol 2:

Next, we give the definition of a perfect prover in Protocol 1. Informally, a perfect prover is accepted by the verifier in a pre-image round with probability negligibly close to 1.

Definition 33 (Perfect device in Protocol 1). We call a device D perfect if γ P (D bb84) = negl(λ).

The following lemma says that for any device in Protocol 1 that has a non-negligible failure probability in the pre-image test, there is another perfect device that is "close" to the original one in the sense that its measurements are the same as for the original device and its states only differ by O(γ P (D)). By using this lemma, for the rest of the rigidity proof, it suffices to only consider perfect devices: for any arbitrary device, we can first make a reduction to the corresponding perfect device at the cost of incurring an approximation error of O(γ P (D)), and then apply our soundness proof to the perfect device.

Lemma 7 ([GMP22, Lemma 4.9]). Let D = (S, Π, M, P) be an efficient device in Protocol 1 with γ P (D bb84) < 1, where S = ψ (⃗ θ) . Then there exists an efficient perfect device D ′ = (S ′ , Π, M, P), which uses the same measurements Π, M, P and whose states S ′ = ψ ′(⃗ θ) satisfy for any ⃗ θ ∈ {0, 1} n :

Proof. The proof of this lemma uses essentially the same technique to that of [MV21, Lemma 4.13], which in turn based on [Mah18b,Claim 7.2]. We give a sketch of the proof for correctness. A construction of D ′ is as follows. D ′ first prepares the states ψ (⃗ θ) as D does, then applies the efficient unitary U Π associated with the measurement Π:

In Protocol 2, the verifier never sends a "pre-image round" challenge. In Protocol 1, the round type is chosen uniformly at random, so with probability 1 2 , the round type is "Hadamard round". In this case, the execution of two protocols are identical from the prover's point of view. Since the prover is efficient, Equation (50) also follows.

We then obtain the following relation between the success probabilities of devices in Protocol 1 and Protocol 2.

Corollary 3. For any efficient device D := (S, Π, M, P):

Remark 6. Due to the relation in Equation (51) and the definition of the "≈"-notation (Definition 11), from now on, we drop the subscript and simply write γ H (D) when it is clear from the context.

Combining Corollary 3 and Lemma 13, using the same isometry V defined in Definition 36, we can "lift" the approximate-equality relations described in Lemma 11 for an efficient device in Protocol 1 to an efficient device in Protocol 2. Lemma 14. For an efficient perfect device D = (S, Π, M, P) in Protocol 2 and any ⃗ a, ⃗ b ∈ {0, 1} n we have

Proof. The lemma follows directly from the lifting lemma (Item 6 of Lemma 3) and the fact that the isometry V and the operators X, Z are efficient. Using the notation from Lemma 3, we have

The two states are V σ ′(⃗ 1) V † of a device in Protocol 1 and V σ (⃗ 1) V † of a device in Protocol 2.

Step 3: Rigidity. We first prove the following technical lemma.

Lemma 15. For an efficient device D = (S, Π, M, P), a coset state description (A, α, β):

where

and the approximation factor ε will be clarified later in the proof.

Analogously to how we added the factors j σ (v j) M (θ j),j in a previous step, we can now replace the factors (H ⊗n) i |⃗ v⟩⟨⃗ v|(H ⊗n) i Q inside the partial trace by identity, resulting in

We then obtain the desired statement by defining

What Lemma 16 says is that up to an isometry, with inverse polynomial error, the device's state must be (information-theoretically) close to a mixed state of vectors in S i , tensored with an auxiliary state ρ

. We note that it is not hard to show that ρ

. (Though it is not necessary for our soundness proof.) Furthermore, from the statement of Lemma 16, for a fixed efficient device D, if we run Protocol 2 "coherently" in superposition, then (i) when ⃗ θ = ⃗ 0, the device's state must be in superposition of all vectors in S 0 , that is |A + α⟩, (ii) when ⃗ θ = ⃗ 0, the device's state must be in superposition of all vectors in S 1 . By applying a correction (XOR-ing the register Q with û(⃗ k, ⃗ y, ⃗ d)), the state would be |A ⊥ + β⟩.

Thus, with the verifier in Protocol 2, we obtain efficient projective measurements to characterize the prover's initial state. Formally, let O 0 be the following process: run Protocol 2 in superposition (without measuring any intermediate messages such as y, d, v) with the basis choice ⃗ θ = ⃗ 1 and check if the register Q at the end of the protocol is |A + α⟩. O 1 is defined analogously for ⃗ θ = ⃗ 1, and it applies a correction by XORing the register Q with û(⃗ k, ⃗ y, ⃗ d) and check if the register Q at the end is |A ⊥ + β⟩. We obtain the main technical lemma.

Lemma 17. For any efficient device D, the initial state of the device ψ must be close to (up to some inverse polynomial error) |A α,β ⟩ ⊗ ρ:

Proof. Let U 0 and U 1 be the efficient unitaries corresponding to operators O 0 and O 1 defined above. Fix a device D. We first apply U 0 ψ and record the output to an ancilla register. If the output is 1, apply the inverse U † 0 to obtain ψ ′ . Finally apply U 1 ψ ′ . If the output is 1, by the definition of U i (and O i), the lemma follows. Note that for each application of U i , the approximation error is 2nε which comes from Lemma 16.

B.2.5 Rigidity Proof of Protocol 3

We are now ready to prove the rigidity of Protocol 3, namely that any efficient quantum prover that does not cause the protocol to abort must have the initial state close to a hidden coset state.

Noting that this sample-and-estimate strategy is exactly the Ψ uniform strategy described at the end of Appendix A.3, we have by Corollary 2 that the quantum error probability of this strategy is bounded by 2 exp(-nδ 2 64), for δ = 1/2. By the definition of quantum error probability (Definition 13), this means that, with overwhelming probability over T , the state of the prover P in the remaining set T also satisfies Equation (64). Indeed, by changing of basis, this reduces to the question of testing if the state of the prover before running the self-testing protocol is close to the all-zero state. Then the quantum sample-and-estimate technique tells us that the state of the prover must be supported on vectors with relative Hamming distance < 1/2, and it means there must be at least 1 bit in string which is 0. If this is the case, it corresponds (up to some inverse polynomial error) to the coset state |A α,β ⟩ in Equation (64). This completes the proof of the proposition.

C Single-Decryptor

In this section, we present the definition of single-decryptors, as defined in [CLLZ21]. We also introduce a new security property for single-decryptors, namely anti-piracy security of singledecryptors in the real-or-random style. A variant of semi-quantum single-decryptors will be also introduced.

C.1 Definition Definition 38 (Single-Decryptor Encryption Scheme [CLLZ21]

). A single-decryptor encryption scheme is a tuple of algorithms E = ⟨Setup, QKeyGen, Encrypt, Decrypt⟩ with the following properties:

• (sk, pk) ← Setup(1 λ). On input a security parameter λ, the classical setup algorithm Setup outputs a classical secret key sk and a public key pk.

• (ρ sk) ← QKeyGen(sk). On input a classical secret key sk, the quantum key generation algorithm QKeyGen outputs a quantum secret key ρ sk .

• y ← Encrypt(pk, x). On input a public key pk, a message x in the message space M, the classical encryption algorithm Encrypt outputs a classical ciphertext y.

• x/⊥ ← Decrypt(ρ sk , y). On input a quantum secret key ρ sk , a classical ciphertext y, the quantum decryption algorithm Decrypt outputs a classical message x or a decryption failure symbol ⊥.

Correctness. There exists a negligible function negl(•), such that for all λ ∈ N, for all x ∈ M, the following holds:

Note that correctness implies that a honestly generated quantum decryption key can be used to decrypt correctly polynomially many times, from the gentle measurement lemma [Wil11].

Construction 5: [CLLZ21] Single-Decryptor Scheme

Given a security parameter λ, let n = λ and κ be polynomial in λ.

-Return c := (r, iO(Q m,r)).

• m/⊥ ← Decrypt(ρ sk , c):

sk be the resulting state, run iO(Q m,r) coherently on ρ ′ k and measure the final register to get m; -Return m.

Hardcoded: Keys k1, k2, k3, programs R 0 i , R 1 i for all i ∈ 1, κ . On input vectors u1, u2, . . . , uκ, do the following:

C.3 Semi-Quantum Single-Decryptor

Alternatively, in the definition of single-decryptors above, we can combine the Setup and QKeyGen algorithms to be a single interactive protocol with classical communication. The security definition is defined analogously, in which the setup phase is now an interactive setup phase where the challenger obtains the the secret key and the adversary obtains the quantum unclonable secret key. This defines a notion of semi-quantum single-decryptors.

Remark 8. Of course, now if the sender wants to generate a new quantum secret key, it needs to run the interactive protocol again, which effectively also generates a new classical secret key sk and a new classical public key pk. To recover the original setting where there are only one classical secret/public key pair and possibly many quantum secret keys, the sender can use any post-quantum semantic-secure public-key encryption scheme to encrypt the new classical secret key sk generated by the semi-quantum protocol, and send this encryption of sk to the receiver. This encryption of sk will also be included in the ciphertext, which the sender can decrypt using its "master" secret key and perform the original decryption algorithm. We note that for our construction of semi-quantum copy-protection, this is not necessary though.

A construction of semi-quantum single-decryptors is identical to Construction 5, except now we replace the Setup and QKeyGen algorithms by polynomially many runs of Protocol 5. Security proof of Construction 5 also carries over this semi-quantum setting directly, with only a small change as follows. In the reduction showing that an adversary A that breaks the anti-piracy game of single-decryptors can be used to construct an adversary A ′ breaking the monogamy-of-entanglement game (defined in Definition 3), A ′ simulates the security game for A (in which A ′ runs polynomially many executions of Protocol 5 with A), A ′ then picks one execution uniformly at random and lets A runs the protocol with A ′ 's challenger. The rest of the reduction is identical as the one given in [CLLZ21], we omit the full details here.

D Proof of Anti-Piracy Security of Construction 1

We present below a security proof for our Construction 1. We will proceed with the proof by doing a reduction between the anti-piracy security of single-decryptor (real-or-random style) of Construction 5 and the anti-piracy security of our copy-protection construction (Construction 1). The security proof of our semi-quantum copy-protection of point functions (Construction 2) is done identically by reducing to the security of the semi-quantum single-decryptor.

Notations.

In the proof, we will sometimes parse x ∈ {0, 1} n as (x 0 , x 1 , x 2) such that x = x 0 ∥x 1 ∥x 2 (where ∥ is the concatenation operator) and the length of x i is ℓ i for i ∈ {0, 1, 2}.

Procedure. We define the GenTrigger procedure (Figure 3) which, given an input's prefix x 0 and a PRF image y returns a so-called trigger input x ′ that: passes the "Hidden Trigger" condition of the program P. Trigger's Inputs Lemma. The following lemma follows from [CLLZ21, Lemma 7.17].

Lemma 19. Assuming post-quantum iO and one-way functions, any efficient QPT algorithm A cannot win the following game with non-negligible advantage:

• A challenger samples k 1 ← Setup(1 λ) and prepares a quantum key ρ k := ({|A i,s i ,s ′ i ⟩} i∈ 1,l 0 , iO(P)) (recall that P has keys k 1 , k 2 , k 3 hardcoded).

• The challenger then samples a random input x ← {0, 1} n . Let z ← PRF 1 (k 1 , x).

• The challenger samples challenges x 1 , x 2 according to the following distribution:

-x 1 := x and x 2 $ ← {0, 1} n with probability 1/3;

, n with probability 1/3;

• The challenger computes z i ← PRF 1 (k 1 , x i), and parses the inputs x i as

• The challenger flips a coin b, and sends either x 1 , x 2 or x ′ 1 , x ′ 2 to respectively Bob and Charlie, depending on the value of the coin. A wins if it guesses b correctly.

Proof of Anti-Piracy Security.

Proof. We proceed with the proof via a sequence of hybrids. We note the differences between the current hybrid and the previous one in red. For any pair of hybrids (G i , G j), we say that G i is negligibly close to G j if for every QPT adversary A := (A 0 , A 1 , A 2), the probability that A wins G i is negligibly close to the probability that they win G j . For the sake of simplicity, we denote the uniform distribution over {(0, 1), (1, 0), (1, 1)} as D 1/3 . Game G 0 : This is the piracy game of our copy-protection protocol.

• Setup phase: The challenger does the following:

-Sample ℓ 0 random cosets {A i , s i , s ′ i } i∈ 1,ℓ 0 , and prepare the associated coset states {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 and the obfuscated membership programs

-Generate the obfuscated program P ← iO(P).

-Send ρ y := {|A i,s i ,s ′ i ⟩} i∈ 1,ℓ 0 , P, z to A 0 . • Splitting phase: A 0 prepares a bipartite quantum state σ 12 , then sends σ 1 to A 1 and σ 2 to A 2 .

• Challenge phase:

-

-For i ∈ {1, 2}: * If b i = 0: the challenger sets x i := y. * Otherwise, the challenger samples

-The challenge sends x 1 to A 1 and x 2 to A 2 .

Given one copy of |A s,s ′ ⟩ and quantum membership oracles for A + s and A ⊥ + s ′ , an adversary needs Ω √ ϵ2 n/2 queries to output a pair (v, w) such that v ̸ = w and (v, w) ∈ Λ(A, s) with probability at least ϵ.

The same number of queries is also required to output a pair (v, w) ∈ Λ(A ⊥ , s ′) satisfying v ̸ = w with probability at least ϵ.

The proof of this theorem is similar to the proof of the original information-theoretic directproduct hardness [CLLZ21], which is a random self-reduction to the statement from Ben-David and Sattath [BS17]. We first present the theorem from [BS17].

Theorem 12 ([BS17, Theorem 28]). Let A ⊆ F n

2 be a uniformly random subspace of dimension n/2, and let ϵ > 0 such that 1/ϵ = o 2 n/2 . Given one copy of |A⟩ and quantum membership oracles for A and A ⊥ an adversary needs Ω √ ϵ2 n/2 queries to output a pair (v, w)

The same number of queries is also required to output a pair (v, w)

Proof of Theorem 11. We note that finding such a pair of elements in A and finding such a pair in A ⊥ are essentially the same task; thus it suffices to prove the result for a pair in A \ {0}, and the result for the other case will follow by symmetry.

Let A be an adversary for Theorem 11 who suceeds with probability p, we construct an adversary B for Theorem 12 with almost the same success probability making the same number of queries. B proceeds as follows.

• B receives |A⟩ for some A ⊆ F n 2 . Sample s, s ′ ∈ F n 2 uniformly at random, and creates the state |A s,s ′ ⟩.

• B gives |A s,s ′ ⟩ as input to A. B simulates the membership oracles A + s and A ⊥ + s ′ as follows.

If it is a query to the oracle A + s, B receives v from A, and sends a query as v -s to its membership oracle for A. It forwards the answer to A. The other case is handled similarly, using its membership oracle for A ⊥ and s ′ .

• Finally, B receives (v, w) in return from A. B then outputs (v -s, w -s).

With probability p,

Next, we argue that with overwhelming probability, we have that v -s ̸ = 0 and w -s ̸ = 0. This is equivalent to show that the probability that v -s = 0 or w -s = 0 is negligible. Note that there are 2 n/2 values of s such that |A s,s ′ ⟩ = |A s,s ′ ⟩, since translating s by an element s of A does not affect the state. Since s is sampled uniformly at random, the probability that v -s = 0 or w -s = 0 is equal to the probability that v -s = 0 or w -s = 0. This probability is 2 • 1 2 n/2 , which is negligible.

E.2 Computational Direct Product Hardness -A Variant

In this section, we prove a computational version of the direct product problem, in which the adversary is given obfuscations of the subspace membership checking programs, but is restricted to be computationally bounded. Our computational version extends the original statement given in [CLLZ21, Theorem 4.6] to include the computational version of Theorem 11.

Theorem 13. Assume the existence of quantum-secure indistinguishability obfuscation and quantumsecure injective one-way functions. Let A ⊆ F n 2 be a uniformly random subspace of dimension n/2, and s, s ′ be uniformly random in F n 2 . Given one copy of |A s,s ′ ⟩, iO(P A+s) and iO(P A ⊥ +s ′), any QPT adversary outputs a pair (v, w) such that either

with negligible probability.

We first state the two lemmas required to prove Theorem 13, and then assume correctness of these lemmas to prove Theorem 13. In the subsequent section, we prove the required lemmas.

The first required lemma (proven in Appendix E.3) shows that the first and the second requirement (i)-(ii) are provably satisfied, except that we strengthen these requirements to require that the output vectors differ in the last 7n/8 positions.

Lemma 20. Let T := n 8 , n -1 . Under the same assumptions as Theorem 13, given one copy of |A s,s ′ ⟩, iO(P A+s) and iO(P A ⊥ +s ′) any QPT adversary outputs a pair (v, w) such that either

with negligible probability.

The second required lemma is identical to the first lemma, except that now we require the output vectors to be different in the first 7n/8 positions. The proof of this lemma is trivially adapted from that one of Lemma 20.

Lemma 21.

Let T := 0, 7n 8 -1 . Under the same assumptions as Theorem 13, given one copy of |A s,s ′ ⟩, iO(P A+s) and iO(P A ⊥ +s ′), any QPT adversary outputs a pair (v, w) such that either

with negligible probability.

We also recall the original computational direct product hardness stated in [CLLZ21] for completeness.

Theorem 14 ([CLLZ21, Theorem 4.6]). Assume the existence of quantum-secure indistinguishability obfuscation and injective one-way functions. Let A ⊆ F n

2 be a uniformly random subspace of dimension n/2, and s, s ′ be uniformly random in F n 2 . Given one copy of |A s,s ′ ⟩, iO(P A+s) and iO(P A ⊥ +s ′), any QPT adversary outputs a pair v, w such that v ∈ A + s and w ∈ A ⊥ + s ′ with negligible probability.

Assuming Lemma 20 and Lemma 21, we prove Theorem 13 as follows.

Proof of Theorem 13. We note that the third item (iii) is proven by Theorem 14, and that finding such a different pair of vectors in Λ(A, s) and finding such a pair in Λ(A ⊥ , s ′) are essentially the same task. Thus, it suffices to prove the first item (i), and the second item (ii) will follow by symmetry.

We prove item (i) by contrapositive. Suppose it is false. Then there exists a QPT adversary A that given |A s,s ′ ⟩ , iO(P A+s) and iO(P A ⊥ +s ′) for a uniformly random A ⊆ F n 2 and uniformly random vectors s, s ′ ∈ F n 2 , returns (v, w) ∈ Λ(A, s) such that v ̸ = w with non-negligible probability ϵ. Let T 1 := 0, 7n 8 -1 and T 2 := n 8 , n-1 . For any pair v ̸ = w, it must be the case that v| T 1 ̸ = w| T 1 or v| T 2 ̸ = w| T 2 . Let p 1 be the probability that A returns (v, w) such that v| T 1 ̸ = w| T 1 , and p 2 be the probability that A A returns (v, w) such that v| T 2 ̸ = w| T 2 . (These probabilities are taken over everything: the randomness of the challenger and of the adversary.) Then, by the union bound, we have that p 1 + p 2 ≥ ϵ. Since ϵ is non-negligible, at least one of p 1 or p 2 must be non-negligible. If p 2 is non-negligible, then the adversary A contradicts Lemma 20. Similarly, if p 1 is non-negligible, A contradicts Lemma 21.

E.3 Proof of Lemma 20

Proof. We note that finding such a pair of elements in Λ(A, s) and finding such a pair in Λ(A ⊥ , s ′) are essentially the same task; thus it suffices to prove the result for a pair in Λ(A, s), and the result for the other case will follow by symmetry.

Let A be a QPT adversary for the direct product game of Lemma 20. The proof of the lemma proceeds by a sequence of hybrids. For any hybrid G i , we denote by Adv i (A) the advantage of A in G i , where the probability is taken over the random coins of G i and A.

Game G 0 : This is the direct product game of Lemma 20.

Game G 1 : This is identical to G 0 , except that now the obfuscation iO(P A+s) is replaced by iO(iO(P A)(•-s)). For simplicity, in the following, we abuse the notation and write iO(iO(P A)(•-s)) as iO(P A (• -s)).

Claim 3 (From G 0 to G 1). For any QPT adversary A, we have that

Proof. We note that both P A+s and P A (• -s) compute the same functionality, since any vector v ∈ A + s if and only if v -s ∈ A. By security of iO, the two games are computationally indistinguishable.

Game G 2 : This is identical to G 1 , except that now the challenger samples uniformly at random a superspace B of A of dimension 7n 8 , and the obfuscation iO(P A (• -s)) is replaced by iO(P B (• -s)). Claim 4 (From G 1 to G 2). For any QPT adversary A, we have that

Proof. Since B is a superspace of A of dimension 7n 8 , by the subspace hiding property of iO (Lemma 6), the two games are computationally indistinguishable.

Game G 3 : This is identical to G 2 , except that now the challenger samples uniformly at random an element w B from B, and the obfuscation iO(P B (• -s) is replaced by iO(P B (• -t)), where t = s + w B .

Proof. Due to our choice of dimension of subspaces B, C, we can apply the anti-concentration of the subspace obfuscator to prove the claim. Formally, we invoke the following lemma from [Shm22b], which states that any adversary, given an obfuscation iO(P C ⊥) where C ⊥ is a random highdimensional superspace of A ⊥ and outputting a vector in A, has to accidentally hit the subspace A \ C with a noticeable probability.

Lemma 22 ([Shm22b, Lemma 5.1]). Let

that there is some constant δ ∈ (0, 1) with ∀λ ∈ N : t λ ≥ λ δ and λ -d λ -2 • t λ ≥ Ω(λ). Let iO a quantum-secure indistinguishability obfuscation scheme for classical circuits and assume that post-quantum injective one-way functions exist. Then, there is no quantum polynomial-time algorithm A = {A λ,ρ λ } λ∈N , a negligible function negl and a non-negligible function η such that

where {S ⊆ λ-t } λ∈N is the uniform distribution over subspaces of dimension λ -t λ that contain S. By applying the anti-concentration lemma above with λ = n, t = n 8 and d = n 2 , we have that if Adv 6 (A) is non-negligible, then the probability that v -w ∈ (A \ C) is at least Adv 6 (A) -negl(λ), concluding the claim.

Game G 8 : This is identical to G 7 , except that now instead of sending obfuscations of membership checking programs, the challenger sends B, C, t, t ′ in clear to A.

Claim 10 (From G 7 to G 8). For any QPT adversary A for G 7 , there exists an adversary B for G 8 such that Adv 7 (A) ≤ Adv 8 (B).

Proof. This is immediate.

Claim 11. For any (possibly unbounded) adversary A, we have that Adv 8 (A) ≤ negl(λ).

Proof. We will follow the proof of [CLLZ21, Lemma 4.13]. Suppose there exists a QPT adversary A for G 8 that wins with probability p. We first show that, without loss of generality, one can take B to be the subspace of vectors such that the last n/8 entries are zero (and the rest are free), and one can take C to be such that the last 7n/8 entries are zero (and the rest are free). We construct the following adversary B for the game where B and C have the special form above with trailing zeros, call these B * and C * , from an adversary A for the game of G 8 .

• Thus, with the same probability p, B returns a pair (v ′ , w ′) ∈ Λ(A, s) such that v ′ | T ̸ = w ′ | T and v ′ -w ′ ∈ (A \ C *), as desired.

So, we can now assume that B is the space of vectors such that the last n 8 entries are zero, and C is the space of vectors such that the last 7n 8 entries are zero. Then, the sampled subspace A is a uniformly random subspace subject to the last n 8 entries being zero, and the first n 8 entries being free. From an adversary A for G 8 with such B and C, we will construct an adversary B for the information-theoretic direct product problem described in Theorem 11, where the ambient subspace is F m 2 where m = 3n 4 . B works as follows. where z = s∥s∥ŝ, z ′ = s′ ∥s ′ ∥ŝ ′ , and à is the subspace in which the first n/8 entries are free, the middle 3n/4 entries belong to the subspace A, and the last n/8 entries are zero. Notice that the subspace Ã, when averaging over the choice of A, is distributed precisely as in the game G 8 (with B and C of special form with trailing zeros); z, z ′ are uniformly random in F n 2 ; t is uniformly random from B + z and t ′ is uniformly random from C ⊥ + z ′ . Thus, with probability p, A returns to B a pair (v, w) ∈ Λ(Ã, z) such that v| T ̸ = w| T and v -w ∈ à \ C. Furthermore, we note that if (v, w) ∈ Λ(Ã, z), the last n/8 entries of both v and w must be ŝ. It follows that, if v| T ̸ = w| T , we have that v ′ ̸ = w ′ . Overall, we have that with probability p, the answer (v ′ , w ′) returned by B is such that (v ′ , w ′) ∈ Λ(A, s) satisfying v ′ ̸ = w ′ .

By Theorem 11, we deduce that p must be negligible.

Therefore we show that the advantage of distinguishing G 0 and G 6 is negligible, and the success probability in G 7 is at most the success probability in G 8 , which is negligible. We finish the proof by invoking Claim 9, which concludes that the success probability in G 6 must also be negligible.