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Abstract

This work is devoted to the modelling of the mechanical behavior of coated or uncoated
silicon nanoparticles, which constitute the anode active material in some lithium ion bat-
teries, during their first lithiation at room temperature. The lithiation process induces a
large volume expansion of the particles and a high level of stresses, which can lead to the
fragmentation of the particles. Several approaches are proposed in order to estimate the vol-
ume expansion and the stress levels experienced by the particles. An original semi-analytical
small strain model is first presented, which adapts the solution proposed by Seck et al. (2018)
of the elastic-viscoplastic composite sphere problem subjected to radial loading, to the lithi-
ated particle problem, in particular by considering the variation of phases properties during
lithiation. The lithium concentration in the silicon particle is given by a sigmoid function
(called logistic function) in order to mimic the reaction front between the phases.The imple-
mentation of the approach using the Hencky strain tensor (Miehe et al. (2002)) is proposed
to take into account the large strains experienced by the particles. A complete description
of the formulation is provided and the advantages are discussed. The importance of the
large strains model is established by comparing it with the small strain one concerning the
predictions of the pushing-out effect and the size effect of particles on their internal stresses
during lithiation. Comparisons between our simulations and experimental data from Tardif
et al. (2017) measuring the operando strain experienced by the pristine silicon gives the yield
stress of the lithiated silicon. In addition, carbon-coated silicon nanoparticles are finally
studied. We develop original closed-form expressions to predict the maximal stresses experi-
enced by the coating at the end of the lithiation. Those expressions are used to re-estimate
the fracture stress of pyrolitic carbon, considering a critical review of both pyrolitic carbon
and lithiated silicon elastic properties. Finally, the mechanical effect of the coating on silicon
during lithiation is studied.
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1. Introduction

Lithium ion batteries (LIBs) using silicon as the anode active material is a promising
material for electronic equipment because of its high energy density. The graphite employed
at the anode of LIBs has a theoretical capacity of 372 mA h g−1 (Stournara et al. (2012)) and
undergoes volume changes up to 10% under intercalation reaction (Qi et al. (2010)). On the
other hand, silicon has higher theoretical capacity of 4200 mA h g−1 and undergoes alloying
reaction with lithium, which leads to much larger volume expansion (Chan et al. (2008)).
A major issue for improving the performance of LIBs using silicon is understanding their
degradation that leads to capacity fade. According to Xu et al. (2017), the main degradation
mechanisms are i) silicon cracking and pulverization due to volume expansion of 300% of
Si upon full lithiation ii) loss of electrical contacts between silicon and conductive material
due to silicon contraction during delithiation and iii) formation of a thick solid electrolyte
interface (SEI) layer. In our work, we focus in the study of the first degradation mechanism.
Several in situ and in operando experimental techniques have been conducted in the past
to understand the lithiation mechanisms. These studies have evidenced the formation of an
inward advancing lithiation front separating two phases in which the lithium concentration
changes drastically between them: a pure silicon core and a silicon lithium alloy outer shell.
For initially crystalline particles (c-Si), the amorphous alloy formed during lithiation at room
temperature is the Li3.75Si, leading the particle to a high volume expansion of about 300 %
(Liu et al. (2011)). In situ TEM studies revealed that lithiation of (c-Si) nanowires and (c-S)
nanoparticles advances through the propagation of a lithiation reaction front of about 1 nm
in width, that separates the two phases (Liu et al. (2012a); Chon et al. (2011) and McDowell
et al. (2012)).

In order to study the mechanical consequences of lithiation, Tardif et al. (2017) used
X-ray diffraction (XRD) to measure in operando the time evolution of the elastic strain
experienced by the crystalline cores of spherical silicon nanoparticles under lithiation. In situ
TEM experiment from Liu et al. (2012b) on crystalline silicon discovered a strong nanosphere
size dependence regarding fracture. It was found a critical particle diameter of about 150 nm,
below which the particles neither cracked nor fractured upon first lithiation. It was observed
that the cracking arose owing to tensile hoop stresses in the lithiated shell. The stress reversal
from compression to tension at the shell surface is attributed to the movement of the reaction
front between the inner core of pristine Si and the outer shell and plasticity, generating a
pushing out of the lithiated material. Indeed, some experiments led on silicon thin films
evidenced clearly that the large deformation induced by lithiation can be accommodated
by plastic flow (Chon et al. (2011); Sethuraman et al. (2010)). In that context, the carbon
coating of the silicon nanoparticle is a way to mitigate its risk of failure during lithiation
depending on its strength as reported in Li et al. (2016).

Besides experimental investigations, several numerical models, using semi-analytical or
finite element approaches, have been proposed to understand the mechanics of silicon lithia-
tion. Zhang et al. (2007) considered the diffusion equation (Fick’s equation) with a constant
diffusion coefficient coupled with a linear elastic mechanical model, the elastic moduli being
homogeneous within the particle. The constant diffusion coefficient does not produce the ex-
pected sharp variation of lithium concentration at the reaction front. In addition, their results
show that hoop stress is negative in the whole particle, contrary to experimental observations
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highlighting a tension of the particle’s periphery. Zhao et al. (2012a) proposed a core-shell
model, the lithiated shell having a perfectly plastic model. Neglecting the thickness of the
front and the elastic strains, an analytical solution was derived. Results show positive hoop
stress attained in the particle periphery, showing the key role of the plastic deformation of
the lithiated shell. Huang et al. (2013) developed an elastic-viscoplastic core-shell model, the
sharp but continuous concentration variation of lithium being modelled by a logistic function.
They solved numerically by a finite difference method this nonlinear problem and confirmed
that the plastic yielding of the lithiated shell is mandatory to obtain tensile hoop stress in
the particle periphery. The finite element method (FEM) method has also been extensively
used in the field of mechano-chemistry. Guo and Jia (2021) used ABAQUS to propose the
most complete core-shell model to our knowledge. Therefore and unlike the previous work
of Huang et al. (2013), the variation of elastic properties due to silicon alloying was taken
into account in their model. In addition, they also modelled the large strains of the shell by
using an updated lagrangian approach and solving a nonlinear diffusion problem to model
the radial penetration of lithium. They analysed the stresses evolution during lithiation.
These models have also been applied to the study of coated nano-particle silicon inclusions.
Based on experimental results, Li et al. (2016) highlighted that the carbon coating may have
a deleterious effect on the integrity of the particle as they will break for diameters much lower
than the ones measured on uncoated silicon particles. Even if their numerical investigations
are based on questionable material data (it will be explained later), the numerical study re-
ported in that contribution demonstrates clearly that if a radial crack appears in the carbon
coating during the lithiation, the silicon particle will break. It is worth remarking at this
stage that the effect of some important features of all those models (effect of the particle size
on stresses, large versus small strains descriptions) on the numerical predictions have yet to
be evaluated.

Even if considerable progress have been made to model the lithiation of silicon nanopar-
ticles, their validation by comparison with experimental data remains largely perfectible. In
this work, we propose a novel comparison between experimental results and a state-of-the-
art mechanical model taking into account all the main ingredients existing in the literature
such as plasticity of the outer shell, time evolution of the sharp lithiation front, variation
of phases properties during lithiation and large transformation. The structure of the paper
consists of four sections. In section 2, an original semi-analytical small strain mechanical
lithiation model is presented. For this purpose, we use the solution proposed in Seck et al.
(2018) of the elastic-viscoplastic composite sphere problem subjected to radial loading and
extend this solution to the lithiated particle problem, in particular by considering a time
varying core-shell with a finite thickness interface. Afterwards, a finite element model is also
proposed, the large strains experienced by the particles being taken into account via the
Hencky logarithmic strain (Miehe et al. (2002)). This approach, applied to our knowledge
for the first time to this type of phenomena, has very appealing features that are described
in detail. In section 3, the predictive abilities of our models are assessed (prediction of the
pushing-out effect already shown is previous works) while some new features are studied
such as the effect of the particle size on stresses. Therefore, we compare the predicted results
with the ones derived with the infinitesimal strain approach to underscore the importance of
large strain. Next, those models are compared to the experimental results provided by Tardif
et al. (2017) and the yield stress of lithiated silicon is determined. In section 4, an original
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closed-form expression of the maximal stresses experienced by the coating at the end of the
lithiationis reported. We use this new expression to discuss the results obtained in Li et al.
(2016) considering in particular the effect of the elastic properties of the lithiated silicon and
the carbon coating on the fracture strength of the pyrolitic carbon. With these consolidated
data, we finally study the mechanical effect of the coating during the lithiation process.

2. Modelling the lithiation of a silicon particle

2.1. Modelling the lithiation front at room temperature by a logistic function (Huang et al.
(2013))

As seen in the introduction, the lithiation of silicon is a complex phenomenon and the
diffusion process involves the formation of a lithiation front. Experimental in situ TEM mea-
sure has shown that the lithiation front size is about 1 nm (Liu et al. (2012a)). Nevertheless,
other essential information needed for modeling the front such as its shape, exact thickness
and lithium concentration distribution remains unknown. To circumvent this problem, qual-
itative solutions have been proposed to include the lithiation front in the mechanical context,
allowing the estimation of stresses and geometry evolution of silicon nanoparticles. The main
idea of those qualitative solutions is to generate a sharp lithium concentration profile with an
arbitrary shape to represent the interface between a pure silicon core and an outer lithiated
shell. We emphasize that those techniques do not represent the kinetics of lithiation front nor
other phenomena such as lithiation locking (McDowell et al. (2012); Poluektov et al. (2019)).
However, for a given front position, one may estimate the mechanical response of the silicon
particle.

In the following, we consider a spherical silicon nanoparticle of initial radius r0 in the case
of isotropic lithiation. We note rc(t) the position of the lithiation front measured with respect
to the center of the particle (considered as the origin of the coordinates). One existing method
to represent the lithiation front is the use of a nonlinear diffusion equation where the diffusion
coefficient is chosen as nonlinear form in order to create a drastic variation of concentration
in each phase. This technique was used initially in Liu et al. (2011) and then in Yang
et al. (2014) and Liu et al. (2012b). Despite widely applied, the nonlinear diffusion equation
has some drawbacks. For example, it requires interface-tracking techniques to update front
position and numerical problems arise from the diffusion coefficient singularity. Another
existing strategy to represent the lithiation front is the use of the so called logistic equation.
The logistic equation proposed by Huang et al. (2013) to describe spatial and temporal
variation of concentration is:

ĉ(x, t) =
1

[1 + Qe−B(∥x∥−rc(t))]
1/α

(1)

with x the position of a point in the particle measured from its center. The concentration
ranges from 0 (pristine silicon) to 1 (full lithiated silicon). The lithium stoichiometry in the
particle is given as χ = χshell ĉ(x, t) with χshell being the lithium stoichiometry in the full
lithiated silicon. The maximum value of χshell observed in experimental results is 3.75 (Liu
et al. (2011)). The parameters Q, B and α are constants allowing to modify the shape of the
equation (1), conveniently chosen aiming a sharp variation of concentration.
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One advantage of using the logistic equation is that the concentration profile is given
explicitly, including the barely known front shape: economy of theoretical hassle with no
real loss of physical sense. This simplified representation is particularly well adapted to
the Tardif et al. (2017) experiments studied in section 3. Indeed, the prescribed charging
rate is chosen sufficiently low so that the lithium concentration in the lithiated part can
be considered constant. Solving a diffusion problem including possible stresses effects is
therefore not necessary in this particular case. Considering the mentioned advantages, the
logistic front model is chosen in this work. In section 3, the position front will be simply
given by the conservation of lithium atoms flowing inside the silicon nanoparticle through the
measure of the specific capacity, as done in Tardif et al. (2017). This logistic function will be
also used in section 4 when estimating the mechanical behaviour of coated silicon particle.
Following Huang et al. (2013), Q and α are chosen as unity and B can be used to modify
the logistic equation thickness. In order to generate a ef = 1 nm lithiation front size, we use
B = 13 × 109.

The lithiation induces a volume expansion of the initial pure silicon nanoparticle. That
expansion can be represented by a free chemical strain dependent on the lithium concentra-
tion. When the diffusion is isotropic, the chemical strain at a point x of the particle is (see
Garcıa et al. (2004)):

εεεc(x, t) = β ĉ(x, t)III (2)

with β the expansion coefficient and III is the identity second order tensor. For a crystalline
particle and a small strain model (see subsection 2.2.2), β = 0.6 yields a 300% volume
expansion as observed in experimental analysis. The chemical strain is treated similarly to
a temperature induced strain and the lithium concentration drives the differential swelling
within the particle.

2.2. Mechanics of lithiation

In this section, we introduce the general aspects and formulation of the mechanical prob-
lem in lithiation considering small and large strain approach. In our model, anisotropic effects
related to the shape of the lithiation front as well as the anisotropy related to the elastic prop-
erties of the crystalline particles are neglected. As explained above, the chemical deformation
is applied analogously to the thermal problem where the concentration of lithium replaces
the temperature and the thermal expansion coefficient is replaced by a chemical expansion
coefficient.

2.2.1. Material constitutive laws

Reference Technique ESi (GPa) Ea−Li3.75Si
(GPa)

Shenoy et al. (2010) atomistic simulations 175 (c-Si) [111] 40
Hertzberg et al. (2011) nanoindentation 92 (a-Si) 12
Kushima et al. (2012) in situ tension /atomistic simulations 180/173 (c-Si) [111] 7.9/33.5

Qi et al. (2014) atomistic simulations 96 (a-Si) 41
Berla et al. (2015) nanoindentation 104.6 (a-Si) 41

Table 1: Young modulus of silicon (ESi) and lithiated silicon (Ea−Li3.75Si) at room temperature.
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Several experimental and numerical studies were performed to determine the properties
of silicon and lithiated silicon. It is shown in those studies an important variation of the
Young modulus between a-Si, c-Si and the alloy a-Li3.75Si. In Table 1, we reported the
Young modulus either measured using different experimental techniques or calculated by
atomistic simulations. Concerning the Young modulus of the amorphous lithiated silicon,
the value of approximately 40 GPa has been identified in most of the references, except in
Hertzberg et al. (2011) and Kushima et al. (2012), in which the Young modulus is lower
(dozen of GPa). Because the fully lithiated silicon alloy melts at much higher temperatures
than the pure lithium, Berla et al. (2015) claimed that the stiffness of the fully lithiated silicon
must be considerably larger than the Young modulus of pure lithium that is approximately
8 GPa (Robertson and Montgomery (1960); Tariq et al. (2003)). Following that argument,
the Young modulus of the fully lithiated silicon alloy considered in this work is 40 GPa.
Concerning the Poisson ratio, Shenoy et al. (2010) found the value of 0.22 for fully lithiated
silicon. Then, the bulk and shear modulus for the full lithiated silicon used in this work are
respectively κS = 23.8 GPa and µS = 16.4 GPa.

Crystalline silicon has a cubic symmetry. Shenoy et al. (2010) found via atomistic simula-
tions a Young modulus of 175 GPa in the [111] crystallographic direction, which is consistent
with the 180 GPa measured experimentally by Kushima et al. (2012). In this work, we adopt
an isotropic elasticity tensor using the arithmetic mean of the Reuss and Voigt bounds of
the effective bulk and shear moduli of polycrystalline silicon using the single crystal elastic
tensor from Shenoy et al. (2010). It yields an average value for the shear and bulk moduli
respectively as µ0 = 64.51 GPa and κ0 = 102.5 GPa (corresponding to an average value of
E0 = 160 GPa and ν0 = 0.24). The average value of the Young modulus is consistent with
162 GPa found by Hopcroft et al. (2010).

Shenoy et al. (2010) also found that average elastic moduli decreases in an approximately
linear manner with increasing lithium concentration, leading to a significant elastic softening
in lithiated silicon. We then define the elastic properties depending linearly (Shenoy et al.
(2010)) on lithium stoichiometry χ (0 ≤ χ ≤ 3.75) as following:

µ = µ0

(
1 − χ

3.75

)
+ µS

( χ

3.75

)
(3)

κ = κ0

(
1 − χ

3.75

)
+ κS

( χ

3.75

)
(4)

Such as the elastic properties, the yield stress in the lithiated silicon is dependent on the
lithium content and decreases with it. The yield stress of pure crystalline silicon is around
12 GPa (Yang and Qu (2019)). The yields stress of amorphous lithiated silicon changes non
linearly and drops significantly with respect to lithium stoichiometry χ, from 5.4 GPa for
Li0.25Si to 2.5 GPa for Li1.0Si (Cui et al. (2012), Wang and Chew (2016)). Regarding the
full lithiated alloy Li3.75Si, the range of value of the yield stress reported in the literature is
0.4 − 1.5 GPa (Chon et al. (2011); Zhao et al. (2011, 2012b); Pharr et al. (2014)). In our
model, the yield stress is taken different in the pristine silicon (12 GPa) and the lithiated
shell (0.45 GPa). As it has been shown to decrease abruptly with the lithium concentration,
the yield stress inside the reaction front is taken constant and equal to the one of the fully
lithiated silicon shell. In this work, we consider the yield stress of the lithiated shell being
σY = 0.45 GPa, value that best match experimental results as it will be detailed in section
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3.3. For a silicon particle, the total strain rate can be written as (Pharr et al. (2014)):

ε̇εε(x, t) = ε̇εεc(x, t) + ε̇εεe(x, t) + ε̇εεvp(x, t) (5)

where the viscoplastic strain rate is written as (Seck et al. (2018)):

ε̇εεvp(x, t) = 3sss(x, t)
∂w

∂σ̃
(σ̃) (6)

with sss = σσσ − σm III the deviatoric stress tensor and σm = tr(σσσ)/3 the mean stress. The
parameter w is a dissipation potential. For Norton’s law, used in Huang et al. (2013) and
Seck et al. (2018), function of σ̃, σ̃ = σ2

eq, this potential is:

w(σ̃) =
ε̇0 σY

1
m

+ 1

(
σ̃

σ2
Y

) 1
m+1

2

(7)

with σeq =
√

3sss : sss/2 is the von Mises equivalent stress. The viscoplastic constants are the

effective strain rate, ε̇0, the yield stress σY and m is the sensitivity to the strain rate. Few
works have studied these strain rate effects. Pharr et al. (2014) measured experimentally a
strain rate that is much higher (10−3 s−1) than the one considered in section 3.3 (10−8 s−1).
Due to lack of data on this point, in this work the value of m is taken vanishingly small
such as in Huang et al. (2013), then one can approximate the rate-independent behaviour
to a perfectly plastic material. Nevertheless, in the following we conserve the viscoplastic
formulation as it can be explored in future works. Taking into account all ingredients, the
constitutive law can be written as:

ε̇εε(x, t) =

(
σ̇m(x, t)

3κ(x, t)
− σm(x, t) κ̇(x, t)

3κ2(x, t)
+ ε̇c(x, t)

)
III (8)

+
ṡss(x, t)

2µ(x, t)
+

(
3
∂w

∂σ̃
(σ̃) − µ̇(x, t)

2µ2(x, t)

)
sss(x, t)

As the elastic properties depends on the lithium stoichiometry, they are also function of
space and time.

2.2.2. Small strain semi-analytical model

The small strain semi-analytical model proposed in this work consider all the ingredients
such as elastic properties variations with the lithium concentration, viscoplasticity and lithia-
tion front size via the logistic equation. It is an extension of the composite model of a sphere
subjected to a radial loading in the case of elasto-viscoplastic constituents developed by Seck
et al. (2018). We write the equations for each constituent of the composite material. Using
equation (8), boundary conditions (free outer external border) and equilibrium equation are
written considering a 1D spherical problem. Consistently with the isotropic lithiation and
the isotropic behaviour of the phases, we adopt spherical coordinates (r, θ, ϕ) and we derive a
system of nonlinear equations to be solved for signed equivalent stress σ̂(r, t) = (σθθ−σrr)/σY

and for the normalized displacement û(r, t) = u/r (details given in Appendix A):

1

µ̂

∂σ̂(r, t)

∂t
−

˙̂µ(r, t)

µ̂2(r, t)
σ̂(r, t) + 3ε̇0

(
σ̂2(r, t)

) 1
m−1

2 σ̂(r, t) + 2r
∂

∂t

(
∂û(r, t)

∂r

)
= 0. (9)
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−σ̂(r, t) +
3r

2
κ̂(r, t)

∂û(r, t)

∂r
+

9

2r3

∫ r

0

∂κ̂(x, t)

∂x
(x, t)x3û (x, t) dx (10)

+
27

2r3
F̂ (r, t) − 9

2r2
∂F̂ (r, t)

∂r
= 0.

with

κ̂ (r, t) =
κ (r, t)

σY

µ̂ (r, t) =
µ (r, t)

σY

F̂ (r, t) =

∫ r

0

κ̂(x, t) εc(x, t)x2 dx (11)

The term F̂ (r, t) includes the chemical strain. The main difference this solution compared
to the one established in Seck et al. (2018) is the existence of an additional term including
the spatial derivation of normalized bulk modulus in the spatial integration in equation (10).
In addition, the interface between the lithiated and pristine silicon (silicon core) is given as
a continuum function (logistic) with a finite thickness. That additional term does not allow
one to obtain a single differential equation with respect to σ̂ (with analytical solution in
some particular cases) such as in Seck et al. (2018). The solution of the system is carried
out by adopting the finite difference method (details given in Appendix C) and the implicit
Euler scheme in the equation (9). Boundary conditions for the silicon particle are u(0, t) = 0,
σrr(r0, t) = Pc(t) (with the function Pc(t) being zero in the case of free outer boundary
condition) and σ̂(0, t) = 0 (this last condition is shown using the equation (10) when r → 0,
assuming that εrr(r, t) = ∂u

∂r
(r, t) is a continuous differentiable function of r). If the elastic

properties do not depend on the lithium concentration, the 2×2 system of nonlinear equations
reduces to a nonlinear equation:

σ̂(r, t) +
ε̇0
2η̂

σ̂(r, t)
1
m =

−r

3η̂

∂

∂r

(
3

r3

∫ r

0

ε̇c(x, t)x2 dx

)
. (12)

with η̂ = 3κ̂+4µ̂
18κ̂µ̂

. This solution is significantly simpler compared to the solution proposed in

Huang et al. (2013) which also reduces to a scalar equation (on the velocity field) but at
the cost of an estimation by an explicit time integration method of the radial distribution of
plastic deformation. Moreover, in Huang et al. (2013) a shooting method was implemented
to enforce the velocity field solution to respect the free outer boundary condition. The fact
that the silicon nanoparticles present an increase of volume up to 300% during lithiation may
question the use of a model based on the assumption of small strains. This is the reason why
a numerical modeling of the silicon particle in the context of finite strain is proposed in the
following section.

2.2.3. Large strain approach using the finite element method

Large strain approach has been already considered for the silicon lithiation modeling in
several works. A common approach (Bower et al. (2011)) is the use of the multiplicative
decomposition of the total deformation into elastic, chemical and plastic part as:

FFF = FFF e ·FFF p ·FFF c (13)
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with FFF = III+∇u the deformation gradient tensor. Xu and Zhao (2016) considered the Green-
Lagrange tensor as strain measure modeling a three-dimensional spherical Si particle using
COMSOL multiphysics. Poluektov et al. (2018) considered the multiplicative decomposition
of the total deformation formulation in one-dimensional modeling of the chemical reaction
between lithium ions and silicon particle. Jia and Li (2016) used the eulerian rate-form
finite-strain for modeling the two-step lithiation of a-Si in Abaqus. Yang et al. (2014) also
considered the eulerian formulation for modeling the lithiation of nanowires. Guo and Jia
(2021) used the updated Lagrangian approach via Abaqus to account for large nonlinear
geometrical changes induced by lithiation.

In this work, we propose an accurate finite element large strain model. Compared to
some of the large strain approaches cited above, the formulation of the proposed model
is reported in full details in this section. We consider the large strain approach via the
Hencky logarithmic strain tensor as proposed by Miehe et al. (2002). The equilibrium of the
mechanical problem is solved in the updated coordinates of the particle and reads ∇ ·σσσ = 0.
The boundary condition reads σσσ.n = 0 with n the normal vector at the (updated) outer free
boundary. One advantage of applying the Hencky tensor is the re-usability of the formalism
used to build constitutive equations in the framework of the small strain theory in order
to solve the material behaviour equation. With the Hencky strain tensor, the additive split
of the logarithmic strain into chemical expansion and mechanical parts gives an accurate
assessment of the volume conservation as the multiplicative decomposition given in (13). In
addition, the logarithmic strain is, as the Green Lagrange tensor, invariant with respect to
rigid body rotation. The Hencky strain tensor is defined as:

εεε
log

=
1

2
log(FFF T ·FFF ) (14)

Considering the decomposition of FFF in mechanical and chemical parts, the logarithmic chem-
ical strain tensor writes εεεelog = log(FFF c) for an isotropic chemical dilatation. In accordance
with equation (2), FFF c = (1 + βĉ)III and β = 0.6 in order to have 300% of volume increase
at the end of the lithiation as observed in experimental analysis. To ensure the conservation
of the mechanical power, we refer to the approach proposed by Miehe et al. (2002) with the
stress tensor TTT being the work-conjugate of the Hencky strain tensor.

The transfer of the dual stress tensor to the Cauchy stress tensor, needed for the equi-
librium resolution, is described in Figure 1 by the colored arrows. We note the variables
at the final time of the constitutive equation integration step with the lower index 1. The
Cauchy stress σσσ

1
is determined in two steps. In the first step (step I in Figure 1), the second

Piola-Kirchhoff tensor is computed as SSS
1

= 2TTT
1

:
∂εεε

log(1)

∂CCC
1

. That operation corresponds to

the inverse of the stretch part of the transformation FFF
1
. In the second step (step II in Figure

1), in order to compute the true Cauchy stress, the relation σσσ
1

= 1
J1
FFF

1
· SSS

1
· FFF T

1
is applied

and it corresponds to the complete transformation FFF
1

(stretch and rotation). We remark
that for our particular case of the 1D spherical isotropic mechanical problem, the rotation
part is null. Based on the Hencky strain approach, the parameters of the law TTT = f(εεε

log
)

have to be identified using an interpretation of mechanical tests results through the Hencky
strain formalism. In our case this process is not possible because we do not have available
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classical mechanical tests involving large chemical strain phenomena 1. In order to circum-
vent this problem, we propose an indirect estimation of the dual stress tensor based on a
pseudo Cauchy stress tensor denoted by σσσ∗ that verifies the constitutive law in the eulerian
framework given by:

σ̇σσ∗ = E :
(
ε̇εε− ε̇εεc − ṗnnn

)
(15)

with E being the fourth order elastic tensor, ε̇εεe = ε̇εε − ε̇εεc − ṗnnn the elastic strain rate, ṗ the
plastic strain rate and nnn the unity normal tensor to the yield surface given by:

nnn =
3sss∗

2σ∗
eq

(16)

with σ∗
eq the equivalent von Mises stress and the plasticity criterion reads σ∗

eq−σY ≤ 0 for the
perfect plastic material. The deviatoric part of the pseudo Cauchy stress is sss∗. During the
integration step, the increment of plastic strain ∆p and the increment of elastic strain ∆εεεe

are computed via the Euler implicit method for the integration of the ordinary differential
equation (15). After the integration, the pseudo Cauchy stress checks σσσ∗

1
= E : εεεelog(1), with

εεεelog(1) being the elastic logarithmic strain tensor. Finally, we compute the dual stress as
TTT

1
= J1σσσ

∗
1
. That equation is derived in the case of a spherical 1D problem in which FFF is

a diagonal tensor (Helfer (2015)). The large strain method presented here is implemented
in the finite element software Cast3M (http://www-cast3m.cea.fr/index.php) thanks to the
MFront tool (Helfer et al. (2020)), both open source softwares. The latter solves the implicit
integration of the constitutive law and derives, with the finite transformations, the Cauchy
stress tensor needed for the updated Lagrangian equilibrium formulation in Cast3M.

3. Stresses experienced by spherical particles under lithiation, comparison to
experiments

In the first part of this section, the internal stresses and the dimensional evolution of a
crystalline silicon particle are evaluated considering small and large strain approaches and
elastic and elastoplastic models. In the second part, we analyse the particle size effect on
stress and radius evolution by fixing the front size as 1 nm, value observed in experimental
results as discussed previously. We consider particles of size (diameter) 10, 20 and 200 nm.
Particles of those dimensions were fabricated for experimental study (Li et al. (2016); Luo
et al. (2016); Tardif et al. (2017)). Finally, in the last part of this section, a comparison with
experimental results of particle deformation is performed.

We consider that the lithiation front position (in the first and second parts of this section)
is chosen to be a linear normalized function of time, i.e, at t = 1, the particle is fully
lithiated. In addition, we use the state of charge (SOC) which is defined at a given time
t as SOC(t) = 3r−3

0

∫ r0
0

c(r, t)r2dr to compute the level of lithiation with respect to the
initial configuration (Jia and Li (2016)). When SOC = 0, the particle is uncharged and
when SOC = 100 %, we have the fully-charged state. In the third part of this section,

1We mean by classical mechanical test the one in which the load/displacement curve is measured.
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Figure 1: Scheme of the large strain method proposed in this work. The top part illustrates the stretch
transformation of the material while the bottom part the rotation transformation. The transformation of
the dual stress tensor TTT

1
in the second Piola–Kirchhoff stress tensor SSS

1
is indicated by the beige line. The

transformation of the second Piola–Kirchhoff stress tensor in Cauchy stress tensor σσσ
1
is indicated by the

beige/blue line.

the lithiation front evolution is determined through experimental data. Because the one-
dimensional spherical model is not available in MFront, we solve a 2D axisymmetric problem
with spherical symmetry in the finite element large strain approach. The spherical particle
geometry is represented by a thin circular sector with axisymmetric boundary conditions
and its radial edges are divided in 400 uniform elements. In the small strain approach a
1D radial mesh with the same number of elements is considered. The material properties
as well as the front size used in this section are shown in Table 2. In this work we consider
the elastic properties of a crystalline silicon particle, which is consistent with the comparison
with experimental results in section 3.3.

E0 (GPa) ES (GPa) front size (nm) ν0 νS σY (GPa)

160 40 1 0.24 0.22 0.45

Table 2: Data used for simulations (isotropic elastic properties for crystalline silicon). The indexes 0 and S
denote respectively the crystalline pristine silicon and the lithiated silicon.

3.1. Pushing out effect

In Figure 2, we plot the radial, tangential and equivalent stress field in an elastoplastic
crystalline silicon particle, at the end of lithiation, for a 20 nm diameter particle. We ob-
serve that the outer boundary of the particle is submitted to a tensile hoop stress exactly
equal to the yield stress value in the lithiated shell. That phenomena is called the pushing
out effect because the lithiated silicon behind the lithiation front pushes the lithiated shell
outwards during lithiation, inducing a tension in the tangential direction. In radial direction,
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the particle is entirely in compression. Those results are in agreement with experimental
observations as well as with others numerical results from Huang et al. (2013) and Jia and
Liu (2016). In addition, we observe from the equivalent stress (σeq) that the entire lithiated
region is in the plastic regime. In order to compare elastoplastic and pure elastic solutions
(for a 20 nm diameter particle), we plot in Figure 3(a) the evolution of the normalized hoop
stress with respect to the state of charge at the free outer boundary of the particle (in the
lithiated shell). We observe that in the linear elastic case, the hoop stress is always negative
during lithiation and reaches its maximum compression at around 10% of state of charge
and vanishes at the end of lithiation. On the other hand, the hoop stress in the elastoplastic
case is negative during the beginning of lithiation and then becomes positive. We observe
that both plateau in compression and tension are consistent with the yield stress threshold
σY = |σrr−σθθ| with σrr(r0, t) = 0. The absolute maximum hoop stress value is higher in the
elastic case, 40 GPa, while 0.45 GPa (yield stress) in the plastic case. The compression to
tension evolution of hoop stress observed in our calculations in the plastic case is qualitatively
in good agreement with the results presented in the references Jia and Li (2016) and Jia and
Liu (2016),

We plot in Figure 3(b) the normalized stress field for elastic and elastoplastic cases when
SOC = 45% (the silicon core - in the region r/r0 ≤ 0.3 in the elastoplastic particle - is in
hydrostatic stress state). This intermediate state of lithiation reinforces the strong effect of
the plastic flow on the stress distribution in the particle. Thus, we observe that in the linear
elastic case, the radial stress is positive in the whole particle, whereas it is negative in the
plastic case. Likewise, the silicon core is in hydrostatic tension in the elastic case whereas in
compression in the plastic case.

Figure 2: Normalized stress distribution at the end of lithiation of an elastoplastic particle using the large
strain approach (the original diameter of the particle equals 20 nm, material data reported in Table 2). The
final particle radius is 1.6 times bigger the initial radius, which is consistent with the volume increase expected
(300%).

In Figure 4(a), we compare radial and hoop stress field in the case of small strain and
large strain approaches for a 20 nm diameter particle, when SOC = 45%. For the small
strain case, we plot the stress field with respect to the initial configuration while for the large
strain approach the deformed configuration is considered. In both cases, the silicon core
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(a) (b)

Figure 3: Effect of the plastic yielding of the lithiated silicon on the model predictions (large strain approach,
the diameter of the particle equals 20 nm, material data reported in Table 2) : (a) evolution of the hoop stress
at the outer boundary of the particle as a function of the state of charge (b) radial distribution of stresses
and concentration profile when SOC = 45%.

(r/r0 ≤ 0.3) is under hydrostatic compressive stress. We observe that the compressive stress
state in the silicon core is higher in the case of large strain approach (the evolution of the
core elastic strain during lithiation will be discussed in detail in the next part of this section).
This can be explained by the fact that the update of radius in the lithiated region in the large
strain approach generates a bigger shell applying a pressure in the silicon core, whereas in
the small strain case the geometry variation is not considered. In both cases, in the lithiated
silicon, we observe that particle is in maximum compression in the tangential and radial
direction just behind the silicon core. Hoop stress turns to tension towards the periphery
of the particle and reaches its maximum value at the free edge similarly for the small and
large strain models. In Figure 4(b) the evolution of the particle radius with respect to the
state of charge is depicted in small and large strain cases. We found that the infinitesimal
strain approach underestimates the particle radius during lithiation however at the end of the
lithiation the radius is similar and it is controlled by the expansion coefficient, as discussed
in section 2.2.

3.2. Particle size effect

In this part, the elastoplastic large strain model is considered and we study the particle
size effect on the mechanical response during lithiation. In Figure 5, we plot the evolution of
the updated particle normalized external radius (re/r0) with respect to the state of charge and
for different particle sizes. Three particle diameters, 200 nm, 20 nm and 10 nm are considered
and we remark that the evolution is similar for all particles. This is owing to the fact that
the expansion coefficient controls the volume expansion in the lithiated shell and is constant
regardless the particle size. The small variation observed in Figure 5 is due to the different
relative front size with respect to the particles diameters, which is small (0.5%, 5% and 10%
respectively for a 200 nm, 20 nm and 10 nm particle). In Figure 6, we plot the stress fields
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(a) (b)

Figure 4: Comparison of small strain and large strain approaches (elastoplastic model, the diameter of the
particle equals 20 nm, material data reported in Table 2) : (a) radial distribution of stresses and concentration
profile when SOC = 45%, predicted by elastoplastic model (b) evolution of the particle radius with respect
to the state of charge.

when SOC = 45%. Whatever the particle size is, the silicon core is always in hydrostatic
stress state (region in which the radial and hoop stress are constant). In addition, we observe
that the stress distribution towards the periphery does not depend on the particle size, the
hoop stress being as expected positive and equal to the yield stress at the outer boundary.
Nevertheless, we observe that the stress in the silicon core is very dependent on the particle
size. For example, for a 10 nm diameter particle, the hydrostatic compression in the silicon
core is in absolute values about 2.3 and 4 times lower than the particles of diameters 20 nm
and 200 nm respectively. These results are consistent with experimental observations of Liu
et al. (2012b). They revealed that silicon nanoparticles fracture occurs above a limit size of
150 nm. Appropriately, considering that the fracture is driven by elastic energy, our results
shows that the elastic energy density increases with respect to the particle size, in particular
in the silicon core. Finally, we also reveal that the stress field in the fully lithiated particle
is independent of the particle size (the stress field is given in Figure 2).

3.3. Comparison with the experimental data provided by Tardif et al. (2017)

Several experimental works have been conducted in order to measure the stress and strain
during lithiation of metallic anode materials such as silicon (Chon et al. (2011); Pharr et al.
(2014); Sitinamaluwa et al. (2017); Choi et al. (2015)) and germanium (Cortes et al. (2018);
Al-Obeidi et al. (2015)). Concerning specifically silicon nanoparticle, Tardif et al. (2017)
used X-ray diffraction (XRD) to study in Operando mean deformation of the silicon core of
a system of silicon crystalline particles in a soft electrolyte medium (for that reason we can
assume free boundary condition at the outer surface of the particles). Diffraction intensity,
scattering vector and specific capacity were measured during two lithiation-delithiation cycles
at low charging rate, so that the lithium concentration in the lithiated phase is constant. The

14



Figure 5: Effect of the particle size on the evolution of the normalized particle radius (re/r0) during lithiation
predicted by the elastoplastic model using the large strain approach (material data reported in Table 2).

(a) (b)

Figure 6: Effect of the particle size on the radial distribution of stresses predicted by the elastoplastic large
strain approach when SOC = 45% (material data reported in Table 2). (a) radial stress (b) hoop stress.

scattering vector measured by Tardif et al. (2017) is used to compute the time evolution of
the volume average of the elastic strain for different crystallographic directions of the pristine
cores, as reported in Figure 7. It shows a slight variation with respect to the crystallographic
direction. The particles of the electrode in the experiment are divided in two populations of
different sizes: large particles (index (1), mean radius r0(1) ≈ 50 nm, initial volume fraction
xv(1)) and small particles (index (2), mean radius r0(2) ≈ 17.5 nm, initial volume fraction
xv(2) = 1 − xv(1)). At a given time (t), the lithiation front positions of the large and small
particles are denoted by rc(1)(t) and rc(2)(t), respectively. These positions should be con-
sidered as average values over the entire population of either large or small particles. We
aim to compare the average elastic strain obtained with our lithiation model during the first
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lithiation to the experimental one. This first lithiation is divided in three steps (for more
details see Tardif et al. (2017)). The first one is the formation of the SEI formation (from
0 ≤ t ≤ tI ≈ 0.4 104 s). At any time t > tI , the specific capacity SC(t) is known and allows
to evaluate the initial volume fraction and the lithiation front position via the mass balance
of the number of lithium atoms inserted only in the silicon. This mass balance for a system
with two population of particles reads:

(SC(t) − SC(tI)) MSi

F
=

i=2∑
i=1

xv(i) χshell

(
3

(r0(i))3

∫ r0(i)

0

ĉ(r, t) r2 dr

)
︸ ︷︷ ︸

SOC(i)(t)

(17)

with F the Faraday constant, MSi = 28 g/mol the molar mass of silicon, χshell = 3.2 the
stoichiometry of the lithiated alloy estimated in the experiment (Li3.2 Si, see Tardif et al.
(2017) for more details) and SOC being the state of charge as defined in section 3. The
lithiation front position rc(i)(t) is taken into account in the concentration function ĉ(r, t)
(equation (1)). The second and third steps of the first lithiation are respectively the lithiation
of the population of small particles (tI < t ≤ tL) and lithiation of the population of large
particles (tL < t ≤ tF ≈ 1.9 104 s). Knowing that small particles are lithiated at tL ≈ 104 s
(namely, rc(2)(tL) = 0) while the large ones are still in their pristine state (rc(1)(tL) = r0(1))
we can estimate from the last relation (17) the volume fraction of small particles:

xv(2) =
(SC(tL) − SC(tI)) MSi

χshell F
≈ 12% (18)

with SC(tL)−SC(tI) ≈ 366 mA h g−1 being the increment of the specific capacity during the
lithiation of small particles. The estimated small volume fraction of approximately 12% of
the population of small particles is consistent with Tardif et al. (2017). According to Tardif
et al. (2017), we focus in comparing our mechanical model only with the lithiation of large
particles from tL ≈ 104 s to tF ≈ 1.9 104 s. Henceforth, for t > tL, the time evolution of the
position of the lithiation front in the large particles is derived from the mass balance (17)
expressed with the following approximation:

3

(r0(1))3

∫ r0(1)

0

ĉ(r, t) r2 dr ≈ 1 −
(
rc(1)
r0(1)

)3

.

As the thickness of the lithiation front is much smaller than the particles radius, the effect of
this approximation on the evaluation of the position of the lithiation front is less than 1%.
Finally, it yields:

tL ≤ t ≤ tF : rc(1)(t) = r0(1)

(
1 −

(
[SC(t) − SC(tL)]MSi/

[
F χshell xv(1)

] ))1/3

. (19)

Thanks to this last relation (19), the time evolution of the logistic function introduced
above (relation (1)) is expressed as a function of the time evolution of the specific capacity.
The elastic moduli of the crystalline core and the outer shell of the particles are estimated
with the relations (3) and (4) using χshell = 3.2. Finally, the volume average elastic strain of
large particles reads:
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ε̄m(t) =< εm(t) >(1) (20)

with the elastic hydrostatic deformation in the crystalline core of a particle denoted as εm.
As discussed in the previous parts of this section, the silicon core is always submitted to an
homogeneous pure hydrostatic stress state. Consequently, the average elastic deformation
within the silicon core of a particle is independent of its radial coordinates.

Inline with the previous discussion about the variation of the yield stress value in the
lithiated shell found in the literature (section 2.2.1), two different values are considered in
our analysis (0.45 GPa and 1.5 GPa), as shown in Figure 7(a), in order to evaluate its effect
on the silicon core strain during lithiation. In addition, in order to take into account the small
tensile strain of 0.8× 10−4 at t = tL explained by the formation of the thin, highly lithiated,
amorphous layer around the silicon nanoparticle and the SEI formation (Tardif et al. (2017)),
we impose a small tension at the outer boundary of the large particles (≈ 22 MPa). In Figure
7(a), the evolution of the average of the elastic strain for the large particles simulated by our
model is compared to experimental data. We observe that they are in good agreement as
the strain in the silicon core is in tension in the beginning of lithiation and then changes for
compression at around 1.3×104 s. We observe that our calculations best match experimental
data for σY = 0.45 GPa (for that reason we have adopted this value in the previous sections).
At the end of the first lithiation, the volume fraction of silicon that remains in the pristine
state is approximately 68%, which is consistent with the evolution of the diffracted intensity
in Tardif et al. (2017). The final lithiation front position is rc(1) = 0.9168 r0(1) and the average
lithiation front speed corresponds to a very low charging rate (≈ 0.45 pm/s).

In Figure 7(b), we have reported the predicted results corresponding to the small strain
model for two different yield stress values in the lithiated shell (0.45 GPa and 1.5 GPa). In
the range of the values considered in this work, the mean strain and the transition to tension
to compression predicted by the small strain approach is delayed with respect to experimental
data. In conclusion, the large strain approach turns out to better predict the evolution of
the elastic strain of the crystalline core.

4. Effect of a carbon coating

As explained in the introduction, the use of coatings on the silicon particles aims to
mitigate the degradation phenomena of silicon during its lithiation. One of the advantages
of using coatings is their structural buffer effect, limiting the volume expansion of silicon
and preserving the integrity of the electrode by avoiding damage to silicon particles (Luo
et al. (2016)). In addition, they avoid the contact between the silicon with the electrolyte,
preventing the excessive SEI formation during initial cycles. Last but not least, the coating
improves the electrical conductivity in the electrode. We focus in this work on the core-shell
coating concept. As illustrated in Figure 8, this type of structure is a silicon particle coated
with a layer of carbon and is denoted as Si@C. We neglect the chemical strain of the carbon
coating induced by lithiation (about 6% variation of volume).
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(a) (b)

Figure 7: DRX evolution of the average elastic strain of the silicon core as a function of time (Tardif et al.
(2017)) and numerical results from mechanical model (material data reported in Table 2): (a) effect of the
yield stress of the lithiated silicon on the average elastic strain of the silicon core predicted by the elastoplastic
large strain model. (b) Comparison of the evolution of the average elastic strain of the silicon core for small
strain and large strain approaches.

4.1. Closed-form expression and semi-analytical model of the maximal stresses experienced
by the carbon coating at the end of lithiation

The carbon coating is modeled as a purely elastic and isotropic material whose volume
expansion due to lithiation is neglected. As the considered problem still respects the spherical
symmetry, the mechanical interaction between the particle and the coating reduces to the
continuity of radial stress (pressure at the interface) and displacement. Thus, the radial
displacement and the three components of the stress in the coating are given by the classical
solution of an elastic spherical shell submitted to an internal pressure in Appendix B. From
the relation (B.2) reported in this appendix, we can express the internal pressure Pc(t) as a
function of the displacement of the internal radius of the coating, uc(r0, t), namely:

Pc(t) = 3Kc

(
uc(r0, t)

r0

)
with Kc = κc

(
(r3c0 − r30)

r30 +
(

3κc r3c0
4µc

)) (21)

with κc and µc the elastic properties of the carbon coating, e0 the thickness of the coating
and rc0 the total initial radius of the composite particle. The constant Kc is the apparent
compressibility of the coating. It depends on its elastic compressibility κc, the ratio κc/µc

(which itself depends on its Poisson ratio) and on the ratio of its radius to its thickness. An
important result for the composite particle is that the stress at the end of lithiation (te) is
constant for a given r0/e0 ratio. From equations (21) and (A.13) written at the end of lithi-
ation (t = te) and at the periphery of the silicon particle (r = r0), we show that the pressure
at the interface increases linearly with the chemical strain εc. The proportionality coefficient
depends only on the apparent compressibility of the carbon coating (Kc, see relation (21))

18



Figure 8: Composite particle with three domains and two interfaces (lithiation front in red, Li3.75Si/C
interface in black, pure silicon in blue, Li3.75Si alloy in orange and carbon in gray).

and the elastic compressibility of the lithiated silicon (κs). It is written as:

Pc(te) =

(
3Kc

1 + Kc

κs

)
εc (22)

The maximum hoop stress in the carbon coating, at the interface of the composite particle
and at the end of the lithiation, is written using equations (22) and (B.1):

σ
c/max
θθ (te) = 0.5 Pc(te)

2
(

r0
e0

)3
+
(

1 + r0
e0

)3
(

1 + r0
e0

)3
−
(

r0
e0

)3 (23)

Remarkably, the maximum hoop stress experienced by the coating depends only on the
elastic properties of the fully lithiated silicon particle and the coating, the chemical strain
induced by lithiation as well as the ratio between the radius of the particle and the thickness
of the coating. Injecting the expression of the pressure at the interface (22) in the last
relation, the maximum hoop stress reads finally:

σ
c/max
θθ (te) =

(
3Kc

1 + Kc

κs

)(( r0
e0

)3
+ 1

2

(
1 + r0

e0

)3
(

1 + r0
e0

)3
−
(

r0
e0

)3
)
εc (24)

This closed-form expression remains an approximation as the large displacements have
been neglected until now. As the dilatation of the particle increases when the apparent
rigidity of the coating decreases, the estimation (24) should deviate from finite element cal-
culations when, for instance, the ratio between the particle radius and the coating thickness
increases. In order to take into account the geometry variation in the solution, the previous
equations are written in the infinitesimal form, considering the current radius/coating thick-
ness denoted by r and e respectively. For a given increment of the chemical strain, δεc, the
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variations of the geometrical parameters are solution of the following system of differential
equations (more details are given in the Appendix D):

δr̂ =
δεc r̂

1 + K̂c

κs

δê =
3 K̂c δε

c
f̂

1 + K̂c

κs

(25)

with r̂ = r/r0 and ê = e/e0 the adimensional geometry variables and:

K̂c(e0/r0, r̂, ê) = κc

(
r̂ + ê

(
e0
r0

))3
− r̂3

r̂3 +
3κc

(
r̂+ê

(
e0
r0

))3

4µc

f̂(e0/r0, r̂, ê) =

r̂3 ê−

([
r̂ + ê

(
e0
r0

)]2
− r̂2

) (
ê +

(
r0
e0

)
r̂
)
r̂(

r̂ + ê
(

e0
r0

))3
− r̂3

.

(26)

As explained in the Appendix D, the final value of the chemical strain must be chosen so
as to find the experimental results in the particular case of a free particle (no coating).
For each r0/e0 value, we solve the system of equations (25) in order to obtain the updated
geometry (ê and r̂). From this, we can deduce the interface pressure and hoop stress from
equations (22) and (23) by substituting in these equations the initial particle geometry (r0, e0)
by the updated ones. To assess the relevance of this original semi-analytical solution, its
predictions are compared on Figure 9 to the ones derived from the finite-element model
described previously. On this Figure are compared the particle dimensions, the pressure
at the interface and the maximal hoop stress in the coating at the end of lithiation with
respect to the ratio of the initial particle diameter over the coating thickness, D0/e0. Finite
element and semi-analytical predictions are very close regardless of the elastic moduli of the
lithiated particle and the coating. For that reason the semi-analytical model will be used in
the following sections to estimate the stresses in the coating and study its fracture properties.

4.2. Interpretation of the experimental data provided by Li et al. (2016), fracture analysis of
the carbon coating

The lithiation experiment of carbon-coated silicon particles reported in Li et al. (2016)
was carried out on several particles sizes of crystalline silicon (D0 = 10 nm to 150 nm) with
coating of amorphous carbon (e0 = 6 nm to 12 nm). As explained in the introduction,
the fact that all the coated particles break for a diameter of the silicon core upper than
D0 = 70 nm whatever the thickness e0 of the coating, is explained by the apparition of radial
cracks in the carbon coating during the lithiation of the particles. On the next Figure 10(a),
we have reported the maximal opening (hoop) stress in the coating as a function of the
geometrical ratio D0/e0. As remarked by Li et al. (2016), the experimental results (in terms
of fracture / non fracture) are well ordered, the fuzzy zone in the range D0/e0 = [3.5; 7] can be
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Figure 9: Particle dimensions (internal normalized radius r̂ and normalized thickness ê of the coating),
internal pressure Pc and maximum hoop stress σθθ in the coating at the end of lithiation. Predictions of
the finite element large strain model are compared to the ones of the semi-analytical model with updated
geometry (EC = 10 GPa, ES = 40 GPa and other material data reported in Table 2).

interpreted as the scatter of the carbon strength (estimated by these authors between 6 and 12
GPa). As the results reported in Li et al. (2016) have been obtained with a two-dimensional
elastoplastic model (circular section with plane strain assumption, see the supplementary
information attached to this contribution), they are not quantitatively comparable to our
results reported in Figure 10(a) (in consequence they are not shown in this figure).

(a) (b)

Figure 10: Maximum hoop stress in the coating with respect to D0/e0 predicted by the semi-analytical with
updated geometry model at the end of the lithiation (νs = 0.22 and νC = 0.25 (Li et al. (2016))) : (a)
Maximum hoop stress for different values of the Young modulus of the lithiated silicon (for fixed EC = 300
GPa). (b) Maximum hoop stress for different values of the Young modulus of the carbon coating (for fixed
ES = 40 GPa) and comparison with small strain closed-form solution model for EC = 10 GPa.

As predicted by the closed-form expression (24), the elastic properties of the lithiated
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silicon and the coating drive the maximal hoop stress experienced in the coating. However,
the values of these Young moduli adopted by Li et al. (2016) remain questionable. First,
the Young modulus of the lithiated silicon for which the experimental results from Kushima
et al. (2012) are not relevant as seen in section 2.2.1 and lead to an underestimation of the
fracture stresses of the coating. This trend is illustrated in Figure 10(a) where the Young
modulus of lithiated silicon is increased progressively from ES = 4 GPa to ES = 40 GPa
(on this Figure, the Young modulus of the carbon coating denoted by EC equals 300 GPa
in a manner consistent with the choice proposed in Li et al. (2016)). We observe that stress
increases in average 5 times for D0/e0 = 3.5 and 8 times for D0/e0 = 7 in the range of
lithiated silicon Young modulus considered (from 4 GPa (Li et al. (2016)) to 40 GPa).

Second, the discussion about the young’s modulus value of the carbon coating, EC , is
also of interest. It is useful at this stage to recall that the amorphous carbon was synthesized
in Li et al. (2016) via pyrolysis of sucrose in a furnace at 800◦C. At this relatively low
temperature, the final carbon is a pyrolytic amorphous carbon (thesis of Farbos (2014)).
The Young modulus of pyrolytic carbon fabricated by chemical vapor deposition (CVD)
techniques has been measured by nanoindentation in several works. Depending on the final
porosity of the coating, the Young modulus ranges from 8.8 to 34.6 GPa (see Sheikholeslami
et al. (2018)). These values mentioned above are far below the value EC = 300 GPa used
by Li et al. (2016) for their calculations. In consideration of those references, if we consider
the Young modulus being in the order of a few dozens of GPa, we observe in Figure 10(b)
a significant decrease of the maximum hoop stress when the Young modulus of the coating
decreases (the Young modulus of the lithiated silicon being kept fixed, ES = 40 GPa).

In general terms, we can observe in Figure 10 that the values of the Young moduli of the
lithiated silicon and the coating do not modify the interval D0/e0 defining the fuzzy zone
(3.5 ≤ D0/e0 ≤ 7). This is because the maximal opening stress remains in all cases an
increasing function of the geometrical parameter D0/e0. It’s worth remarking at this stage
that decreasing the value of the Young modulus lowers considerably the sensibility of the
maximum hoop stress to the geometrical coefficient D0/e0. Therefore we observe that the
maximum hoop stress varies between 4.9 GPa for D0/e0 = 3.5 to 5.5 GPa for D0/e0 = 7. As
a result, the estimation of the fracture strength of the coating is considerably tighter (the
average value is 5.2 ± 0.3 GPa) compared to that estimated by Li et al. (2016) and reported
above (between 6 and 12 GPa). Considering the Young moduli (ES, EC) = (40, 10) GPa,
the effect of the large strain computation remains moderate even at high D0/e0 ratios.

To conclude on this subject, the elastic properties of the carbon coating are intimately
linked to the manufacturing process and therefore difficult to estimate a priori. Their mea-
surement is therefore needed. Alternatively, it would be of great interest to have measure-
ments of carbon-coated silicon diameters during the lithiation of particles. As the diameter
of the lithiated particles strongly depends on the elastic rigidity of the coating, this type of
measurement would allow to determine its value from the simulation, by an inverse method.

4.3. Mechanical behaviour of the silicon particle during lithiation

We have so far studied the mechanical state of the coating at the end of lithiation but we
now wish to study the mechanical response of the particle during the entire duration of the
lithiation. Since the semi-analytical model proposed in section 4.1 only calculates the final
mechanical state in the coating, the next results are derived by using the elastoplastic large
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strain finite-element model presented in section 2.2.3. In view of the previous discussion, the
elastic properties of amorphous carbon adopted are EC = 10 GPa and νC = 0.25 (Li et al.
(2016)), even if and as explained above, this value of Young’s modulus remains arbitrary
and constitutes a lower limit. The elastic properties of the silicon are consistent with the
previous simulations: elastic properties vary as a function of the state of charge according to
relations (3) and (4) while the yield stress of the lithiated silicon is the one determined by
comparison with experiments in section 3.3, namely 0.45 GPa. The thickness of the lithiation
front is the same as previously, namely 1 nm.

We observe in Figure 11(a) the evolution of the increasing external radius of the silicon
particle during lithiation for different particle diameter to coating thickness ratio. The final
external radius of the particle decreases slightly for increasing values of the thickness of the
coating as well as its apparent compliance. Therefore the volume expansion of silicon is
around 280% in the case of D0/e0 = 5 compared to 300% for an uncoated particle. This
decrease remains small as the Young modulus of the coating is four times lower than the one of
the lithiated silicon. Figure 11(b) shows that the maximum hoop stress in the carbon coating
is an increasing function of the state of charge and is slightly dependent on the silicon particle
size. The stress state at the end of lithiation does not depend on the size of the particles.
Figure 12 shows the radial and hoop stress evolution as a function of the radius at the end
of lithiation for three different ratios D0/e0. The coating domain is represented with dashed
line and the silicon with continuous line. Obviously, the pushing out effect vanishes in the
silicon particle which now is submitted to compressive hoop stresses. We also observe a jump
in hoop stress at the interface between the silicon particle and the coating that changes from
compression in the silicon to tension in the coating. As the outer boundary of the coating
is stress free, the radial component of the stress in the particle and the coating is entirely in
compression (Figure 12(b)).
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(a) (b)

Figure 11: Effect of the coating thickness of the composite particle on (a) evolution of the external radius
of the silicon particle during lithiation for different initial thicknesses e0 of the coating (the initial diameter
D0 of the silicon particle equals 200 nm, EC = 10GPa and (b) Evolution of the maximum hoop stress in the
carbon coating for two particles diameters (200 nm and 20 nm) and two coating thicknesses. Material data
for silicon and lithiated silicon reported in Table 2.

(a) (b)

Figure 12: Stress field at the end of lithiation for a 200 nm diameter particle with EC = 10 GPa (a)
Normalized hoop stress ; (b) Normalized radial stress. Material data for silicon and lithiated silicon reported
in Table 2.
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5. Conclusions

In this work we analysed the stress and strain evolution in coated and uncoated silicon
nanoparticles during their first lithiation. We developed different mechanical models taking
into account the various phenomena observed experimentally during the lithiation of silicon
such as phase change, material and geometrical nonlinearities. The lithium concentration
in the silicon particle is given by a sigmoid function (called logistic function) to represent
the sharp reaction front between phases. In addition our work presents a novel comparison
between experimental data and a state-of-the-art mechanical model of the lithiation of silicon
nanoparticles.

First, we proposed an original small strain semi-analytical mechanical model. The reso-
lution of this model is reduced to a nonlinear integro-differential system, with two unknown
scalar fields, solved by a finite difference method and an implicit Euler temporal integration
method. Second, a large strain model was developed using a logarithmic strain framework
associated to an updated lagrangian approach. We applied both models for the estimation
of the stress level and strain in coated and uncoated silicon nanoparticles during their lithi-
ation. For an uncoated nanoparticle, the results obtained are qualitatively consistent with
others numerical models in the literature such as Jia and Liu (2016) and Jia and Li (2016).
Moreover, we discussed the effect of the silicon particle size in the evaluation of its radius
and stress, considering in the study different particle sizes and a fixed front length. We re-
vealed that stresses in the fully lithiated particle is independent of its size. Nevertheless, in
an intermediate state, the stress in the silicon pristine increases with respect to the particle
size, consequently increasing the stored elastic energy and hence the risk of fracture. To our
knowledge, this size effect has not been addressed in the past, at least with the state-of-the-art
model adopted.

The numerical predictions were compared with measurements obtained by XRD by Tardif
et al. (2017). Our large strain FEM model predicts well the evolution of the strain in the
silicon crystalline core during the first lithiation of a crystalline silicon nanoparticle. The
optimal value of the yield stress in the lithiated shell that better agrees with experimental
data reported in Tardif et al. (2017) was also estimated. That value is consistent with the
range reported in the literature. We evidenced that large strain modeling are needed to
predict correctly the compressive stress evolution in the crystalline core. In the future and
in order to study potential strain rate effects on the plastic flowing of the lithiated shell, it
would be interesting to make similar experiments applying different lithiation speeds. This
would be a way to measure a potential strain rate effect on the plastic flow of the lithiated
shell but the study of higher lithiation rates may require to solve explicitly the diffusion
problem and to take into account the two-way coupling between diffusion and stress.

Our model has been extended to a composite structure in order to study the coating
of silicon nanoparticles. A new semi-analytical approach with updated geometry has been
proposed and compares well with the full finite element model. Thanks to this model, closed-
form relations of the maximal hoop stress experienced by the coating have been derived. It
depends on the strain induced by lithiation, the elastic properties of the lithiated silicon and
the coating as well as the ratio between the radius of the particle and the thickness of the
coating. As expected, the coating limits the silicon particles expansion. In addition, the
hoop stress experienced by the coating is maximal at its inner surface and at the end of the
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lithiation process.
These results have been used to interpret experimental results reported in Li et al. (2016)

and related to the fracture of Si@C particles during lithiation. In addition to the fact that
these new interpretations model the particles as spheres, which is more realistic than the
former ones in Li et al. (2016) (particles were modeled as cylinders), we were able to appre-
ciate the effect of the large strain modeling on the predicted maximum hoop stress in the
coating. We have also shown that adopting more appropriate values of the elastic moduli of
the lithiated silicon and the carbon coating results in tighter bounds on the fracture strength
of amorphous carbon. Nevertheless, as the chosen value for the elastic modulus of the coat-
ing remains arbitrary, having measurements of carbon-coated silicon diameters during the
lithiation of particles would be of great interest to appreciate the relevance of the model.
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Appendix A. Derivation of relations (9) and (10) (semi-analytical solution)

For the 1D spherical problem in infinitesimal strain approach with spherical coordinates
(r, θ, ϕ) and isotropic lithiation, the displacement field solution is u(r, t) = u(r, t) er (er

denotes the unit vector in a radial direction). Therefore, the strain field and the stress field
are both diagonal. The total deformation is given as:

εεε(r, t) =

 ∂u
∂r

(r, t) 0 0

0 u(r,t)
r

0

0 0 u(r,t)
r

 (A.1)

with u(0, t) = 0. Denoting by σσσ(r, t) the stress tensor, the equilibrium equation and boundary
conditions are:

∂σrr

∂r
(r, t) +

2

r
(σrr(r, t) − σθθ(r, t)) = 0 σrr(r0) = −Pc(t) (A.2)

where PC(t) is the pressure to be determined for a particle with coating and for a particle
without coating it reads Pc(t) = 0. We define the signed equivalent stress σS(r, t) = σθθ(r, t)−
σrr(r, t) and the Von Mises stress reads σeq = |σθθ − σrr|. The deviatoric part of the stress
and strain tensors, sss(r, t) and eee(r, t) respectively, are:

eee(r, t) =
εrr(r, t) − εθθ(r, t)

3
ddd

sss(r, t) =
σrr(r, t) − σθθ(r, t)

3
ddd

(A.3)

with

ddd =

 2 0 0
0 −1 0
0 0 −1

 . (A.4)

Derivating with respect to time the compatibility equations yields the following relation
between the radial and tangential components of the strain rate:

ε̇rr(r, t) − ε̇θθ(r, t) =
r

3

∂

∂r

(
Vr(r, t)

r

)
(A.5)

with Vr(r, t) = u̇(r, t). The deviatoric part of the equation (8) is written as:

(ε̇rr(r, t) − ε̇θθ(r, t))ddd = −
(
σ̇S(r, t)

2µ(r, t)
− σS(r, t)µ̇(r, t)

2µ2(r, t)

)
ddd− 3σS(r, t)

∂w

∂σ̃
ddd. (A.6)

Injecting (A.5) in this last relation yields:

σ̇S(r, t) + σS(r, t)

(
6µ(r, t)

∂w

∂σ̃
(r, σ̃) − µ̇(r, t)

µ(r, t)

)
= −2µ(r, t)

(
r
∂

∂r

(
Vr(r, t)

r

))
. (A.7)

From the hydrostatic part of the equation (8), we obtain:
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εm(r, t) =
1

3κ
σm(r, t) + εc(r, t) (A.8)

where the mean strain εm = (εrr + 2εθθ)/3 can be expressed as a function of the radial
displacement, namely:

εm(r, t) =
1

3 r2
∂

∂r

(
r2 u(r, t)

)
. (A.9)

Likewise, the equilibrium equation allows to express the hydrostatic stress σm = (σrr+2σθθ)/3
as a function of the radial component:

σm(r, t) =
1

3 r2
∂

∂r

(
r3 σrr(r, t)

)
. (A.10)

Injecting relations (A.9) and (A.10) in (A.8) gives the following expression of the radial
stress:

r3σrr(r, t) = 3

∫ r

0

κ(x, t)
∂

∂x

[
x2u(x, t)

]
dx− 9

∫ r

0

κ(x, t) εc(x, t)x2 dx. (A.11)

The integration by parts of the first term of the right-hand side of the previous equation
yields:∫ r

0

κ(x, t)
∂

∂x

[
x2u(x, t)

]
dx = κ(r, t) r2u(r, t) −

∫ r

0

∂

∂x
[κ(x, t)]x2u(x, t) dx. (A.12)

So that, the final expression of the radial stress reads:

σrr(r, t) = 3κ(r, t)
u(r, t)

r
− 3

r3

∫ r

0

∂

∂x
[κ(x, t)]x2u(x, t) dx− 9

r3

∫ r

0

κ(x, t) εc(x, t)x2 dx.

(A.13)
Applying the equilibrium equation, we obtain the following relation between σS and the

radial stress:

σS(r, t) =
r

2

∂σrr

∂r
(r, t). (A.14)

Using relations (A.7, A.13, A.14), we obtain a system of nonlinear equations (9,10) whose
variables are σS(r, t) and u(r, t) and whose initial conditions are zero.

Appendix B. Elastic solution for carbon coating submitted to an internal pres-
sure

During the expansion of a silicon particle of initial radius r0, the carbon coating is sub-
mitted to the internal pressure Pc(t). The solution for carbon coating is computed using the
problem of a spherical shell of external radius rc0 submitted to an internal pressure:

σσσc(r, t) =
Pc(t)

1 −
(

r0
rc0

)3 ( r0
rc0

)3

III − 0.5Pc(t)

1 −
(

r0
rc0

)3 (r0r )3 ddd. (B.1)

The displacement reads:

uc(r, t) =
Pc(t) r r

3
0

3κc (rc03 − r30)
+

Pc(t) r
3
c0

4µc (rc03 − r30)

(
r30
r2

)
(B.2)

with κc and µc the elastic properties of the coating. At the interface with silicon, conditions
of continuity are σc

rr(r0, t) = σrr(r0, t) = −Pc(t) and u(r0, t) = uc(r0, t).
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Appendix C. Finite difference method (semi-analytical solution)

In order to solve the system of equations (9) and (10) numerically, we discretize the
spatial domain in N points with i = 1, 2...N , with 0 < r1, r2 ... rN = r0 because u(0, t) = 0
and σS(0, t) = 0. We discretize the time in M steps with k = 1, 2, ...M . We use the notation
σ̂k
i = σ̂(ri, tk) and ûk

i = û(ri, tk). We use the trapezoidal rule for the calculation of integrals.
We consider the general case of a sphere with a pure elastic carbon coating. The discretized
equation (10) gives in the case of free outer boundary condition:

σ̂k
i =

3ri
2

κ̂(ri, tk)

(
ûk
i+1 − ûk

i

∆r

)
+

9

2r3i

∫ ri

0

∂κ̂

∂x
(x, t)x3û (x, t) dx + G(ri, tk), 1 ≤ i ≤ N − 1

σ̂k
N =

3r0
2

κ̂(r0, tk)

(
ûk
N − ûk

N−1

∆r

)
+

9

2
κ̂(r0, tk)ûk

N +
3

2
p̂− 9

2r20

∂F̂

∂r
(r0, tk), i = N

(C.1)
with

Ĝ(ri, tk) =
27

2r3i
F̂ (ri, tk) − 9

2r2i

∂F̂

∂r
(ri, tk) (C.2)

and p̂ = Pc(t)/σY is the contribution from the normalized pressure at the interface between
the silicon and the pure elastic carbon coating given as:

p̂ = K̂c û
k
N . (C.3)

with K̂c = Kc/σY . The equation (C.1) in matrix form is:

σ̂k = AAAk ûk + Ĝ
k

(C.4)

with ûk = (ûk
1 ... û

k
N)

T
and σ̂k = (σ̂k

1 ... σ̂
k
N)

T
. The discretized equation (9) gives:

1

µ̂(ri, tk)

∂σ̂i

∂t
−

˙̂µ(ri, tk)

µ̂2(ri, tk)
σ̂i + 3 ε̇0

(
σ̂2
i

) 1
m−1

2 σ̂i + 2ri
∂

∂t

(
ûi+1 − ûi

∆r

)
= 0, 1 ≤ i ≤ N − 1

1

µ̂(r0, tk)

∂σ̂N

∂t
−

˙̂µ(r0, tk)

µ̂2(r0, tk)
σ̂N + 3 ε̇0

(
σ̂2
N

) 1
m−1

2 σ̂N + 2r0
∂

∂t

(
ûN − ûN−1

∆r

)
= 0, i = N.

(C.5)
In matrix form, the preceding equation is written as:

MMMk ∂σ̂

∂t
+PPP k σ̂k + F

(
σ̂k
)

+BBB
∂û

∂t
= 0 (C.6)

where F is a nonlinear function of the vector σ̂k, with the component i given by:

Fi = 3 ε̇0
(
σ̂2
i

) 1
m−1

2 σ̂i. (C.7)
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We use an implicit temporal scheme in the equation (C.6), which yields:

MMMk+1

(
σ̂k+1 − σ̂k

∆t

)
+PPP k+1 σ̂k+1 + F

(
σ̂k+1

)
+BBB

(
ûk+1 − ûk

∆t

)
= 0. (C.8)

We note φ̂k =
(
σ̂k ûk

)T
and rearrange the equations (C.4) and (C.8) to obtain:

HHHk+1φ̂k+1 + G
(
φ̂k+1

)
+ J

(
φ̂k
)

= 0 (C.9)

with

HHHk+1 =

 1
∆t

MMMk+1 +PPP k+1 1
∆t

BBB

III −AAAk+1

 (C.10)

J
(
φ̂k
)

=

−MMMk+1σ̂k 1
∆t

−BBB ûk 1
∆t

−Ĝ
k

 (C.11)

G
(
φ̂k+1

)
=

F
(
σ̂k+1

)
0

 . (C.12)

The initial condition for the iterative method of the equation (C.9) is φ̂0 = 0. After
computing σS(r, t), we use the equilibrium equation to calculate σrr:

∂σrr

∂r
(r, t) +

2

r
(σrr(r, t) − σθθ(r, t)) =

∂σrr

∂r
(r, t) − 2σs(r, t)

r
= 0. (C.13)

The radial stress σrr is written as:

σrr(r, t) = 2

∫ r

r1

σS(x, t)

x
dx + h(t) (C.14)

with h(t) a temporal function from the boundary condition σrr(r0, t) = −Pc(t) given by:

h(t) = −Pc(t) − 2

∫ r0

r1

σS(x, t)

x
dx. (C.15)

Appendix D. Derivation of equation (25)(geometry update of the coated particle
at the end of lithiation)

In the model proposed in section 4.1 for the coated particle (equations (21)-(24)) the
complete lithiation state of the particle is taken into account only through the compressibility
modulus κs and the swelling εc. We assume hereafter that the same mechanical state is
obtained by considering another loading path for the coated particle (composite sphere):
at the initial time (t = 0), the particle is lithiated in the whole domain such that the
compressibility modulus is κs but without any swelling εc(t = 0) = 0 ; then the swelling
increases until it reaches the final value εc which is obtained physically at the end of the
lithiation. This loading can be applied incrementally and for each swelling increment δεc
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the problem to be solve is exactly the one presented in section 4.1 (equation (25)). This
approach allows to update the geometry of the coated particle (external radius of the particle
and thickness of the coating) at each swelling increment. We consider a coated particle with
initial geometry characterized by the radius r0 and the thickness e0. For a given geometry,
characterized by the couple (r, e), the apparent compressibility of the coating is given by
equation (21):

Kc = κc

(
(r + e)3 − r3

r3 + 3κc

4µc
(r + e)3

)
or equivalently by equation (26) when using adimensional geometry variables r̂ = r/r0 and
ê = e/e0. When a swelling increment δ εc is applied, the corresponding increment of the
pressure δPc is obtained by substituting in (22) the final pressure and swelling Pc(te) and εc

by their increments, namely:

δPc = δεc
3Kc

1 + Kc/κs

In the same way, substituting in (21)1 Pc(t) by the pressure increment δPc, the initial external
radius r0 by its updated value r and the displacement uc(r0, t) by the variation of the radius
δr yields:

δPc = 3Kc

(
δr

r

)
(D.1)

Combining the two former relations, we obtain an expression for the infinitesimal adi-
mensional radius variation:

δr̂ =
δεc r̂

1 + K̂c

κs

(D.2)

By making similar substitutions in equation (B.2) and then combining the resulting ex-
pression with (D.1), we obtain the infinitesimal variation of the coating thickness as:

δê =
3 K̂c δε

c f̂

1 + K̂c

κs

(D.3)

with K̂c and f̂ given in equation (26). In the case of a free particle expansion, equation
(D.2) reduces to δr̂ = δεc r̂, which gives log(r̂) = εc. From this analysis arises the need of
a definition of the chemical expansion coefficient consistent with the experimental data. In
order to meet the final volume of the particle according to experimental observations, one
might use εc = log(1 + β) in the semi-analytical simulations with geometry update, β = 0.6
being the small strain estimate of this coefficient, see relation (2).
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