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Abstract
We study the non-turbulent pipe flow of a Newtonian fluid through a confined porous 
medium made of randomly arranged spherical particles in the situation where the ratio 
between the pipe diameter over the particle diameter (D/d) is less than 10. Using experi-
ments and numerical simulations, we examine the relation between the flow rate and the 
mean pressure gradient as a function of the Reynolds number and particle size, and how 
it is affected by the presence of the walls. We investigate the intrinsic variability of the 
measurements in relation to the randomness of the particle arrangement and how such vari-
ability is linked to spatial fluctuations of pressure within the bed. We observe that as D/d 
decreases, the pressure gradient presents a stronger variability, particularly in relation to 
where measurements are taken within the pipe. The study also quantifies the difference 
between measuring the pressure drop at the wall versus averaging over the entire volume, 
finding a small difference of 2.5% at most. We examine how the mean pressure gradient is 
affected by the lateral walls, finding that the pressure drop follows a consistent 1/Re scal-
ing regardless of the confinement of the bed. Finally, we observe that the pressure gradient 
balances the force exerted on the solid spheres with a very weak contribution of the wall 
friction, showing that the role of confinement corresponds to a global effect on the bed 
arrangement which in turns affects the mean pressure gradient.

Keywords Fixed bed reactors · Porous media · Confinement · Multiphase flows · 
Computational fluid dynamics

1 Introduction

Fixed beds of particles are widely used in the chemical and process industries in a variety 
of reactors, like heat exchangers, separators, catalytic beds, and many other applications 
(Barbour et  al. 2015; Elouali et  al. 2019; Barker 1965). In these cases, the beds are in 
confined geometries, and the presence of finite reactor walls conducts to additional com-
plexity in modelling such systems, due to supplementary effects caused by wall friction 
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and local porosity variation near the reactor wall (Mueller 2019; Guo et al. 2019). These 
effects have been widely studied by measuring the global pressure drop in several regimes, 
spanning from laminar to turbulent ones, both experimentally (Erdim et al. 2015; Foumeny 
et al. 1993; Clavier et al. 2015; Bağcı et al. 2014) and numerically (Magnico 2003; Reddy 
and Joshi 2010; Dixon 2021). Nevertheless, there is not yet a clear agreement on a univer-
sal model that thoroughly describes all the regimes and possible configurations, especially 
when wall effects become significant, that takes into account all the parameters involved in 
the system.

For a fixed bed of spherical particles, the parameters involved are the Reynolds num-
ber Re = Ud∕� based on the superficial velocity (i.e. the velocity as if the spheres were 
not present) and the fluid kinematic viscosity � ; the porosity � of the bed, defined as the 
ratio between the volume occupied by the spheres and the total volume of the reactor, 
� = Vfluid∕Vtotal ; and D/d, which is the ratio between the reactor and particle diameter, D 
and d, respectively. When wall effects are negligible, i.e. when D∕d → ∞ , the pressure 
drop depends only on Re and � . In this case, the Ergun model (Ergun 1952) is generally 
used to describe the pressure drop of random arrangements of spherical particles for low 
fluid volume fraction, and new correlation has been recently derived in Dixon (2023) by 
considering different datasets. Nevertheless, this model is not suitable for cases where the 
wall effects are evident, particularly when D∕d < 10 (Eisfeld and Schnitzlein 2001; Erdim 
et al. 2015; Hill et al. 2001b; Clavier et al. 2015; Foumeny et al. 1993; Flaischlen et al. 
2021). It has also been reported that, in the laminar regime with walls, the Ergun model 
underestimates the pressure gradient because of the additional reactor wall friction in the 
low-Re regime, whereas in the higher-Re case the pressure drop is less than that of Ergun 
since the effects of the local porosity near the walls increase ( � ≈ 1 ), therefore acting as a 
less resistant path for the flow to go through (Eisfeld and Schnitzlein 2001).

In Eisfeld and Schnitzlein (2001), the variability of the coefficients of the Ergun equa-
tion was studied by analysing more than 2300 data points with different wall effects. The 
authors found no clear correlation between the empirical parameters of the Ergun correla-
tion and D/d, especially for D∕d < 10 . Models have been proposed where there is a dis-
tinction between a bulk and a wall zone, that differentiates the flow going near the reactor 
walls from the flow in the middle of the bed, where the border effects would be negligible. 
Such an example is the model proposed by Di Felice and Gibilaro (2004) where the authors 
define a bulk velocity in terms of D/d. In De Klerk (2003) and Zou and Yu (1995) works, 
the bulk porosity of the bed has been modelled in terms of D/d as well, by fitting various 
experimental data.

Most of the experiments are done by measuring the pressure drop via pressure sensors 
installed at the wall of the reactor, and it is worth asking if there is not a bias in the meas-
urement that comes from measuring at some particular locations along the bed, where there 
can be pressure variations. Not only that, but by measuring the pressure at the wall of the 
reactor, we are measuring a quantity over a specific part of the experiment, but not a quan-
tity that is averaged over the whole volume of the experiment. Are we indeed measuring 
the same quantity when we measure at the walls and over the whole volume of the reactor, 
as it is done in volume-averaging techniques? How do the variations of porosity, pressure 
and velocity affect the different ways of measuring? There is also an intrinsic variability 
associated with the randomness of the arrangements of spheres in fixed beds so that the 
pressure drop will undoubtedly change for each repetition of the same experiment, where 
the only modified parameter is the bed random packing. Even though there have been many 
models and studies done (see for example, Table 1 of Erdim et al. (2015)), few have been 
oriented towards the sources of discrepancies between the different ways of measuring the 
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pressure drops and if an Ergun-type correlation can be considered still valid. It is not trivial 
that this law would hold when there are finite border effects, given that there can be a reac-
tor boundary layer that adds up an additional term in the momentum equation.

In order to explore these questions, pressure drops in fixed beds are studied both experi-
mentally and numerically for three different configurations in the inertial regime. These 
systems are representative of industrial configurations used in thermal energy storage tech-
nologies (Sciacovelli et al. 2017; Barbour et al. 2015). The simulations allow us to go fur-
ther into details and quantify data that can not be easily measured in experiments, such as 
the difference between averaging the pressure gradient over the whole fluid volume versus 
measuring it along the wall as it is done in the experiments. The simulations also provide 
us full access to the pressure field which is used to investigate its local variability and how 
it affects the estimate of the mean pressure gradient. The article is organized as follows: 
Sects. 2 and 3 detail the experimental and numerical methodologies used in this work. In 
Sect. 4, we present an analysis on the variability of the pressure field caused by the random 
arrangement of spheres in simulations and experiments, and quantify how it impacts the 
estimate of the mean pressure gradient when measuring pressure at the wall or in the bulk 
of the flow domain. Section 5 presents the mean pressure drop computed for three differ-
ent configurations D∕d = [5, 8, 10] , and we distinguish the contributions on the pressure 
drop that come from the spheres and the walls. This is done so that we can study whether 
the difference observed between the Ergun relation for D∕d → ∞ and the pressure drops 
measured for D∕d < 10 comes from the presence of the walls themselves or from another 
phenomenon. Finally, Sect. 6 presents the summary and conclusions.

2  Experimental Setup

The pressure drop measurements are conducted in the experimental device shown schemat-
ically in Fig. 1. It is made of a closed upstream-flow water loop that is mainly composed 
of a centrifugal pump, a solenoid valve to regulate the flow, a cylindrical test section and a 
flow meter.

The set-up is made of a clear plexiglass column with a diameter D = 0.04 m, and differ-
ent sections of different heights that allow flexibility in the placement of the bed, so as to 
avoid any nozzle effects. In particular, the test section of the bed is Lexp = 0.4 m high. Two 
additional 0.2 m empty sections are added so as to separate the bed from the nozzle (Sect. 1 
and 2 in Fig. 1) and a 0.05 m high honeycomb is placed so as to suppress velocity fluctua-
tions of the incoming flow.

The test section is first filled to its full height with monodispersed stainless steel spheri-
cal beads with diameter d = [7.938, 4.762, 3.969] mm and density 8g cm−3 from Marteau 
and Lemarié (France). In addition, grids are placed at the bottom and top of the bed so as 
to keep it fixed at any flow conditions.

The setup is then filled with filtered water with temperature control using a thermal 
bath. Special attention is paid to the removal of trapped bubbles in the loop because the 
accumulation of bubbles within the pores can lead to wrong pressure measurements. To 
this end, a degassing tank was added on top of the upstream water loop so that the bubbles 
can escape the closed water loop when reaching the free surface of the tank. Additionally, 
the water is degassed by heating it up to 55◦ C, letting it circulate for nearly 12 hours, and 
then cooled down to 20◦ C, the temperature at which the experiments are carried out. This 
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facilitates suppression of the bubbles, which was corroborated visually before starting each 
acquisition. In total, each experiment takes about 24 h each time the bed is modified.

A constant speed centrifugal pump is used to drive the water, controlling the 
flow rate with a solenoid valve. The flow rate Q, which can be varied in the range 
Q ∈ [35, 165] cm3∕s , is measured by a flowmeter MAG-VIEW MVM-020-QA from 
Bronkhorst (Netherlands). This provides a direct measurement of the mean velocity 
U = 4Q∕(�D2) that is used to define the Reynolds number Re = Ud∕� of the flow, where 
� = 10−6 m 2.s−1 is the kinematic viscosity of water. Given the diameter of the spheres and 
the height of the bed, the Reynolds number can be varied in the range Re ∈ [220, 1100] so 
that the flow remains laminar/inertial for all flow conditions, which was confirmed by the 
absence of fluctuations in pressure measurements.

Pressure along the bed is measured using an array of ten pressure sensors, flush-
mounted along the column, and equidistantly distributed from each other at positions zi , 
where z = 0 corresponds to the bottom of the bed. The pressure probes are high-precision 
piezo-resistive sensors with a sensibility of 150mV/bar and a linear deviation of 0.05%∕bar. 
In order to increase the signal-to-noise ratio, the signal is amplified by a homemade voltage 
amplifier with a gain G = 10 and digitized using a high precision data acquisition system 
(NI Dacq 4472: 8 channels, 21 bits, 100 kHz from National Instruments). As a conse-
quence, signals from the flow meter and seven pressure sensors are recorded at a time with 
a 20 kHz sampling frequency, so that eventual pressure fluctuations due to fluidization or 

Fig. 1  Experimental setup sketch. The pressure sensors are mounted along the wall of the test section, and 
there are two grids on the top and bottom so that the beads remain packed
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turbulence can be detected. Before the first experimental campaign with flowing water, the 
sensitivity of the sensors was checked and calibrated for their offsets by in situ measure-
ments of the static pressure when increasing the water level in the setup. When operating 
with a flow, the mean pressure pi measured at altitude zi contains both contributions from a 
possible offset, the static pressure, and the flow when U ≠ 0 . As all contributions are addi-
tive, the mean pressure due to the flow, further noted p(z) for simplicity, is simply obtained 
by subtracting the mean pressure at U = 0 (which contains the offset and the gravitational 
contribution) from the current measurement. The mean pressure gradient dp

dz
 , is then calcu-

lated by computing the slope of the p(z) curve as shown in Fig. 2 for a particular case of 
D∕d = 10 and Re = 220 as an example. As can be noted, only sensors placed away from 
inlet and outlet of the bed are used for the pressure gradient measurement in order to avoid 
possible biases from the top and bottom boundaries.

3  Computational Approach

Similarly to experiments, the fixed bed generation is addressed numerically using a verti-
cal cylindrical domain (for D∕d = 5 and D∕d = 8, 10 , respectively) and periodic boundary 
conditions at the top and bottom. The random arrangements of beads in the cylindrical con-
tainer are built using the Discrete Element Method (DEM) software Grains3D (Wachs et al. 
2012). The fixed beds are done in three successive steps: first, the particles are dropped 
into a non-periodic cylindrical container with a fixed bottom. During this first step, the 
spheres are driven by gravitational and contact forces until they form a packed bed with a 
random arrangement. Afterwards, the two periodic ends of the bed are set at the minimum 
and maximum positions of the settled particles (these will be the inlet and the outlet of the 
system), and they are given an initial random velocity so that they can move inside the now 
periodic domain. At the same time, their radius is increased at each time iteration. During 
expansion, particles experience multiple collisions before they reach the final diameter that 
satisfies the maximum solid concentration possible, and the DEM simulation is stopped 
just before the particles are in contact with one another. Lastly, once we have the maximum 
possible radius so that there are almost no particles touching each other, a third simulation 
is done with a given initial random velocity such that the particles re-accommodate into 
their final position, which will be the one that we will use to mesh the bed. The resulting 
beds are characterized by calculating fluid volume fraction, �f  , as a function of the radial 
coordinate r for the three cases considered here D∕d = [5.13, 8.03, 10.15] . This is shown 

Fig. 2  Example of the pressure obtained at different heights z at a fixed angular position in the reactor for 
D∕d = 10 and Re = 220 . The pressure gradient is calculated by computing the slope of a linear fit shown 
with the red dashed line
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in Fig. 3, where the results are consistent with those obtained by Mueller (1992); Benenati 
and Brosilow (1962); Goodling et al. (1983) who considered similar configurations.

Once the bed is characterized, direct numerical simulations (DNS) are performed 
with the finite-volume solver simpleFoam of the OpenFOAM library (see Weller et al. 
(1998)). For each bed, the flow domain in between the particles is meshed with the Open-
FOAM unstructured mesh utility snappyHexMesh, using a standard meshing work-
flow in three steps. Firstly, the blockMesh utility is used to generate a fully hexahedral 
butterfly O-H topology background grid including the complete geometry, and defining 
refinement level 0. The castellatedMesh step of snappyHexMesh is then used to 
remove the background grid cells outside the fluid region and to refine cells on sphere sur-
faces (at levels 1 to 2), on intersections of spheres with the periodic boundaries (at level 2) 
and inside the gap regions between the spheres (with an increment of level 2). The level 
1 corresponds to a division of level 0 cells by a factor 2 in all directions, and so on for 
higher levels. Finally, the snap step of snappyHexMesh is used to project the remaining 
refined cell faces on the sphere surfaces. This last step generates polyhedral cells near the 
walls. No boundary grid layer is used in the present study, as the fluid regime is laminar.

The meshing method presents a limitation for the minimum achievable porosity, given 
that there is a trade-off between resolving all the small gaps between the spheres, the num-
ber of cells necessary for the resolution of the equations and the porosity. If a higher solid 
fraction is required, it becomes more difficult to mesh the bed, since when the particles are 
in contact with one another they automatically mesh as a single object. This is an addi-
tional difficulty when analysing the data, as it becomes impossible to differentiate the two 
spheres, for example on quantities like the force on the spheres. With this limitation in 
mind, the maximum porosity that was achieved was approximately 50% for all cases, as 
shown in Table 2. Such a bed could be obtained experimentally by a gradual defluidization 
of a fluidized bed or obtained by sedimentation (Delaney et al. 2011; De Klerk 2003).

Moreover, the system was made periodic along the main flow direction 
( z − direction ), so as to avoid any inlet/outlet boundary conditions effects and to 

Fig. 3  Fluid volume fraction (i.e. porosity) as a function of the radius of the bed. Results are compared with 
those obtained in Goodling et al. (1983), Mueller (1992) and Benenati and Brosilow (1962)
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compare it to the experimental measurements. The number of cells ranges between 45 
and 70 million, depending on the case, and the axial periodicity is imposed by interpo-
lating the periodic patches using the cyclicAMI boundary condition on all variables. 
In order to optimize the interpolation algorithm, we verified that no sphere was tangent 
to the top and bottom so as to avoid any strongly skewed cells or non-matching grids 
which would make the cyclicAMI interpolation more difficult. We also refined the 
edges of the intersection between the spheres and the periodic boundaries so that the 
borders match as best as possible. With all of this taken into account, the interpolating 
weight, which is a quantity that is equal to 1 for a perfect match between the periodic 
walls and 0 for the opposite case, is on average 0.99 for all meshes.

In the end, the whole system is composed of a z-periodic inlet at z = zinlet and a peri-
odic outlet at z = zoutlet , the individual spheres that make up the bed, and the lateral walls 
of the reactor. The mesh is non-structured and the system can be described in cylin-
drical coordinates (r, �, z) , with r ∈ [0,R] , � ∈ [0, 2�] and z ∈ [0,H] , where R = D∕2 is 
the reactor’s radius and H its height. The geometrical parameters of the simulations are 
shown in Table 1. In order to verify that the volume meshed is representative and that 
there are no periodic spurious effects, we computed simulations with double its period 
2H. We verified that there was no significant difference between the results of the simu-
lations with period H and 2H.

Once the mesh is complete, we solve the steady-state Navier–Stokes equations for the 
velocity field u and pressure field p

where � is the fluid density and � the dynamic viscosity. We make use of the steady-state 
solver simpleFoam, without any turbulent model as the flow remains laminar in the 
range of parameters considered here. This solver relies on the SIMPLE algorithm  (Fer-
ziger et  al. 2002), which solves the pressure–velocity coupling in the incompressible 
Navier–Stokes equations (see Eq. 2) of the fluid by using an iterative method for the pres-
sure p and the velocity field u.

We use second-order Gaussian finite volume integration schemes to compute the 
different terms of Eq. (2). The gaussLinear scheme is used for the gradient opera-
tor, gaussLinear corrected for the laplacian schemes, and bounded Gauss 
linearUpwind is used for the divergence operator. The interpolation between the cell 
centres and cell faces was done through a linear interpolation scheme, which uses cen-
tral differences for the interpolation.

(1)∇ ⋅ u = 0,

(2)�∇ ⋅ (uu) = −∇p + �∇2
u,

Table 1  Parameters of the 
simulations

� = V
fluid

∕V
total

 : fluid volume fraction. Re = Ud∕� Reynolds number 
based on the superficial velocity U, the diameter of the particles d and 
the kinematic viscosity �

D/d H/d � Number of cells � U � Re

10.15 6.35 0.485 68.8M 1 0.53–7.89 1e-4 20–300
8.03 5.02 0.490 58.9M 1 0.42–6.20 1e-4 20–300
5.13 3.85 0.518 45.3M 1 0.26–3.83 1e-4 20–300
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In order to impose a mean flow with periodic boundary conditions, a forcing term is 
added to the incompressible momentum equation such as

where f is the forcing term imposed in �̂� direction. Under this framework, p̃ is a z-periodic 
pressure field satisfying p̃(zinlet) = p̃(zoutlet) and is related to the total pressure p by the sim-
ple relation

The equations are then solved in the entire flow domain with periodic boundary conditions 
in z for u and p̃ at the top and bottom, with no-slip boundary conditions on rigid bounda-
ries (reactor walls and beads) for the velocity, and Neumann boundary conditions with zero 
normal gradient ( ∇p̃ ⋅ n = 0 ) for the fluctuating pressure on solid boundaries. Finally, the 
full pressure gradient is then computed as ∇p = ∇p̃ + f  which averages to ⟨∇p⟩V = f  when 
the entire flow domain is taken into account.

We also used a residual control, down to 10−6 for both the velocity and pressure fields. A 
similar condition was also used in Magnico (2003). Convergence was reached within 5000 
iterations, with final residuals ranging between 10−8 and 10−6 . Given these criteria, it was 
possible to run the DNS with a range of Reynolds number Re ∈ [20 − 300] , which is lower 
than what is achieved in the experiments, and the higher Reynolds values ( Re ∼ 200 ) of the 
DNS are the lower ones from the experiments. Parameters are given in Table 1.

The numerical methodology was validated using the Lattice Boltzmann method com-
putations performed by Hill et al. (2001b) as a benchmark case. Ordered arrangements of 
spheres are computed by placing a sphere in the middle of the three-periodic unit cell (in 
this case a simple-cubic cell), with a fixed solid volume fraction of 0.408, or equivalently 
a porosity of � = 0.592 . The non-dimensional drag force exerted by the fluid on the sphere 
is defined as

where F is the module of the total force felt by the sphere. As shown in Fig. 4, this quantity 
was calculated and compared to the one obtained by Hill et al. (2001b). The relative error, 

(3)𝜌∇ ⋅ (uu) = −∇p̃ + 𝜇∇2
u − f �̂�,

(4)p = p̃ + fz,

F∗ =
F

6��RU
,

Fig. 4  The non-dimensional drag 
force on a three-periodic simple 
cubic array of � = 0.592 as a 
function of Re. The results are 
compared with the work of Hill 
et. al Hill et al. (2001b). Inset: 
the relative error shown as a 
percentage
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defined in terms of the force calculated using OpenFOAM FOF and the one calculated by 
Hill FH , Error = |FOF − FHill|∕FHill is shown in the inset. We obtain a maximum relative 
error of 1.8% . In order to test the cyclicAMI condition, the sphere in the unit cell was 
also placed at the border of the domain and separated into two periodic parts, so as to 
assess that we get the same results. In that case, the error was no larger than 2%.

It is worth noting that even though the SIMPLE algorithm is not usually suitable to 
handle problems with high Reynolds numbers because it is a stationary solver, the effects 
of the non-stationary modes in the present configuration are weak. This is verified by com-
paring the pressure drop results on a fixed bed with Re = 200 and D∕d = 10 , obtained with 
SIMPLE to those given by the non-stationary algorithm PIMPLE. We compared the pres-
sure gradient obtained at each time step with the one obtained from the stationary simula-
tions. The SIMPLE results match down to a relative error of O(10−4) , thus validating the 
suitability of the SIMPLE algorithm.

4  On the Variability of Pressure Measurements in Packed Beds

When measuring the pressure gradient in experiments, sensors are usually mounted on lat-
eral walls at known positions along the bed, while both surface and volume averages are 
possible in numerical simulations. We address this question of whether surface and vol-
ume averages of the pressure gradient are compatible and how the average pressure gradi-
ent varies when changing the particle arrangement. Indeed, as the spheres are randomly 
packed with a relatively weak scale separation between the particle size d and the domain 
width D, D∕d ≤ 10 , variability in the particle arrangement may lead to a strong variability 
in pressure measurements.

Such variability can be observed in Fig.  5 which displays the normalized pressure, 
p(z)∕�U2 , measured experimentally along the cylindrical reactor wall for 9 independ-
ent realizations of the bed, for D∕d = 10 and a Reynolds number Re ≈ 276 . As can be 
observed, p(z) decreases almost linearly along the bed but all curves are different for the 
different realizations of the bed. Not only there are variations of the pressure at a fixed 
position but the variations are randomly distributed along z with a variability about the 
ensemble average estimated as �p∕�U2 ≈ 10.

Fig. 5  Normalized pressure p∕(�U2) as a function of z/d measured experimentally along the tube for nine 
different random arrangements of spheres with D∕d = 10 and a Reynolds number Re = 276
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As the investigation of the local pressure field can not be achieved experimentally, 
we turn to the DNS results, with similar scale separation D∕d = 10 and Reynolds num-
ber Re = 200 , to get a more detailed picture. As there is a strong pressure gradient along 
the bed, we define the pressure fluctuation field by subtracting the local average pressure 
in each plane z = cte . It reads:

where ⟨ ⟩r,� denotes a spatial average over cylindrical coordinates r and � for z = cte . 
Moreover, ⟨ ⟩� denotes an average over � for r, z = cte , and ⟨ ⟩V an average over the whole 
volume. Figure 6 shows the pressure fluctuations field p�∕�U2 , at two planes at two dif-
ferent heights in the bed. As observed in the experiment, pressure fluctuates with typical 
amplitude a fraction of �U2 ,/ although the fluid volume fraction in the DNS is about 25% 
larger as compared to the experiment (Table 2). We find that pressure not only fluctuates 
strongly in the bulk but also along the lateral boundary due to local porosity effects and 
solid–fluid interactions, which depend on the particle distribution in the bed. The fluctua-
tion field strongly depends on the vertical position z, which may impact measurements of 

(5)p�(r, �, z) = p(r, �, z) −
1

�R2 ∫
2�

0 ∫
R

0

p(r, �, z)rdrd� = p(r, �, z) − ⟨p⟩r,�(z),

Fig. 6  Pressure field variations p′ at two different heights in the bed, for D∕d = 10 , � = 0.518 and 
Re = 200 . Results from Direct Numerical Simulations

Table 2  Range of parameters 
studied experimentally and 
numerically

Experiments Simulations

� D/d Re � D/d Re

0.386 10.08 222–535 0.485 10.15 20–300
0.396 8.40 300–630 0.490 8.03 20–300
0.425 5.04 240–1100 0.518 5.13 20–300
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the pressure gradient due to the geometry of the bed. Moreover this pressure fluctuations 
field will change each time the packing is changed, adding variability to the results.

To illustrate how variations in the bed impact the measurements of the pressure 
gradient, we first turn to the set of independent experiments done with D∕d = 10 for 
which we displayed the results in Fig. 5 for Re = 276 . For each realization of the bed, 
we perform a series of measurements of p(z) at different Reynolds number (Table  2) 
from which we estimate the mean pressure gradient, dp/dz, at a given Reynolds number 
by a linear fit of p(z) along the bed. As it is usually done, we define a non dimensional 
pressure gradient

that we can plot against 1/Re.
The results are displayed in Fig. 7 in which we note that all the measurements follow 

the same trend. The normalized gradient Gp is nearly linear as a function of 1/Re, each 
curve converging towards a constant at high Re which corresponds to the inertial regime 
beyond the purely viscous (Darcy) regime.

As shown in Fig. 7, the precise values of the Reynolds number are not exactly the 
same for each realization so that estimating the variability is not straightforward. We 
therefore compute a linear fit of Gp = � + �∕Re for each realization from which we get 
the ensemble average evolution Gp = � + �∕Re , where � , �  are averages of different val-
ues of � and � , drawn as a solid line in Fig. 7. We then obtain the standard deviation 
from the ensemble average,

Gp = −
d

�U2

dp

dz

Fig. 7  Pressure drop measured experimentally for nine different random arrangements of spheres 
with D∕d = 10 (shown in different colors and symbols). The red solid line is the average linear fit 
Gp = � + �∕Re obtained by averaging the linear fits Gp = � + �∕Re of the different realizations
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and find that the standard deviation averaged over all the values of the Reynolds number is 
�Gp

= 0.43 with a quite small mean relative error �Gp
∕Gp = 2.58%.

As mentioned earlier, the pressure field not only changes for each different arrangement, 
but pressure exhibits spatial fluctuations within the bed (Fig.  6). We now explore how the 
estimated pressure gradient will depend on location by using the results from Direct Numer-
ical Simulations. As measurements are usually performed on a vertical line along the bed, 
we first study how pressure varies along z, at the wall of the reactor, for different values of 
the angle � . The pressure lines at four different angles are shown in Fig. 8a for a particular 
case of D∕d = 10 at Re = 200 . The pressure lines show that the pressure as a function of the 
height of the bed varies depending on the angle. The pressure gradient for different angles 
⟨Gp(r = R, �)⟩z is shown in Fig. 8b for 4 different values of the Reynolds numbers. This was 
calculated for different angles � by a linear fit of the curves as is done experimentally (see 
Fig. 2). This quantity is normalized by the pressure gradient averaged over the whole volume, 
⟨Gp⟩V , which is equal to the forcing term in the DNS, ⟨Gp⟩V = f  . In the present case the dif-
ferent curves nearly collapse onto the same curve for all Reynolds numbers, which is due to 
the fact that the 4 simulations were performed using the same bed, so that the spatial organiza-
tion of the pressure field does not change much when changing Re as it is strongly correlated 
to the structure of the bed.

The relative variations of the pressure gradient at the walls for D∕d = 5, 8 and 10 are 
shown in Fig. 9, noted as G�

p
(r = R) . This was calculated by computing the standard deviation 

of the superficial pressure drop described above,

�Gp
=

( (
Gp

(
1

Re

)
− Gp

(
1

Re

))2
) 1

2

,

G�
p
(r = R) =

�
⟨Gp(r = R)⟩2

z
− ⟨Gp(r = R)⟩z,�

�1∕2

.

Fig. 8  a Pressure versus z/d at the wall of the reactor ( r = R = D∕2 ) at different angles �i , for a fixed bed 
with D∕d = 10,Re = 200 . b Pressure gradient at the wall of the reactor versus � , normalized by the perim-
eter of the bed, for the same random arrangement as in a. Results from DNS
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The value of the standard deviation for D∕d = 10 is 0.38, which is comparable to the 
experimental repeatability result which we recall to be 0.42. It is worth noting that the 
experimental repeatability result was averaged over a higher Re range. This means that a 
direct analogy between measuring at different angles of the bed and changing the bed sev-
eral times can be made, with an overestimation of the variability by using the former. Fur-
thermore, the relative deviations increase for the smaller scale separations: it is on average 
4% , 7% and 10% for D∕d = 10, 8 and 5, respectively. Assuming that the tendency is right, 
this means that the relative variability can be of order 10 for D∕d < 5.

Finally, let us now compare the mean pressure gradient measured at the walls 
⟨Gp(r = R, �, z)⟩� with the volumetric average ⟨Gp⟩V as a function of Re. This is of inter-
est because the pressure drop is typically measured at the walls in experiments, whereas 
macroscopic laws are usually derived by volume averages over the whole domain. Fig-
ure  10 displays how the ratio ⟨Gp(r = R, �, z)⟩�∕⟨Gp⟩V changes with Re for the differ-
ent scale separations investigated. It can be observed that the value does not change 
significantly with Re. It does not stray that much from unity, although there is a clear 
effect that depends on D/d, with an overestimation of the pressure gradient at the walls 
when the scale separations are smaller D∕d = 5 , and an underestimation for larger D/d. 
Nevertheless, this variation is found of the order of 1% , which is less than the error that 

Fig. 9  Standard deviations of the mean pressure gradient at different angles of the bed, G�
p
(r = R) compared 

to its mean over all angles, ⟨Gp(r = R)⟩z,�

Fig. 10  Pressure gradient calculated at the walls averaged over all � and z compared to the pressure gradient 
averaged over the whole volume ⟨Gp⟩V
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one commits when measuring the pressure drop experimentally for different beds, or at 
a particular angle, as quantified in Fig. 9.

We shall therefore conclude that the error made by computing the pressure gradient at 
the wall instead of using a volumetric average is by far smaller than the typical variability 
one gets in the pressure gradient measurement when using only one realization of the bed 
which can reach up to 10% when scale separation is too small.

5  Mean Pressure Gradient

We now turn to the interpretation of the results obtained experimentally and numerically 
for the pressure gradient as a function of Re for the three different beds with D∕d = 5, 8 
and 10 (Table 2).

5.1  Dimensional Analysis

In order to show a robust relation between the pressure gradient in the bed, which is pro-
portional to the total pressure loss Δp along the bed, we turn to dimensional analysis. The 
pressure loss is a function of 7 physical parameters so that 8 dimensional quantities are 
involved:

where L is the relevant length in the tube ( L = H in the simulation while L is the maxi-
mal distance between the sensors in the experiment so that the pressure gradient is 
dp∕dz = Δp∕L in all cases), and Vs is the volume occupied by all the spheres. As there are 
3 physical dimensions involved (mass, time and length) and 8 dimensional quantities, the 
functional relation between the pressure loss and the other quantities can be reduced to a 
relation between 5 independent non-dimensional numbers that we choose to be

that can be written as:

One may wonder if L/D is really involved in this relation. The answer comes from an anal-
ysis of the system. If L is long enough so that pressure fluctuations decorrelate along the 
bed, then inlet–outlet condition do not matter and the bed can be considered as infinite. In 
such condition, L/D can be dropped in the above expression to get:

Note that the condition H∕D ≫ 1 is easily satisfied in the experiment as we have L∕D ∼ 10 
with a linear pressure loss along the bed (Fig. 5). We verified that L = H was not involved 
as well in the direct numerical simulations by checking that Gp remains the same when 
doubling the height of the bed.

The functional form of Eq. 7 may be complex but it takes a simple form in limit cases. 
Let us for instance consider a pipe flow, for which � and D/d are not involved. In such 

Δp, �,U,�, d,D, L,Vs,

Gp ≡ dΔp∕L

�U2
,Re, �,D∕d, L∕D,

(6)Gp = f (Re, �,D∕d, L∕D).

(7)Gp = f (Re, �,D∕d).
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case, the pressure loss is 1/Re in the Poiseuille regime (Idelchik 1987). Back to the porous 
medium in this regime of vanishingly small Re, the loads are still linearly related to the 
mean velocity so that Gp must be proportional to 1/Re so that we write

where �(D∕d, �) is an unknown function.
On the other hand, in the high Reynolds number regime, the loads are proportional to U2 

so that Gp will remain constant (Idelchik 1987), which allows us to write

Guessing about the evolution Gp as a function of Re in the intermediate regime, which does 
not correspond to the viscous nor the inertial regime, is more difficult. However, one may 
guess that some inertial contribution may first appear as a correction of the viscous term 
when increasing Re so we choose to explore how Gp varies as a function of 1/Re and write 
Gp = �∕Re + � . This is consistent with the work carried out in Hill et al. (2001a), where 
they observed that the inertial contribution is a constant with our current normalization.

There is no a priori reason for which � and � should not depend on the Reynolds num-
ber in the inertial regime (Reynolds number of order 100) as there could be boundary layer 
or transitional effects. Also, � and � may depend of D/d for wall bounded porous medium. 
In the particular case where D∕d → ∞ , the Ergun equation is used to describe the pressure 
drop on non-confined fixed beds of spherical particles (Ergun 1952), which reads:

The equation depends on � and Re, and A and B are empirical constants that do not depend 
on Re and are reported to be 150 and 1.75, respectively (Ergun 1952). This equation will 
now serve as a basis to interpret the present results which have been obtained with weaker 
scale separations D∕d < 10.

5.2  Results

Figure 11 displays the evolution of the normalized pressure gradient Gp = (Δp∕L)∕(�U2∕d) 
as a function of 1/Re both from experiments and numerical simulations (see Table 2 for the 
range of Reynolds number for each run). The pressure gradient measured experimentally 
corresponds to the one measured on the wall of the reactor, at a fixed angle �0 : Gp(R, �0, z) , 
and the numerical one is presented as the gradient averaged over the wall surface, that is, 
the average of the gradient shown in Fig. 8b, ⟨Gp(r = R, �, z)⟩�,z . The error bars for both 
results correspond to the variability at the walls measured numerically, which increase with 
the confinement effects.

All the experimental results seem to follow a linear trend of Gp with 1/Re. The fact that 
Gp = �∕Re + � is not a trivial result as there is no reason why the result obtained at moder-
ate Reynolds number should be a superposition of the limit cases Re ∼ 0 and Re → ∞ . It 
is worth noting that the DNS results do not follow the same linear trend, as the Reynolds 
numbers are lower than the ones achieved in the experiments and we do not expect the 
same inertial contribution as the one observed in the experiments. Nevertheless, it is vis-
ible in this figure that, both in the experiment and the DNS, the non dimensional pressure 

Gp = 𝛼(D∕d, 𝜀)
1

Re
(Re ≪ 1),

Gp = 𝛽(D∕d, 𝜀) (Re ≫ 1).

(8)Gp =
(1 − �)

�3

(
A
1 − �

Re
+ B

)
.
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gradient is a decreasing function of D/d in the range of parameters investigated which is a 
clear signature of the presence of the wall. This is probably due to the fact that as D/d low-
ers the porosity of the bed increases (De Klerk 2003), so then the bed offers less resistance 
to the flow.

The slope and intercept of the linear fits are shown in Table 3, multiplied by a factor 
depending on the porosity so as to have a direct comparison with A and B from Eq. (8), 
noted as Aergun and Bergun in the table.

Both the numerical and experimental values are within the values reported in Eisfeld 
and Schnitzlein (2001). The overall trend is that the value of A increases with decreasing 
D/d, and they report that B shows a "slight opposite trend", although there is not a clear 
correlation in the results. It is worth noting that in all the experiments studied, the contribu-
tions of � and D/d were not separated, and the porosities of the experiments are not speci-
fied. In fact, as it has been modelled in the previous works (De Klerk 2003; Zou and Yu 
1995) both variables depend on the other, so their contributions might not be separable. In 
other words, one might not be able to write, e.g. �(�,D∕d) = ��(�) × �D∕d(D∕d) . Moreo-
ver, there are no error bars reported in the results, which we have proved to be important 
due to the variability, especially for lower D/d.

We now compare in Fig.  12 our experimental results for D∕d = 5 , which corre-
spond to the smallest scale separation investigated, to those from other works (Foumeny 
et al. 1993; Erdim et al. 2015), with the Ergun model (Eq. (8) and the recent correla-
tion obtained by Dixon (2023), two different models for the D∕d → ∞ limit. As can be 
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Fig. 11  Non-dimensional pressure gradients Gp = (Δp∕L)∕(�U2∕d) as a function of 1/Re. Left: Experimen-
tal results, � ≈ 0.4 . Right: Numerical results, with � ≈ 0.5 . The error bars for both results correspond to the 
variability at the walls measured numerically, which increase with the confinement effects

Table 3  Experimental and 
numerical values of the slope 
and intersection of the Gp(1∕Re) 
linear fits, � and � respectively

D/d AErgun
�3

(1−�)
�exp

�3

(1−�)
�dns

BErgun
�3

(1−�)
�exp

�3

(1−�)
�dns

5 150 141 139 1.75 1.05 1.21
8 150 178 125 1.75 1.11 1.15
10 150 219 130 1.75 1.00 1.11
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observed, the experimental curves follow the same type of Gp linear relation (within the 
variability errorbars) as a function of 1/Re, with good agreement between the present 
data and those of Erdim et al. (2015). Besides, all experimental sets show a clear devia-
tion from the Ergun relation (red dashed line), which overestimates by a factor 3 the 
pressure loss along the bed. By contrast, the Dixon relation is much closer to the experi-
mental data, especially at lower 1/Re (higher Reynolds), and it takes account the slight 
curvature of the results within the variability error.

In both cases the deviations can be attributed to the presence of the walls (Foumeny 
et al. 1993; Erdim et al. 2015; Mehta and Hawley 1969; Eisfeld and Schnitzlein 2001; 
Di Felice and Gibilaro 2004). Whether this is due to some friction at the outer bound-
ary, or to a more global effect on the particle distribution due to the confinement, is an 
open question. In order to answer this question, we will turn to numerical results to get 
a more local analysis, which is that of the forces involved in the spheres. This will allow 
us to separate the contribution from the walls and from the spheres. This is presented in 
the following section.

5.3  Force Contributions

The DNS data allow for the direct computation of the forces exerted on the spheres by 
numerical integration of the loads F = ∫

S
� ⋅ n dS where � is the stress tensor and S is 

the surface of the particle.

Fig. 12  Pressure drop for cases with D∕d = [5, 5.04] , compared with the Ergun and Dixon models for 
( D∕d → ∞ ) and results obtained by Erdim et al. (2015). The error bars correspond to the estimated vari-
ability of the experimental measurements
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We calculate the forces for all the spheres as the sum of all individual forces, and the 
forces over the walls of the reactor. Because of conservation of momentum, it is straight-
forward that

where F represents the z-component of the force. This means that the pressure gradient is 
a result of the different contributions of the forces of the system. We can separate the two 
contributions in order to see which one is more influential. Equation (9) was verified, down 
to a 1% difference for all simulations.

Figure  13a shows the total force per unit of volume exerted on the bed and the wall 
FTotal∕V  (labelled as Total ), the sum of the forces over all the spheres only, labelled as 
Spheres, and the forces at the walls, labelled as Walls, all normalized by �U2∕d , which is 
the same normalization factor used in Gp.

As was mentioned, the total force per unit of volume is the pressure drop, and by sepa-
rating the contributions we can see which is more important. It is evident that most of the 
contribution comes from the spheres and not from the walls. In particular, for D∕d = 5 and 
Re = 200 , FSpheres = 22 × FWalls , and FTotal = 1.05 × FSpheres . Not only that, but both FWalls 
and FSpheres follow the same 1/Re scaling, which validates the robustness of the scaling (the 
walls contribution was re-plotted in the inset for clarity), and that there is not an additional 
term due to the walls in the ranges of parameters studied, thereby revalidating that � and � 
only depend on � and D/d.

Figure 13b shows FTotal and FSpheres for D∕d = 10, 8 and 5. All of them follow the same 
scaling and once again most of the contribution for the pressure gradient comes from the 
spheres, not the walls. It is worth noting though that the wall contribution increases with 
D/d. That is, there is a dependency with the confinement, however small (as it was said, for 
D∕d = 5 the spheres account for 95% of the contribution).

(9)
⟨dp
dz

⟩
=

1

V

(∑
FSpheres + FWalls

)
,

Fig. 13  a Force contributions on the pressure drop for D∕d = 5 , where most of it comes from the spheres. 
Inset: The force at the walls is enlarged for clarification. b Total force of the system and total force over the 
spheres for D∕d = 5, 8 and 10. We observe that for all the cases considered most of the contribution comes 
from the spheres arrangements and not from the walls themselves
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Finally, we calculated the forces per surface area for D∕d = 10 and 5 (shown in 
Table 4), and found that the force exerted by the walls is approximately 10% of that exerted 
by the spheres. Its contribution increases with increasing Re as well, which is consistent 
with what is shown in Fig. 13a and b. This validates the fact that the wall contribution is 
not as significant as the one provided by the spheres when taking into account the force per 
unit area, as is the case of the force per unit volume (which is representative of the pressure 
drop). Nevertheless, it is worth noting that the ratio Fspheres∕Fwalls does not change as sig-
nificantly with D/d as the force per unit volume.

All of this leads to the conclusion that the differences observed between the pressure 
drops measured in confined beds with D∕d < 10 and non-confined beds (i.e. those that 
follow the Ergun equation) are not a result from the walls themselves, but from how the 
spheres are arranged because of the presence of the walls. In other words, the change in 
geometry imposed into the system by a reactor with D∕d < 10 is what causes a difference 
in the forces felt by the spheres which is by itself generated by the differences in the mean 
porosity of the bed generated by the walls. For D∕d > 10 , we would expect the wall effects 
to become fully negligible with its force contribution being nearly zero, and to the poros-
ity of the bed to tend towards the porosity of random beds of spheres without any border 
effects, which is usually � ≈ 0.4 . This would be the limit of non-confined beds, where we 
cite a recent review by Dixon (2023).

6  Conclusions

Fixed beds of randomly arranged particles present an intrinsic variability that is linked to 
the arrangements themselves. This variability is reflected in the pressure field inside the 
bed and thus the pressure gradient might vary as well. We have studied this with the aid of 
numerical simulations and experiments, where we have observed that, as D/d decreases, 
the pressure gradient presents a stronger variability depending on where we measure it at 
the wall of the reactor. Moreover, we were able to quantify the difference between meas-
uring the pressure drop at the wall of the reactor and the one averaged over the whole 
volume. We observed that there is a small difference between measuring at the wall of 
the reactor and averaging over the whole volume, of the order 2.5% at the most. This is 
of particular interest because the theoretical developments are usually derived for bulk-
averaged quantities, while pressure measurements are usually performed experimentally at 

Table 4  Forces per surface area 
in units of N∕m2 for D∕d = 10 
and 5

Forces per surface area [N/m2]

D∕d = 10

Re 200 150 100 60
Wall 6.45 4.32 2.51 1.31
Spheres 69.48 44.21 23.74 11.17
D∕d = 10

Re 200 150 100 60
Wall 1.41 1 0.59 0.31
Spheres 14.52 9.29 5.05 2.43
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the lateral boundaries of the domain. Our study showed that the variability corresponds to 
an intrinsic error that can reach 10% when D/d is small.

We also studied how the mean pressure gradient is affected when the walls are present. 
As a first observation, all pressure drops follow the same 1/Re scaling, which is consistent 
with the Ergun correlation. Furthermore, all pressure drops were found to increase with 
scale separation due to a decrease in the average bed porosity, a decreasing function of D/d. 
We quantified the contribution of the walls and the solid spheres by doing a simple force 
balance of the system. The balance of forces satisfies that the pressure drop of the system is 
equal to the sum of the fluid-wall and fluid-spheres forces. We find that most of the contri-
bution (between 95 and 98% ) comes from the spheres, whereas the walls themselves have a 
small effect on the pressure gradient. This means that the difference documented between 
the pressure drop in confined beds and the infinite case described by the Ergun equation 
comes from how the spheres are rearranged and distributed at the presence of the walls 
rather than the presence of the walls themselves. The wall forces contribution to the pres-
sure gradient is within the variability error of the measurement.
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