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Biclustering is an unsupervised machine-learning technique that simultaneously clusters rows and columns
in a data matrix. Over the past two decades, the field of biclustering has emerged and grown significantly,
and currently plays an essential role in various applications such as bioinformatics, text mining, and pattern
recognition. However, finding significant biclusters in large-scale datasets is an NP-hard problem that
can be formulated as an optimization problem. Therefore, metaheuristics have been applied to address
biclustering problems due to their (i) ability to efficiently explore search spaces of complex optimization
problems, (ii) capability to find solutions in reasonable computation time, and (iii) facility to adapt to
different problem formulations, as they are considered general-purpose heuristic algorithms. Although
several studies on biclustering approaches have been proposed, a comprehensive study using metaheuristics
for bicluster analysis is missing. This work presents a survey of metaheuristic approaches to address the
biclustering problem in various scientific applications. The review focuses on the underlying optimization
methods and their main search components: representation, objective function, and variation operators. A
specific discussion on single versus multi-objective approaches is presented. Finally, some emerging research
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1 INTRODUCTION

Biclustering1 is an unsupervised machine-learning technique aiming to simultaneously cluster
rows and columns of a data matrix. Biclustering algorithms aim to discover homogeneous sub-
matrices (biclusters) providing unique advantages [72, 120]: (i) they can unravel local patterns,
i.e., observations meaningfully correlated on a subset of attributes; (ii) they provide flexibility
in the definition of different types of biclusters; (iii) they allow overlapping biclusters, such that
one observation can belong to more than one bicluster; and (iv) they help alleviate the “curse of
dimensionality” problem [87]. Therefore, biclustering is a helpful and active research field that has
gradually become a widely used technique in different applications such as bioinformatics [47, 80],
text mining [10, 19, 85], dimensionality reduction [87], recommendation systems [18, 109, 117],
energy [29] and water [105] consumption, time-series analysis [11, 42], disease identification [115,
120], marked segmentation [62], and many more [90, 120]. To show the volume of studies currently
being published in the field of biclustering, Figure 1 presents a year-count of research publications
about biclustering in the past 22 years. This plot shows an increasing trend in the number of
publications since the first works in 2000.

The biclustering task has been proven to be an NP-complete2 problem [12], leading to the
proposal of optimization methods as heuristics to solve this combinatorial problem. Thus, the
development of effective heuristic methods and appropriate cost functions are critical factors for
discovering meaningful biclusters from complex datasets in various real-world applications. In
this regard, Pontes et al. [90] analyzed a large number of approaches to biclustering and classified
them depending on whether they use evaluation metrics within the search heuristic method. In
particular, nature-inspired metaheuristics have gradually been applied successfully to biclustering
problems because of their excellent exploratory capability [80, 90, 102]. These approaches model
the behavior of natural phenomena, which exhibit an ability to learn or adapt to new situations to
solve problems in complex and changing environments [49].

Several reviews on bicluster analysis have been conducted, emphasizing different aspects and
perspectives of the biclustering problem [72, 90, 120]. However, only Pontes et al. [90] surveyed
some methods of biclustering based on metaheuristics as part of a more extensive survey focused
on gene expression data. José-García et al. [52] have recently published a preliminary paper that
briefly summarizes some metaheuristic methods for biclustering problems. Therefore, we present
an up-to-date overview of metaheuristic-based biclustering approaches that have been reported
in the past 22 years. This survey contributes to the following main aspects:

— A review of important aspects of the biclustering task when addressed as an optimization
problem, such as encoding schemes, variation operators, and bicluster quality metrics.

— An in-depth review of single-objective and multi-objective metaheuristics applied to biclus-
ter analysis.

— An overview of available datasets, software tools, and external bicluster metrics for biclus-
tering problems.

— A discussion of research opportunities in biclustering, a guide to the different components
of metaheuristics, and future trends in the field of biclustering.

The outline of this review is as follows: Section 2 describes the basic terms and concepts related
to biclustering analysis. Section 3 outlines the main components involved in metaheuristic-based

1Biclustering is also referred to as co-clustering, subspace clustering, bi-dimensional, or two-way clustering in the
specialized literature.
2Nondeterministic Polynomial-time Complete: Any of a class of computational problems for which no efficient solution
algorithm has been found.
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Fig. 1. Number of publications and citations on biclustering (left) and publication percentages in the top
10 research fields (right) throughout the past 22 years. This bibliometric data and research fields were
extracted from the Web of Science (WoS) database using the keywords biclustering, co-clustering, and
subspace clustering. “CS” is an abbreviation for Computer Science.

biclustering algorithms. Section 4 reviews single-objective biclustering algorithms for optimizing
a unique objective function. Section 5 presents multi-objective biclustering metaheuristics, which
optimize multiple cost functions simultaneously. In Section 6, we provide an overview of datasets,
software tools, and validation metrics for biclustering problems. Section 7 presents perspectives
and future tendencies in biclustering. Finally, the conclusions are given in Section 8.

2 BASIC PRELIMINARIES

In this section, we define the problem of biclustering, present classical approaches, and expose
how this problem has been modeled as a combinatorial optimization one.

2.1 Biclustering Definition

Given a data matrix X ∈ RN×M where N denotes the number of patterns (rows), and M denotes
the number of attributes (columns). Let us define a set of patterns as R and the set of attributes
as C; therefore, the matrix XR,C = (R,C ) denotes the full dataset X. Thus, a bicluster is a subset
of rows exhibiting similar behavior across a subset of columns, denoted as BI, J = (I , J ) such that
I ⊆ R and J ⊆ C .

Depending on the application and nature of data, several types of biclusters have been described
in the literature [72, 90]. In the following definitions, let BI, J = (I , J ) be a bicluster in which bi j

refers to the value of the ith pattern under the jth attribute. π represents any constant value for
B, αi (1 ≤ i ≤ |I |) and α j (1 ≤ j ≤ |J |) refers to the constant values used in the additive models
for each pattern and attribute; and βi (1 ≤ i ≤ |I |) and βj (1 ≤ j ≤ |J |) corresponds to the constant
values used in the multiplicative models. The different types of biclusters are described in detail
below and illustrated in Figure 2 based on this notation:

— Biclusters with constant values. A bicluster with constant values reveals subsets of rows and
subsets of columns with similar behaviors. This type of bicluster is expressed by: bi j = π .

— Biclusters with constant values on rows or columns. A bicluster with constant values in the
rows or columns identifies a subset of rows/columns with similar behavior in a subset of
rows/columns. Therefore, the values can vary from row to row or column to column. It can
be expressed in the additive or multiplicative form:
– Constant rows: bi j = π + αi or bi j = π × βi

– Constant columns: bi j = π + α j or bi j = π × βj

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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Fig. 2. Examples of different bicluster types with constant values, coherent values, and coherent evolutions.

— Biclusters with coherent values on both rows and columns [2]. A bicluster with coherent
values in the rows or columns identifies a subset of rows/columns with coherent behavior,
regardless of the exact numerical values over a subset of rows/columns. It can also be
expressed as either additive or multiplicative:
– Additive: bi j = π + αi + α j

– Multiplicative: bi j = π × βi × βj

— Bicluster with coherent evolutions: A subset of patterns (rows) is up-regulated or down-
regulated coherently across subsets of attributes (columns) irrespective of their actual values;
that is, in the same directions but with varying magnitude. In these scenarios, coherent
evolutions are difficult to model using a mathematical formulation.

Based on the previous definitions of bicluster types, it is possible to formally describe three kinds
of patterns [2]:

— Perfect shifting pattern. A bicluster follows this pattern if its values can be obtained by adding
a constant-condition number α j to a typical value for each row (πi ), where α j denotes
the shifting coefficient for column j. The bicluster values fulfill the following equation:
bi j = πi + α j .

— Perfect scaling pattern. A bicluster follows this pattern if its values can be obtained by
multiplying a constant-condition number βj to a typical value for each row (πi ), where βj

is called the scaling coefficient for column j. Although the rows present the same behavior,
changes are more abrupt for some rows than others. The bicluster values are mathematically
defined as follows: bi j = πi × βj .

— Perfect shifting and scaling pattern. A bicluster follows this pattern if it exhibits coherent
values on both rows and columns, i.e., for the additive and multiplicative model at the same
time. The bicluster can be represented by: bi j = πi × βj + α j .

In most real-world problems, cluster analysis involves the extraction of several biclusters, where
the relations between the biclusters are defined by two criteria, exclusivity and exhaustivity [72,
102]. The exclusivity criterion indicates that an element must belong to a single bicluster, whereas
the exhaustivity criterion specifies that every element must be part of one or more biclusters.
Exclusivity commonly refers to covering the input matrix, while exhaustivity is associated with
overlapping among biclusters.

Considering these two criteria, several bicluster structures can be obtained [72]. Figure 3
illustrates some examples of bicluster structures, for instance, biclusters with exclusive rows
or exclusive columns (no overlapping and partial covering), exclusive rows and exhaustive
columns (columns overlapping and partial covering), exhaustive rows and exhaustive columns
(full overlapping and full covering). Consequently, the selection of different bicluster types and
structures to be discovered depends on both the problem to be solved and the type of data involved.
Therefore, the biclustering algorithm should be able to identify the desired biclusters.

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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Fig. 3. Examples of different bicluster structures based on exclusivity (matrix covering) and exhaustivity
criteria (bicluster overlapping).

Fig. 4. Biclustering algorithms taxonomy. In this survey, metaheuristic biclustering algorithms highlighted
in gray are reviewed.

2.2 Classical Biclustering Approaches

Biclustering has gained much interest since the seminal work of Cheng and Church on biclustering
to analyze gene expression data [12]. There are several biclustering algorithms in the literature,
in particular, to deal with biological data, including detection of gene expression [12, 90], protein
interaction [25], and microarray data analysis [56].

To study such enriched literature, we categorized the biclustering algorithms into two main
classes: heuristic-based and metaheuristic-based approaches. This categorization builds upon previ-
ous taxonomies proposed by Madeira and Oliveira [72] and by Seridi et al. [102]. Figure 4 illustrates
the employed taxonomy of biclustering algorithms, where the metaheuristic-based approaches are
the primary focus of this review work and is detailed in the following sections. Regarding the
heuristic-based algorithms, Madeira and Oliveira proposed to divide these approaches into five
classes [72], their main advantages and shortcomings are listed in Table 1:

Iterative row and column clustering combination. To identify biclusters, classical cluster-
ing methods are applied to the rows and columns of the data matrix separately; then, the resulting
clusters are combined using an iterative procedure to obtain biclusters of good quality. Examples
of such algorithms are the Coupled Two-Way Clustering (CTWC) [36], the Interrelated Two-Way
Clustering (ITWC) [13], and the Double Conjugated Clustering (DCC) algorithm [72].

Divide-and-conquer. These approaches split the problem into several smaller sub-problems of
the same type, solving each one recursively. Then, the solutions of the sub-problems are combined
to obtain a single solution to the original problem. Divide-and-conquer biclustering algorithms
start with the entire data matrix as the initial bicluster. Then, this bicluster is split into several

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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Table 1. Main Benefits and Shortcomings of Different Classes of Classical Biclustering Approaches

Class Name Approaches Benefits Shortcomings

Iterative row and
column clustering
combination

CTWC [36],
ITWC [13],
DCC [72]

The simplest way to identify biclusters

with traditional clustering algorithms

Performance depends on meeting

certain criteria such as stability and

bicluster size

Divide-and-conquer
DCA [43], Bi-
max [92]

Are usually fast as recursively break

the biclustering problem into more

subproblems

Are likely to miss good biclusters

that might be split before their

identification

Greedy iterative search

CCA [12],
OPSM [6],
QUBIC [61],
LAS [104]

Are usually fast, as creates biclusters

by iteratively adding/removing

rows/columns

Performance depends on bicluster

metrics and may find suboptimal

solutions

Exhaustive bicluster
enumeration

SAMBA [112],
BiBit [98],
DeBi [103]

Find the “best” biclusters in the data

matrix

Tend to be very complex and can

only be run under bicluster size

constraints

Distribution parameter
identification

BS [56], BBC [40],
FABIA [44]

Allows learning joint distributions and

dependencies in the input data

Estimating each parameter can be

difficult and time-consuming

biclusters iteratively until satisfying a certain termination criterion. These approaches are quite
fast, but good biclusters may be split before they can be identified. The main algorithms in this
class are the Direct Clustering Algorithm (DCA) [43] and the Binary Inclusion-Maximal Biclustering
Algorithm (Bimax) [92].

Greedy iterative search. These methods create biclusters by adding or removing rows and
columns using a quality criterion that maximizes the local gain. Therefore, although these
approaches may make wrong decisions and miss good biclusters, they usually tend to be very
fast. The most representative work in this category is Cheng and Church’s Algorithm (CCA) [12].
Other approaches are the Order-Preserving Submatrix (OPSM) [6], the QUalitative BIClustering
(QUBIC) [61], and the Large Average Submatrices (LAS) algorithm [104].

Exhaustive bicluster enumeration. These algorithms consider that the best submatrices
can only be identified by generating all the possible row and column combinations of the data
matrix. Therefore, an exhaustive enumeration of all possible biclusters in the matrix is performed.
These approaches find the best biclusters (if they exist) but are suitable only for very small
datasets. The main drawback is their high complexity, requiring restrictions on the size of the
biclusters when performing the exhaustive enumeration. The main algorithms in this category
are the Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) [112], Bit-Pattern Biclustering
Algorithm (BiBit) [98], and the Differentially Expressed Biclusters (DeBi) [103].

Distribution parameter identification. These approaches assume a given statistical model
and try to identify the distribution parameters used to generate the data by optimizing a particular
quality criterion. Some of the algorithms adopting this approach are Spectral Biclustering (SB) [56],
the Bayesian BiClustering (BBC) [40], and the Factor Analysis for Bicluster Acquisition (FABIA)
algorithm [44].

2.3 Biclustering as an Optimization Problem

As mentioned previously, a bicluster B (I , J ) associated with a data matrix X (R,C ) is a submatrix
such that I ⊆ R and J ⊆ C , where R is a set of patterns (rows), andC is a set of attributes (columns).
The biclustering problem aims to extract biclusters of a maximal size that satisfy a coherence
constraint. This task of extracting bicluster from a data matrix can be seen as a combinatorial
optimization problem [22, 23].

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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Fig. 5. Main components of biclustering algorithms based on metaheuristics.

Designing a bicluster is equivalent to jointly selecting a subset of rows and a subset of columns
from an input data matrix X ∈ RN×M , where N denotes the number of rows and M denotes
the number of columns. Let us assume that there is no restriction on the number of rows and
columns and no constraints about the nature of the biclusters (i.e., bicluster type and structure).
Then, by nature, the biclustering task is a combinatorial problem with a search space size of
O (2N × 2M ) = O (2N+M ).

However, identifying interesting biclusters is a complex task that requires defining some quality
criteria to be optimized. Such criteria can measure the similarity within a bicluster, coherence, and
dissimilarity (when a set of biclusters is searched). These biclustering quality criteria can be used
as an objective function in a combinatorial optimization context, either alone or multiple, into
a multi-objective perspective. In the second scenario, several complementary quality criteria are
optimized simultaneously.

In the general case, Cheng and Church showed that the problem of finding significant biclusters
is NP-hard [12], giving rise to numerous heuristic and metaheuristic approaches. These approaches
do not guarantee the optimality of their solutions; however, their exploratory capabilities allow
them to find suitable solutions in a reasonable computational time. The following section is
dedicated to the review of metaheuristics designed for biclustering problems.

3 MAIN COMPONENTS OF METAHEURISTIC BICLUSTERING ALGORITHMS

This section presents the main components involved when designing a metaheuristic to address the
biclustering problem. First, a metaheuristic requires a suitable representation of biclusters, which is
directly related to the objective function (i.e., bicluster quality measures) to be optimized. The main
steps in population-based metaheuristics are initializing the population of candidate solutions,
evaluating solutions, applying variation operators, and selecting the best biclustering solutions.
This iterative process is repeated until a particular termination criterion is satisfied. Figure 5
illustrates these main components, where the main types of bicluster encodings, the different
bicluster quality measures, and the variation operators to generate new bicluster solutions are
described below in this section. Other specific components, including the initialization procedures
and selection strategies, are presented in detail when describing the single- or multi-objective
biclustering algorithms in Sections 4 and 5.

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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Fig. 6. Exemplification of two types of bicluster encodings in metaheuristic-based biclustering algorithms.
The bicluster elements are shaded in the input data matrix, while the pattern and attribute indices are
represented by white and gray boxes, respectively.

3.1 Bicluster Encoding

Metaheuristics require a representation or an encoding of potential solutions to the optimization
problem. The encoding scheme is directly related to the objective function to be optimized and
the recombination operators used to generate new solutions. Therefore, encoding schemes play a
relevant role in the efficiency and effectiveness of any metaheuristic and constitute an essential
step in its design [111].

In the bicluster analysis literature, different encoding schemes are commonly used in meta-
heuristics to represent bicluster solutions: binary encoding and integer encoding. These bicluster
encodings are illustrated in Figure 6 by considering a 4 × 3 didactic data matrix and are described
separately below.

Binary bicluster encoding (BBE) [8]. A bicluster B (I , J ) is represented as a binary vector of
fixed-length size (N +M ): x = {r1, . . . , rN , c1, . . . , cM }, where the first N positions are related to
the number of patterns (rows) and the remainingM positions to the number of attributes (columns)
from the data matrix X. If the ith pattern or the jth attribute in X belongs to the bicluster B (I , J ),
then ri = 1 or c j = 1 for 1 ≤ i ≤ N and 1 ≤ j ≤ M ; otherwise, ri = 0 or c j = 0. Figure 6 illustrates
the binary encoding for N = 4 and M = 3 when x = {1, 0, 1, 0, 0, 1, 1}.

Integer bicluster encoding (IBE) [19]. A bicluster B (I , J ) is represented as an integer vector
of variable-length size Nr + Mc : x = {r1, . . . , rNp

, c1, . . . , cMs
}, where the first Nr positions are

ordered pattern indices, whereas the last Mc positions correspond to ordered attribute indices
from the data matrix X. Each ith pattern position takes an integer value in the set {1, . . . ,N }, and
each jth attribute position takes a value in {1, . . . ,M }, where N and M are the numbers of patterns
and attributes in the data matrix, respectively. Figure 6 illustrates the integer encoding for Nr = 2
and Mc = 2 when x = {1, 3, 2, 3}.

Overall, the BBE encoding is a practical representation, but it requires exploring all patterns
and attributes of each bicluster. On the contrary, the IBE encoding requires less computation time
and memory space, as it depends on the number of ordered patterns and attributes for a particular
bicluster [3, 19, 101]. Therefore, the integer bicluster encoding is more efficient in terms of time and
space on large-scale datasets; however, it is more impractical when dealing with variable-length
solutions in population-based metaheuristics.

3.2 Objective Functions

The development of both an effective biclustering algorithm and an appropriate bicluster quality
measure (bicluster criteria) is essential to guide the search process. In particular, the quality

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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Table 2. Main Characteristics of Bicluster Metrics Used in Metaheuristic Bicluster Algorithms According
to their Suitability for Finding Different Types of Biclusters Defined in Section 2.1

Metric Name
Metric

ID
Range Benefits Shortcomings

Bicluster Size bSIZE↑ [1,+ inf] + Find larger size biclusters
- Should be used with other

metrics

Bicluster Variance [43] VAR↑ [0,+ inf] + Discover constant biclusters
- Bicluster overlap is not

allowed

Bicluster Row Variance [89] rVAR↓ [0,+ inf]
+ Find larger row biclusters where

row values vary across columns

- Should be used with other

metrics

Mean Square Residue [12] MSR↓ [0,+ inf] + Capture shifting patterns
- Unable for scaling patterns

and coherent evolutions

Scaling Mean Square
Residue [76]

SMSR↓ [0,+ inf] + Recognize scaling patterns - Unable for shifting patterns

Average Correlation
Function [78]

ACF↑ [0,+1] + Find shifting & scaling patterns
- Assume linear dependency in

rows

Average Correlation Value [113] ACV↑ [0,+1]
+ Capture shifting & scaling

patterns

- Assume linear dependency in

rows

Virtual Error [28] VE↓ [0,+ inf]
+ Capture shifting OR scaling

patterns
- Sensitive to outliers

Coefficient of Variation
Function [68]

CVF↓ [0,+ inf] + Find constant value biclusters
- Should be used with other

metrics

measure aims to recognize different types of patterns in the input data matrix by quantifying the
quality of a bicluster. Several bicluster metrics have been proposed in the literature to discover
different types of biclusters. This section presents some of the most well-known evaluation
measures that have been used as objective functions in different metaheuristics.

For convenience, consider the following common notation for the interpretation of the different
objective functions. Given a bicluster B (I , J ) with |I | patterns (rows), |J | attributes (columns), the
average bi J of the ith row, the average bI j of jth column, and the average value bI J of the bicluster
B (I , J ) are represented, respectively, as follows:

bi J =
1

|J |
∑

j ∈J

bi j , bI j =
1

|I |
∑

i ∈I

bi j , bI J =
1

|I | × |J |
∑

i ∈I, j ∈J

bi j . (1)

Additionally, the following notation is used, an abbreviation of the bicluster evaluation measure
followed by an arrow to denote if the function is maximized (↑) or minimized (↓), indicating the
bicluster solution’s quality. The main characteristics of the biclustering metrics considered here
are summarized in Table 2.

Bicluster Size (bSIZE). This function represents the size of a bicluster, where α is a constant
representing a preference towards the maximization of the number of rows or columns:

bSIZE(B)↑ = α
|I |
|R | + (1 − α )

|J |
|C | . (2)

Sometimes this measure is referred to as the Bicluster volume (VOL), i.e., as the number of
elements bi j in B, |I | × |J |.

Bicluster Variance (VAR). Hartigan [43] proposed the variance measure to identify biclusters
with constant values:

VAR(B)↓ =
|I |∑

i=1

| J |∑

j=1

(bi j − bI J )2 . (3)

Existing biclustering approaches based on metaheuristics use modifications of VAR to deal with
the identification of more complex types of biclusters. In practice, the row variance (rVAR) is

ACM Computing Surveys, Vol. 56, No. 3, Article 69. Publication date: October 2023.
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used to avoid trivial or constant-value biclusters (i.e., biclusters with significant rows variances).
The rVAR measure is defined as [12, 26]:

rVAR(B)↑ =
1

|I | × |J |

|I |∑

i=1

| J |∑

j=1

(bi j − bi J )2 . (4)

Mean Squared Residue (MSR). Cheng and Chung [12] proposed this quality metric for
evaluating the coherence of the columns and rows of a bicluster. MSR is defined as follows:

MSR(B)↓ =
1

|I | × |J |

|I |∑

i=1

| J |∑

j=1

(bi j − bi J − bI j + bI J )2 . (5)

The lower the MSR, the stronger the coherence exhibited by the bicluster and the better the quality.
If a bicluster has an MSR value lower than a given threshold δ , then it is called a δ -bicluster.

Scaling Mean Squared Residence (SMSR). Mukhopadhyay et al. [76] developed this mea-
sure to recognize scaling patterns in biclusters. The SMSR measure is defined as:

SMSR(B)↓ =
1

|I | × |J |

|I |∑

i=1

| J |∑

j=1

(bi j − bi J − bI j + bI J )2

b2
i J
× b2

I j

. (6)

Average Correlation Function (ACF). Nepomuceno et al. [78] proposed the ACF to evaluate
the correlation between patterns in a bicluster. It is defined as:

ACF(B)↑ =
2

|I | ( |I | − 1)

|I |∑

i=1

| J |∑

j=i+1

�����
cov (pi ,pj )

σpi
σpj

����� , (7)

where cov (pi ,pj ) = 1/| J |
∑ | J |

k=1 (bik − bi J ) (bjk − bj J ) represents the covariance of the rows
corresponding to patterns pi and pj , and σpi

(respectively, σpj
) represents the standard deviations

of the rows corresponding to patterns pi and pj . The ACF measure generates values in the [−1, 1]
range, where values close to the unity represent that the patterns in B are highly correlated.

Average Correlation Value (ACV). Teng and Chan [113] proposed this measure to evaluate
the correlation homogeneity of a bicluster. The ACV is defined as:

ACV(B)↑ = max
⎧⎪⎪⎨⎪⎪⎩

1

|I | ( |I | − 1)

∑

i, j ∈I,i�j

ri j ,
1

|J | ( |J | − 1)

∑

i, j ∈J ,i�j

r ′i j

⎫⎪⎪⎬⎪⎪⎭
, (8)

where ri j or r ′i j is a Pearson correlation coefficient between the ith row and jth column. ACV
generates values in the interval [0, 1], where a value closer to 1 indicates that the rows or columns
in the bicluster are highly co-expressed, whereas a low ACV value means the opposite.

Virtual Error (VE). Divina et al. [28] proposed the VE function to identify shifting or scaling
patterns in biclusters. It is defined as follows:

VE(B)↓ =
1

|I | × |J |

|I |∑

i=1

| J |∑

j=i

|b̂i j − ρ̂i | , (9)

where ρi = 1/| J |
∑ | J |

j=1 bi j represents a virtual pattern from B, and b̂i j (respectively, ρ̂i ) is the
standardized value of the elementbi j . The standardized values of a vectorV = {v1, . . . ,vn }, denoted
as V̂ , is the set V̂ = {v̂1, . . . , v̂n } with v̂k = (vk − μV )

/
σV for 1 ≤ k ≤ n, where μV and σV are
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the mean and standard deviation ofV . A small value of VE represents a high similarity among the
patterns in the biclusters.

Coefficient of Variation Function (CVF). Maatouk et al. [68] presented the CVF to charac-
terize the variability of a bicluster. The function is defined as

CVF (B)↓ =
σB

bI J
, (10)

where σB represents the standard deviation of the bicluster, and bI J denotes the average of all the
values in the bicluster B. A high value of CVF indicates that the bicluster presents a high level of
dispersion.

3.3 Variation Operators

In metaheuristic algorithms, variation operators play an important role in providing a good
compromise between exploration and diversification to find high-quality solutions. Given the
definitions of the different bicluster encoding types (binary and integer), we describe some
crossover and mutation operators commonly used in metaheuristic-based biclustering algorithms,
such as genetic algorithms, differential evolution, and particle swarm optimization.

Crossover operators. This operator is inspired by biological systems, where crossover is
a process that occurs between pairs of chromosomes that align, split into specific parts, and
then exchange fragments with each other. In biclustering algorithms, crossover is simulated by
swapping segments of positions between two candidate bicluster solutions. Thus, this operator
tries to combine pairs of bicluster solutions (e.g., vectors, individuals, agents, particles) to produce
new offspring that inherit the characteristics of the parent solutions. Let us consider two bicluster
solutions P1 = {r1, . . . , rn , c1, . . . , cm } and P2 = {r ′1, . . . , r ′l , c

′
1, . . . , c

′
k
}, where rn ≤ r ′

l
:

— Single-point crossover [101, 102]. The crossover is performed in each bicluster rows and
columns fragment. For the rows fragment, the crossover point λ1 in P1 is generated randomly
in the r1 < λ1 ≤ rn range. Similarly, the random point λ2 in P2, λ2 = r ′j , where r ′j ≥ λ1

and r ′j−1 ≤ λ1. The crossover in the columns fragment is performed similarly to the rows
fragment.

— Two-point crossover [26]. It works the same way as the one-point crossover, but it selects two
points inside for each bicluster fragment, two points for the row fragment, and another two
points for the column part.

— Uniform crossover [26]. It combines the bicluster positions (bits) that are uniformly sampled
from each part of the bicluster solution.

— Bicluster crossover operator [69]. This operator is specifically designed for bicluster ap-
proaches based on the following four steps: First, the creation of the merge bicluster step
consists of merging the row sets I1 and I2 (the column sets J1 and J2) of the two parent
biclusters B1 and B2 into a single set I (respectively, J ) to form a new bicluster Bmerge (I , J ).
Second, a discretized bicluster Bdiscrete is created by clustering the columns of the Bmerge (I , J )
bicluster based on the standard deviation of their rows. The third step consists in building a
variation matrix from the Bdiscrete bicluster, which presents the column clusters for each row
in Bmerge. Finally, to extract biologically relevant biclusters, this step aims to extract child
biclusters whose rows follow the same pattern under a set of columns. These new biclusters
are determined by browsing the variation matrix and selecting the rows with the same value
under the same row pairs (see further details on this crossover operator in Reference [69]).
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Mutation operators. It is considered a secondary operator in several metaheuristics and is
used less frequently than the crossover. In practice, it is recommended to use a low mutation
percentage or to start with a high percentage at the beginning of the search and then decrease it to
favor the performance of the metaheuristic. Hence, mutation operators aim to modify a bicluster
solution randomly or according to a specific heuristic strategy. Some examples are:

— Random mutation operator [69]. Let us consider an individual in the population B =
{r1, . . . , rn , c1, . . . , cm }, two mutation points ri and c j are generated corresponding to the
rows and columns parts, respectively, such that r1 < ri ≤ rn and c1 < c j ≤ cm . Then, a
random row r ′i and column c ′j values are generated to replace the chosen positions ri and c j ,
respectively.

— Multiple-node deletion. This operator is based on the CC algorithm [12] and refers to the step
of removing one or more elements from the candidate bicluster. First, compute bi J , bI j , bI J ,
and MSR(I , J ). Next, if 1/| J |

∑
j ∈J (bi j −bi J −bI j +bI J )2 > γ ×MSR(I , J ), then remove the rows

i ∈ I . Second, recompute bi J , bI j , bI J and MSR(I , J ). Then, if 1/|I |
∑

i ∈I (bi j −bi J −bI j +bI J )2 >
γ ×MSR(I , J ), then remove the columns j ∈ J .

— Single-node deletion. This operator is based on the CC algorithm [12] and refers to the step of
removing one or more rows or columns from the candidate bicluster. While MSR(I , J ) > δ ,
recompute bi J , bI j , bI J , and MSR(I , J ). Next, find the node p (row or column) with the largest
squared residue; then, delete the node p. Finally, return the updated bicluster when the while
condition is satisfied.

— Multiple-node addition. This operator is based on the CC algorithm [12] and refers to the
step of adding one or more elements to the candidate bicluster. First, compute bi J , bI j , bI J ,
and MSR(I , J ). Then, if 1/|I |

∑
i ∈I (bi j − bi J − bI j + bI J )2 ≤ MSR(I , J ), then add the columns

j � J . Second, recompute bi J , bI j , bI J , and MSR(I , J ). Next, if 1/| J |
∑

j ∈J (bi j −bi J −bI j +bI J )2 ≤
MSR(I , J ), then add the rows i � I .

— CC-based mutation operator [101, 102]. This mutation strategy is based on the CC algo-
rithm [12], which aims to generate β biclusters. Given a bicluster solution, its rows or
columns with MSR values above (or below) a certain threshold are eliminated (or added)
applying the following conditions, where a “node” refers to a row or a column: (i) multiple
node deletion, (ii) single node deletion, and (iii) multiple node addition.

— Correlation-based bicluster mutation [69]. This mutation method tries to improve the coher-
ence of each row in a bicluster using an average correlation function. Thus, based on a cor-
relation matrix, the number of rows coherent with each row in each bicluster is calculated.
If the less coherent row is coherent with a number of rows less than a correlation threshold,
then the mutation operator replaces it with the most coherent row in the bicluster. Other-
wise, it adds the most coherent row to the biclusters.

4 SINGLE-OBJECTIVE BICLUSTERING APPROACHES

This section presents a review of single-objective metaheuristics for the biclustering problem.
These approaches are mostly population-based metaheuristics that iteratively attempt to improve
a population of biclustering solutions. First, the population is usually initialized randomly. Then,
a new population of potential solutions is generated, which could be integrated into the current
one by using some selection criteria. Finally, the search process stops when a given condition is
satisfied (see Figure 5).

Table 3 summarizes relevant details of 25 single-objective biclustering algorithms based on
metaheuristics. These algorithms, including hybrid biclustering metaheuristic approaches, are
described in more detail below in this section.
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Table 3. List of Single-objective Biclustering Algorithms Based on Metaheuristics

Year Algorithm Metaheuristic Criterion∗ Encoding Parameters† Application

2004 HEA [8] GA MSR BBE Nд , Np , Rm , Rc , δ , α Gene expression (2)
2006 SAB [9] SA MSR Other T , Rcool, Nmr, Nmc, δ Gene expression (3)
2006 SEBI [26] GA bSIZE, MSR, rVAR BBE Nд , Np , Rm , Rc , Re , wr , wc , δ Gene expression (2)
2007 BIC-aiNET [19] AIS MSR IBE Nд , Np , wr , wc , ε , δ Text mining (1)
2009 BiHEA [34] GA MSR BBE Nд , Np , Rm , θ , δ , α Gene expression (1)
2009 SS&GA [79] GA + SS (H) MSR BBE Nд , Np , Ne , Rc , wr , wc Gene expression (2)
2010 HEAB [78] GA + SS (H) ACF BBE Nд , Np , Ne , Rc , wr , wc , β Gene expression (1)
2011 SSB [80] SS ACF BBE Nд , Np , Ne , Rc , wr , wc , β Gene expression (3)
2011 BPSO [95] PSO ACV BBE Nд , Np , w , c1, c2, δ , β Text mining (1)
2012 CBEB [94] GA MSR BBE Nд , Np , Ns , Dt , δ , β Gene expression (3)
2012 EvoBic [3] GA bSIZE, MSR, ACF IBE Nд , Np , Rm , Rc , δ , β Gene expression (2)
2012 PSO-SA-BIC [114] PSO + SA (H) ACV BBE Nд , Np , w , c1, c2, T , Rcool, δ , β Gene expression (3)
2013 Evo-Bexpa [89] GA VE, VOL, rVAR, Overlap BBE Nд , Np , Rm , Rc , β , wr , wc , wo , wv Gene expression (4)
2014 EBACross [68] GA bSIZE, MSR, ACF, CVF BBE Nд , Np , Rm , Rc , δ , β , wr , wc , th Gene expression (2)
2014 TriGen [42] GA MSRtime, LSLtime IBE Nд , Np , Rm , Rc , wr , wc , wt , δ , β Gene expression (1)
2015 COCSB [67] CS MSR BBE Nд , Np , Nls, Ncs, δ , β Gene expression (6)
2015 SSB-Bio [82] SS bSIZE, ACF, ACFbio BBE Nд , Np , Ne , w1, w2, wrc, β Gene expression (2)
2015 BISS [81] SS ACF BBE Nд , Np , Ne , Rc , wr , wc , ρ, β Gene expression (3)
2018 BISS-go [83] SS ACFgo BBE Fд , Nд , Np , Ne , Rc , wr , wc , ρ, β Gene expression (3)
2018 GACSB [125] GA + CS (H) MRS, VE, ACV BBE Nд , Np , Rm , Rc , Re , w , δ , Gene expression (3)
2018 EBA [69] GA bSIZE, MSR, ACF, CVF BBE Nд , Np , Rm , Rc , Nmr, Nmc, δ , α Gene expression (3)
2019 BP-EBA [47] GA bSIZE, MSR, SMSR BBE Nд , Np , Rm , Rc , Re , δ Gene expression (3)
2019 EBIC [86] GA + Tabu list logarithm-based criterion IBE Nд , Np , Rm , Rc , Re , υ, w1 Gene expression (8)
2021 HPSO-TriC [77] PSO + SA (H) ACFtime BBE Nд , Np , w , c1, c2, T , Rcool, δ , β Gene expression (1)
2021 ELSA [70] GA ACFstat, ACFbio BBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (2)
2021 TriCS [110] CS MSRtime BBE Nд , Np , Rc , Nnest, λ, δ , α Gene expression (1)

“Metaheuristic” indicates the type of metaheuristic algorithm, which can be Simulated Annealing (SA), Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Scatter Search (SS), Cuckoo Search (CS), Artificial Immune System
(AIS). “Criterion” refers to the bicluster evaluation metric as defined in Section 3.2; “Encoding” indicates the type of
bicluster encoding binary (BBE) or integer (IBE) as described in Section 3.1; “Parameters” refers to the input parameters
required by the metaheuristic, which are defined at the bottom of the table; and “Application” indicates a real-world
application used by the corresponding algorithm, the number of datasets is given in parentheses.
∗: Biclustering criteria are combined into a single objective function. †: Number of iterations (Nд ); population size of
individuals, cells, or particles (Np ); external population’s size (Ne ); CS nest size (Nnest); mutation rate (Rm ); crossover
rate (Rc ); elitism rate (Re ); number of biclusters (β ); minimum rows (Nmr ); minimum columns (Nmc ); rows weight
(wr ); columns weight (wc ); rows-columns weight (wr c ); objective function weights (wi ); mean squared residue score
threshold (δ ); multiple node deletion frequency (α ); overlap degree (θ ); minimum correlation value (ρ); AIS
suppression threshold (ϵ ); CBEB number of subspaces (Ns ); SA temperature (T ); SA cooling rate (Rcool); PSO inertia
weight (w ); PSO parameters (c1,c2); distance threshold (Dt ); Gene annotation file (Fд ).

4.1 Simulated Annealing

Simulated annealing (SA) is a probabilistic method proposed by Kirkpatrick et al. [55] to find
the global minimum of a cost function. SA emulates the physical process whereby a melted solid
material (initial state) is gradually cooled until the minimum energy state is reached, when the
material structure is “frozen.” SA is a single-solution-based metaheuristic that improves a single-
point solution, evaluated by a single criterion function, and could be viewed as search trajectories
through the search space [49].

Simulated annealing has been used to address the biclustering problem. Brayan et al. [9]
proposed an SA-based biclustering approach called SAB. In SAB, each solution’s fitness function
is computed using the MSR criterion, and the algorithm is run k times to obtain k biclusters. To
avoid overlap among biclusters, in the SAB algorithm, the discovered biclusters are masked in the
original data. This strategy is similar to the Cheng and Church (CC) [12], where the original values
are replaced with random ones to prevent them from being part of any further bicluster.

4.2 Genetic Algorithms

Genetic algorithm (GA), developed by Holland in the early 1970s [45], emulates the principle of
evolution by natural selection stated by Charles Darwin. Several biclustering approaches have
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been proposed based on GAs, which sometimes are referred to as evolutionary algorithms (EAs).
Next, we summarize these approaches.

Bleuler et al. [8] proposed the first evolutionary biclustering algorithm, HEA, in 2004. This
algorithm uses a fixed-length binary encoding, and the MSR criterion is used as the fitness function.
In addition, a bit mutation and uniform crossover are used as variation operators to generate new
biclustering solutions during the evolutionary process. In HEA, a diversity maintenance strategy is
considered, which decreases the overlapping level among the bicluster, and the CC algorithm [12]
is also applied as a local search method to increase the size of the biclusters. In the end, the entire
population of individuals is returned as the set of resulting biclusters. Gallo et al. [34] proposed the
BiHEA algorithm, similar to Bleuler’s approach, as both perform a local search based on the CC
algorithm and use the same objective function. However, the approaches differ in the crossover
operators (BiHEA uses a two-point crossover). In addition, BiHEA considers an external archive
to keep the best generated biclusters throughout the evolutionary process.

Divina and Aguilar-Ruiz [26] presented a sequential evolutionary biclustering (SEBI) algorithm.
The term sequential refers to that the evolutionary algorithm generates only one bicluster per
run; thus, to generate several biclusters, SEBI needs to be invoked iteratively. Furthermore, a
general matrix of weights is considered to control the overlapping among biclusters. In SEBI,
three crossover and mutation strategies are used with equal probability of reproduction: one-point,
two-point, and uniform crossovers, and mutations that add a row or a column to the bicluster or
the standard mutation. The evaluation of individuals is carried out by an objective function that
involves three different criteria: MSR, bicluster size, and row variance.

Huang et al. [94] proposed a biclustering approach based on genetic algorithms and hierarchical
clustering called CBEB. First, the rows of the data matrix (conditions) are separated into a number
of condition subsets (subspaces). Next, the genetic algorithm is applied to each subspace in parallel.
Then, an expanding-merging strategy is employed to combine the subspace results into output
biclusters. In CBEB, the MSR metric is used as an objective function, whereas a simple crossover
and a binary mutation are used to reproduce new solutions. Although this approach outperforms
several traditional biclustering algorithms, it requires a longer computation time than the other
methods. This disadvantage of CBEB is mainly due to its utilization process and separation method
for creating and evaluating several subspaces.

An evolutionary biclustering (EvoBic) algorithm with a variable-length representation was
proposed by Ayadi et al. in Reference [3]. This integer encoding represents the individuals as a
string composed of ordered genes and conditions indices, reducing time and memory space [19].
EvoBic algorithm considers three different biclustering metrics (bSIZE, MSR, ACF), a single-point
crossover, and a standard mutation to generate new biclusters.

Another evolutionary biclustering algorithm, called Evo-Bexpa, was presented by Pontes
et al. [89]. This algorithm allows identifying types of biclusters in terms of different objectives.
These objectives have been put together by considering a single aggregative objective function.
Evo-Bexpa bases the bicluster evaluation on the use of expression patterns, recognizing both
shifting and scaling patterns by considering the VE, Vol, Overlap, and Var quality metrics.

Maatouk et al. [68] proposed an evolutionary biclustering algorithm named EBACross. First,
the initialization of the initial population is based on the CC algorithm [12]. Then, the evaluation
and selection of the individuals are based on four complementary biclusters metrics: bicluster size
(bSIZE), MSR metric, average correlation (ACF), and the coefficient of variation function (CVF). In
EBACross, a binary encoding of fixed length, a crossover method based on the standard deviation
of the biclusters, and a mutation strategy based on the biclusters’ coherence are considered.
Later, the same authors proposed a generic evolutionary biclustering algorithm (EBA) [69]. The
authors analyzed the EBA’s performance by varying its genetic components in this work. In
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the study, they considered three different biclustering metrics (bSIZE, MSR, and ACF), two
selection operators (parallel and aggregation methods), two crossover methods (random-order and
biclustering methods), and two mutation operators (random and biclustering strategies). Hence,
several versions of the EBA algorithm were introduced. In terms of statistical and biological
significance, the clustering performance showed that the EBA configuration based on a selection
with aggregation and biclustering crossover and mutation operators performed better for several
microarray data. Recently, also Maatouk et al. [70] proposed the ELSA algorithm, an evolutionary
algorithm based on a local search method that integrates biological information in the search
process. The authors stated that statistical criteria are reflected by the size of the biclusters and
the correlation between their genes, while the biological criterion is based on their biological
relevance and functional enrichment degree. Thus, the ELSA algorithm evaluates the statistical and
biological quality of the biclusters separately by using two objective functions based on the average
correlation metric (ECF). Furthermore, to preserve the best biclusters over different generations,
an archiving strategy is used in ELSA.

Huang et al. [47] proposed a bi-phase evolutionary biclustering algorithm (BP-EBA). The first
phase is dedicated to the evolution of rows and columns, and the other is for the identification of
biclusters. The interaction of the two phases guides the algorithm toward feasible search directions
and accelerates its convergence. BP-EBA uses a binary encoding, while the population is initialized
using a hierarchical clustering strategy to discover bicluster seeds. The following biclustering
metrics were employed to evaluate the individuals in the population: MSR, SMSR, and bSIZE.
Finally, the performance of this approach was compared with other biclustering algorithms using
microarray datasets.

Gutierrez-Aviles [42] proposed an evolutionary algorithm, TriGen, to find biclusters in tempo-
ral gene expression data (known as triclusters). Thus, the aim is to find triclusters of gene expres-
sion that simultaneously take into account the experimental conditions and time points. Here, an
individual is composed of three structures: a sequence of genes, a sequence of conditions, and a
sequence of time points. Furthermore, the authors proposed specific genetic operators to generate
new triclusters. Two different metrics were taken into account to evaluate the individual: MSRtime

(modification of the MSR metric) and LSLtime (least-squares approximation for the points in a 3D
space representing a tricluster). As a result, TriGen could extract groups of genes with similar pat-
terns in subsets of conditions and times, and these groups have shown to be related in terms of
their functional annotations extracted from the Gene Ontology.

4.3 Scatter Search

Scatter search (SS) is a population-based evolutionary metaheuristic that emphasizes systematic
processes against random procedures [58]. The optimization process consists of evolving a set
called reference, which iteratively is updated by using combination and improvement methods that
exploit context knowledge. In contrast to other evolutionary approaches, SS is founded on the
premise that systematic designs and methods for creating new solutions afford significant benefits
beyond those derived randomly.

Nepomuceno and his collaborators have developed a series of SS-based biclustering algorithms
for gene expression data [80–83]. In Reference [80], the authors presented the SSB algorithm to
find shifting and scaling patterns biclusters, which are interesting and relevant patterns from a
biological point of view. For this purpose, the average correlation function (ACF) was modified and
used as the objective function. The SSB algorithm uses a binary encoding to represent biclustering
solutions and includes a local search method to improve biclusters with positively correlated
genes. The same authors proposed another SS-based biclustering algorithm that integrates prior
biological knowledge [82]. This algorithm (herein referred to as SSB-bio) requires as input, in
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addition to the gene expression data matrix, an annotation file that relates each gene to a set
of terms from the repository Gene Ontology (GO). Thus, two biological measures, FracGO and
SimNTO, were proposed and integrated as part of the objective function to be optimized. This
fitness function is a weighted-sum function composed of three factors: the bicluster size (bSIZE),
the bicluster correlation (ACF metric), and the bicluster biological relevance based on FracGO or
SimNTO measures (ACFbio metric).

Nepomuceno et al. [81] proposed the BISS algorithm to find biclusters with both shifting and
scaling patterns and negatively correlated patterns. This algorithm, similar to SSB-Bio, is based
on a priori biological information from the GO repository, particularly the categories: biological
process, cellular components, and molecular function. In BISS, a fitness function involving the AFC
and bSIZE metrics was used to evaluate the quality of the biclusters. Furthermore, in another recent
study, Nepomuceno et al. [83] used the BISS algorithm for the biclustering of high-dimensional
expression data. This algorithm, referred to as BISS-go, also considers the biological knowledge
available in the GO repository to find biclusters composed of groups of genes that are functionally
coherent. This task is accomplished by defining two GO semantic similarity measures that are
integrated into the fitness function. The reported results show that the inclusion of biological
information improves the performance of the biclustering process.

4.4 Cuckoo Search

Cuckoo search (CS), developed by Yang and Deb [124], is a nature-inspired metaheuristic based
on the brood parasitism of some cuckoo species. In this algorithm, the exploration of the search
space is enhanced using Lévy flights (Lévy distribution) instead of using simple isotropic random
walks.

Lu et al. [67] introduced a CS-based biclustering algorithm for gene expression data named
COCSB. The authors incorporated different strategies in COCSB to improve its diversity perfor-
mance and convergence rate, such as the searching- and abandoning-nest operations. In CBEB,
the MSR metric is used as the objective function, whereas a binary bicluster representation of
the solutions is considered. This approach was compared to several classical biclustering algo-
rithms, including CC and SEBI, obtaining a good biological significance and time computation
performance.

4.5 Particle Swarm Optimization

Particle swarm optimization (PSO), introduced by Kennedy and Eberhart [54], is a population-
based search method in which the individuals (referred to as particles) are grouped into a swarm.
The particles explore the search space by adjusting their trajectories iteratively according to self-
experience and neighboring particles [58].

Rathipriya et al. [95] proposed a PSO-based biclustering algorithm called BPSO. BPSO was
applied on web data to find biclustering that contains relationships between web users and
webpages, useful for e-commerce applications such as web advertising and marketing. The
individuals were encoded using the traditional binary bicluster representation, and the average
correlation value (ACV) metric was used as the fitness function. This PSO-based algorithm
outperformed two traditional biclustering algorithms based on greedy search. Furthermore, the
identified biclusters by BPSO covered a more considerable percentage of users and webpages,
capturing the global browsing patterns from web usage data.

4.6 Hybrid Metaheuristic Approaches

It is well-known that nature-inspired metaheuristics are effective strategies for solving optimiza-
tion problems. However, sometimes it is difficult to choose a metaheuristic for a particular instance
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problem. In these scenarios, hybrid approaches provide flexible tools that can help to cope with
this problem. In line with this, different hybrid nature-inspired metaheuristics for the biclustering
problem are described below.

Nepomuceno et al. [78, 79] proposed a couple of hybrid metaheuristics for biclustering based on
scatter search (SS) and genetic algorithms (GAs). In Reference [79], the authors proposed the SS&GA

biclustering algorithm, in which the general scheme is based on SS but incorporates some of GA’s
features, such as the mutation and crossover operators, to generate new biclustering solutions. This
algorithm uses a binary encoding to represent solutions and considers the MSR metric to evaluate
the quality of the biclusters. Later, the authors proposed a similar hybrid evolutionary algorithm
(herein referred to as HEAB) for biclustering gene expression data [78]. In HEAB, the ACF metric
is used as the fitness function based on a correlation measure. First, HEAB searches for biclusters
with groups of highly correlated genes; then, new biclusters with shifting and scaling patterns are
created by analyzing the correlation matrix. The experimental results using the Lymphoma dataset
indicated that the correlation-based metric outperformed the well-known MSR metric.

Recently, Yin et al. [125] proposed a hybrid biclustering approach based on cuckoo search (CS)
and genetic algorithms (GAs), GACSB. This approach considers the CS algorithm as the main
framework and uses the tournament strategy and the elite-retention strategy based on the GA to
generate the next generation of solutions. In addition, GACSB uses as objective functions different
metrics, namely, ACV, MSR, and VE. The experimental results obtained by GACSB were compared
with several classic biclustering algorithms, such as the CC algorithm and SEBI, where GACSB
outperformed these algorithms when considering various gene expression datasets.

Furthermore, hybrid biclustering approaches that combine particle swarm optimization (PSO)
features and simulated annealing (SA) have been proposed in the literature [77, 114]. First,
Thangavel et al. [114] proposed a PSO-SA biclustering algorithm (PSO-SA-BIC) to extract
biclusters of gene expression data. In this approach, SA is used as a local search procedure to
improve the low-performing particles’ position. A modified version of the ACV metric is used
to identify biclusters with shifting and scaling patterns. The experimental results showed that
the PSO-SA-BIC algorithm outperformed some classical algorithms by providing statistically
significant biclusters. Recently, Narmadha and Rathipriya [77] developed a hybrid approach
combining PSO and SA to extract triclusters from a 3D-gene expression dataset (Yeast Cell Cycle
data). This algorithm, named HPSO-TriC, uses a fitness function based on the ACF metric, which
aims to identify tricluster with a high correlation degree among genes over samples and time points
(this function is referred to as ACFtime). The HPSO-TriC algorithm was compared with a PSO-
based biclustering algorithm, performing better, as the extracted tricluster was more biologically
significant.

4.7 Summary of Single-objective Biclustering Approaches

We described 25 single-objective biclustering methods based on metaheuristics, including simu-
lated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), scatter search
(SS), and cuckoo search (CS). These algorithms are summarized in Table 3, where GA-based bi-
clustering algorithms represent 61% of the surveyed methods. Moreover, some hybrid approaches
(a combination of different metaheuristics) have been proposed due to the complexity of the bi-
clustering problem; indeed, several of the reviewed approaches often incorporate a local search
strategy to better exploit the search space. Regarding the objective function, many biclustering
algorithms (43%) combine information from multiple bicluster metrics in such a way that these
optimization functions usually consider the homogeneity (e.g., the MSR metric) and the bicluster
size (bSIZE). For measuring the bicluster homogeneity, the mean squared residence (MSR) and
the average correlation function (ACF) are commonly used with percentages of 52% and 43%,
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respectively. Finally, we noticed that Binary Bicluster Encoding (BBE) is the most used among
the biclustering algorithms (87%), even though it is less efficient than Integer Encoding (IBE) in
terms of computation time and memory space.

5 MULTI-OBJECTIVE BICLUSTERING APPROACHES

Several real-world optimization problems naturally involve multiple objectives. As the name
suggests, a multi-objective optimization problem (MOOP) has a number of objective functions to
be minimized or maximized. Therefore, the optimal solution for MOOPs is not a single solution but
a set of solutions denoted as Pareto-optimal solutions. In this sense, a solution is Pareto-optimal
if it is impossible to improve a given objective without deteriorating another. Generally, such
a set of solutions represents the compromise solutions between different conflicting objectives
[21].

The biclustering problem can be formulated as a combinatorial optimization problem, such
that multiple bicluster quality criteria can be optimized simultaneously [72, 102]. Indeed, in gene
expression data analysis, the quality of a bicluster can be defined by its size and its intra-cluster
variance (coherence). However, these criteria are independent and notably in conflict, as the
bicluster’s coherence can constantly be improved by removing a row or a column, i.e., by reducing
the bicluster’s size.

This section introduces several multi-objective metaheuristics that have been proposed for the
biclustering problem. Table 4 summarizes some relevant details about these types of algorithms
that are introduced in this section.

5.1 Multi-objective Evolutionary Algorithms Based on NSGA-II

One of the most representative multi-objective algorithms is the non-dominated sorting genetic
algorithm (NSGA-II) [21]. This Pareto-dominance algorithm is characterized by incorporating
an explicit diversity-preservation mechanism. As NSGA-II has widely been used to address the
biclustering problem, we will outline how the algorithm operates. In NSGA-II, the offspring
population Qt is first created by using the parent population Pt ; then, the two populations are
combined to form the population Rt . Next, a non-dominated sorting method is used to classify
the entire population Rt . Then, the new population Pt+1 is filled by solutions of different non-
dominated fronts, starting with the best non-dominated front, followed by the second front, and
so on. Finally, when the last allowed front is being considered, there may exist more solutions than
the remaining slots in the new population; in this case, a niching strategy based on the crowding
distance is used to choose the members of the last front. For a more detailed description and
understanding of NSGA-II, the reader is referred to Reference [21]. Next, we describe different
biclustering algorithms that use NSGA-II as the underlying optimization method.

Several multi-objective biclustering approaches have been proposed based on the well-known
NSGA-II algorithm [17, 27, 28, 57, 73–75, 101]. Research in multi-objective biclustering became
popular after the work by Mitra and Banka [75] entitled “Multi-objective evolutionary biclustering
of gene expression data,” which was published in 2006. This algorithm (referred to as MOEAB)
uses the CC method [12] during the population’s initialization and after applying the variation
operators. MOEAb uses a binary encoding representation (BBE), a uniform single-point crossover,
and a single-bit mutation. Concerning the objective functions, the size of the bicluster (bSIZE) and
the MSR metric were considered.

Divina et al. [27, 28] have proposed some multi-objective biclustering approaches based on
NSGA-II for microarray data. First, Divina and Aguilar-Ruiz [27] presented the sequential multi-
objective biclustering (SMOB) algorithm for finding biclusters of high quality with large variation.
SMOB adopts a sequential strategy such that the algorithm is invoked several times, each time
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Table 4. List of Multi-objective Biclustering Algorithms Based on Metaheuristics

Year Algorithm Metaheuristic Criteria Encoding∗ Parameters† Application

2006 MOEAB [75] NSGA-II bSIZE, MSR BBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (2)
2007 SMOB [27] NSGA-II bSIZE, MSR, rVAR BBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (3)
2008 MOFBA [74] NSGA-II bSIZE, MSR, rVAR IBE Nд , Np , Rm , Rc , Re , αr , αc , α , δ Gene expression (2)
2008 MOPSOB [65] MOPSO bSIZE, MSR, rVAR BBE Nд , Np , w , c1, c2, δ , α Gene expression (2)
2008 CMOPSOB [63] MOPSO bSIZE, MSR, rVAR BBE Nд , Np , w , c1, c2, δ , ϵ Gene expression (2)
2009 AMOPSOB [60] MOPSO bSIZE, MSR, rVAR BBE Nд , Np , w , c1, c2, δ , α Gene expression (2)
2009 MOACOB [64] MOACO bSIZE, MSR BBE Nд , Np , λ, π , δ , α Gene expression (2)
2009 MOM-aiNet [14] MOAIS bSIZE, MSR IBE Nд , Np , wr , wc , ε , δ , α Gene expression (3)
2009 MOGAB [73] NSGA-II MSR, rVAR IBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (4)
2009 SPEA2B [35] SPEA2 bSIZE, MSR, rVAR BBE Nд , Np , Ne , Rm , Rc , Re , δ , α Gene expression (2)
2011 MOBI [101] NSGA-II bSIZE, MSR, rVAR IBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (2)
2012 SMOB-VE [28] NSGA-II bSIZE, VE, rVAR BBE Nд , Np , Rm , Rc , Re , Ts , δ , α Gene expression (9)
2015 HMOBI [102] IBEA MSR, rVAR IBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (4)
2015 SPEA2B-δ [38] SPEA2 bSIZE, MSR BBE Nд , Np , Ne , Rm , Rc , δ , α Gene expression (1)
2015 EMOA-δ -TRIMAX [7] NSGA-II MSR, bSIZE, ρ BBE Nд , Np , Rm , Rc , δ , α Gene expression (3)∗

2016 AMOSAB [99] AMOSA bSIZE, MSR IBE Nд , Np , T , Rcool, Nmr, Nmc, δ Gene expression (2)
2017 PBD-SPEA2 [39] SPEA2 bSIZE, MSR, rVAR IBE∗ Nд , Np , Rm , Rc , Re , δ , α Gene expression (2)
2019 BP-NSGA2 [57] NSGA-II bSIZE, MSR BBE Nд , Np , Rm , Rc , Re , δ , α Gene expression (1)
2019 AMOSAB-PS [1] AMOSA bSIZE, MSR IBE Nд , Np , T , Rcool, Nmr, Nmc, δ Gene expression (3)
2019 β-SMOB [29] NSGA-II bSIZE, MSR, rVAR BBE Nд , Np , Rm , Rc , Re , δ , α Energy consumption (1)
2020 MMCo-Clus [17] NSGA-II MSR, rVAR, AI BBE∗ Nд , Np , Rm , Rc , Re , δ , α Gene expression (3)
2022 BOBEA [71] NSGA-II bSIZE, rVAR IBE Nд , Np , Rm , Rc , Re , δ , α None

2022 TSTP [108] NSGA-II bSIZE, ACV BBE∗ Nд , Np , Rm , Rc , Re , Nmr, δ , α Gene expression (2)

“Metaheuristic” indicates the multi-objective algorithm used as the underlying optimization strategy (NSGA-II, MOPSO,
MOAIS, SPEA2, IBEA, AMOSA). “Criteria” refers to the bicluster evaluation metrics used as objective functions as
defined in Section 3.2; “Encoding” indicates the type of bicluster encoding, binary (BBE) or integer (IBE) as described in
Section 3.1; “Parameters” refers to the input parameters required by the metaheuristic, which are defined at the bottom
of the table; and “Application” indicates a real-world application used by the corresponding algorithm, the number of
datasets is given in parentheses.
∗Modification to the original encoding described in Section 3.1. †: Number of iterations (Nд ); population size of
individuals, cells, or particles (Np ); external population’s size (Ne ); mutation rate (Rm ); crossover rate (Rc ); elitism rate
(Re ); number of biclusters (β ); minimum rows (Nmr ); minimum columns (Nmc ); rows weight (wr ); columns weight
(wc ); rows-columns weight (wr c ); mean squared residue score threshold (δ ); multiple node deletion frequency (α );
minimum correlation value (ρ); AIS suppression threshold (ϵ ); SA temperature (T ); SA cooling rate (Rcool); PSO inertia
weight (w ); PSO parameters (c1,c2); Gene annotation file (Fд ).

returning a bicluster stored in a temporal list. This algorithm considered a binary encoding, three
different crossover operators (one-point, two-point, and uniform), and tree mutation strategies
(single-bit, add-row, and add-column). The objectives considered in SMOB were: the MSR metric,
the bicluster size (bSIZE), and the row variance (rVAR). Later, Divina et al. [28] presented the virtual
error (VE) metric, which measures how well the genes in a bicluster follow the general tendency.
Then, the VE metric was used as an additional objective function in SNOB. This modified algorithm,
referred to as SMOB-VE, aims to find biclusters with shifting and scaling patterns using VE instead
of the MSR metric.

Maulik et al. [73, 74] also presented biclustering algorithms based on the NSGA-II algorithm.
In Reference [74], the authors presented a multi-objective fuzzy biclustering (MOFBA) algorithm
for discovering overlapping biclusters. MOFBA simultaneously optimizes fuzzy versions of the
metrics MSR, bSIZE, and rVAR. Furthermore, MOFBA uses an integer encoding of variable string
length, a single-point crossover, and a uniform mutation strategy. Subsequently, the authors
proposed the MOGAB algorithm [73], which optimizes two objective functions, MSR and rVAR.
Similar to MOFBA, the MOGAB algorithm uses a variable string length encoding, a single-point
crossover, and a uniform mutation strategy. Additionally, the authors presented the bicluster index
(BI) to validate the obtained biclusters from microarray data.
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Seridi et al. [101] proposed a multi-objective biclustering algorithm that simultaneously opti-
mizes three conflicting objectives, the bicluster size (bSIZE), the MSR metric, and the row variance
(rVAR). The presented evolutionary framework MOBI can integrate any evolutionary algorithm,
such as NSGA-II in this case. MOBI uses an integer bicluster encoding, a single-point crossover,
and the CC local-search heuristic [12] replaces the mutation operator.

Kong et al. [57] presented an interesting biclustering algorithm incorporating a bi-phase
evolutionary architecture and the NSGA-II algorithm. In this algorithm, referred to as BP-NSGA2,
the first phase consists of evolving the population of rows and columns and then the population
of biclusters. The two populations are initialized using a hierarchical clustering method, and then
they are evolved independently. Next, during the evolutionary process, the NSGA-II algorithm
simultaneously optimizes the MSR metric and bicluster size. This multi-objective approach
outperformed two traditional biclustering approaches. The same authors revisited this idea of
incorporating a bi-phase evolutionary strategy for the proposal of the BP-EBA algorithm [47].

Recently, Cui et al. [17] proposed a multi-objective optimization-based multi-view co-clustering
(MMCo-Clus) algorithm for feature selection of gene expression data. First, two data views are
constructed using information from two different biological data sources. Next, the MMCo-Clus
algorithm identifies biclusters (co-clustering solutions) considering the constructed views. Finally,
a small number of non-redundant features are selected from the original feature space using
consensus clustering. MMCo-Clus uses two well-known bicluster measures, the MSR metric and
the bicluster size (bSIZE), and the agreement index. Although this approach focuses on feature
selection, it applies an intrinsic biclustering strategy to select relevant features.

5.2 Multi-objective Evolutionary Algorithms Based on SPEA2 and IBEA

Similar to the NSGA-II algorithm, the strength Pareto evolutionary algorithm (SPEA2) [129] is
a well-known multi-objective evolutionary algorithm (MOEA) in the specialized literature. This
algorithm is characterized by maintaining an external population, which is used to introduce
elitism. This population stores a fixed number of non-dominated solutions found during the entire
evolutionary process. Additionally, SPEA2 uses these elite solutions to participate in the genetic
operations along with the current population to improve the convergence and diversity of the
algorithm. Below, we describe some biclustering approaches that use SPEA2 as the primary multi-
objective optimization method.

Gallo et al. [35] addressed the microarray biclustering problem using different MOEAs, where
the SPEA2 algorithm performed better. This approach (SPEA2B) considered a binary encoding, a
probabilistic-based mutation, and a two-point crossover operator. Four different objectives were
considered in SPEA2B: the number of genes, the number of conditions, row variance (rVAR), and
the MSR metric. Additionally, a greedy method was implemented based on the CC algorithm to
maintain large size and low homogeneity biclusters in the population.

Golchin et al. [38, 39] have proposed biclustering approaches based on the SPEA2 algorithm.
First, Golchin et al. [38] presented a multi-objective biclustering algorithm (herein referred to as
SPEA2B-δ ), which optimizes the MSR metric and the size of the bicluster simultaneously. This
algorithm used a binary bicluster encoding, a single-point crossover, and a single-bit mutation
operator. SPEA2B-δ also incorporated a search heuristic strategy similar to the CC algorithm to
remove unwanted genes and conditions. As SPEA2B-δ generates a set of biclustering solutions
(Pareto front approximation), a fitness selection function based on the coherence and size of the
biclusters is considered to choose the best solutions. Later on, Golchin and Liew [39] proposed a
SPEA2-based biclustering algorithm for gene expression data named PBD-SPEA2. This algorithm
considers three objective functions: MSR, bSIZE, and rVAR. An interesting aspect of PBD-SPEA2 is
that each individual in the population represents multiple biclusters, instead of only one bicluster
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as in other approaches. Thus, given a user-defined number of biclusters, k , an integer-based
encoding of fixed length but extended to k biclusters is considered. Regarding the variation
operators for generating new solutions, PBD-SPEA2 uses the CC heuristic as a mutation operator
and a similarity-based crossover. Finally, a sequential selection technique is used to choose the
final solution from the Pareto from approximations obtained by PBD-SPEA2.

Similar to NSGA-II and SPEA2 algorithms, the indicator-based multi-objective algorithm
(IBEA) [128] is another representative MOEA in the evolutionary computation literature. In this
regard, Seridi et al. [102] proposed a biclustering approach based on the IBEA algorithm named
HMOBI [102]. This algorithm used an integer-based representation, a single-point crossover, and
a mutation operator based on the CC algorithm. In HMOBI, three biclustering metrics are con-
sidered as objective functions: the MSR metric and the row variance, and the bicluster size. The
obtained results were compared in terms of the bicluster quality and their biological relevance.

5.3 Multi-objective Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm has been extended to solve multi-objective
optimization problems (MOPs). Most of the existing multi-objective PSO (MOPSO) algorithms
involve developments from the evolutionary computation field to address MOPs. For a review
of different MOPSO algorithms, the reader is referred to the survey by Reyes-Sierra [97]. Below,
we present different MOPSO algorithms for the biclustering problem.

Two multi-objective approaches to microarray biclustering based on MOPSO algorithms were
presented by Junwan Liu et al. [63, 65]. Both approaches use a binary bicluster encoding and
simultaneously optimize three objective functions: the bicluster size (bSIZE), the MSR metric,
and the row variance (rVAR). The first algorithm, named MOPSOB [65], considers a relaxed
form of the Pareto dominance (∈-dominance), whereas the second approach (CMOPSOB [63])
uses a Pareto-based dominance as in the NSGA-II algorithm. Additionally, in the CMOPSOB
algorithm, the information of nearest neighbors between particles is considered when updating the
particles’ velocity, aiming to accelerate the algorithm’s convergence. In the comparative analysis,
the biological relevance of the biclusters obtained by CMOPSOB was analyzed considering the GO
repository, showing that this approach could find biologically meaningful clusters.

Another gene expression biclustering algorithm based on a MOPSO was proposed by Lashkargir
et al. [60]. The authors proposed a hybrid MOPSO for the biclustering problem (AMOPSOB),
which uses binary encoding and optimizes four objective functions: bicluster size, row variance,
and the MSR metric. The AMOPSOB algorithm includes a local search method based on the CC
algorithm and, in addition to the PSO steps, three mutation operators: standard, add-row, and add-
column. Additionally, this approach can find biclusters with a low level of overlap among biclusters
by considering an external archive.

5.4 Other Multi-objective Approaches

This section describes a number of multi-objective approaches to biclustering that do not fit into
the previous classification. The approaches described below are based on ant colony optimization
(ACO), artificial immune systems (AISs), and simulated annealing (SA).

The ACO algorithm [30] is a probabilistic technique inspired by the behavior of ants in finding
paths from their colony to a food source. In this regard, a multi-objective ACO algorithm for
microarray biclustering (MOACOB) was introduced by Liu et al. [64]. MOACOB algorithm uses
ACO concepts for biclustering microarray data, where the bicluster size and the MSR metric
are optimized simultaneously. Furthermore, this algorithm uses a relaxed form of the Pareto
dominance (∈-dominance) and considers a binary encoding to represent biclusters. In MOACOB, a
number of ants probabilistically construct solutions using a given pheromone model; then, a local
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search procedure is applied to the constructed solutions. In general, this multi-objective approach
based on ACO outperformed another three biclustering algorithms in terms of the size of the
obtained biclusters.

AISs are inspired by the principles of immunology and the observed immune process of
vertebrates [111]. Additionally, AIS is highly robust, adaptive, inherently parallel, and self-
organized. In line with these, Coelho et al. [14] proposed a multi-objective biclustering algorithm
based on AIS to analyze texts, named BIC-aiNet. In the text mining problem, the input data matrix
is composed of rows (texts) and columns (attributes of the corresponding texts), and the aim is
to find the bipartitions of the whole dataset. The BIC-aiNet algorithm uses an integer bicluster
representation, a mutation strategy to insert or remove rows and columns, and a suppression
procedure to eliminate entire biclusters if a particular condition is satisfied. This approach was
compared with the k-means algorithm, showing that BIC-aiNet discovered more meaningful text
biclusters.

The simulated annealing-based multi-objective optimization (AMOSA) algorithm [4] has been
used as the underlying optimization strategy for finding bicluster in gene expression data [1, 99].
First, Sahoo et al. [99] presented an AMOSA-based biclustering algorithm (AMOSAB) that
optimized the MSR metric and the row variance (rVAR) simultaneously. AMOSAB used a real-
based encoding of biclusters and a decodification method based on the Euclidean distance to
obtain the final biclusters. Then, the same authors, Acharya et al. [1], proposed modifications
to the AMOSAB algorithm where the decodification method considered three different distance
functions: Euclidean, Point Symmetry (PS), and Line Symmetry (LS). The results showed that the
AMOSA algorithm using the PS and LS distance performed better than the Euclidean version.

5.5 Summary of Multi-objective Biclustering Approaches

We analyzed 23 biclustering approaches that use different nature-inspired multi-objective meta-
heuristics, such as NSGA-II, SPEA2, MOPSO, and AMOSA. The main characteristics of these meth-
ods are summarized in Table 4, where multi-objective evolutionary algorithms are the most widely
used with 63%, the NSGA-II algorithm being the most common of this group with 42%. Regarding
the objective functions used to guide the search of the multi-objective algorithms, we noticed that
the bicluster size (bSIZE), the bicluster coherence (MSR metric), and the row variance (rVAR) are
commonly optimized simultaneously, as these criteria are independent and usually in conflict. Fi-
nally, regarding the types of bicluster representations, it was noted that both techniques are used
almost equally, the binary representation (BBE) with 58%, while the integer representation (IBE)
with 42%. However, in multi-objective algorithms, there is a tendency in recent years to use the IBE
representation, which is more efficient than the binary representation for biclustering problems.

6 DATASETS, SOFTWARE TOOLS, AND VALIDATION METRICS

When aiming to develop a new biclustering approach or to use an existing one, it is important
to be aware of the various resources available that the scientific community has proposed. These
resources help not only to facilitate the development of a new approach but also to verify its
validity and scope. Therefore, this section presents the various available datasets, software tools,
and performance metrics to address biclustering problems.

6.1 Synthetic and Real-life Datasets

Benchmarking plays an essential role in studying biclustering methods and, more generally, in
optimization-based algorithms [5]. The selection of suitable datasets helps to analyze the strengths
and weaknesses of different techniques; thus, this knowledge can be used to develop more efficient
optimization-based biclustering approaches. Table 5 summarizes some datasets used in different
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Table 5. Summary of Biclustering Case Studies in Different Real-world Applications

Data Application Description Software Tool Ref.

Microarray (6,200 ORFs and 515
conditions)

Gene
classification/
Yeast

Biclustering for gene classification SAMBA [112]

Microarray (21,031 genes and 351
conditions)

Gene
classification/
Plant genomes

Biclustering on known genes and construct co-expression
network

QUBIC [118]

Microarray data with 12,533
probes from 72 patients

Disease subtype/
Leukemia

Biclustering by qualitative biclustering algorithm QUBIC [61]

Microarray data for 80 paired
gastric cancer and reference
tissues

Disease subtype/
Gastric cancer

Biclustering on gene expression data and pathways asso-
ciated with cancer development

QUBIC [16]

Microarray data with 7,756 genes
and clinical data from 437
patients

Disease subtype/
Brest cancer

Biclustering to identify molecular-based tumor subgroup cMonkey [119]

6,100 gene expression profiles of
human cancer cell

Gene-drug
association

Biclustering drug-induced gene expression profiles ISA [48]

7,056 genome expression profiles
of five human cells

Gene-drug
association

Identify drug-gene modules by biclustering method FABIA [121]

Matrix of normalized miRNA-seq
expression profiles

Biomarker and
gene signatures
detection

Biclustering to evaluate miRNA deregulation ISA [32]

Coefficients matrix of 1,109
unique SNPs associated with 23
studied traits

Biomarker and
gene signatures
detection

Gene annotation and identification of enriched canonical
pathway and gene network inference

Bayesian Bic [41]

Microarray (Mycobacterium
tuberculosis under 2,325
measures)

Modularity
analysis

Biclustering for tuberculosis data cMonkey2 [96]

Microarray (4,117 orthologs in 46
tissue groups)

Modularity
analysis

Biclustering to predict co-regulated modules ISA [122]

Table 6. Summary of Available Software Tools for Biclustering

Year Toolbox Name PL Publication Source Code Metaheuristic

2010 BAT Java/Web BAT: A new biclustering analysis toolbox BAT Link ✔

2013 MTBA Matlab MTBA: A MATLAB toolbox for Biclustering analysis MTBA Link ✕

2014 BiBench Python Application of biclustering algorithms to biological data BiBench Link ✕

2014 – Matlab Similarity measures for comparing biclusterings Link ✕

2016 BicNET Java/Web
BicNET: Flexible module discovery in large-scale
biological networks using biclustering

BicNET Link ✕

2017 Biclustlib Python
A systematic comparative evaluation of biclustering
techniques

Biclustlib Link ✕

2018 BMOEA Python Biclustering multi-objective evolutionary algorithms BMOEA Link ✔

2019 CoClust Python CoClust: A Python package for co-clustering CoClust Link ✕

2020 RecBic C++
RecBic: A fast and accurate algorithm recognizing
trend-preserving biclusters

RecBic Link ✕

2021 BiClust R Biclust: A toolbox for bicluster analysis in R BiClust Link ✕

2021 BIDEAL Matlab
BIDEAL: A toolbox for bicluster analysis—generation,
visualization, and validation

BIDEAL Link ✕

The “Metaheuristic” column indicates if the package contains algorithms based on metaheuristics. “PL” indicates the
type of programming language.

biological applications where the main objective is to find biclusters from microarray and gene
expression data.

6.2 Availability of Software Tools

As can be seen, a large number of algorithms have been proposed to address various bicluster prob-
lems. The scientific community has created several software tools comprising these algorithms to
facilitate their applicability. A number of such software tools implemented in various program-
ming languages are listed in Table 6.
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6.3 Bicluster Validity Metrics

Another important aspect of unsupervised learning is the numerical validation of biclustering
algorithms. In biclustering (as in cluster analysis), no existing algorithm guarantees an optimal
solution. Therefore, evaluation of the results produced by a biclustering algorithm is essential,
and there are several bicluster validation techniques in the literature. In Section 3.2, we introduced
internal bicluster criteria, which are used as objective functions in metaheuristics. Nevertheless,
this section focuses on external validity metrics, which imply that the results of a biclustering
algorithm are evaluated based on a pre-specified structure. In other words, external criteria rely
on the a priori knowledge or ground truth about the input dataset.

Let us consider the following notation and definitions for the presentation of the different
similarity measures for biclustering: Let X ∈ RN ·M be a data matrix with N patterns (rows) and
M attributes (columns). Then, let us define the set of patterns as R = {1, 2, . . . ,N } and the set
of attributes as C = {1, 2 . . . ,M }; therefore, the matrix XR,C = (R,C ) denotes the full dataset X.
In bicluster analysis, a bicluster B = (I , J ) is a tuple of two nonempty sets such that I ⊆ R and
J ⊆ C . Thus, a biclustering solution is a collection B = {B1,B2, . . . ,Bk } of k biclusters of the data
represented by X.

In the following definitions, we assume that B = {Bi }ki=1 and B∗ = {B∗i }
q
i=1 are the found solution

by the algorithm and the reference biclustering solution, respectively. The most common similarity
measures (dissimilarity measures were transformed into similarities) are detailed below.

— Prelić et al. [92] proposed the measures of relevance SPRel and recovery SPRec:

SPRel (B,B
∗) =
√

SR (B,B∗) × SC (B,B∗), (11)

SPRec (B,B∗) = SPRel (B
∗,B), (12)

where SR (B,B∗) and SC (B,B∗) are defined as follows:

SR (B,B∗) =
1

k

∑

Bi ∈B
max
B∗

j
∈B∗

⎧⎪⎪⎨⎪⎪⎩

���Ii ∩ I ∗j ������Ii ∪ I ∗j ���
⎫⎪⎪⎬⎪⎪⎭

and SC (B,B∗) =
1

k

∑

Bi ∈B
max
B∗

j
∈B∗

⎧⎪⎪⎨⎪⎪⎩

���Ji ∩ J ∗j
������Ji ∪ J ∗j
���
⎫⎪⎪⎬⎪⎪⎭
. (13)

— Liu and Wang [66] proposed the measure SL&W:

SL&W (B,B∗) =
1

k

∑

Bi ∈B
max
B∗

j
∈B∗

⎧⎪⎪⎨⎪⎪⎩

���Ii ∩ I ∗j ��� + ���Ji ∩ J ∗j
������Ii ∪ I ∗j ��� + ���Ji ∪ J ∗j
���
⎫⎪⎪⎬⎪⎪⎭
. (14)

— Dice [24, 100] proposed the measure SDice as follows:

SDice (B,B∗) =
1

k

∑

Bi ∈B
max
B∗

j
∈B∗

⎧⎪⎪⎨⎪⎪⎩
2 ×

���Ii × Ji ∩ I ∗j × J ∗j
���

|Ii × Ji | + ���I ∗j × J ∗j
���
⎫⎪⎪⎬⎪⎪⎭
. (15)

— Ayadi et al. [3] proposed the measure:

SAyadi (B,B
∗) =

1

k

∑

Bi ∈B
max
B∗

j
∈B∗

⎧⎪⎪⎨⎪⎪⎩

���Ii ∩ I ∗j ��� × ���Ji ∩ J ∗j
������Ii ∪ I ∗j ��� × ���Ji ∪ J ∗j
���
⎫⎪⎪⎬⎪⎪⎭
. (16)

— Eren et al. [31] presented the measures:

SERel (B,B
∗) =

1

k

∑

Bi ∈B
max
B∗

j
∈B∗

{
Jaccard

(
Bi ,B

∗
j

)}
, (17)

SERec (B,B∗) = SERel (B
∗,B), (18)
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Fig. 7. Timeline of metaheuristic biclustering algorithms proposed in the past 22 years. Above the timeline,
the 25 single-objective approaches are presented, whereas below, the 23 multi-objective algorithms are
displayed.

where Jaccard(Bi ,B
∗
j ) denotes the Jaccard index applied to the biclusters Bi and B∗j and is

defined as

Jaccard
(
Bi ,B

∗
j

)
=

���Ii × Ji ∩ I ∗j × J ∗j
������Ii × Ji ∪ I ∗j × J ∗j
���
. (19)

For a more detailed overview of validation metrics for comparing biclustering solutions, the
reader is referred to the work of Horta and Campello [46], where 14 external validity metrics from
the literature are described and analyzed, and some recommendations for their use are provided.

6.4 Summary of Available Bicluster Analysis Tools

Since the first biclustering method was created in 2000 by Cheng and Church [12], the research
community has developed and made several resources available to address biclustering problems.
In this regard, this section has summarized some of these essential resources to help the reader to
have a better overview when approaching the bicluster analysis problem. First, the section presents
some synthetic data sources and data from real applications. Then, a list of biclustering algorithms
software packages is presented (several of these algorithms are reported in Sections 4 and 5).
Finally, this section ends with the presentation of several performance metrics for comparing pairs
of clustering solutions. The availability and knowledge of all these resources are essential for the
development of new and improved biclustering methods.

7 PERSPECTIVES AND FUTURE RESEARCH DIRECTIONS

7.1 Influence of Diverse Metaheuristics on Bicluster Analysis

Metaheuristic-based biclustering algorithms have gained much relevance in recent decades, mainly
because biclustering remains an important problem in practice and, computationally, it is a highly
combinatorial problem. In this sense, Figure 7 illustrates the 48 algorithms surveyed in this
manuscript that have been proposed within the past 22 years. Similarly, these approaches are
listed in Table 7 according to their underlying metaheuristic algorithm.

From Table 7, metaheuristics based on evolutionary computation have been widely recognized
as a major approach to addressing the biclustering problem. In particular, genetic algorithms
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Table 7. Metaheuristic Algorithms and Corresponding Biclustering Algorithms

Metaheuristic Times Metaheuristic Biclustering Algorithms

S
in

g
le

-o
b

je
ct

iv
e GA 13

HEA [8], SEBI [26], BiHEA [34], SS&GA [79], HEAB [78] CBEB [94],
EvoBic [3], Evo-Bexpa [89], EBACross [68], TriGen [42], EBA [69],

BP-EBA [47], ELSA [70]
SS 6 SS&GA [79], HEAB [78], SSB [80], SSB-Bio [82], BISS [81], BISS-go [83]
PSO 3 BPSO [95], PSO-SA-BIC [114], HPSO-TriC [77]
CS 3 COCSB [67], GACSB [125], TriCS [110]
SA 1 SAB [9]
AIS 1 BIC-aiNET [19]

HBA 5
SS&GA [79], HEAB [78], PSO-SA-BIC [114], GACSB [125],

HPSO-TriC [77]

M
u

lt
i-

o
b

je
ct

iv
e NSGA-II 11

MOEAB [75], SMOB [27], SMOB-VE [28], EMOA-δ -TRIMAX [7],
BP-NSGA2 [57], MMCo-Clus [17], TSTP [108], MOFBA [74], MOGAB [73],

MOBI [101], BOBEA [71]
MOPSO 3 MOPSOB [65], CMOPSOB [63], AMOPSOB [60]
SPEA2 3 SPEA2B [35], SPEA2B-δ [38], PBD-SPEA2 [39]
AMOSA 2 AMOSAB [99], AMOSAB-PS [1]
MOACO 1 MOACOB [64]
MOAIS 1 MOM-aiNet [14]
IBEA 1 HMOBI [102]

“HBA” indicates hybrid biclustering algorithms. “Times” indicates the number of approaches using that particular
metaheuristic.

(GA) and their extensions to multi-objective optimization, such as NSGA-II and SPEA2, represent
about 70% of studies. Other computational intelligence paradigms based on metaheuristics are
less present; for example, particle swarm optimization (PSO and MOPSO) represent 15%, while
approaches based on scatter search, simulated annealing, and artificial immune systems have been
used in smaller proportion. Unsurprisingly, GAs are the most widely used in bicluster analysis,
since these algorithms are among the most studied and applied metaheuristics [59, 106]. As
a reminder, GAs solve optimization problems based on natural selection (biological evolution),
which repeatedly modifies a population of individual solutions over successive generations until
it “evolves” toward an optimal solution. Thus, GAs can solve different optimization problems,
including those where the objective function is discontinuous, nondifferentiable, stochastic, or
highly nonlinear [45].

However, from Table 7, it is possible to identify other well-known metaheuristics that still
need to be fully explored to address the problem of bicluster analysis. Particularly, differential

evolution (DE), proposed by Storn and Price [107], is an evolutionary algorithm not used in
biclustering. Similarly, DE’s extension to multi-objective problems could be adapted to biclustering;
a comprehensive review of DE for multiobjective optimization is given in Reference [15]. Artificial
immune systems [127] is another example of metaheuristics that can be further explored for
bicluster analysis.

Finally, in this study, we have classified the metaheuristic biclustering approaches into two
main categories, depending on their underlying search strategy, namely, single-objective and multi-
objective biclustering approaches. Indeed, single-objective metaheuristics represent 52% of the sur-
veyed algorithms, whereas multi-objective algorithms represent 48%. Contrary to single-objective
approaches, multi-objective biclustering algorithms optimize multiple biclustering metrics si-
multaneously, having the advantage of discovering several types of biclusters (see Section 2.1).
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Table 8. Bicluster Encoding Types and Their Preferences in Different Single- and Multi-objective
Biclustering Algorithms

Encoding Times Single-objective Biclustering Multi-objective Biclustering

BBE [8] 25 (75%)

HEA [8], SEBI [26], BIC-aiNET [19], BiHEA [34],
SS&GA [79], HEAB [78], SSB [80], BPSO [95], CBEB [94],
PSO-SA-BIC [114], Evo-Bexpa [89], EBACross [68],
COCSB [67], SSB-Bio [82], BISS [81], BISS-go [83],
GACSB [125], EBA [69], BP-EBA [47], HPSO-TriC [77],

ELSA [70], TriCS [110]

MOEAB [75], SMOB [27], MOPSOB [65],
CMOPSOB [63], AMOPSOB [60], MOACOB [64],
SPEA2B [35], SMOB-VE [28], SPEA2B-δ [38],

EMOA-δ -TRIMAX [7], BP-NSGA2 [57],
MMCo-Clus [17], TSTP [108]

IBE [19] 12 (25%) BIC-aiNET [19], EvoBic [3], TriGen [42]

MOFBA [74], MOGAB [73], MOM-aiNet [14],
MOBI [101], HMOBI [102], AMOSAB [99],

AMOSAB-PS [1], PBD-SPEA2 [39],
BOBEA [71]

“BBE” refers to binary bicluster encoding and “IBE” indicates binary encoding. “Times” indicates the number of
approaches using the encoding type, with the percentage in parentheses.

However, these approaches generate a set of solutions (Pareto set approximation) requiring an ad-
ditional mechanism to filter and select the best biclustering solution. Therefore, the optimization
technique’s selection depends on the complexity of the biclustering problem in terms of the type
of biclusters and the bicluster structures to be discovered (overlapping among bicluster and matrix
covering matrix).

7.2 Impact of Different Bicluster Encodings in Metaheuristic Algorithms

Based on the revised works summarized in Table 8 and illustrated in Figure 8(a), it is notable
that a large number of metaheuristic biclustering approaches (75%) consider a binary bicluster
encoding (BBE). However, 25% of the surveyed approaches utilize an integer bicluster encoding.
The definition of these two bicluster representations, including advantages and disadvantages, are
given in Section 3.1.

Regarding the use of both types of representations in Figure 8(a), it is observed that the
integer representation is mostly used in multi-objective approaches, while the binary encoding
is used interchangeably between single-objective and multi-objective approaches. Therefore,
with the exception of genetic algorithms, all other single-objective metaheuristics use a binary
representation, including PSO, AIS, and simulated annealing. In contrast, there is clear evidence
for using an integer representation to represent bicluster solutions in multi-objective algorithms
such as NSGA-II, SPEA2, AMOSA, and MOACO.

7.3 Understanding the Role of Bicluster Quality Metrics in Metaheuristic Algorithms

Several bicluster quality metrics have been proposed in the bicluster analysis literature, and most
of them have been used as optimization criteria in metaheuristic biclustering algorithms. These
metrics were described in detail in Section 3.2, and their importance for identifying different types
of biclusters. Table 9 summarizes bicluster metrics used in metaheuristic blustering algorithms,
whereas Figure 8(b) illustrates the relationship between these bicluster quality metrics with
different types of metaheuristic-based biclustering algorithms.

First, the MSR metric was the most-used metric among all metrics mentioned in this survey,
with 34%. Moreover, MSR was used indifferently between the types of metaheuristics and between
single- and multi-objective approaches. Then, bSIZE is the most-used metric after MSR; bSIZE has
been used among different metaheuristics and mostly in multi-objective algorithms. Next, ACF
has only been used with genetic algorithms and scatter search, so it has only been used in single-
objective approaches. Next, the rVAR metric has been widely used in multi-objective approaches
such as NSGA-II, MOPSO, and SPEA2. Finally, the ACV, SF, VE, and SMRS metrics have been used
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Table 9. Bicluster Metrics and Their Appearances in Different Single- and Multi-objective Biclustering
Algorithms Reviewed in Sections 4 and 5, Respectively

Metric Times Single-objective Biclustering Multi-objective Biclustering

MSR [12] 33 (34%)

HEA [8], SAB [9], SEBI [26],
BIC-aiNET [19], SS&GA [79], CBEB [94],

EvoBic [3], EBACross [68], TriGen [42],
COCSB [67], GACSB [125], EBA [69],

BP-EBA [47], TriCS [110]

MOEAB [75], SMOB [27], MOFBA [74],
MOPSOB [65], CMOPSOB [63], AMOPSOB [60],
MOACOB [64], MOM-aiNet [14], MOGAB [73],

SPEA2B [35], MOBI [101], HMOBI [102],
SPEA2B-δ [38], EMOA-δ -TRIMAX [7],

AMOSAB [99], PBD-SPEA2 [39], BP-NSGA2 [57],
AMOSAB-PS [1], MMCo-Clus [17]

bSIZE [12] 26 (27%)
SEBI [26], EvoBic [3], Evo-Bexpa [89],
EBACross [68], SSB-Bio [82], EBA [69],

BP-EBA [47]

MOEAB [75], SMOB [27], MOFBA [74],
MOPSOB [65], CMOPSOB [63], AMOPSOB [60],
MOACOB [64], MOM-aiNet [14], SPEA2B [35],
MOBI [101], SMOB-VE [28], SPEA2B-δ [38],

EMOA-δ -TRIMAX [7], AMOSAB [99],
PBD-SPEA2 [39], BP-NSGA2 [57],

AMOSAB-PS [1], BOBEA [71], TSTP [108]

rVAR [12, 26] 15 (16%) SEBI [26], Evo-Bexpa [89]

SMOB [27], MOFBA [74], MOPSOB [65],
CMOPSOB [63], AMOPSOB [60], MOGAB [73],
SPEA2B [35], MOBI [101], SMOB-VE [28],

HMOBI [102], PBD-SPEA2 [39], MMCo-Clus [17],
BOBEA [71]

ACF [78] 10 (12%)

HEAB [78], SSB [80], EvoBic [3],
EBACross [68], SSB-Bio [82], BISS [81],
BISS-go [83], EBA [69], HPSO-TriC [77],

ELSA [70]

ACV [113] 4 (5%)
BPSO [95], PSO-SA-BIC [114],

GACSB [125]
TSTP [108]

VE [28] 3 (3%) Evo-Bexpa [89], GACSB [125] SMOB-VE [28]
CVF [68] 2 (2%) EBACross [68], EBA [69]
SMSR [76] 1 (1%) BP-EBA [47]

“Times” indicates the number of approaches using the type of bicluster metric, with the percentage in parentheses.

to a lower extent, with percentages below 5%; therefore, it is difficult to conclude on the preferred
use of these bicluster metrics.

In the specialized literature of bicluster analysis, many other bicluster metrics have not been
used in the context of metaheuristic biclustering algorithms, such as relevance index (RI) [126],
sub-matrix correlation score (SCS) [123], Spearman’s biclustering measure (SBM) [33], and maximal
standard area (MSA) [37]. Therefore, it would be convenient to use and study the performance of
these metrics as objective functions in metaheuristic biclustering algorithms.

7.4 Exploring the Applications of Metaheuristic Biclustering Algorithms

Most of the described metaheuristic biclustering algorithms presented in Sections 4 and 5
are applied to synthetic test problems. The advantage of investigating performance of these
biclustering algorithms on test problems is that the problem complexity, such as the type and
number of biclusters, is known a priori. Thus, applying these biclustering algorithms to test
problems becomes useful and informative. However, testing the performance of metaheuristic
biclustering algorithms on application problems is also necessary to demonstrate the use of the
algorithm in practice.

In Tables 3 and 4, presented in previous sections, we have identified three main applications of
metaheuristic biclustering algorithms: gene expression data, text mining, and energy consumption
analysis. Furthermore, Figure 9 illustrates these three applications of biclustering algorithms
and their interactions with their main components, including the type of optimization, type
of metaheuristics, and type of coding of the biclustering solutions. First, from Figure 9, it
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Fig. 8. Visualization of two main components in metaheuristic biclustering algorithms: (a) encoding types
and (b) bicluster metrics. The plots illustrate the relationship between these components with different
metaheuristics and optimization methods.

can be clearly observed that most of the case studies have focused on problems related to
gene expression data analysis (94%), followed by text mining (4%), and finally, data analysis of
energy consumption (2%). This trend of metaheuristic algorithms is related to the successful
application of the biclustering concept applied in bioinformatics, particularly to cluster gene
expression datasets in two dimensions: genes and conditions [12]. Regarding bicluster analysis
for text mining data, biclustering algorithms have been used on web data to identify relationships
between users and web pages; this information is useful in e-commerce applications such as
web advertising and marketing [95]. Finally, metaheuristic biclustering algorithms have been
applied to identify subgroups of buildings with similar energy consumption behavior over time;
these insights can help policymakers detect irregular situations and improve the efficiency of
buildings [29]. In this direction, the applicability of metaheuristic-based biclustering algorithms
in bioinformatics is remarkable. However, their potential for other biclustering domains is still
very limited; for example, text mining [10, 19, 85], dimensionality reduction [87], recommendation
systems [18, 109, 117], energy [29] and water [105] consumption, time-series analysis [11, 42],
disease identification [115, 120], and marked segmentation [62].

Since most metaheuristic biclustering focus on the analysis of gene expression data, Figure 9
allows us to easily identify the interaction of specific components of these algorithms to solve
the problem in gene expression data analysis. First, about 60% of algorithms are single-objective,
while about 40% of approaches address the gene expression problem as a multi-objective opti-
mization. The optimization type depends on the number of bicluster metrics that simultaneously
guide the solution search during the optimization process. Regarding the type of metaheuristics,
genetic algorithm-based approaches (GA and NSGA-II) are the most used, representing 45% stud-
ies. Surprisingly, the Scatter Search (SS) metaheuristic is widely used, with 11%; SS constructs
new test solutions by combining reference solutions and using strategic designs exploiting con-
textual knowledge [58]. Regarding the encoding type, 76% use binary representation, while 22%
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Fig. 9. Application problems of metaheuristic biclustering algorithms and their interactions with the
algorithm components: optimization type, metaheuristic type, and bicluster encoding. “Metaheuristics”
indicates the type of metaheuristic algorithm: Simulated Annealing (SA), Genetic Algorithm (GA), Particle

Swarm Optimization (PSO), Scatter Search (SS), Cuckoo Search (CS), Artificial Immune System (AIS). “Binary
Encoding” and “Integer Encoding” refer to the type of bicluster encoding as described in Section 3.1.

use integer-based representation. Most single-objective metaheuristics use a binary representation,
including PSO, AIS, and SA, except for genetic algorithms, whose approaches use both represen-
tations. However, most multi-objective metaheuristics use an integer representation of bicluster
solutions. These trends in the metaheuristic components can be seen in Figure 9.

7.5 Future Research Directions

Bicluster analysis is an open scientific field with several research directions, opportunities, and
challenges that commonly involve the following issues:

— Emerging metaheuristics. Novel nature-inspired metaheuristics are continuously pro-
posed in the literature as potential approaches to solving the biclustering problem. Mainly,
many-objective optimization evolutionary algorithms such as MOEA/D [93], NSGA-III [20]
can be used to cope with multiple bicluster quality metrics (more than three objective func-
tions). It is essential to mention that selecting the best biclustering solution is an added
challenge when using these multi-objective biclustering approaches.

— Bicluster encoding. To solve complex biclustering problems and discover different biclus-
ter types and structures, studying and analyzing the current objective function and bicluster
representations is necessary to help select the appropriate optimization scheme and compo-
nents according to the biclustering scenario. For instance, an integer based-representation is
preferable over a binary representation [1, 101]. Most of these approaches using an integer
representation encode a single bicluster; however, it is possible to codify multiple biclusters
in a single solution, as demonstrated recently by Golchin [39].

— Biclustering applications. Most of the proposed metaheuristic-based biclustering algo-
rithms have been designed to work on biological data (mainly gene expression data). How-
ever, the applicability of biclustering algorithms in other domains and with other data types
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(e.g., heterogeneous) is very limited, as it poses additional challenges. In Reference [115],
the authors proposed a greedy procedure to extract biclusters from heterogeneous, tempo-
ral, and large-scale data. This procedure has been applied successfully to Electronic Health
Records (EHR), thanks to the data sparsity in this scenario, optimizing the enumeration. It
will be interesting to study the potential of metaheuristics to discover heterogeneous-like
bicluster in EHR applications.

— Bicluster benchmark. Although many synthetic and real-life datasets have been used
systematically in the literature, there is no recognized benchmark the research community
could use to evaluate and compare biclustering approaches. Such a benchmark should
include different types of bicluster, diverse bicluster structures, noise, overlapping, and
so on. Furthermore, when comparing the performance of biclustering approaches, it is
crucial to consider their statistical and biological significance (i.e., the available biological
information [70]).

— Comparative studies of metaheuristic biclustering algorithms and components.

There is a need for comparative studies of different metaheuristic biclustering algorithms
and their components. There are several comparative studies of traditional biclustering
algorithms to determine their performance against different types of biclusters [84, 88, 91].
However, in the context of biclustering algorithms based on metaheuristics, these studies
are needed to determine the specific scenarios where these algorithms provide a better
advantage over traditional algorithms. In addition, it is important to study the discriminative
ability of bicluster metrics when used as objective functions in metaheuristic algorithms to
find biclusters with different characteristics.

— Triclustering. Recently, the biclustering problem is referred to as triclustering when
the time dimension is considered in addition to rows and columns information. Finding
tricluster when considering temporal data brings up new research challenges, as it will
require the adaptation of current algorithms, bicluster metrics, evaluation measures, and
so on. Indeed, the triclustering problem has been addressed recently using single-objective
metaheuristics [42, 77]; however, there are opportunities to address this problem as multi-
objective optimization.

— Multi-view biclustering. There are many application domains where multiple pieces of
information are available for each individual subject. For instance, multiple data matrices
might be available for the same set of genes and conditions in biological datasets. In this
regard, multi-view data clustering algorithms can integrate these information pieces to find
consistent clusters across different data views [50, 51]. This same multi-view clustering
concept can be extended to biclustering, where the aim is to discover biclusters across
multiple data matrices (i.e., data views).

— Large-scale biclustering. The decentralized nature of high-dimensional biclustering prob-
lems makes it very interesting to use high-performance computing to distribute the under-
lying computations across increasingly available computing facilities. Although challenging
due to the heterogeneous and complex nature of modern large-scale computing platforms,
the integration and enablement of parallelism must be closely coupled to the biclustering
problem components, not separated. A scalable method for biclustering big data called EBIC
was recently proposed for multi-GPU environments [86]. This approach is one of the first
steps in this direction, but further efforts are needed to bridge the gap between current biclus-
tering algorithms and new developments of scalable methods, including metaheuristic-based
approaches.

— Visualization of biclusters. The validation and interpretability of obtained biclusters
are essential steps in real-world applications with high-dimensional feature spaces. In
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this regard, bicluster-data visualization will help better understand and communicate the
obtained solutions [116, 120]. However, this aspect has yet to be studied in bicluster
analysis. Biclusters are usually represented in the form of line plots [1, 17] (the set of
horizontal lines represents highly correlated patterns across a certain number of features)
and heatmap plots [39, 83] (rows and columns of the input matrix are reordered to
display the found biclusters properly). Therefore, there is a need to develop more suitable
bicluster visualization approaches that facilitate the interpretation of the results, especially
in applications with high dimensional data and heterogeneous features [53].

8 CONCLUSION

Biclustering has emerged as an important approach and is essential in various applications ranging
from bioinformatics to text mining. However, this is an NP-hard optimization problem from
the computational point of view. In this regard, many nature-inspired metaheuristics have been
applied to address the bicluster analysis problem.

This survey presented a detailed study of metaheuristics approaches to address different
biclustering challenges. The review focused on the underlying optimization methods and their
main search components: biclustering encoding, variation operators, and bicluster objective
functions. This review focused on single versus multi-objective approaches. Additionally, we
presented a discussion and emerging research directions.

Applications of bicluster analysis continue to emerge, and we expect this to continue moving
forward in the coming years. While biclustering has been used heavily in bioinformatic tasks,
applications continue to appear in digital health, data mining, and dimensionality reduction.
Ideally, this survey will help drive further theoretical and algorithm development based on
metaheuristics for bicluster analysis.
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