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Abstract—Over the years, the objective of image and video
compression has been to preserve perceived quality according to
the Human Visual System (HVS) with minimal rate. Traditional
encoders achieve this with the use of Rate-Distortion Optimiza-
tion (RDO) techniques along with Image Quality Assessment
(IQA) metrics that are correlated with human perception. Nowa-
days, a fast-growing number of applications fall within the realm
of Video Coding for Machines (VCM), where the final recipient
of compressed data is not a human but a machine performing
a vision task. Recently, the lack of correlation between existing
distortion measures and machine perception has been revealed,
especially for RDO algorithms where distortion measures are
computed on a local scale. In this paper, we propose a machine
perception-aware metric designed to be incorporated into a
standard-compliant Versatile Video Coding (VVC) encoder. Our
proposed metric relies on a supervised training procedure as well
as additional information available on the encoder side. In terms
of correlation with machine perception, our metric significantly
outperforms existing distortion measures in the literature.

Index Terms—Video Coding for Machines (VCM), Image
Quality Assessment (IQA), Full-Reference (FR), Rate-Distortion
Optimization (RDO), Versatile Video Coding (VVC)

I. INTRODUCTION

Throughout the decades, traditional standards such as Ver-
satile Video Coding (VVC) [1] have achieved significant
advancements in coding efficiency. Coding efficiency refers
to the ability of an encoder to jointly minimize both the rate
and distortion, where the distortion is being measured by an
Image Quality Assessment (IQA) metric. This minimization is
accomplished through the use of Rate-Distortion Optimization
(RDO) [17]. By ensuring a strong correlation between the
selected IQA metric and the perception of the Human Visual
System (HVS), RDO techniques allow a compact represen-
tation to be found while preserving quality as perceived
by humans. However, recent progress in computer vision
tasks [2], [7], [20] has resulted in an increasing amount of
visual content compressed for machine analysis rather than
human consumption [3]. To this end, the Moving Picture
Expert Group (MPEG) has established the Video Coding for
Machines (VCM) group [24], with the goal of surpassing the
trade-offs in bitrate and machine performance encountered by
the VVC Test Model (VTM) encoder.

Recently, a study evaluating the correlation of common IQA
metrics with machine perception has been conducted [12].

Experiments indicated that when measured on a local scale, the
correlation levels between IQA scores and machine perception
were low. Therefore, with the use of such IQA metrics,
minimizing the distortion measure within the RDO loop does
not guarantee the performance of the final vision task to be
preserved.

This paper introduces a novel machine perception aware
IQA metric that is designed to be integrated within the RDO
loop of a VVC-based encoder. Our proposed metric utilizes
a Full-Reference (FR) strategy, where a distorted block is
compared against its undistorted counterpart. By leveraging
additional information available on the encoder side, our met-
ric enhances its ability to provide relevant scores. Moreover,
a supervised learning strategy minimizes the distance between
labels representing machine perception and metric predictions.

The remainder of this paper is organized as follows. Sec-
tion II and Section III provide a review of existing works
in the literature and background about the VVC standard,
respectively. A detailed presentation of the proposed metric
is presented in Section IV. Finally, experiments are conducted
in Section V, followed by a conclusion.

II. RELATED WORKS

The field of Image Quality Assessment (IQA) focuses
on finding quality models for images that match the HVS
perception. One type of such quality model is referred to as
Full-Reference (FR) metrics, where the degradation within an
image is compared to a pristine reference image. As it was
observed that the legacy Peak Signal to Noise Ratio (PSNR)
metric lacks correlation with human perception, many IQA
metrics have been proposed over the years. Notable examples
include the Structural SIMilarity (SSIM) [21], as well as more
recent deep learning-based metrics such as Learned Perceptual
Image Patch Similarity (LPIPS) [23], Deep Image Structure
and Texture Similarity (DISTS) [5] and NIMA [18]. Despite
reaching a high correlation with the HVS, these metrics are
unsuited to correlate with machine perception, especially on a
block-level [12]. Consequently, minimizing the score returned
by a FR IQA metric within a RDO loop is sub-optimal to
preserve the machine task performance in a VCM context.

Being able to predict machine perception with a metric
is related to the concept of image utility [14]. The utility



Fig. 1. Illustration of Block Partitioning for a 128× 128 CTU. CUs can be
subdivided into fine or coarse blocks depending on the content.

of an image refers to the ability of machines to provide
accurate predictions on them. Khan et al. [10] showed that
a simple FR metric based on a Resnet-18 network [7] can
predict if the machine task predictions on both degraded
and pristine images would be equivalent. This observation is
consistent with the fact that existing FR IQA metrics are able
to correlate with machine perception on an image-level [12].
Fischer et al. [6] proposed a Feature-based RDO (FRDO),
where the first 5 layers of a pre-trained VGG-16 [16] are
used to extract features on which distortion measures such
as the Sum of Squared Errors (SSE) or the Sum of Absolute
Differences (SAD) are computed. These distortion measures
are referred to as Feature-based SSE (FSSE) and Feature-based
SAD (FSAD), respectively. However, performing the RDO
in the feature domain over the pixel domain might not be
preferable, as there is no statistical evidence that measuring
distortion on such domain offers a greater correlation with
machine perception.

III. VVC BACKGROUND

One crucial component of a VVC encoder is the Rate-
Distortion Optimization (RDO) [17]. In essence, the RDO
algorithm tackles an optimization problem to identify the most
suitable encoding solution within a search space. The search
space can encompass all possible ways to divide a CTU into
smaller Coding Unit (CU) using the available splits defined
by the VVC standard. Figure 1 illustrates a block partitioning
example obtained with a RDO for a given CTU. As it can
be seen, larger CU are predominantly selected by the RDO
for areas consisting primarily of low frequencies, while CU
as small as 4× 4 can be utilized to encode complex regions.

The RDO consists in jointly minimizing 2 antagonist terms
that are the rate and the distortion. For each tested encoding
possibility among the search space, the rate refers to the
number of bits required by the entropy coder to encode a
block, while the distortion is a measure that quantifies the
amount of degradation introduced in the reconstructed block.

A bit-rate constraint Rmax set to a low value may imply a high
level of degradation in the encoded block, and vice-versa.

Let ω represent an encoding possibility among the search
space Ω, i.e. a set of possible encoding possibilities. Let R
and D be functions that return the rate and the distortion of a
given encoding possibility ω. The RDO consist in minimizing
the distortion D with respect to a bit-rate constraint Rmax:

ω∗ = argmin
ω∈Ω

D(ω) w.r.t. R(ω) < Rmax (1)

where ω∗ is the optimal solution found by the optimization
algorithm. Sullivan et al. [17] solve Equation 1 using a uncon-
strained Lagrangian optimization that weight the distortion D
over the rate R using a Lagrangian multiplier λ:

ω∗ = argmin
ω∈Ω

J(ω) s.t. J(ω) = D(ω) + λR(ω) (2)

Minimizing J in Equation (2) for a given Lagrangian
multiplier λ leads to an optimal solution of Equation (1)
for a particular bit-rate constraint Rmax. Tuning λ results
in different rate-distortion trade-offs. Higher λ values favor
the minimization of the rate term R, thus leading to highly
compressed visual content. Conversely, lower λ values will
encourage the RDO to find a solution with a low distortion D
and hence a high-quality output.

The distortion function D measures the quality of the
reconstructed block B̂ compared to the original block B.
Practical use of the RDO most often relies on the SSE or
the SAD as the distortion measure D:

SSE(B, B̂) =

W∑
i=1

H∑
j=1

|B(x, y)− B̂(i, j)|2 (3)

SAD(B, B̂) =

W∑
i=1

H∑
j=1

|B(x, y)− B̂(i, j)| (4)

where (x, y), W and H are pixel coordinates, block width
and block height, respectively.

IV. PROPOSED METRIC

Figure 2 highlights the architecture of our proposed machine
perception aware metric. Similar to SSE or SAD distortion
measures, our metric uses a FR strategy where degraded
content is compared against a reference.

A. Model Architecture

Within the RDO loop of a VVC based encoder, a distortion
measure is used to compare a reconstructed CU over the cor-
responding CU reference. Because of VVC block partitioning,
CU size can vary from 64× 64 down to 4× 4. It is important
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Fig. 2. Proposed machine perception aware metric. The metric uses a Full-Reference (FR) strategy and predict a score based on the pristine Coding Tree Unit
(CTU) ICTU , the distorted Coding Unit (CU) ÎCU and a mask M indicating the CU position within the CTU. A score of 0 indicates that the segmentation
algorithm predicts identical outcomes for blocks ICU and ÎCU , while a score of 1 indicates different classifications for all pixels between blocks ICU and
ÎCU .

to emphasize that predicting a meaningful score becomes
increasingly harder as the CU size decreases. This is due to
the reduced amount of information available to the metric at
smaller block sizes. Indeed, empirical evidence have shown
that correlation between FR IQA metrics scores and machine
perception was higher when measured on 128 × 128 blocks
compared to 64× 64 or 32× 32 blocks [12]. To this end, our
proposed metric takes advantage of more information by using
as input the whole reference CTU ICTU with both luminance
and chrominance components. The added context allows our
metric to significantly improve prediction quality, especially
on smaller CU, as shown in Section V. Furthermore, the use
of the entire reference CTU ICTU instead of the reference CU
ICU allows the computational complexity of our metric to be
lowered when integrated into the RDO loop of an encoder.
This is because the input reference CTU ICTU remains
the same for all CUs within the CTU, allowing subsequent
computations to be performed only once per reference CTU
ICTU . For the distorted block ÎCU , note that only the CU and
a single component are used, since the reconstructed CTU and
other components are not accessible within the RDO encoding
process. In this study, the luminance component is considered
for the distorted CU ÎCU .

The proposed metric start with two feature extraction steps,
applied separately on the reference CTU ICTU and the dis-
torted CU ÎCU . Both feature extraction models have separate
weights but share the same architecture. The architecture is

based on the first layers of EfficientNet-b0 [20], which rely
on Mobile inverted Bottleneck Convolutions (MBConv) [15],
[19] and squeeze-and-excitation modules [9]. More detail on
the used architecture is provided in Table I. The weights
of both feature extractors are initialized with the Pytorch
implementation of EfficientNet-b0. Note that the height H and
width W of the obtained feature maps are divided by a factor
of 4 due to the use of strided convolutions. This design choice
is motivated by the requirement that the distortion measure can
be computed on blocks as small as 4× 4 in the case of VVC.

Thereafter, the feature maps of size 24× 32× 32 and 24×
H
4 × W

4 undergo downsampling through an average pooling
operator, resulting in feature maps of size 24× 1× 1. Let X
represent the feature map obtained from the feature extractor
which takes the reference CTU ICTU as input. Let M be a
mask of size 1× 32× 32 that provides information about the
CU position within the CTU. A value of 1 for a pixel in the
mask M indicates that the corresponding 4×4 area in the CTU
belongs to the CU, while a value of 0 indicates that the region
lies outside the CU. The average mask pooling first consists in
extracting a subregion Y of the feature map X using a mask
M . Y can be obtained by keeping values from the feature
map X that correspond to the non-zero area of the mask M .
The resulting feature map Y has dimensions of 24× H

4 × W
4 .

Afterwards, a conventional average pooling operator is applied
to the feature map Y , resulting in a vector Z with 24 elements.
The cth element in the vector Z is the average of the H

4 × W
4



TABLE I
USED ARCHITECTURE FOR BOTH FEATURE EXTRACTORS. OUTPUT

RESOLUTION IS SPECIFIED FOR THE REFERENCE CTU ICTU AS INPUT.
NOTE THAT THE FIRST CONVOLUTION TAKES 3 AND 1 INPUT CHANNELS

FOR THE REFERENCE CTU ICTU AND THE DISTORTED CU ÎCU ,
RESPECTIVELY.

Operator Output Output
channels resolution

Conv, 3× 3 32 64× 64
MBConv, 3× 3 16 64× 64
MBConv, 3× 3 24 32× 32
MBConv, 3× 3 24 32× 32

Conv, 1× 1 24 32× 32

elements from the cth channel of the feature map Y . Note that
the mask M is not used for the distorted head that takes as
input Î , since the corresponding area already refers to the CU.

Based on both undistorted and distorted heads of our model,
two vectors of 24 elements each are obtained. These vectors
are then concatenated and fed as input to an Multi-Layer
Perceptron (MLP). The employed MLP architecture consists
of an input layer with 48 elements, followed by three hidden
layers containing 24, 12, and 6 neurons, respectively. The
Sigmoid Linear Unit (SiLU) [8] is used in our MLP as
the activation function. The output layer comprises a single
neuron, which is followed by a sigmoid function to map the
possible set of scores of our FR metric between 0 and 1.

B. Training Strategy

In order to train the proposed model, the methodology
outlined in [12] is employed to gather training data, evaluation
data and associated labels. This process involves leveraging
the Cityscapes dataset [4] and utilizing a semantic segmenta-
tion algorithm [2]. Following the same methodology, uncom-
pressed images, compressed images, segmentation predictions
of uncompressed images, and segmentation predictions of
compressed images are acquired. The same coding configura-
tions are considered to obtain compressed images [12], encom-
passing Joint Photographic Experts Group (JPEG), Advanced
Video Coding (AVC), High Efficiency Video Coding (HEVC),
and VVC compression applied across a wide range of reso-
lutions and qualities. Subsequently, the uncompressed images
and compressed images are utilized to extract reference CTU
ICTU and distorted CU ÎCU , respectively. The same block
sampling strategy as the original paper is employed to ensure
that the errors of sampled blocks are uniformly distributed,
thus guaranteeing a well-balanced dataset. To generate the
training labels representing the machine perception measure,
blocks from the segmentation predictions of uncompressed
and compressed images are extracted at the corresponding
CU coordinates. These blocks are denoted as PCU P̂CU ,
respectively. For more detailed explanations, the reader can
refer to the corresponding article [12].

During the training process, the pixel-wise accuracy be-
tween the undistorted CU PCU and the distorted CU P̂CU is
used as the training label. Notably, the mean Intersection over

TABLE II
CONSIDERED CU SIZES AT TRAINING.

4× 4 8× 4 16× 4 32× 4 64× 16
4× 8 8× 8 16× 8 32× 8 64× 64
4× 16 8× 16 16× 16 32× 16
4× 32 8× 32 16× 32 32× 32

16× 64

Union (mIoU) is not employed, despite being the standard
metric to assess the relevance of predictions for semantic
segmentation. Indeed, the mIoU comes with several limitations
when it is computed on a local scale. Due to the high likeli-
hood that a block contains only one or very few classes, the
mIoU scores can be significantly impacted even if most pixels
within the block are correctly classified. In extreme cases, the
misclassification of a single pixel can lead to mIoU scores
below 0.5, regardless of the block size [12]. To address these
limitations, the pixel-wise accuracy between the undistorted
CU PCU and the distorted CU P̂CU is used as a measure of
machine perception. The training label used to train our model
is determined by subtracting such pixel-wise accuracy from 1.
Consequently, a prediction of 0 from our metric indicates that
the predictions on the undistorted CU ICU and the distorted
CU ÎCU are the same. This behavior is analogous to the SSE
and SAD distortion measures, where a score of 0 denotes no
difference between the original block B and the reconstructed
block B̂, as shown in Equation (3) and Equation (4).

To ensure the proper training and evaluation of our
model, distinct sets are necessary. As mentioned earlier, the
Cityscapes dataset [4] is employed to gather the required
training data, evaluation data, and associated labels. Note
that images within the Cityscapes training set cannot be
used directly for training or evaluating the model. Indeed,
these images would not yield representative predictions of the
semantic segmentation algorithm performance, as these images
have already been seen during the training phase. To this end,
the Cityscapes testing set is utilized for training the model,
while the validation set is used for evaluation.

As mentioned in Section IV-A, the size of a CU can range
from 64 × 64 to 4 × 4. To ensure that model predictions
accurately reflect machine perception for any given CU size,
a CU size is randomly sampled from a set using a uniform
distribution function at each batch during training. The con-
sidered set of CU sizes, which were determined empirically
by examining the CU sizes encountered in the RDO loop of
VTM, is presented in Table II.

The optimal learning rate and batch size were deter-
mined using the Asynchronous Successive Halving Algorithm
(ASHA) [11] hyper-parameter optimization technique, using
the Ray Tune library implementation. ASHA objective is to
maximize the Pearson Linear Correlation Coefficient (PLCC)
between model predictions and labels of the evaluation set by
tweaking hyper-parameters. Additionally, L1 norm, L2 norm,
cosine similarity and Pearson correlation loss functions were
compared through the ASHA. Ultimately, a batch size of 64,
a learning rate of 2 × 10−2 and the Pearson correlation loss



TABLE III
CORRELATION BETWEEN FR METRIC SCORES AND MACHINE PERCEPTION ACROSS DIFFERENT BLOCK SIZES. THE TABLE PRESENTS THE CORRELATION

FOR BOTH SQUARE BLOCKS (TOP) AND RECTANGULAR BLOCKS (BOTTOM).

4× 4 8× 8 32× 32 64× 64
Metric PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC

SSE 0.009 0.011 0.008 −0.020 −0.030 −0.021 −0.025 −0.021 −0.014 −0.021 −0.047 −0.031
SAD 0.027 0.013 0.010 −0.029 −0.032 −0.022 −0.018 −0.015 −0.010 −0.032 −0.042 −0.028

SSIM [21] −0.060 −0.024 −0.017 0.003 0.029 0.019 0.036 0.043 0.027 0.029 0.071 0.047
DISTS [5] 0.051 0.047 0.032 −0.001 0.007 0.005 0.062 0.057 0.038 0.025 0.024 0.016
FSSE [6] 0.023 0.012 0.008 −0.021 −0.043 −0.029 −0.050 −0.063 −0.041 −0.068 −0.079 −0.053
FSAD [6] 0.030 0.011 0.008 −0.031 −0.046 −0.031 −0.056 −0.065 −0.042 −0.080 −0.085 −0.057

Ours 0.288 0.257 0.182 0.370 0.335 0.235 0.422 0.406 0.280 0.358 0.345 0.239

4× 32 16× 8 16× 32 64× 16
Metric PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC

SSE −0.053 −0.059 −0.039 0.009 −0.024 −0.015 −0.020 −0.012 −0.007 −0.057 −0.124 −0.081
SAD −0.057 −0.058 −0.038 0.002 −0.022 −0.014 −0.008 −0.005 −0.003 −0.076 −0.117 −0.076

SSIM [21] 0.060 0.063 0.041 0.006 0.023 0.014 0.019 0.017 0.010 0.085 0.143 0.093
DISTS [5] −0.046 −0.044 −0.029 0.022 0.012 0.008 0.038 0.037 0.025 −0.063 −0.072 −0.047
FSSE [6] −0.065 −0.078 −0.052 −0.020 −0.040 −0.025 −0.050 −0.052 −0.034 −0.087 −0.160 −0.106
FSAD [6] −0.074 −0.079 −0.052 −0.035 −0.042 −0.027 −0.057 −0.055 −0.036 −0.121 −0.162 −0.107

Ours 0.318 0.284 0.193 0.417 0.384 0.269 0.335 0.294 0.202 0.445 0.434 0.305

were identified as the optimal configuration. Let N denote
the batch size. In the training process, x and y represent N -
elements vectors corresponding to the model output predic-
tions and training labels, respectively. The Pearson correlation
loss function ℓPLCC is given with the following equation:

ℓPLCC(x,y) = −
∑N

i=1(xi − x)(yi − y)√∑N
i=1(xi − x)2

√∑N
i=1(yi − y)2

(5)

where x = 1
N

∑N
i=1 xi represents the average of the

underlying variable x. By minimizing ℓPLCC , the Pearson
correlation of each batch is maximized. Our model is trained
for 200 epochs, each composed of 215 training samples.

V. EXPERIMENTS

To assess the effectiveness of the proposed machine per-
ception aware metric, the correlation between predicted scores
and machine perception is measured. The evaluation data and
machine perception measures are collected using the method-
ology described in Section IV. The correlation is measured
with PLCC, Spearman Rank-Order Correlation Coefficient
(SROCC), and Kendall Rank-Order Correlation Coefficient
(KROCC).

Representative FR metrics from the state-of-the-art are
compared against our metric. Firstly, the SSE and the SAD
are considered, as they are commonly incorporated into RDO
loops. The SSIM metric [21] is also included, given the
numerousSSIM-based RDO techniques proposed in the lit-
erature [13], [22]. Furthermore, DISTS [5] IQA metric is
evaluated, as previous research has shown that this metric
exhibit the highest correlation with machine perception on a
block-level [12]. Despite reaching a correlation comparable
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Fig. 3. Scatter plot between machine perception measure and predicted scores
by the proposed metric on 64× 16 CUs. The machine perception relies on a
pixel-wise accuracy measure, as described in Section IV-B.

to that of DISTS, LPIPS [23] is omitted due to its inability
to handle blocks smaller than 16 × 16. However, due to
its deep learning-based nature, incorporating DISTS into an
RDO loop is hampered because of computational complexity.
Finally, both distortion measures FSSE and FSAD proposed
by Fischer et al. [6] are also considered.

As indicated in Table II, the RDO loop requires the compu-
tation of distortion measures on various CU sizes. To provide
a concise analysis, the correlation measurements are presented
for eight specific CU sizes: 4×4, 8×8, 32×32, 64×64, 4×32,
16× 8, 16× 32, and 64× 16. Due to the availability of only
one image component within the RDO for the distorted CU
ÎCU , existing metrics from the literature are also constrained
to use a single component for both the reference CU ICU



and the distorted CU ÎCU . The luminance component for
both CU is considered in this experiment. Our metric stands
as an exception, as it incorporates both the luminance and
chrominance components for the reference CTU ICTU and
the luminance component only for the distorted CU ÎCU , as
described in Section IV.

Table III illustrates the correlation analysis between the
considered FR metrics and machine perception. Notably, the
metrics from the literature exhibit correlation scores close to
0. As a consequence, minimizing the distortion measure D as
shown in Equation (1) and Equation (2) cannot guarantee the
performance preservation of the used semantic segmentation
algorithm. Hence, it is suggested that FR metrics from the
literature are ill-suited in a VCM context.

In contrast, the proposed metric consistently outperforms
the existing metrics from the literature by a substantial margin,
achieving a PLCC as high as 0.445 on 64×16 CUs. By lever-
aging the entire CTU ICTU and the associated chrominance
components, our metric achieves a higher level of correlation,
particularly on smaller blocks [12]. Figure 3 presents a scatter
plot illustrating the relationship between machine perception
and the predicted scores of our metric. As discussed in
Section IV-B, the machine perception measure is obtained by
subtracting the accuracy from 1. The figure illustrates that
establishing a clear and accurate bijective relationship between
the two variables is not straightforward. This underscores the
challenges involved in creating an IQA metric that can achieve
high levels of correlation with machine perception.

VI. CONCLUSION

In this paper, a machine perception aware FR IQA metric
designed specifically to be integrated within the RDO loop
of a VVC-based encoder has been introduced. Our metric
takes advantage of additional information available on the
encoder side and uses a supervised learning strategy to provide
precise scores. A comparative analysis was conducted between
our proposed metric and existing metrics from the literature,
targeting both human and machine perception. Experimental
results revealed that our proposed metric achieved correlation
levels as high as 0.445 while existing metrics did not show
any significant correlation in the considered experiments.
The relatively low correlation levels achieved by our metric
underscore the challenges associated with developing a metric
that achieves a high correlation with machine perception.
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