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Abstract

We study the non-turbulent pipe flow of a Newtonian fluid through a confined
porous medium made of randomly arranged spherical particles in the situation
where the ratio between the pipe diameter over the particle diameter (D/d)
is less than 10. Using experiments and numerical simulations, we examine the
relation between the flow rate and the mean pressure gradient as a function of the
Reynolds number and particle size, and how it is affected by the presence of the
walls. We investigate the intrinsic variability of the measurements in relation to
the randomness of the particle arrangement and how such variability is linked to
spatial fluctuations of pressure within the bed. We observe that asD/d decreases,
the pressure gradient presents a stronger variability, particularly in relation to
where measurements are taken within the pipe. The study also quantifies the
difference between measuring the pressure drop at the wall versus averaging over
the entire volume, finding a small difference of 2.5% at most. We examine how the
mean pressure gradient is affected by the lateral walls, finding that the pressure
drop follows a consistent 1/Re scaling regardless of the confinement of the bed.
Finally, we observe that the pressure gradient balances the force exerted on the
solid spheres with a very weak contribution of the wall friction, showing that the
role of confinement corresponds to a global effect on the bed arrangement which
in turns affects the mean pressure gradient.
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1 Introduction

Fixed beds of particles are widely used in the chemical and process industries in a
variety of reactors, like heat exchangers, separators, catalytic beds, and many other
applications (Barbour et al, 2015; Elouali et al, 2019; Barker, 1965). In these cases, the
beds are in confined geometries, and the presence of finite reactor walls conducts to
additional complexity in modelling such systems, due to supplementary effects caused
by wall friction and local porosity variation near the reactor wall (Mueller, 2019; Guo
et al, 2019). These effects have been widely studied by measuring the global pressure
drop in several regimes, spanning from laminar to turbulent ones, both experimentally
(Erdim et al, 2015; Foumeny et al, 1993; Clavier et al, 2015; Bağcı et al, 2014) and
numerically (Magnico, 2003; Reddy and Joshi, 2010; Dixon, 2021). Nevertheless, there
is not yet a clear agreement on a universal model that thoroughly describes all the
regimes and possible configurations, especially when wall effects become significant,
that takes into account all the parameters involved in the system.

For a fixed bed of spherical particles, the parameters involved are the Reynolds
number Re = Ud/ν based on the superficial velocity (i.e., the velocity as if the spheres
were not present) and the fluid kinematic viscosity ν; the porosity ε of the bed, defined
as the ratio between the volume occupied by the spheres and the total volume of the
reactor, ε = Vfluid/Vtotal; and D/d, which is the ratio between the reactor and particle
diameter, D and d respectively. When wall effects are negligible, i.e. when D/d → ∞,
the pressure drop depends only on Re and ε. In this case, the Ergun model (Ergun,
1952) is generally used to describe the pressure drop of random arrangements of spher-
ical particles for low fluid volume fraction, and new correlation has been recently
derived in Dixon (2023) by considering different datasets. Nevertheless, this model is
not suitable for cases where the wall effects are evident, particularly when D/d < 10
(Eisfeld and Schnitzlein, 2001; Erdim et al, 2015; Hill et al, 2001b; Clavier et al, 2015;
Foumeny et al, 1993; Flaischlen et al, 2021). It has also been reported that, in the lam-
inar regime with walls, the Ergun model underestimates the pressure gradient because
of the additional reactor wall friction in the low-Re regime, whereas in the higher-Re
case the pressure drop is less than that of Ergun since the effects of the local porosity
near the walls increase (ε ≈ 1), therefore acting as a less resistant path for the flow to
go through (Eisfeld and Schnitzlein, 2001).

In Eisfeld and Schnitzlein (2001), the variability of the coefficients of the Ergun
equation was studied by analysing more than 2300 data points with different wall
effects. The authors found no clear correlation between the empirical parameters of
the Ergun correlation and D/d, especially for D/d < 10. Models have been proposed
where there is a distinction between a bulk and a wall zone, that differentiates the flow
going near the reactor walls from the flow in the middle of the bed, where the border
effects would be negligible. Such an example is the model proposed by Di Felice and
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Gibilaro (2004) where the authors define a bulk velocity in terms of D/d. In De Klerk
(2003) and Zou and Yu (1995) works, the bulk porosity of the bed has been modelled
in terms of D/d as well, by fitting various experimental data.

Most of the experiments are done by measuring the pressure drop via pressure
sensors installed at the wall of the reactor, and it is worth asking if there is not a bias
in the measurement that comes from measuring at some particular locations along
the bed, where there can be pressure variations. Not only that, but by measuring the
pressure at the wall of the reactor, we are measuring a quantity over a specific part
of the experiment, but not a quantity that is averaged over the whole volume of the
experiment. Are we indeed measuring the same quantity when we measure at the walls
and over the whole volume of the reactor, as it is done in volume-averaging techniques?
How do the variations of porosity, pressure and velocity affect the different ways of
measuring? There is also an intrinsic variability associated with the randomness of
the arrangements of spheres in fixed beds so that the pressure drop will undoubtedly
change for each repetition of the same experiment, where the only modified parameter
is the bed random packing. Even though there have been many models and studies
done (see for example, table 1 of . Erdim et al (2015)), few have been oriented towards
the sources of discrepancies between the different ways of measuring the pressure drops
and if an Ergun-type correlation can be considered still valid. It is not trivial that this
law would hold when there are finite border effects, given that there can be a reactor
boundary layer that adds up an additional term in the momentum equation.

In order to explore these questions, pressure drops in fixed beds are studied both
experimentally and numerically for three different configurations in the inertial regime.
These systems are representative of industrial configurations used in thermal energy
storage technologies (Sciacovelli et al, 2017; Barbour et al, 2015).The simulations allow
us to go further into details and quantify data that can not be easily measured in
experiments, such as the difference between averaging the pressure gradient over the
whole fluid volume versus measuring it along the wall as it is done in the experiments.
The simulations also provide us full access to the pressure field which is used to
investigate its local variability and how it affects the estimate of the mean pressure
gradient. The article is organized as follows: sections 2 and 3 detail the experimental
and numerical methodologies used in this work. In section 4, we present an analysis
on the variability of the pressure field caused by the random arrangement of spheres
in simulations and experiments, and quantify how it impacts the estimate of the
mean pressure gradient when measuring pressure at the wall or in the bulk of the
flow domain. Section 5 presents the mean pressure drop computed for three different
configurations D/d = [5, 8, 10], and we distinguish the contributions on the pressure
drop that come from the spheres and the walls. This is done so that we can study
whether the difference observed between the Ergun relation for D/d → ∞ and the
pressure drops measured forD/d < 10 comes from the presence of the walls themselves
or from another phenomenon. Finally, section 6 presents the summary and conclusions.
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Fig. 1 Experimental setup sketch. The pressure sensors are mounted along the wall of the test
section, and there are two grids on the top and bottom so that the beads remain packed.

2 Experimental setup

The pressure drop measurements are conducted in the experimental device shown
schematically in figure 1. It is made of a closed upstream-flow water loop that is mainly
composed of a centrifugal pump, a solenoid valve to regulate the flow, a cylindrical
test section and a flow meter.

The set-up is made of a clear plexiglass column with a diameter D = 0.04m,
and different sections of different heights that allow flexibility in the placement of the
bed, so as to avoid any nozzle effects. In particular, the test section of the bed is
Lexp = 0.4m high. Two additional 0.2m empty sections are added so as to separate
the bed from the nozzle (sections 1 and 2 in Fig. 1) and a 0.05m high honeycomb is
placed so as to suppress velocity fluctuations of the incoming flow.

The test section is first filled to its full height with monodispersed stainless steel
spherical beads with diameter d = [7.938, 4.762, 3.969]mm and density 8g cm−3 from
Marteau and Lemarié (France). In addition, grids are placed at the bottom and top
of the bed so as to keep it fixed at any flow conditions.

The setup is then filled with filtered water with temperature control using a ther-
mal bath. Special attention is paid to the removal of trapped bubbles in the loop
because the accumulation of bubbles within the pores can lead to wrong pressure mea-
surements. To this end, a degassing tank was added on top of the upstream water loop
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Fig. 2 Example of the pressure obtained at different heights z at a fixed angular position in the
reactor for D/d = 10 and Re = 220. The pressure gradient is calculated by computing the slope of a
linear fit shown with the red dashed line.

so that the bubbles can escape the closed water loop when reaching the free surface of
the tank. Additionally, the water is degassed by heating it up to 55◦ C, letting it cir-
culate for nearly 12 hours, and then cooled down to 20◦ C, the temperature at which
the experiments are carried out. This facilitates suppression of the bubbles, which was
corroborated visually before starting each acquisition. In total, each experiment takes
about 24 hours each time the bed is modified.

A constant speed centrifugal pump is used to drive the water, controlling the
flow rate with a solenoid valve. The flow rate Q, which can be varied in the range
Q ∈ [35, 165] cm3/s, is measured by a flowmeter MAG-VIEW MVM-020-QA from
Bronkhorst (Netherlands). This provides a direct measurement of the mean velocity
U = 4Q/(πD2) that is used to define the Reynolds number Re = Ud/ν of the flow,
where ν = 10−6 m2.s−1 is the kinematic viscosity of water. Given the diameter of the
spheres and the height of the bed, the Reynolds number can be varied in the range
Re ∈ [220, 1100] so that the flow remains laminar/inertial for all flow conditions, which
was confirmed by the absence of fluctuations in pressure measurements.

Pressure along the bed is measured using an array of ten pressure sensors, flush-
mounted along the column, and equidistantly distributed from each other at positions
zi, where z = 0 corresponds to the bottom of the bed. The pressure probes are
high-precision piezo-resistive sensors with a sensibility of 150mV/bar and a linear
deviation of 0.05%/bar. In order to increase the signal-to-noise ratio, the signal is
amplified by a homemade voltage amplifier with a gain G = 10 and digitized using
a high precision data acquisition system (NI Dacq 4472: 8 channels, 21 bits, 100 kHz
from National Instruments). As a consequence, signals from the flow meter and seven
pressure sensors are recorded at a time with a 20 kHz sampling frequency, so that
eventual pressure fluctuations due to fluidization or turbulence can be detected. Before
the first experimental campaign with flowing water, the sensitivity of the sensors was
checked and calibrated for their offsets by in situ measurements of the static pressure
when increasing the water level in the setup. When operating with a flow, the mean
pressure pi measured at altitude zi contains both contributions from a possible offset,
the static pressure, and the flow when U ̸= 0. As all contributions are additive, the
mean pressure due to the flow, further noted p(z) for simplicity, is simply obtained by
subtracting the mean pressure at U = 0 (which contains the offset and the gravitational
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contribution) from the current measurement. The mean pressure gradient dp
dz , is then

calculated by computing the slope of the p(z) curve as shown in figure 2 for a particular
case of D/d = 10 and Re = 220 as an example. As can be noted, only sensors placed
away from inlet and outlet of the bed are used for the pressure gradient measurement
in order to avoid possible biases from the top and bottom boundaries.

3 Computational approach

Similarly to experiments, the fixed bed generation is addressed numerically using a
vertical cylindrical domain (for D/d = 5 and D/d = 8, 10 respectively) and periodic
boundary conditions at the top and bottom. The random arrangements of beads in
the cylindrical container are built using the Discrete Element Method (DEM) software
Grains3D (Wachs et al, 2012). The fixed beds are done in three successive steps:
first, the particles are dropped into a non-periodic cylindrical container with a fixed
bottom. During this first step, the spheres are driven by gravitational and contact
forces until they form a packed bed with a random arrangement. Afterwards, the
two periodic ends of the bed are set at the minimum and maximum positions of
the settled particles (these will be the inlet and the outlet of the system), and they
are given an initial random velocity so that they can move inside the now periodic
domain. At the same time, their radius is increased at each time iteration. During
expansion, particles experience multiple collisions before they reach the final diameter
that satisfies the maximum solid concentration possible, and the DEM simulation is
stopped just before the particles are in contact with one another. Lastly, once we
have the maximum possible radius so that there are almost no particles touching each
other, a third simulation is done with a given initial random velocity such that the
particles re-accommodate into their final position, which will be the one that we will
use to mesh the bed. The resulting beds are characterized by calculating fluid volume
fraction, εf , as a function of the radial coordinate r for the three cases considered here
D/d = [5.13, 8.03, 10.15]. This is shown in figure 3, where the results are consistent
with those obtained by Mueller (1992); Benenati and Brosilow (1962); Goodling et al
(1983) who considered similar configurations.

Once the bed is characterized, direct numerical simulations (DNS) are performed
with the finite-volume solver simpleFoam of the OpenFOAM library (see Weller et al
(1998)). For each bed, the flow domain in between the particles is meshed with the
OpenFOAM unstructured mesh utility snappyHexMesh, using a standard meshing
workflow in three steps. Firstly, the blockMesh utility is used to generate a fully hexa-
hedral butterfly O-H topology background grid including the complete geometry, and
defining refinement level 0. The castellatedMesh step of snappyHexMesh is then used
to remove the background grid cells outside the fluid region and to refine cells on
sphere surfaces (at levels 1 to 2), on intersections of spheres with the periodic bound-
aries (at level 2) and inside the gap regions between the spheres (with an increment of
level 2). The level 1 corresponds to a division of level 0 cells by a factor 2 in all direc-
tions, and so on for higher levels. Finally, the snap step of snappyHexMesh is used to
project the remaining refined cell faces on the sphere surfaces. This last step generates
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Fig. 3 Fluid volume fraction (i.e. porosity) as a function of the radius of the bed. Results are
compared with those obtained in Goodling et al (1983), Mueller (1992) and Benenati and Brosilow
(1962).

polyhedral cells near the walls. No boundary grid layer is used in the present study,
as the fluid regime is laminar.

The meshing method presents a limitation for the minimum achievable poros-
ity, given that there is a trade-off between resolving all the small gaps between the
spheres, the number of cells necessary for the resolution of the equations and the
porosity. If a higher solid fraction is required, it becomes more difficult to mesh the
bed, since when the particles are in contact with one another they automatically
mesh as a single object. This is an additional difficulty when analyzing the data, as it
becomes impossible to differentiate the two spheres, for example on quantities like the
force on the spheres. With this limitation in mind, the maximum porosity that was
achieved was approximately 50% for all cases, as shown in table 2. Such a bed could
be obtained experimentally by a gradual defluidization of a fluidized bed or obtained
by sedimentation (Delaney et al, 2011; De Klerk, 2003).

Moreover, the system was made periodic along the main flow direction (z −
direction), so as to avoid any inlet/outlet boundary conditions effects and to com-
pare it to the experimental measurements. The number of cells ranges between 45 to
70 million, depending on the case, and the axial periodicity is imposed by interpo-
lating the periodic patches using the cyclicAMI boundary condition on all variables.
In order to optimize the interpolation algorithm, we verified that no sphere was tan-
gent to the top and bottom so as to avoid any strongly skewed cells or non-matching
grids which would make the cyclicAMI interpolation more difficult. We also refined
the edges of the intersection between the spheres and the periodic boundaries so that
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Table 1 Parameters of the simulations. ε = Vfluid/Vtotal: fluid volume
fraction. Re = Ud/ν Reynolds number based on the superficial velocity U , the
diameter of the particles d and the kinematic viscosity ν.

D/d H/d ε Number of cells ρ U ν Re
10.15 6.35 0.485 68.8M 1 0.53 - 7.89 1e-4 20 - 300
8.03 5.02 0.490 58.9M 1 0.42 - 6.20 1e-4 20 - 300
5.13 3.85 0.518 45.3M 1 0.26 - 3.83 1e-4 20 - 300

the borders match as best as possible. With all of this taken into account, the inter-
polating weight, which is a quantity that is equal to 1 for a perfect match between the
periodic walls and 0 for the opposite case, is on average 0.99 for all meshes.

In the end, the whole system is composed of a z-periodic inlet at z = zinlet and
a periodic outlet at z = zoutlet, the individual spheres that make up the bed, and
the lateral walls of the reactor. The mesh is non-structured and the system can be
described in cylindrical coordinates (r, θ, z), with r ∈ [0, R], θ ∈ [0, 2π] and z ∈ [0, H],
where R = D/2 is the reactor’s radius and H its height. The geometrical parameters
of the simulations are shown in table 1. In order to verify that the volume meshed is
representative and that there are no periodic spurious effects, we computed simulations
with double its period 2H. We verified that there was no significant difference between
the results of the simulations with period H and 2H.

Once the mesh is complete, we solve the steady-state Navier-Stokes equations for
the velocity field u and pressure field p

∇ · u = 0, (1)

ρ∇ · (uu) = −∇p+ µ∇2u, (2)

where ρ is the fluid density and µ the dynamic viscosity. We make use of the
steady-state solver simpleFoam, without any turbulent model as the flow remains
laminar in the range of parameters considered here. This solver relies on the SIM-
PLE algorithm (Ferziger et al, 2002), which solves the pressure-velocity coupling in
the incompressible Navier-Stokes equations (see equation (2)) of the fluid by using an
iterative method for the pressure p and the velocity field u.

We use second-order Gaussian finite volume integration schemes to compute the
different terms of equations (2). The gaussLinear scheme is used for the gradient
operator, gaussLinear corrected for the laplacian schemes, and bounded Gauss

linearUpwind is used for the divergence operator. The interpolation between the cell
centres and cell faces was done through a linear interpolation scheme, which uses
central differences for the interpolation.

In order to impose a mean flow with periodic boundary conditions, a forcing term
is added to the incompressible momentum equation such as

ρ∇ · (uu) = −∇p̃+ µ∇2u− f ẑ, (3)

where f is the forcing term imposed in ẑ direction. Under this framework, p̃ is a
z-periodic pressure field satisfying p̃(zinlet) = p̃(zoutlet) and is related to the total
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Fig. 4 The non-dimensional drag force on a three-periodic simple cubic array of ε = 0.592 as a
function of Re. The results are compared with the work of Hill et. al Hill et al (2001b). Inset: the
relative error shown as a percentage.

pressure p by the simple relation

p = p̃+ fz, (4)

The equations are then solved in the entire flow domain with periodic boundary con-
ditions in z for u and p̃ at the top and bottom, with no-slip boundary conditions on
rigid boundaries (reactor walls and beads) for the velocity, and Neumann boundary
conditions with zero normal gradient (∇p̃ ·n = 0) for the fluctuating pressure on solid
boundaries. Finally, the full pressure gradient is then computed as ∇p = ∇p̃+f which
averages to ⟨∇p⟩V = f when the entire flow domain is taken into account.

We also used a residual control, down to 10−6 for both the velocity and pressure
fields. A similar condition was also used in Magnico (2003). Convergence was reached
within 5000 iterations, with final residuals ranging between 10−8 and 10−6. Given
these criteria, it was possible to run the DNS with a range of Reynolds number Re ∈
[20 − 300], which is lower than what is achieved in the experiments, and the higher
Reynolds values (Re ∼ 200) of the DNS are the lower ones from the experiments.
Parameters are given in table 1.

The numerical methodology was validated using the Lattice Boltzmann method
computations performed by Hill et al (2001b) as a benchmark case. Ordered arrange-
ments of spheres are computed by placing a sphere in the middle of the three-periodic
unit cell (in this case a simple-cubic cell), with a fixed solid volume fraction of 0.408,
or equivalently a porosity of ε = 0.592. The non-dimensional drag force exerted by the
fluid on the sphere is defined as

F ∗ =
F

6πµRU
,
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where F is the module of the total force felt by the sphere. As shown in figure 4, this
quantity was calculated and compared to the one obtained by Hill et al (2001b). The
relative error, defined in terms of the force calculated using OpenFOAM FOF and the
one calculated by Hill FH , Error = |FOF − FHill|/FHill is shown in the inset. We
obtain a maximum relative error of 1.8%. In order to test the cyclicAMI condition,
the sphere in the unit cell was also placed at the border of the domain and separated
into two periodic parts, so as to assess that we get the same results. In that case, the
error was no larger than 2%.

It is worth noting that even though the SIMPLE algorithm is not usually suitable
to handle problems with high Reynolds numbers because it is a stationary solver,
the effects of the non-stationary modes in the present configuration are weak. This
is verified by comparing the pressure drop results on a fixed bed with Re = 200 and
D/d = 10, obtained with SIMPLE to those given by the non-stationary algorithm
PIMPLE. We compared the pressure gradient obtained at each time step with the
one obtained from the stationary simulations. The SIMPLE results match down to a
relative error of O(10−4), thus validating the suitability of the SIMPLE algorithm.

4 On the variability of pressure measurements in
packed beds

When measuring the pressure gradient in experiments, sensors are usually mounted on
lateral walls at known positions along the bed, while both surface and volume averages
are possible in numerical simulations. We address this question of whether surface and
volume averages of the pressure gradient are compatible and how the average pressure
gradient varies when changing the particle arrangement. Indeed, as the spheres are
randomly packed with a relatively weak scale separation between the particle size d
and the domain width D, D/d ≤ 10, variability in the particle arrangement may lead
to a strong variability in pressure measurements.

Such variability can be observed in figure 5 which displays the normalized pressure,
p(z)/ρU2, measured experimentally along the cylindrical reactor wall for 9 indepen-
dent realizations of the bed, for D/d = 10 and a Reynolds number Re ≈ 276. As can
be observed, p(z) decreases almost linearly along the bed but all curves are different
for the different realizations of the bed. Not only there are variations of the pressure at
a fixed position but the variations are randomly distributed along z with a variability
about the ensemble average estimated as δp/ρU2 ≈ 10.

As the investigation of the local pressure field can not be achieved experimentally,
we turn to the DNS results, with similar scale separation D/d = 10 and Reynolds
number Re = 200, to get a more detailed picture. As there is a strong pressure gradient
along the bed, we define the pressure fluctuation field by subtracting the local average
pressure in each plane z = cte. It reads:

p′(r, θ, z) = p(r, θ, z)− 1

πR2

∫ 2π

0

∫ R

0

p(r, θ, z)rdrdθ = p(r, θ, z)− ⟨p⟩r,θ(z), (5)
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Fig. 5 Normalized pressure p/(ρU2) as a function of z/d measured experimentally along the tube
for nine different random arrangements of spheres with D/d = 10 and a Reynolds number Re = 276.

where ⟨ ⟩r,θ denotes a spatial average over cylindrical coordinates r and θ for
z = cte. Moreover, ⟨ ⟩θ denotes an average over θ for r, z = cte, and ⟨ ⟩V an average
over the whole volume. Figure 6 shows the pressure fluctuations field p′/ρU2, at two
planes at two different heights in the bed. As observed in the experiment, pressure
fluctuates with typical amplitude a fraction of ρU2,/ although the fluid volume fraction
in the DNS is about 25% larger as compared to the experiment (table 2). We find that
pressure not only fluctuates strongly in the bulk but also along the lateral boundary
due to local porosity effects and solid-fluid interactions, which depend on the particle
distribution in the bed. The fluctuation field strongly depends on the vertical position
z, which may impact measurements of the pressure gradient due to the geometry of
the bed. Moreover this pressure fluctuations field will change each time the packing is
changed, adding variability to the results.

To illustrate how variations in the bed impact the measurements of the pressure
gradient, we first turn to the set of independent experiments done with D/d = 10 for
which we displayed the results in figure 5 for Re = 276. For each realization of the
bed, we perform a series of measurements of p(z) at different Reynolds number (table
2) from which we estimate the mean pressure gradient, dp/dz, at a given Reynolds
number by a linear fit of p(z) along the bed. As it is usually done, we define a non
dimensional pressure gradient

Gp = − d

ρU2

dp

dz

that we can plot against 1/Re.
The results are displayed in figure 7 in which we note that all the measurements

follow the same trend. The normalized gradient Gp is nearly linear as a function of
1/Re, each curve converging toward a constant at high Re which corresponds to the
inertial regime beyond the purely viscous (Darcy) regime.
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Fig. 6 Pressure field variations p′ at two different heights in the bed, for D/d = 10, ε = 0.518 and
Re = 200. Results from Direct Numerical Simulations.

Experiments Simulations

ε D/d Re ε D/d Re
0.386 10.08 222 - 535 0.485 10.15 20 - 300
0.396 8.40 300 - 630 0.490 8.03 20 - 300
0.425 5.04 240 - 1100 0.518 5.13 20 - 300

Table 2 Range of parameters studied experimentally and
numerically.

As can be seen in figure 7, the precise values of the Reynolds number are not exactly
the same for each realization so that estimating the variability is not straightforward.
We therefore compute a linear fit of Gp = β + α/Re for each realization from which
we get the ensemble average evolution Gp = β + α/Re, where α, β are averages of
different values of α and β, drawn as a solid line in figure 7. We then obtain the
standard deviation from the ensemble average,

σGp
=

( (
Gp

(
1

Re

)
−Gp

(
1

Re

))2
) 1

2

,

and find that the standard deviation averaged over all the values of the Reynolds
number is σGp

= 0.43 with a quite small mean relative error σGp
/Gp = 2.58%.

As mentioned earlier, the pressure field not only changes for each different arrange-
ment, but pressure exhibits spatial fluctuations within the bed (figure 6). We now
explore how the estimated pressure gradient will depend on location by using the
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with D/d = 10 (shown in different colors and symbols). The red solid line is the average linear fit
Gp = β + α/Re obtained by averaging the linear fits Gp = β + α/Re of the different realizations.

results from Direct Numerical Simulations. As measurements are usually performed
on a vertical line along the bed, we first study how pressure varies along z, at the
wall of the reactor, for different values of the angle θ. The pressure lines at four dif-
ferent angles are shown in figure 8a) for a particular case of D/d = 10 at Re = 200.
The pressure lines show that the pressure as a function of the height of the bed varies
depending on the angle. The pressure gradient for different angles ⟨Gp(r = R, θ)⟩z is
shown in figure 8b) for 4 different values of the Reynolds numbers. This was calculated
for different angles θ by a linear fit of the curves as is done experimentally (see figure
2). This quantity is normalized by the pressure gradient averaged over the whole vol-
ume, ⟨Gp⟩V , which is equal to the forcing term in the DNS, ⟨Gp⟩V = f . In the present
case the different curves nearly collapse onto the same curve for all Reynolds num-
bers, which is due to the fact that the 4 simulations were performed using the same
bed, so that the spatial organisation of the pressure field does not change much when
changing Re as it is strongly correlated to the structure of the bed.

The relative variations of the pressure gradient at the walls for D/d = 5, 8 and
10 are shown in figure 9, noted as G′

p(r = R). This was calculated by computing the
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Fig. 8 a) Pressure versus z/d at the wall of the reactor (r = R = D/2) at different angles θi,
for a fixed bed with D/d = 10, Re = 200. b) Pressure gradient at the wall of the reactor versus θ,
normalized by the perimeter of the bed, for the same random arrangement as in a). Results from DNS.

standard deviation of the superficial pressure drop described above,

G′
p(r = R) =

(
⟨Gp(r = R)⟩2z − ⟨Gp(r = R)⟩z,θ

)1/2
.

The value of the standard deviation for D/d = 10 is 0.38, which is comparable to
the experimental repeatability result which we recall to be 0.42. It is worth noting
that the experimental repeatability result was averaged over a higher Re range. This
means that a direct analogy between measuring at different angles of the bed and
changing the bed several times can be made, with an overestimation of the variability
by using the former. Furthermore, the relative deviations increase for the smaller scale
separations: it is on average 4%, 7% and 10% for D/d = 10, 8 and 5 respectively.
Assuming that the tendency is right, this means that the relative variability can be of
order 10 for D/d < 5.

Finally, let us now compare the mean pressure gradient measured at the walls
⟨Gp(r = R, θ, z)⟩θ with the volumetric average ⟨Gp⟩V as a function of Re. This is of
interest because the pressure drop is typically measured at the walls in experiments,
whereas macroscopic laws are usually derived by volume averages over the whole
domain. Figure 10 displays how the ratio ⟨Gp(r = R, θ, z)⟩θ/⟨Gp⟩V changes with Re for
the different scale separations investigated. It can be observed that the value does not
change significantly with Re. It does not stray that much from unity, although there
is a clear effect that depends on D/d, with an overestimation of the pressure gradient
at the walls when the scale separations are smaller D/d = 5, and an underestimation
for larger D/d. Nevertheless, this variation is found of the order of 1%, which is less
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than the error that one commits when measuring the pressure drop experimentally
for different beds, or at a particular angle, as quantified in figure 9.

We shall therefore conclude that the error made by computing the pressure gra-
dient at the wall instead of using a volumetric average is by far smaller than the
typical variability one gets in the pressure gradient measurement when using only one
realization of the bed which can reach up to 10% when scale separation is too small.

5 Mean pressure gradient

We now turn to the interpretation of the results obtained experimentally and numer-
ically for the pressure gradient as a function of Re for the three different beds with
D/d = 5, 8 and 10 (table 2).
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5.1 Dimensional analysis

In order to show a robust relation between the pressure gradient in the bed, which
is proportional to the total pressure loss ∆p along the bed, we turn to dimensional
analysis. The pressure loss is a function of 7 physical parameters so that 8 dimensional
quantities are involved:

∆p, ρ, U, µ, d,D,L, Vs,

where L is the relevant length in the tube (L = H in the simulation while L is the
maximal distance between the sensors in the experiment so that the pressure gradient
is dp/dz = ∆p/L in all cases), and Vs is the volume occupied by all the spheres. As
there are 3 physical dimensions involved (mass, time and length) and 8 dimensional
quantities, the functional relation between the pressure loss and the other quantities
can be reduced to a relation between 5 independent non-dimensional numbers that we
choose to be

Gp ≡ d∆p/L

ρU2
, Re, ε,D/d, L/D,

that can be written as:

Gp = f(Re, ε,D/d, L/D). (6)

One may wonder if L/D is really involved in this relation. The answer comes from an
analysis of the system. If L is long enough so that pressure fluctuations decorrelate
along the bed, then inlet-outlet condition do not matter and the bed can be considered
as infinite. In such condition, L/D can be dropped in the above expression to get:

Gp = f(Re, ε,D/d). (7)

Note that the condition H/D ≫ 1 is easily satisfied in the experiment as we have
L/D ∼ 10 with a linear pressure loss along the bed (figure 5). We verified that L = H
was not involved as well in the direct numerical simulations by checking that Gp

remains the same when doubling the height of the bed.
The functional form of equation 7 may be complex but it takes a simple form in

limit cases. Let us for instance consider a pipe flow, for which ε and D/d are not
involved. In such case, the pressure loss is 1/Re in the Poiseuille regime (Idelchik,
1987). Back to the porous medium in this regime of vanishingly small Re, the loads
are still linearly related to the mean velocity so that Gp must be proportional to 1/Re
so that we write

Gp = α(D/d, ε)
1

Re
(Re ≪ 1),

where α(D/d, ε) is an unknown function. On the other hand, in the high Reynolds
number regime, the loads are proportional to U2 so that Gp will remain constant
(Idelchik, 1987), which allows us to write

Gp = β(D/d, ε) (Re ≫ 1).

Guessing about the evolution Gp as a function of Re in the intermediate regime,
which does not correspond to the viscous nor the inertial regime, is more difficult.
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correspond to the variability at the walls measured numerically, which increase with the confinement
effects.

However, one may guess that some inertial contribution may first appear as a correc-
tion of the viscous term when increasing Re so we choose to explore how Gp varies as
a function of 1/Re and write Gp = α/Re + β. This is consistent with the work car-
ried out in Hill et al (2001a), where they observed that the inertial contribution is a
constant with our current normalization.

There is no a priori reason for which α and β should not depend on the Reynolds
number in the inertial regime (Reynolds number of order 100) as there could be bound-
ary layer or transitional effects. Also, α and β may depend of D/d for wall bounded
porous medium. In the particular case where D/d → ∞, the Ergun equation is used
to describe the pressure drop on non-confined fixed beds of spherical particles (Ergun,
1952), which reads:

Gp =
(1− ε)

ε3

(
A
1− ε

Re
+B

)
. (8)

The equation depends on ε and Re, and A and B are empirical constants that do not
depend on Re and are reported to be 150 and 1.75 respectively (Ergun, 1952). This
equation will now serve as a basis to interpret the present results which have been
obtained with weaker scale separations D/d < 10.

5.2 Results

Figure 11 displays the evolution of the normalized pressure gradient Gp =
(∆p/L)/(ρU2/d) as a function of 1/Re both from experiments and numerical simula-
tions (see table 2 for the range of Reynolds number for each run). The pressure gradient
measured experimentally corresponds to the one measured on the wall of the reactor,
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D/d AErgun
ε3

(1−ε)
αexp

ε3

(1−ε)
αdns BErgun

ε3

(1−ε)
βexp

ε3

(1−ε)
βdns

5 150 141 139 1.75 1.05 1.21
8 150 178 125 1.75 1.11 1.15
10 150 219 130 1.75 1.00 1.11

Table 3 Experimental and numerical values of the slope and intersection of the
Gp(1/Re) linear fits, α and β respectively.

at a fixed angle θ0: Gp(R, θ0, z), and the numerical one is presented as the gradient
averaged over the wall surface, that is, the average of the gradient shown in figure 8b),
⟨Gp(r = R, θ, z)⟩θ,z. The error bars for both results correspond to the variability at
the walls measured numerically, which increase with the confinement effects.

All the experimental results seem to follow a linear trend of Gp with 1/Re. The fact
that Gp = α/Re+β is not a trivial result as there is no reason why the result obtained
at moderate Reynolds number should be a superposition of the limit cases Re ∼ 0 and
Re → ∞. It is worth noting that the DNS results do not follow the same linear trend,
as the Reynolds numbers are lower than the ones achieved in the experiments and we
do not expect the same inertial contribution as the one observed in the experiments
. Nevertheless, it is visible in this figure that, both in the experiment and the DNS,
the non dimensional pressure gradient is a decreasing function of D/d in the range
of parameters investigated which is a clear signature of the presence of the wall. This
is probably due to the fact that as D/d lowers the porosity of the bed increases (De
Klerk, 2003), so then the bed offers less resistance to the flow.

The slope and intercept of the linear fits are shown in table 3, multiplied by a
factor depending on the porosity so as to have a direct comparison with A and B from
equation (8), noted as Aergun and Bergun in the table.

Both the numerical and experimental values are within the values reported in
Eisfeld and Schnitzlein (2001). The overall trend is that the value of A increases with
decreasingD/d, and they report thatB shows a ”slight opposite trend”, although there
is not a clear correlation in the results. It is worth noting that in all the experiments
studied, the contributions of ε and D/d were not separated, and the porosities of
the experiments are not specified. In fact, as it has been modelled in previous works
(De Klerk, 2003; Zou and Yu, 1995) both variables depend on the other, so their
contributions might not be separable. In other words, one might not be able to write,
e.g. α(ε,D/d) = αε(ε) × αD/d(D/d). Moreover, there are no error bars reported in
the results, which we have proved to be important due to the variability, especially
for lower D/d.

We now compare in figure 12 our experimental results for D/d = 5, which cor-
respond to the smallest scale separation investigated, to those from other works
(Foumeny et al, 1993; Erdim et al, 2015), with the Ergun model (equation (8)) and the
recent correlation obtained by Dixon (2023), two different models for the D/d → ∞
limit. As can be observed, the experimental curves follow the same type of Gp linear
relation (within the variability errorbars) as a function of 1/Re, with good agreement
between the present data and those of Erdim et al (2015). Besides, all experimental
sets show a clear deviation from the Ergun relation (red dashed line), which overesti-
mates by a factor 3 the pressure loss along the bed. By contrast, the Dixon relation

18



0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

1/Re ×10−3

7

8

9

10

11

12

13

14

15

G
p

Ergun 1952

Dixon 2023

Present work, D/d = 5.04, ε = 0.425

Erdim 2015, D/d = 5.0, ε = 0.424
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is much closer to the experimental data, especially at lower 1/Re (higher Reynolds),
and it takes account the slight curvature of the results within the variability error.

In both cases the deviations can be attributed to the presence of the walls (Foumeny
et al, 1993; Erdim et al, 2015; Mehta and Hawley, 1969; Eisfeld and Schnitzlein,
2001; Di Felice and Gibilaro, 2004). Whether this is due to some friction at the outer
boundary, or to a more global effect on the particle distribution due to the confinement,
is an open question. In order to answer this question, we will turn to numerical results
to get a more local analysis, which is that of the forces involved in the spheres. This
will allow us to separate the contribution from the walls and from the spheres. This
is presented in the following section.

5.3 Force contributions

The DNS data allow for the direct computation of the forces exerted on the spheres
by numerical integration of the loads F =

∫
S
σ ·n dS where σ is the stress tensor and

S is the surface of the particle.
We calculate the forces for all the spheres as the sum of all individual forces, and

the forces over the walls of the reactor. Because of conservation of momentum, it is
straightforward that 〈dp

dz

〉
=

1

V

(∑
FSpheres + FWalls

)
, (9)
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where F represents the z-component of the force. This means that the pressure gradient
is a result of the different contributions of the forces of the system. We can separate
the two contributions in order to see which one is more influential. Equation (9) was
verified, down to a 1% difference for all simulations.

Figure 13a) shows the total force per unit of volume exerted on the bed and the
wall FTotal/V (labelled as Total), the sum of the forces over all the spheres only,
labelled as Spheres, and the forces at the walls, labelled as Walls, all normalized by
ρU2/d, which is the same normalization factor used in Gp.

As was mentioned, the total force per unit of volume is the pressure drop, and by
separating the contributions we can see which is more important. It is evident that
most of the contribution comes from the spheres and not from the walls. In particular,
for D/d = 5 and Re = 200, FSpheres = 22×FWalls, and FTotal = 1.05×FSpheres. Not
only that, but both FWalls and FSpheres follow the same 1/Re scaling, which validates
the robustness of the scaling (the walls contribution was re-plotted in the inset for
clarity), and that there is not an additional term due to the walls in the ranges of
parameters studied, thereby revalidating that α and β only depend on ε and D/d.

Figure 13b) shows FTotal and FSpheres for D/d = 10, 8 and 5. All of them follow the
same scaling and once again most of the contribution for the pressure gradient comes
from the spheres, not the walls. It is worth noting though that the wall contribution
increases with D/d. That is, there is a dependency with the confinement, however
small (as it was said, for D/d = 5 the spheres account for 95% of the contribution).

Finally, we calculated the forces per surface area for D/d = 10 and 5 (shown in
table 4), and found that the force exerted by the walls is approximately 10% of that
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Table 4 Forces per surface area in units of

N/m2 for D/d = 10 and 5.

Forces per surface area [N/m2]
D/d = 10

Re 200 150 100 60
Wall 6.45 4.32 2.51 1.31

Spheres 69.48 44.21 23.74 11.17
D/d = 10

Re 200 150 100 60
Wall 1.41 1 0.59 0.31

Spheres 14.52 9.29 5.05 2.43

exerted by the spheres. Its contribution increases with increasing Re as well, which is
consistent with what is shown in figures 13 a) and b). This validates the fact that the
wall contribution is not as significant as the one provided by the spheres when taking
into account the force per unit area, as is the case of the force per unit volume (which
is representative of the pressure drop). Nevertheless, it is worth noting that the ratio
Fspheres/Fwalls does not change as significantly with D/d as the force per unit volume.

All of this leads to the conclusion that the differences observed between the pressure
drops measured in confined beds with D/d < 10 and non-confined beds (i.e., those
that follow the Ergun equation) are not a result from the walls themselves, but from
how the spheres are arranged because of the presence of the walls. In other words,
the change in geometry imposed into the system by a reactor with D/d < 10 is what
causes a difference in the forces felt by the spheres which is by itself generated by the
differences in the mean porosity of the bed generated by the walls. For D/d > 10 we
would expect the wall effects to become fully negligible with its force contribution being
nearly zero, and to the porosity of the bed to tend towards the porosity of random
beds of spheres without any border effects, which is usually ε ≈ 0.4. This would be
the limit of non-confined beds, where we cite a recent review by Dixon (2023).

6 Conclusions

Fixed beds of randomly arranged particles present an intrinsic variability that is linked
to the arrangements themselves. This variability is reflected in the pressure field inside
the bed and thus the pressure gradient might vary as well. We have studied this with
the aid of numerical simulations and experiments, where we have observed that, asD/d
decreases, the pressure gradient presents a stronger variability depending on where we
measure it at the wall of the reactor. Moreover, we were able to quantify the difference
between measuring the pressure drop at the wall of the reactor and the one averaged
over the whole volume. We observed that there is a small difference between measuring
at the wall of the reactor and averaging over the whole volume, of the order 2.5%
at the most. This is of particular interest because the theoretical developments are
usually derived for bulk-averaged quantities, while pressure measurements are usually
performed experimentally at the lateral boundaries of the domain. Our study showed
that the variability corresponds to an intrinsic error that can reach 10% when D/d is
small.
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We also studied how the mean pressure gradient is affected when the walls are
present. As a first observation, all pressure drops follow the same 1/Re scaling, which
is consistent with the Ergun correlation. Furthermore, all pressure drops were found
to increase with scale separation due to a decrease of the average bed porosity, a
decreasing function of D/d. We quantified the contribution of the walls and the solid
spheres by doing a simple force balance of the system. The balance of forces satisfies
that the pressure drop of the system is equal to the sum of the fluid-wall and fluid-
spheres forces. We find that most of the contribution (between 95 and 98%) comes
from the spheres, whereas the walls themselves have a small effect on the pressure
gradient. This means that the difference documented between the pressure drop in
confined beds and the infinite case described by the Ergun equation comes from how
the spheres are rearranged and distributed at the presence of the walls rather than the
presence of the walls themselves. The wall forces contribution to the pressure gradient
is within the variability error of the measurement.
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Ferziger JH, Perić M, Street RL (2002) Computational methods for fluid dynamics,
vol 3. Springer

Flaischlen S, Kutscherauer M, Wehinger GD (2021) Local structure effects on pressure
drop in slender fixed beds of spheres. Chemie Ingenieur Technik 93(1-2):273–281.
https://doi.org/https://doi.org/10.1002/cite.202000171

Foumeny E, Benyahia F, Castro J, et al (1993) Correlations of pressure drop in
packed beds taking into account the effect of confining wall. International Jour-
nal of Heat and Mass Transfer 36(2):536–540. https://doi.org/https://doi.org/10.

23

https://doi.org/10.1103/PhysRevE.83.051305
https://doi.org/https://doi.org/10.1016/j.ces.2004.03.030
https://doi.org/https://doi.org/10.1016/j.ces.2004.03.030
https://www.sciencedirect.com/science/article/pii/S0009250904002714
https://www.sciencedirect.com/science/article/pii/S0009250904002714
https://doi.org/https://doi.org/10.1016/j.powtec.2021.02.052
https://www.sciencedirect.com/science/article/pii/S0032591021001625
https://www.sciencedirect.com/science/article/pii/S0032591021001625
https://doi.org/https://doi.org/10.1002/aic.18035
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.18035
https://arxiv.org/abs/https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.18035
https://doi.org/10.1016/S0009-2509(00)00533-9
https://doi.org/10.1016/S0009-2509(00)00533-9
https://doi.org/https://doi.org/10.1016/j.est.2019.03.004
https://doi.org/https://doi.org/10.1016/j.est.2019.03.004
https://www.sciencedirect.com/science/article/pii/S2352152X19300179
https://www.sciencedirect.com/science/article/pii/S2352152X19300179
https://doi.org/10.1016/j.powtec.2015.06.017
https://doi.org/10.1016/j.powtec.2015.06.017
https://books.google.de/books?id=37sgywEACAAJ
https://books.google.de/books?id=37sgywEACAAJ
https://doi.org/https://doi.org/10.1002/cite.202000171
https://doi.org/https://doi.org/10.1016/0017-9310(93)80028-S
https://doi.org/https://doi.org/10.1016/0017-9310(93)80028-S


1016/0017-9310(93)80028-S, URL https://www.sciencedirect.com/science/article/
pii/001793109380028S

Goodling JS, Vachon RI, Stelpflug WS, et al (1983) Radial porosity distribution in
cylindrical beds packed with spheres. Powder Technology 35(1):23–29. https://doi.
org/10.1016/0032-5910(83)85022-0

Guo Z, Sun Z, Zhang N, et al (2019) Mean porosity variations in packed bed of
monosized spheres with small tube-to-particle diameter ratios. Powder Technology
354:842–853. https://doi.org/10.1016/j.powtec.2019.07.001, URL https://doi.org/
10.1016/j.powtec.2019.07.001

Hill RJ, Koch DL, Ladd AJ (2001a) The first effects of fluid inertia on flows in ordered
and random arrays of spheres. Journal of Fluid Mechanics 448:213–241. https://
doi.org/10.1017/s0022112001005948

Hill RJ, Koch DL, Ladd AJC (2001b) Moderate-Reynolds-number flows in ordered
and random arrays of spheres. Journal of Fluid Mechanics 448:243–278. https://
doi.org/10.1017/s0022112001005936

Idelchik I (1987) Handbook of hydraulic resistance, 2nd edition. Journal of Pressure
Vessel Technology-transactions of The Asme - J PRESSURE VESSEL TECHNOL
109. https://doi.org/10.1115/1.3264907

Magnico P (2003) Hydrodynamic and transport properties of packed beds in
small tube-to-sphere diameter ratio: pore scale simulation using an eule-
rian and a lagrangian approach. Chemical Engineering Science 58(22):5005–
5024. https://doi.org/https://doi.org/10.1016/S0009-2509(03)00282-3, URL https:
//www.sciencedirect.com/science/article/pii/S0009250903002823

Mehta D, Hawley MC (1969) Wall effect in packed columns. Industrial and Engineering
Chemistry Process Design and Development 8(2):280–282. https://doi.org/10.1021/
i260030a021

Mueller GE (1992) Radial void fraction distributions in randomly packed fixed beds of
uniformly sized spheres in cylindrical containers. Powder Technology 72(3):269–275.
https://doi.org/10.1016/0032-5910(92)80045-X

Mueller GE (2019) A modified packed bed radial porosity correlation. Powder
Technology 342:607–612. https://doi.org/10.1016/j.powtec.2018.10.030

Reddy RK, Joshi JB (2010) Cfd modeling of pressure drop and drag coefficient in
fixed beds: Wall effects. Particuology 8(1):37–43. https://doi.org/https://doi.org/
10.1016/j.partic.2009.04.010, URL https://www.sciencedirect.com/science/article/
pii/S1674200109001254, particulate Flows and Reaction Engineering

24

https://doi.org/https://doi.org/10.1016/0017-9310(93)80028-S
https://doi.org/https://doi.org/10.1016/0017-9310(93)80028-S
https://www.sciencedirect.com/science/article/pii/001793109380028S
https://www.sciencedirect.com/science/article/pii/001793109380028S
https://doi.org/10.1016/0032-5910(83)85022-0
https://doi.org/10.1016/0032-5910(83)85022-0
https://doi.org/10.1016/j.powtec.2019.07.001
https://doi.org/10.1016/j.powtec.2019.07.001
https://doi.org/10.1016/j.powtec.2019.07.001
https://doi.org/10.1017/s0022112001005948
https://doi.org/10.1017/s0022112001005948
https://doi.org/10.1017/s0022112001005936
https://doi.org/10.1017/s0022112001005936
https://doi.org/10.1115/1.3264907
https://doi.org/https://doi.org/10.1016/S0009-2509(03)00282-3
https://www.sciencedirect.com/science/article/pii/S0009250903002823
https://www.sciencedirect.com/science/article/pii/S0009250903002823
https://doi.org/10.1021/i260030a021
https://doi.org/10.1021/i260030a021
https://doi.org/10.1016/0032-5910(92)80045-X
https://doi.org/10.1016/j.powtec.2018.10.030
https://doi.org/https://doi.org/10.1016/j.partic.2009.04.010
https://doi.org/https://doi.org/10.1016/j.partic.2009.04.010
https://www.sciencedirect.com/science/article/pii/S1674200109001254
https://www.sciencedirect.com/science/article/pii/S1674200109001254


Sciacovelli A, Vecchi A, Ding Y (2017) Liquid air energy storage (laes) with packed
bed cold thermal storage – from component to system level performance through
dynamic modelling. Applied Energy 190:84–98. https://doi.org/https://doi.org/10.
1016/j.apenergy.2016.12.118, URL https://www.sciencedirect.com/science/article/
pii/S0306261916319018

Wachs A, Girolami L, Vinay G, et al (2012) Grains3d, a flexible dem approach
for particles of arbitrary convex shape — part i: Numerical model and val-
idations. Powder Technology 224:374 – 389. https://doi.org/https://doi.org/
10.1016/j.powtec.2012.03.023, URL http://www.sciencedirect.com/science/article/
pii/S003259101200191X

Weller H, Tabor G, Jasak H, et al (1998) A tensorial approach to computational
continuum mechanics using object orientated techniques. Computers in Physics
12:620–631. https://doi.org/10.1063/1.168744

Zou RP, Yu AB (1995) The packing of spheres in a cylindrical container: the
thickness effect. Chemical Engineering Science 50(9):1504–1507. https://doi.org/10.
1016/0009-2509(94)00483-8

25

https://doi.org/https://doi.org/10.1016/j.apenergy.2016.12.118
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.12.118
https://www.sciencedirect.com/science/article/pii/S0306261916319018
https://www.sciencedirect.com/science/article/pii/S0306261916319018
https://doi.org/https://doi.org/10.1016/j.powtec.2012.03.023
https://doi.org/https://doi.org/10.1016/j.powtec.2012.03.023
http://www.sciencedirect.com/science/article/pii/S003259101200191X
http://www.sciencedirect.com/science/article/pii/S003259101200191X
https://doi.org/10.1063/1.168744
https://doi.org/10.1016/0009-2509(94)00483-8
https://doi.org/10.1016/0009-2509(94)00483-8

	Introduction
	Experimental setup
	Computational approach
	On the variability of pressure measurements in packed beds
	Mean pressure gradient
	Dimensional analysis
	Results
	Force contributions

	Conclusions
	Declarations

