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Abstract 
 

Backgroung  

 

Antimicrobial resistance (AMR) is on the rise worldwide. Tools such as dynamic regression 

(DR) models can correlate antimicrobial consumption (AMC) with AMR and predict future 

trends to help implement antimicrobial stewardship programs (ASPs).  

 

Main body  

 

We carried out a systematic review of the literature up to 2023/05/31, searching in PubMed, 

ScienceDirect and Web of Science. We screened 641 articles and finally included 28 studies 

using a DR model to study the correlation between AMC and AMR at a hospital scale, 

published in English or French. Country, bacterial species, type of sampling, antimicrobials, 

study duration and correlations between AMC and AMR were collected. The use of β-lactams 

was correlated with cephalosporin resistance, especially in Pseudomonas aeruginosa and 

Enterobacterales. Carbapenem consumption was correlated with carbapenem resistance, 

particularly in Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter 

baumannii. Fluoroquinolone use was correlated with fluoroquinolone resistance in Gram-

negative bacilli and methicillin resistance in Staphylococcus aureus. Multivariate DR models 

highlited that AMC explained from 19 to 96% of AMR variation, with a lag time between 

AMC and AMR variation of 2 to 4 months. Few studies have investigated the predictive 

capacity of DR models, which appear to be limited.  

 

Conclusion  

Despite their statistical robustness, DR models are not widely used. They confirmed the 

important role of fluoroquinolones, cephalosporins and carbapenems in the emergence of 

AMR. However, further studies are needed to assess their predictive capacity and usefulness 

for ASPs. 

 

   --- 

 

Background 
 

Antimicrobial resistance (AMR) is increasing worldwide [1, 2] and by 2050, 10 million 

deaths per year could be related to infections caused by multidrug-resistant (MDR) bacteria, 

surpassing cancers [3]. Given the close link between antimicrobial consumption (AMC) and 

AMR, the World Health Organization (WHO) has encouraged antimicrobial stewardship 

programs (ASPs) and AMR surveillance in response to this alarming situation [4–6].  

 



 

Observational or quasi-experimental studies using time series models are recognized as the 

gold standard for estimating the correlation between AMC and AMR [7–9]. Among these 

models, dynamic regression (DR) models, originally used in economics to study stock market 

fluctuations, are probably one of the best options for studying correlations between AMC and 

AMR [10].  

 

Combining the advantages of Box and Jenkins’ autoregressive integrated moving average 

(ARIMA) [11] and Pankratz’s linear transfer function (LTF) [12], DR models can take into 

account the time lag between antimicrobial use and the emergence of AMR, as well as the 

prior prevalence of AMR, to best estimate the correlation between AMR and AMC. In 

addition, multivariate DR models can assess the effect of the use of different antimicrobials 

on AMR, and the burden of their use in relation to other mechanisms involved in the 

emergence of AMR [13].  

 

Finally, DR models could be used to evaluate existing ASPs and to develop new ones, 

targeting the consumption of antibiotics that are more closely linked to the emergence of 

AMR [14]. However, their predictive capacity is the subject of debate and could limit their 

use to retrospective analyses only [15]. Indeed, external validation of DR models has been 

performed in few studies [15], in which they seems to be much better at describing the link 

between prior AMC and AMR, rather than predicting the emergence of resistance on the basis 

of presumed AMC.  

 

In the last decade, numerous studies have been published, and it is not easy for readers to 

have an overview of these results, which can nevertheless influence our practice and the 

choice of antimicrobial therapy, particularly in hospital setting.  

 

This systematic review aims to summarize the correlations between AMC and AMR 

reported in studies using DR models, and to explore the predictive ability of these models for 

use in the assessment and construction of ASPs.  

Main text 
 

Methods 
 

Search strategy  
 

The methodology of this literature review followed the updated Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) recommendations [16]. The study was 

registered on PROSPERO (CRD42022324469), the international prospective register of 

systematic reviews. Articles included in this systematic review were obtained from three 

databases of peer-reviewed literature: PubMed (NLM database), ScienceDirect and Web of 

Science. PubMed and Web of Science databases were searched using the following terms: 

(“antibiotic resistance” OR “antimicrobial resistance”) AND (“antibiotic consumption” OR 

“antimicrobial consumption” OR “antibiotic use” OR “antimicrobial use” OR “stewardship 

program” OR “intervention”) AND (“time series analysis” OR “times-series” OR “dynamic 

regression” OR “autoregressive integrated moving average” OR “ARIMA” OR “linear 

transfer function” OR “LTF”). ScienceDirect database was searched using the following 

terms: (“antibiotic” OR “antimicrobial) AND (“resistance”) AND (“consumption” OR 



“utilization” OR “use”) AND (“dynamic regression” OR “autoregressive integrated moving 

average” OR “ARIMA”). Database was searched from 2000 to 2023 (“2000/01/01” (date—

publication): “2023/05/31” (date—publication)). Finally, we searched in the reference lists of 

selected articles to find additional studies.  

Inclusion/exclusion criteria  
 

All studies that used DR (or analogous) models and examined the in-hospital correlation 

between AMC and AMR rates or incidences, regardless of bacterial species, were eligible for 

inclusion. DR models are identified with different terminology [17], thus a statistician 

familiar with DR models (F.S.) checked all the models. DR models can be either univariate 

studying each antimicrobial separately, or multivariate studying several antimicrobials 

simultaneously. Community-based studies or those assessing both the hospital and 

community setting were not eligible for inclusion. Studies using other time series models 

(such as interrupted time series) were not included. Articles were limited to the English or 

French language. Reviews and animal studies were excluded. Meta-analyses with 

heterogeneous studies (different bacteria, different antimicrobials), were also ruled out.  

Study selection  
 

Two independent reviewers (P.L.-L. and A.S.) blindly screened potentially eligible abstracts. 

Then, full-text articles were assessed by two reviewers (P.L.-L. and F.S.). Whenever a 

discrepancy between reviewers arose after full-text reading, study’s eligibility was discussed 

with another reviewer (A.S.) until a consensus was achieved.  

Data collection  
 

Author names, year of publication, study period and duration, study location, microorganisms, 

sample types, antimicrobial treatments and study duration were collected from each report.  

When calculated, the coefficient of determination (R
2

), which represented the percentage of 

variations in AMR explained by the DR as a function of AMC, was recorded. The authors of 

studies were contacted in case of missing or incomplete data. We did not carry out a meta-

analysis due to the heterogeneity of the studies examined (different bacteria and different anti-

biotics analyzed), which would have led to inconclusive results.  

Quality of studies  
 

Conventional tools for assessing the risk of bias in non-randomized studies (EPOC, ROBINS, 

ORION reports…) were not suitable to assess the quality of quasi-experimental 

epidemiological time-series studies. Thus, after consultation with our team of methodologists 

and research of relevant existing tools, we created a specific checklist (Table S1) adapted 

from those of the Quebec university Hospital [18], the Newcastle-Ottawa Scale [19] and the 

STROBE checklist [20]. The quality of the studies was independently assessed by two 

reviewers (P.L.-L. and F.S.). Discrepancies were resolved by discussion with another 

reviewer (A.S.) to reach a consensus.  

 



Results 
 

Search results  
 

The database search yielded 641 articles and seven additional records were identified from 

reference lists. Of these, 566 were excluded after abstract screening and 37 were excluded 

after full-text review. A further 17 articles were excluded after analysis for statistical issues 

(including 11 studies using ARIMA model and cross-correlation analysis without DR, and 

one study in which DR use was not confirmed despite attempts to contact the authors). 

Finally, 28 studies [8, 13–15, 21–44] met the inclusion criteria (Table 1; Fig. 1).  

Studies characteristics  
 

The characteristics of the studies are summarized in Table 1.  

 

The 28 included articles [8, 13–15, 21–44] were published from 2000 to 2023. The studies 

were mainly conducted in hospitals in the United Kingdom (5/28) [21, 23, 25, 34, 35], France 

(5/28) [13, 15, 22, 26, 42], Germany (4/28) [14, 28, 29, 33], China (3/28) [38, 43, 44] and 

Greece (3/28) [30, 31, 39]. Most articles studied the correlation between AMC and AMR 

month by month, with a median follow-up ranging from 15 to 174 months [24, 29].  

 

Twenty-six studies [8, 14, 15, 21–38, 40–44] included all the bacteriological samples 

available, while one [13] focused on urine analyses and one [39] on blood cultures. When 

different samples from the same patient were positive for the same microorganism, samples 

were deduplicated in most studies (23/28) [8, 13–15, 21–23, 26–32, 34, 36–38, 40–44]. 

Studies most frequently focused on Staphylococcus aureus (9/28) [21–23, 29, 32, 34, 35, 41, 

44], Pseudomonas aeruginosa (7/28) [8, 14, 24, 26, 27, 33, 40], Klebsiella sp. (7/28) [8, 25, 

28, 38–40, 43] and Escherichia coli (6/28) [8, 15, 27, 28, 40] and on the resistance to 

cephalosporin, methicillin, carbapenem and fluoroquinolone. Only three studies focused on 

the emergence of MDR bacteria [14, 24, 26]. Only seven of the 28 studies focusing on 

hospital-acquired infections or colonization were restricted to samples taken after 48 h of 

hospital stay according to the definition of nosocomial infections [15, 21–23, 28, 29, 42].  

Comprehensive monitoring of AMC was carried out in 12 of the 28 included studies [21–23, 

28, 29, 32, 34, 35, 37, 41, 42, 44], while some studies specifically analyzed the effect of 

antimicrobial classes on the emergence of AMR: carbapenems (12/28) [8, 14, 15, 24, 26, 30, 

31, 33, 36, 38, 40, 43], cephalosporins (12/28) [15, 26, 27, 30, 31, 33, 38, 40], 

fluoroquinolones (10/28) [13–15, 24, 26, 30, 31, 33, 36, 43] and piperacillin-tazobactam 

(8/28) [14, 15, 24, 30, 31, 33, 36, 43]. All studies reported at least one statistically significant 

correlation between antimicrobial use and AMR (Table 1).  

Correlation between antimicrobial consumption and resistance  
 

The use of β-lactams was frequently reported to be correlated with the emergence of 

cephalosporin resistance. With a 0 to 5 months lag time, these correlations were reported for 

Enterobacterales and P. aeruginosa in seven and four studies, respectively and were mainly 

caused by extended-spectrum β-lactamases (ESBLs) and/or AmpC β-lactamases [8, 15, 24, 

27, 28, 33, 36, 40, 42]. Overall, multivariate DR models including β-lactams and fluoro-

quinolones consumption explained 15–86% of variation in cephalosporin resistance [8, 15, 

28, 36].  

 



Three studies [15, 28, 42] reported specifically a correlation between fluoroquinolone 

consumption and cephalosporin resistance. The use of fluoroquinolones was also correlated 

with emergence of resistance to fluoroquinolone in Gram-negative bacteria with 0 to 5 months 

of lag time in six publications [13, 15, 24, 30, 42, 43]. In this case, DR model explained 40–

66% of fluoroquinolone resistance variation [13, 15, 30, 43]. Fluoroquinolones use was also 

reported to be correlated with the emergence of methicillin resistant S. aureus (MRSA) in 

seven papers with a lag time of 2 to 4 months [21–23, 29, 34, 35, 41]. MRSA emergence was 

correlated with the use of macrolides in six articles, with a lag time ranging from 1 to 5 

months. Multivariate DR model, including fluoroquinolone, macrolide and cephalosporin 

consumption, explained 41–96% of MRSA emergence [21, 22, 29, 34, 41].  

Carbapenems use was correlated with the emergence of carbapenems resistance in P. aeruginosa in 

four studies [8, 24, 33, 40]. This correlation was also found in Klebsiella pneumoniae and 

Acinetobacter baumannii in three and two papers, respectively [25, 30, 38, 40]. The lag time between 

emergence of carbapenems resistance and carbapenem consumption ranged between 0 and 12 

months. DR models highlighted that 19 to 79% of carbapenem resistance rate variation was 

explained by carbapenem consumption [8, 25, 30, 38]. 

Model description  
 

Twenty-one studies (21/28) [8, 13–15, 21–23, 25, 26, 30, 31, 33–36, 38–43] used DR as 

described by Pankratz [11, 12]. In the seven remaining studies, the statistical models used, 

namely, “dynamic lag times series” and “multivariate ARIMA lag structure regression model” 

were assessed as a DR model (7/28) [24, 27–29, 32, 37, 44]. One study did not perform lag 

time correlation [27], see Table 1.  

Applications of DR model  
 

Beyond correlating AMR and AMC, DR models have been reported to be useful to predict 

AMR emergence due to AMC [8, 14, 15, 27, 31, 34, 39]. They were considered effective tools 

for estimating the expected effect of a reduction in antimicrobial use on resistance [8, 14, 15, 

22, 23, 28, 29, 34, 36, 41, 43]. Thus, they could be used to assess ASP efficiency and make 

new antimicrobial policies. However, their predictive capacity may be limited under certain 

conditions, notably when the incidence and prevalence of AMR is low [15]. 

Quality of studies  
 

The quality of studies was mainly satisfactory, except for two studies [27, 44] (Figs. 2 and 3). Two 

studies [23, 27] reported unclear methods, mentioning only the ARIMA model while both the ARIMA 

and LTF models are needed to perform a DR model. However, in numerous papers, the term ARIMA 

was used instead of DR [35, 37, 41], and studies reporting a dynamic relationship between AMR and 

AMC, suggested a DR model was used. Finally, results were not clearly reported in one studies [25] 

and the discussion of limitations was moderately satisfactory in seven articles [21, 23, 27, 28, 34, 35, 

40]. 

 



 

 

 



 

Discussion 
 

In this review of 28 studies using DR models in hospital setting, we reported correlations 

between ß-lactams and fluoroquinolones use and cephalosporin resistance in Enterobacterales 

and P. aeruginosa, carbapenems use and carbapenem resistance in P. aeruginosa, K. 

pneumoniae and A. baumannii, and fluoroquinolones and macrolides use and methicillin 

resistance in S. aureus. A lag time of 2 to 4 months between AMC and the emergence of 

AMR was reported in most studies. In multivariate DR models, the burden of AMC on AMR 

fluctuation ranged from 15 to 96%. We also reported the potential usefulness of DR models in 

AMR prediction and, in accordance, their possible value in guiding ASP.  

 

Many studies using linear or logistic regression models [45–47] or interrupted time series 

[48–51] have highlighted the selection pressure of antimicrobials. Indeed, antimicrobials with 

broad-spectrum activity, are frequently reported to be associated with AMR emergence, 

especially in the ESKAPE group (namely, Enterococcus faecium, S. aureus, K. pneumoniae, 

A. baumannii, P. aeruginosa and Enterobacter spp) [49, 52–57]. These findings are in line 

with those reported using the DR models, which however have advantages over other studies 

[10, 58, 59]. Firstly, they are based on big data analyses providing a comprehensive view of 

selection pressure [7]. Secondly, the LFT allows temporal correlation, which increased the 



model’s ability to early detect a correlation between antimicrobial use and AMR emergence 

as reported by Erdeljić et al. [24]. Thirdly, since AMR rates are not independent series, DR 

models avoid the bias of overestimating correlation, since they take into account the 

autocorrelation of the series studied [10, 53]. Finally, multivariate analysis of DR models 

could explain the burden of AMC in resistance fluctuation relative to the colonization 

pressure [10, 14].  

 

Using DR models for assessing the correlation between AMC and AMR, the coefficients of 

determination represent the burden of a class of antibiotic on AMR [8]. It should be noted that 

coefficients of determination reported in our systematic review are disparate. This may be 

explained by the heterogeneity of the studies included, notably due to variations in practices 

such as hygiene protocols, variations in the bacterial species involved or stochastic variations 

[23, 24, 34, 53]. The crucial role of infection control procedures especially hand hygiene, and 

the strategic application of measures designed to curtail microbial transmission in influencing 

the landscape of AMR must be emphasized here, as they modify the complex relationship 

between AMC and AMR [60]. In addition, the genetic mechanisms underlying AMR 

(mutations and acquisition of resistance genes) lead to the development of cross-resistance - 

where AMC of one class results in resistance to other classes - contributing to the emergence 

of MDR strains [61]. Thus, the study of the correlation between AMC and AMR is com-

plicated by the interplay of these genetic factors, which vary between antibiotic classes and 

bacterial species [62]. Moreover, DR models are based on large dataset analyses [7, 11], in 

which individual risk factors for AMR, such as age, immunosuppression, or chronic diseases, 

dose and duration of antimicrobial therapy, are not included. Nevertheless, it should be 

highlighted that antibiotic classes known for their ability to induce AMR, such as fluoro-

quinolones, exhibit both high correlation coefficients and narrow confidence intervals. This 

underscores their significant impact on the emergence of AMR [13, 15, 30, 43].  

 

Finally, compared with other models, DR models have the advantage of being able to predict 

future fluctuations in AMR as a function of AMC. With the growing clinical importance of 

mathematical models to guide antimicrobials selection [63], DR models are seen as promising 

tools for the development of new ASPs. In fact, they can help select the most interesting 

antimicrobial agent to target, and then measure the effects of a given ASP on the incidence of 

AMR compared with the incidence initially predicted [8, 14, 31]. As predictive tools, they 

could also be used to visualize the effect of a theoretical decrease in AMC on future AMR 

incidence [14]. However, external validations and cross validations between observations and 

predictions are mandatory, all the more so as the predictive capabilities of models can be 

undermined when the incidence of AMR is low [14, 15]. 

 

We must acknowledge some limitations in this review. First, studies were mainly 

geographically limited to European and Asian countries, limiting the generalization of the 

results to other geographical areas with different bacterial epidemiology. Second, studies 

included in this report have methodological limitations that could have induced bias in result 

interpretation. Particularly, several studies did not exclude duplicate samples (5 of 28) or 

patients previously known to be carriers of MDR bacteria [24, 25, 33, 35, 39]. Some studies 

were based on short follow-up times for DR modeling and unclear sampling timing [24, 27, 

28, 30, 33, 36, 44], and three-quarters of included articles did not exclude samples taken 



within the first 48 h of hospitalization [8, 13, 14, 24, 25, 27, 30–41, 43, 44, 64]. Last, DR 

models focusing only on selection pressure and did not include the burden of colonization 

pressure. Nonetheless, these biases are common and inherent to all time series studies, which 

remain a reference model for studying AMR fluctuations at hospital scale. 

 

 

Conclusion 
 

 

To our knowledge, this report is the first systematic review of the use of DR models to assess 

the correlation between AMC and AMR at the hospital level. Although statistically 

recognized as a valid model for studying the correlation between AMC and AMR, DR models 

are little used in the literature. They have been used to highlight the correlation between 

cephalosporins use and cephalosporin resistance in E. coli and P. aeruginosa, carbapenems 

use and carbapenem resistance in P. aeruginosa and A. baumannii and fluoroquinolone use 

and fluoroquinolone resistance in Gram-negative bacteria and MRSA, after a lag-time of 2 to 

4 months. Further studies are mandatory to analyze the link between AMR in other bacterial 

species and antimicrobials, and to assess the use of DR models for AMR forecasting and for 

ASPs building and evaluation. 
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