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Abstract—Crowdsourcing technology enables complex tasks to
be solved with the aid of a group of workers in the Internet
of Things (IoT). On the one hand, crucial sensing data can be
collected and processed to enhance smart IoT applications. On
the other hand, crowdsourcing IoT (Crowd-IoT) is still facing
threats due to the diverse quality of crowdsourced data, and
especially the misbehavior of malicious workers. In this paper,
we propose a Stochastic Bayesian Game (SBG) to address the
Byzantine Altruistic Rational (BAR) based misbehavior, where
workers’ behavioral types can be deduced reasonably and the
requestor can perform optimal actions accordingly by taking
the long-term gain into consideration. To validate and evaluate
the performance of the proposed model, we simulate various
scenarios and conduct a comparison with other solutions. The
numerical results show the effectiveness and feasibility of our
proposed solution.

Index Terms—Game Theory, Trust, BAR threat model, Mali-
cious behavior, IoT Security, Crowdsourcing.

I. INTRODUCTION

The concept of crowdsourcing was introduced in 2006 as a
novel web business solution [1]. To date, it is regarded as a
promising technology for IoT since it enables IoT applications
to be improved via the contribution of a group of task
workers, more precisely, in Crowd-IoT, a group of mobile
users (workers) will collect and process data to aid the end
user (requestor) in solving a relatively complicated problem
[2]. An example of crowdsensing service in IoV (Internet
of Vehicles), may be illustrated by traffic-related information
(such as transport volume, GPS data, weather conditions, etc.),
that can be sensed and gathered by other vehicles or roadside
units to optimize the requestor vehicle’s routing [3].

While rich and useful information is provided, and massive
amounts of sensitive data and private information are being
collected and processed, Crowd-IoT systems and participants
(task requestors/workers) are very likely to become attack
targets. Moreover, identifying misbehavior from malicious task
workers remains challenging due to the fact that they can mis-
behave in a complex strategic manner. For example, in 2011,
the UCSD (University of California San Diego) team was a
victim suffering from malicious workers in crowdsourcing [4].

In literature, some studies proposed cryptographic schemes
to secure IoT/Crowd-IoT. However, such solutions are not
efficient as expected in the absence of dedicated infrastruc-
tures, and the issue of when detecting insider attackers remains
challenging [5]. Furthermore, advances in IoT software and
hardware make malicious attackers become more intelligent
and capable, which makes existing solutions incapable to
deal with the attacker’s complex behaviors. For this, some
researchers considered the use of trust management to mea-
sure the security level in IoT/Crowd-IoT. To date, there are
numerous trust management solutions applied in IoT/Crowd-
IoT using different approaches, such as Fuzzy inference
and Subjective logic [6]. Among these approaches, Game
Theory is advantageous in addressing strategic attackers in
IoT/Crowd-IoT. However, the majority of existing game-based
solutions design a symmetric set of actions for Crowd-IoT.
More importantly, only a few works consider the complex
behavioral model of attackers, and the distinction between
rational selfishness and misbehavior is missing.

In this paper, we design a Stochastic Bayesian Game (SBG)
modeling the interactions between Crowd-IoT participants.
This model enables the behavioral types of task workers to
be deduced by analyzing their behavior, and the requestor can
accordingly and optimally act in terms of maximizing his/her
long-term gain. The contributions of this work are fourfold:

• We design a SBG game fitting the distributed Crowd-IoT
property to model the interactions between participants
appropriately.

• We extend the action sets of Crowd-IoT participants to
enable a more reasonable analysis of their behaviors,
such that the requestor and the worker are no longer
homogeneous action-based.

• We consider an evaluation of the behavioral types based
on a BAR (Byzantine Altruistic Rational) threat model to
address the complex strategic misbehavior of the attacker.

• We conduct a simulation with various scenarios to val-
idate the performance of the proposed model from the
perspective of increasing security.



The rest of this paper is organized as follows. Section
II summarizes related work. Section III gives the system
overview and the definition of the Stochastic Bayesian Game
(SBG). After that, Section IV explains game formulation by
detailing players, game states, playoffs, and players’ strategies.
The simulation results, performance evaluation of the proposed
model, and a comparative analysis with other approaches
are presented in Section V. Lastly, Section VI draws the
conclusion and outlines our future work.

II. RELATED WORK

In literature, many solutions have been proposed to address
security issues in IoT/Crowd-IoT by employing cryptographic
solutions. Authors in [7] studied data-level security through
an authentication scheme using encryption against jamming
and cloning attacks. While this work shows robustness against
these two attacks, analyzing the IoT individuals’ complex
behaviors remains difficult. As stated before, tracking insider
attackers is problematic without evaluating the trustworthiness
of Crowd-IoT participants. In this regard, a trust-based model
is presented by Saied et al. [8], where a centralized IoT node
collects feedback to update the quality of recommendations
for monitoring the trustworthiness of the current system. One
other work concerning trustworthiness evaluation is proposed
in [9], where the decision-making is aided by a classification
scheme to determine the evaluated participants’ types based on
a four-phase trust process scheme. With the purpose of formu-
lating participants’ behaviors dynamically, Game Theory has
been taken into consideration in trust-based security solutions
in Crowd-IoT. Studies adopting prisoner’s dilemma (PD) game
to analyze malicious behaviors in Crowd-IoT are proposed in
[10]. A recent work considering an iterated version of previous
prisoner’s dilemma (IPD) games to ensure the cooperativeness
between Crowd-IoT participants was introduced in [11]. How-
ever, these two works [10, 11] are both based on a symmetric
payoff matrix treating the requestor and the worker in a
homogeneous manner. In [12], authors designed an incentive
model using the repeated game for Crowd-IoT, but the defense
scheme addressing insider attackers is insufficiently discussed.

From the above review, there are still several limitations
unsolved. First, the majority of existing game theoretical
trust management solutions focus on a simple set of actions
(e.g., cooperate/defect) such that the actions of the requestor
and workers are homogeneous, which does not match the
Crowd-IoT reality. Second, the complex strategic behavioral
model of malicious attackers is not taken into consideration,
which means that the attacker is able to switch its actions to
mislead the evaluation system. Third, the distinction between
self-interested behavior and misbehavior is missing, where
the former comes from non-malicious Crowd-IoT participants
and causes less damage. Lastly, the cooperativeness between
Crowd-IoT participants, i.e., the requestor and workers, is
insufficiently discussed. In this context, we propose a game
theoretical model using Stochastic Bayesian Game to address
the above-mentioned limitations.

III. SYSTEM MODEL

In this section, we first present the Crowd-IoT architecture
considered in our work, and then we give the definition of the
Stochastic Bayesian Game (SBG) to establish the base of the
game formulation, which will be detailed in the next section.

A. System overview

Fig. 1: Crowd-IoT architecture considered in the proposed
game theoretical model

Unlike the centralized Crowd-IoT, which is inherently dis-
advantageous due to a single point of failure, the distributed
Crowd-IoT architecture enables the ad-hod network organi-
zation and data in-situ processing. Consequently, participants
can communicate with each other individually, and request
the crowdsourcing service (task) as requestors, or contribute
to the task as workers. In this work, we focus on evaluating the
interactions between the requestor and workers in distributed
Crowd-IoT. Fig. 1 illustrates the task requestor and workers in
distributed Crowd-IoT to highlight their roles in crowdsourc-
ing services.

As described in [13], the crowdsourcing service process
consists of four main steps: 1) After the communication is
established between the requestor and the worker, the former
launches the task proposal; 2) The worker will be recruited,
and then assigned the task; 3) When the task is completed, the
requestor sends the incentive; 4) Once the worker is informed
of the reception of the incentive, the crowdsourced data will
be released. Given this, we design a SBG game to model the
interactions between the requestor and workers appropriately,
where workers perform actions independently, i.e., there is no
inter-affection between workers.

B. Stochastic Bayesian Game (SBG)

Uncertainties of mixed behaviors may arise when the re-
questor evaluates the interactions with the workers due to the
complex attack strategies of malicious workers. We formulate
the problem as Stochastic Bayesian Game (SBG), which was
introduced in [14], where opponent players’ behaviors can be
modeled through a behavior type space and distribution. The
methodology can be adapted to our work: where a behavior
type refers to one of three categories defined in Section IV-C,
and the type distribution can be used for calculating the
occurrence frequencies of each type. A general SBG consists
of:



• A state space S with initial state s0 and terminal state s;
• A set of players N of cardinality n, and for each player

i ∈ N ,
- An action set Ai for player’s interaction. Throughout,

we set A = A1 × ...×An;
- A behavior-type space Θi modeling player’s type.

Throughout, we set Θ = Θ1 × ...×Θn;
- A payoff function ui :S ×A×Θi → R defining the

gain/loss of players after executing actions a ∈ A;
- A strategy function πi: H×Ai×Θi → [0, 1], where
H denotes the set of all histories (Ht : t ≥ 0) of the
form Ht=⟨s0, a0, s1, a1, ..., st⟩, where s0, ..., st ∈ S
and a0, ..., at ∈ A, for all t ≥ 0.

• A state transition function T : S ×A× S → [0, 1];
• A type distribution △: Θ+ → [0, 1], where Θ+ is a finite

subset of Θ.
The type θi for i is sampled from Θi before each round of

the game. On the basis of the history Ht up to time t, player i
selects an action depending on its strategy πi(H

t, a, θi) until
the state s is reached.

IV. GAME FORMULATION

In this section, we describe the set of actions of the requestor
and the worker, and then we present the game states. Next,
we give the payoffs with an explication of related constraints.
Lastly, we detail the strategies of the worker and the requestor,
respectively.

A. Players, actions, and game states

In the proposed game theoretical model, the game is played
by the requestor and one typical worker, i.e., we set N =
{r, w}. Their set of actions is given in Table I: Ar={S, T, D},
Aw={S, C, I, M}. The action S (Standby) is identical for the
requestor and the worker as they both perform waiting as being
standby for the new crowdsourcing service. In crowdsourcing
task completion, the worker performs either C (Cooperate)
or M (Misbehave), otherwise, it performs I (Interruption)
in case it does not contribute to the task. The difference
between selfish and malicious behaviors through actions I
and M should be noted as the worker does not produce any
false information in the crowdsourced data by performing the
former action, whereas the latter does, which also leads to
more negative consequences caused by the latter action. After
receiving the crowdsourced data from the worker, the requestor
will perform either T (Trust) or D (Distrust) depending on its
own strategy, which will be discussed in Section IV-D.

Employing the set of actions illustrated in Table I to fit
the crowdsourcing service process described in Section III,
we consider 7 game states in SBG game, which are given in
Table II with a description per each.

We define I, TC, DC, TM and DM states as st = at−1, i.e.,
the joint action at the previous time slot, as the same as the
first experimentation conducted in [15]. This also means that
game states are not homogeneous, and we name the states
st = at−1 ’action states’. In PE state, both requestor and

TABLE I: Set of actions of the requestor and the worker

Player Action Description

Requestor

S 
(Standby)

Wait to begin a new crowdsourcing 
service process.

T 
(Trust)

Trust the data crowdsourced by the 
worker and release the incentives.

D 
(Distrust)

Distrust the data crowdsourced by the 
worker and lower the incentives.

Worker

S 
(Standby)

Wait to begin a new crowdsourcing 
service process.

C 
(Cooperate)

Task is assigned and complete it with 
efforts.

I 
(Idle)

Task is assigned but not engage in the 
task.

M 
(Misbehave)

Task is assigned but perform misbehavior 
for crowdsourcing service.

TABLE II: Game states

State Description

PE
(Process End)

The crowdsourcing service process ends or the 
communication between the requestor and the 
worker fails.

S
(Standby)

Both requestor and work stay at Standby waiting 
to begin the new crowdsourcing service process.

TC
(Trust, Cooperate)

The requestor acts Trust, and the worker acts 
Cooperate.

DC
(Distrust, Cooperate)

The requestor acts Distrust, and the worker acts 
Cooperate.

TM
(Trust, Misbehave)

The requestor acts Trust, and the worker acts 
Misbehave.

DM
(Distrust, Misbehave)

The requestor acts Distrust, and the worker acts 
Misbehave.

I
(Interruption)

The worker is assigned the task but does not 
engage in the task, and thus the crowdsourcing 
service process is interrupted.

PE

S

I

TC DC TM DM

Fig. 2: Diagram of possible transitions between game states
of the proposed model



worker cannot communicate with each other as the crowd-
sourcing process ends or their communication fails in this
state. If a new crowdsourcing process is launched or the
communication recovers, the game turns to a Standby state,
where both requestor and worker perform action Standby for
crowdsourcing service. After the task proposal is released, the
worker will be recruited and assigned the task accordingly.
Differing from other action states, the state I will be reached
if the worker has done no contribution and it must return to
PE as the crowdsourcing process will be viewed as ended.
Or, one of TC, DC, TM, and DM states will be reached
as the result of the current crowdsourcing service process.
To avoid the game being played infinitely, we determine a
goal number of interactions as total game rounds. This also
means that is not necessary to return to S state from action
states for every crowdsourcing service process, which can be
observed through transitions between action states TC, DC,
TM, and DM. Based on the above description, Fig. 2 presents
the diagram of possible transitions between states, i.e., state
space S={PE, S, TC, DC, TM, DM, I}, the initial state s0

and terminal state s are both the state PE.
Besides, we denote all transitions to PE (P(·,PE)) by a value

PE representing the probability that communication between
players fails. On the other hand, as the initial state, PE must
move to the state S in which both players perform Standby,
and thus P(PE,S)=1 for beginning a new crowdsourcing service
process. To specify the transition P(S, I) such that the worker
performs action I, we denote P(S, I) by a probability value PI.
As for other transitions depending on the strategies for both
requestor and worker, they will be explained in the following
subsections.

B. Payoffs

Based on the game states defined in the previous section,
the payoffs of the requestor and the worker (ur, uw) are given
in Table III:

TABLE III: Payoff matrix of the requestor and the worker

     w                         
r S C I M

S - - -CrS ,0 -

T - GrTC - CrT , GwTC  - CwC - -CrT - LrTM , GwTM  - CwM

D -  - CrD , GwDC - CwC - -CrD ,  GwDM - CwM

Gr=Gain of the requestor; Lr=Loss of the requestor; Cr=Cost of the requestor;
Gw=Gain of the worker; Cw=Cost of the worker.

Following the crowdsourcing service process defined in
Section III, there are some constraints in payoffs:

• As the gain of the worker represents the incentives offered
by the requestor, we impose CrC=GwTC, and likewise
for GwDC=GwDM=CrD.

• We impose GrTC−CrT>CrT, this is because the overall
payoff of the requestor, after a normal crowdsourcing
service, should be greater than its cost of performing
T action. Otherwise, it becomes discouraged to request,

due to a non-reasonable payoff obtained. Similarly, as the
malicious worker aims to cause damage such that it gains
a higher overall payoff than the cost of misbehaving, thus
GwTM − CwM>CwM.

• CrT>CrD>CrS as performing T signifies greater incen-
tives are required than the action D, and no incentives
are offered when the worker performs action I.

• Attacking behaviors cost more than cooperating for the
malicious worker as it has to create false information
based on original crowdsourced data, for this, we impose
CwM>CwC.

• By convention, the loss and the cost of the requestor
should be equal to the gain of the malicious worker. Thus
LrTM+CrT=GwTM.

• As the malicious worker should obtain a higher overall
payoff when its misbehavior successfully misleads the
requestor, we consider GwTM−CwM>GwTC−CwC.

• GwDM−CwM<0, otherwise the attacker receives a pos-
itive payoff while the requestor performs distrust.

C. Strategies for the worker

In studying security by applying Game Theory, it is essential
to define the threat model, specifically our assumptions about
the behavioral model of malicious attackers. As stated in
Section I, one of the limitations of existing IoT security
solutions is the lack of effective distinction between selfish
and malicious behaviors. For example, a Crowd-IoT worker
performing inactive or selfish cannot be certainly determined
as malicious type, it may perform action I with the purpose
of maximizing its benefit by reducing energy consumption.
Given this, the Byzantine Altruistic Rational (BAR) model
[16, 17] can be employed for the threat model, where the
worker is classified into three categories. Given this, as the
type space Θw of the worker is unknown, we assume instead
that the requestor hypothesizes a user-defined type space
Θ∗

w = {θAw , θRw , θBw}:

Altruistic Rational Byzantine

Fig. 3: Euler diagram of behaviors in BAR-based threat
model

• Altruistic (θAw ): performs actively and correctly by carry-
ing out its dedicated task. (Terms equivalent to ’altruistic’:
’honest’, ’unselfish’, and ’self-denying’.)

• Rational (θRw ): follows the specified crowdsourcing pro-
tocol in case the resource needed is sufficient. Otherwise,
it may deviate from the suggested protocol. (This type



of worker can also be referred to as ’greedy’ or ’self-
interested’.)

• Byzantine (θBw ): performs intentionally disturbing and
misleading the requestor, which causes the current
Crowd-IoT system to be harmed. (Also called ’compro-
mised’, ’malicious’, or ’adversary’.)

TABLE IV: Worker types with the definition of strategies

Type Beh.   Definition

AC   

RC

RS

AM

Beh.=Behavior; AC=Always Cooperate; RC=Rational Cooperate; 
RS= Random Shift;  AM=Always Misbehave; 

A
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Fig. 3 gives the Euler diagrams of the possible behaviors
according to the BAR-based threat model. It can be observed
that the altruistic ones can only perform positive actions, such
type of worker is regarded as reliable and well-resourced.
The rational can act not only altruistically, but also selfishly.
The reasons for rational behavior are varied, such as resource
constraints that force the worker to interact with others in a
selective manner; or the worker, based on its own judgment
of utility, desires to refuse cooperation rather than to engage
in it. However, rational worker cannot behave in a way that
threatens the current IoT system, while the byzantine kind
possesses the highest number of possible behaviors, which
include all behaviors of the previous two types. To rephrase,
a byzantine worker can behave maliciously, altruistically, or
rationally, depending on its purpose (i.e., being harmful, hiding
its true motivation, and so on).

Table IV defines the behaviors per type of BAR-based threat
model: AC worker cooperates in any case. RC worker will
perform I, if it is not willing to contribute to the task, i.e.,
with the probability PI, otherwise it cooperates. In our work,
we consider two malicious strategic misbehavior, namely RS
and AM. RS worker randomly shifts its behaviors in every
game round (i.e., the probability of performing action C, I, or
M is identical), and the AM worker misbehaves for all time.

D. Strategies for the requestor

To track the mixed behavioral worker and output the action
decision-making of the requestor, we adopt the algorithm
Harsanyi-Bellman Ad Hoc Coordination (HBA) as the strate-
gies of the requestor. HBA utilizes the concept of Bayesian
Nash equilibrium in a planning procedure to find optimal
actions in the sense of Bellman optimal control [14]. Here,
we still fix r to represent the requestor, and thus the HBA is
defined as atr ∼ argmaxar∈Ar

Ear

st (H
t), where for any state

s ∈ S, any action ar ∈ Ar, and any history Ĥ ,

Ear
s (Ĥ)

=
∑

θ∗
w∈Θ∗

w

Pr(θ∗w|Ĥ)
∑

aw∈Aw

Q(ar,aw)
s (Ĥ)πw(Ĥ, aw, θ

∗
w) (1)

is the long-term payoff of the requestor taking the action ar
in the state s after history Ĥ , and for all a ∈ A,

Qa
s(Ĥ)

=
∑
s′∈S

T (s, a, s′)

[
ur(s, a) + γ max

ar∈Ar

Ear

s′ (⟨Ĥ, a, s′⟩)
]

(2)

determines the long-term payoff for the requestor r when joint
action a is executed in state s after history Ĥ , γ ∈ [0, 1] is the
discount factor, and ⟨Ĥ, a, s′⟩ in (2) denotes the concatenation
of Ĥ and (a, s′).

We consider that the behavior of the requestor r is com-
pletely specified by HBA, that is, in our model r has a single
fixed type: Θ+

r = {θHBA
r }, where θHBA

r is outputted by
(1) and (2). The Posterior Belief Probability (PBP) in (1) is
defined as follows: for any history Ĥ and any θ∗w ∈ Θ∗

w,

Prw(θ∗w|Ĥ) =
L(Ĥ|θ∗w)Pw(θ

∗
w)∑

θ̂∗
w∈Θ∗

w
L(Ĥ|θ̂∗w)Pw(θ∗w)

, (3)

where Pw(θ
∗
w) is the prior belief (probability) that the worker

w is of type θ∗w before any action is observed, and L(Ĥ|θ∗w)
is the likelihood of history Ĥ under the assumption that the
worker w is of type θ∗w. To specify the likelihood L in (3), we
consider the sum posterior given in [14], which allows HBA
to learn mixed type distribution. Thus, θ̂∗w in (3) refers to all
possible hypothesized types of the worker w in Ĥ .

V. SIMULATION

In this section, we have simulated various scenarios of the
proposed game theoretical model by using MATLAB platform
to validate its effectiveness. Besides, we have conducted a
comparative analysis with other approaches modeling oppo-
nent players.

A. Scenario descriptions

In the simulation, the type-based behaviors of the worker
defined in Table IV are all taken into consideration, namely
AC, RC, RS, and AM. We designed two kinds of history, as
illustrated in Table V.

TABLE V: Scenario description

controlled by HBA

 AC RC RS AM

H Ø Ø Ø F Ø

Ø= Empty history; F=Favorable history.

w
r

• An empty history where the requestor and the worker
have yet to interact.



• A favorable history in which only TC is reached among
action states, and this signifies a possible situation where
the attacker hides its true behavioral type by performing
only cooperate in the past and it starts misbehaving at
a moment given, this also corresponds to the intelligent
attack types of the insider attacker analyzed in [18].

The favorable history and RS misbehavior will be utilized for
the comparative

analysis with other approaches since they, somehow, repre-
sent a more complex context in simulation.

B. Parameter settings

TABLE VI: Simulation parameter values

Parameter Value Parameter Value
PE 0.1 LrTM 0.55
PI 0.2 GwTC 0.45

0.9  GwTM 1
GrTC 1 GwDC 0.1
CrS 0.05 GwDM 0.1
CrT 0.45 CwC 0.2
CrD 0.1 CwM 0.45



As illustrated in Table VI, we set PE 0.1. For the same
IoT protocol, its failure rate calculated in [19] is 12%,

     w                         
r S C I M

S - - -0.05 ,0 -

T - 0.45 , 0.25 - -1 , 0.55

D -  - 0.1 , -0.1 - -0.1 ,  -0.35

TABLE VII: Payoff matrix
with parameter values

and its communication
stability given in [20] is
0.92, we take the average
of these values to represent
the probability that the
communication fails,
i.e., PE=0.1 (obviously
[0.12+(1-0.92)]/2=0.1).
In our proposed model,
we consider the rational
worker may perform action I in case of resource-constrained,
e.g., in trouble of insufficient battery. In the above table, PI

is fixed at 0.2 as we employ the value of a parameter in work
[21] describing the capability of solving battery issues, which
is set to 0.8. Thus we consider PI=1-0.8=0.2. The discount
factor γ is fixed at 0.9 as in [14]. Besides, the initial prior
considered is uniform prior for the empty history, where three
types have identical prior values. For the favorable history,
the initial prior is calculated by (3), as the posterior of the
previous time slot. We fix the maximal gain to 1 for both the
requestor and the worker. By respecting the constraints of
payoffs mentioned in Section IV-B, the rest of the parameters
are accordingly assigned as given in Table VII: GrTC(1)-
CrT(0.45)>CrT(0.45); GwTM(1)-CwM(0.45)>CwM(0.45);
CrT(0.45)>CrD(0.1)>CrS(0.05); GwDC=GwDM=CrD=0.2;
GwTC=CrC=0.4; GwTM(1)-(CwM(0.45)>GwTC)(0.45)-
CwC(0.2). Fixing the target number of interactions between
the requestor and the worker, we run 50 game rounds for
simulation.

C. Performance evaluation

To evaluate the performance of the proposed model, we
focus on the changes in PBP (Posterior Belief Probability)
given by (3) and the occurrence rate of game states obtained
per scenario, and the average payoff of each scenario will also
be assessed.

a) AC scenario: As we can see in Fig. 4, since the action
C can also be performed by a Rational worker, this PBP
value of the Rational type increases a little at the beginning.
However, this value goes down rapidly due to no action I
performed at all by the worker, and finally converges to 0. On
the other hand, the PBP value of the Altruistic type converges
to 1, which corresponds to the occurrence rate diagram in the
same figure, showing that the requestor only performed the
action T based on HBA to optimize the requestor’s long-term
payoff.

Fig. 4: Changes in PBP and the occurrence rate of game
states in AC worker scenario

b) RC scenario: Differently, the changes in PBP values
in Fig. 5 show that the Rational worker performed action I
at the very early game rounds, and thus the PBP value of the
Altruistic type decreases. After that, the worker cooperated
with the requestor so that we can observe a rise in the PBP
value of the Altruistic type around the tenth game round. With
more and more action I being performed by the worker, the
PBP of the Rational type increases steadily while the worker
performed cooperate in some cases. Since I state must return
to PE state by definition, it can be noticed that the occurrences
of PE and S state are relatively higher than in other scenarios.
Furthermore, it can be noticed that the occurrence of I state
is much lower than that of TC state, which matches the value
of PI=0.2.

c) RS scenario: As the most complex malicious behavior
defined in Table IV, the RS worker will randomly shift its
actions between I, C, and M, it can be observed in Fig. 6 that
the occurrences of state I, DC, and DM are close. The changes



Fig. 5: Changes in PBP and the occurrence rate of game
states in RC worker scenario

Fig. 6: Changes in PBP and the occurrence rate of game
states in RS worker scenario

in PBP value demonstrate that the worker performed action I
at the beginning. And then the value of the Rational type goes
down immediately due to the misbehavior of the worker, we
can also observe that the worker repeated action I, which leads
to the PBP value of the Rational type remaining unchanged.
On the other hand, the requestor performed very rarely action
T, this is because performing D enables maximization of
the long-term payoff. In other words, to cope with a RS
malicious worker, performing action D is optimal based on
the calculation of HBA. Finally, with more and more action
M being performed, the PBP of the Byzantine type converges
to 1.

Fig. 7: Changes in PBP and the occurrence rate of game
states in AM worker scenario

d) AM scenario: The AM worker will misbehave im-
mediately from the beginning, and the requestor will perform
action T at the first game round since the HBA maximizes
its long-term payoff for the first interaction with the worker,
which outputs that it will perform action T. As the malicious
worker continuously misbehaves during the game, the PBP of
the Byzantine type in Fig 7 increases till it converges to 1, and
PBP values of Altruistic and Rational types are overlapping
and both decrease to 0. Except one TM state is reached as
the requestor performed action T, only DM is reached among
all action states as the type of the worker is reasoned as
Byzantine, the requestor will keep distrusting the worker. In
our simulation, we run 50 game rounds even though the type of
malicious worker has been identified. Indeed, such malicious
worker will be removed from the group of workers once it is
remarked as the attacker.

Fig. 8: Average payoff of the requestor and the worker in
different scenarios

e) Average payoff per scenario: Fig. 8 illustrates the
average payoff obtained by the requestor and the worker
after running 50 game rounds. As we can see, AC and RC
scenarios are win-win cases for the requestor and the worker.
Although the RC worker performed more I action leading to
a cost for the requestor, Fig. 8 indicates that their interactions



still output positive payoffs, i.e., the selfish worker is not
considered as malicious. On the other hand, in RS and AM
scenarios, the requestor and the worker both receive negative
payoffs, but it is obvious that the worker loses much more,
which means the requestor is able to minimize its loss when
playing with a malicious worker. From the above performance
evaluation based on changes in PBP values, the occurrence
rate of game states, and average payoff in different scenarios,
we notice that the proposed model encourages cooperation
between the requestor and the worker, reduces the loss and the
cost of the requestor if facing malicious worker, and penalizes
the malicious worker. Moreover, the changes in PBP values
become stabilized within 50 game rounds, which also results
in the true types of the worker being identified accurately.

D. Comparative analysis with other approaches

In this subsection, we compare our work with approaches
presented in [22] and [23] (thereafter referred as ”QL” and
”CJAL”) to demonstrate the ability of the proposed model
in presence of RS worker with a favorable past history. QL
approach allows the players to learn the optimal action in a
particular state by maximizing the expected payoff, and CJAL
approach proposes that players learn the action frequencies
of others conditioned on the modeling player’s own action,
which is called conditional joint action. We choose these
two approaches since comparing our work with other game
theoretical trust models remains demanding due to the variety
of game formulations and payoff matrix, and these two ap-
proaches are reputable learning schemes that enable modeling
the behavior of opponent players to optimize player’s payoff.
We involve RS scenario and a favorable past history for having
a complex initialization of the game. QL and CJAL approaches
both require adaptations to be simulated with a Crowd-IoT
context, we thus retain the same parameter settings given in
Table VI.

Fig. 9: Comparison between different approaches based on
occurrence rate and average payoff in RS scenario with

Favorable history

As shown in Fig. 9, in presence of RS malicious behavior,
the proposed model outperforms the other two approaches in
the average payoff obtained. By reviewing the occurrence rates
of the three approaches, we can notice that the requestor of QL
approach performs more action T as the TC and TM states are
reached more. On the other hand, the action D is much less
performed compared with CJAL and our work, particularly
when the malicious worker performs action M. This also
explains that the requestor of QL receives the worst average
payoff among the three approaches, and its worker obtains
a very small negative payoff, nearly no loss caused. As for
CJAL, as the requestor of CJAL approach performs less T and
more D actions, the misbehaving of RS worker does not create
much damage to the requestor, and thus its loss is reduced.
On the other hand, the success rate of misbehaving for the
RS worker becomes smaller, and consequently, the malicious
worker will receive a lower negative payoff compared with
the QL worker, which means its misbehavior is punished.
Besides, it can be seen in our work, the requestor’s average
payoff is higher than the malicious worker, but QL and CJAL
approaches cannot address the issue where the payoff of the
requestor is lower than that of the malicious worker. As a
malicious attacker with favorable history corresponds to the
newcomer attack behavior discussed in [18], where the attacker
benefits from refreshing its historical record, our work shows
resilience against this attack type.

VI. CONCLUSION AND FUTURE WORK

To overcome several limitations of the current works and ad-
dress misbehavior in Crowd-IoT, we presented, in this paper, a
Stochastic Bayesian Game (SBG) where the requestor and the
worker are regarded as heterogeneous Crowd-IoT participants
with an asymmetric payoff matrix, and the selfish action and
the malicious action can be distinguished. More importantly,
the complex behavioral schemes of the worker, i.e., strategies,
are considered in the SBG by applying the BAR threat model.
We also involved these strategies in the simulation to assess
the performance of the proposed model. From the observation
in Section V through the simulation results of the performance
evaluation of the proposed model under various scenarios and
the comparative analysis with the other two approaches from
the literature, we can notice that workers’ behavioral types
can be deduced accurately, and the requestor can perform
optimal action by maximizing its long-term payoff. Therefore,
the Altruistic and Rational worker performing cooperate can
receive a positive payoff and the Byzantine worker’s action
can be tracked and punished. Through a comparison with
two other approaches based on the most complex worker’s
strategy and history setting (RS worker and favorable history),
our proposed model using HBA to specify the requestor’s
strategies outperforms other approaches in the average payoff
obtained, and the numerical results also show the resilience
of our work when dealing with the malicious worker whose
history has been refreshed. Furthermore, as the worker also has
the purpose of gaining a higher payoff, the optimal strategy
when facing a requestor controlled by HBA is to perform



cooperate as much as possible, even though the successful
attack allows the malicious worker to obtain the maximal
gain in our designed payoff matrix. This also signifies that
the cooperativeness between the requestor and the worker is
encouraged in our proposed model. As discussed in [18], more
complex behavioral schemes, especially malicious ones, can be
considered as worker strategies in future work. We also plan to
conduct the implementation with IoT devices in order to test
the proposed model within a real Crowd-IoT environment.
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