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ABSTRACT

The impact of climate change on power demand in Japan and its related CO72 emissions is a matter of concern for the
Japanese authorities and power companies as it may have consequences on the power grid, but is also of global
importance as Japan is a significant contributor to global greenhouse gas emissions. In this study, we trained random
forest models against daily power data in ten Japanese regions and for different types of power generation to project
changes in future power production and its carbon intensity. We used climate variables, heat stress indices, and one
variable for the level of human activities. We then used the models trained from the present-day period to estimate the
future power demand, carbon intensity, and pertaining CO2 emissions over the period 2020-2100 under three Shared
Socioeconomic Pathways (SSPs) scenarios (SSP126, SSP370, and SSP585). The impact of climate change on CO?
emissions via power generation shows seasonal and regional disparities. In cold regions, a decrease in power demand
during winter under future warming leads to an overall decrease in power demand over the year. In contrast, the
decrease in winter power demand in hot regions can be overcompensated by an increase in summer power demand
due to more frequent hot days, resulting in an overall annual increase. From our regional models, power demand is
projected to increase the most in most Japanese regions in May, June, September, and October rather than in the
middle of summer, as found in previous studies. This increase could result in regular power outages during those
months as the power grid could become particularly tense. Overall, we observed that power demand in regions with
extreme climates is more sensitive to global warming than in temperate regions. The impact of climate change on

power demand induces a net annual decrease in CO2 emissions in all regions except for Okinawa, in which power
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demand strongly increases during the summer, resulting in a net annual increase in CO2 emissions. However, climate
change’s impact on carbon intensity may reverse the trend in some regions (Shikoku, Tohoku). Additionally, we
assessed the relative impacts of socioeconomic factors such as population, GDP, and environmental policies on CO?2
emissions. When combined with these factors, we found that the climate change effect is more important than when
considered individually and significantly impacts total CO2 emissions under SSP585. The contrasting results observed
in the warm and cold regions of Japan can offer valuable insight into the potential future variations in energy demand

and resulting CO2 emissions on a global scale.

1. Introduction

Many studies have investigated the impact of climate change on energy systems. According to the review of Yalew et
al. (2020), a slight decrease in hydropower and thermal energy capacity at a global scale is expected. However, the
impact of climate on power demand strongly varies across regions (Auffhammer et al., 2017; Van Ruijven et al., 2019;
Gurriaran et al., 2023). Van Ruijven et al. (2019) found that the energy demand could increase by 25% in the tropics
by 2050 due to increasing hot days, whereas higher latitudes are more prone to a decline in energy demand. This study
focuses on power demand, which comprises a significant percentage of the total energy demand. Power demand is
closely related to meteorological conditions, and there is an increasing concern over how it will respond to changing
climate. According to Yalew et al. (2020), a global in- crease in cooling demand and a decrease in heating demand
are expected. For example, heat waves are becoming more frequent and intense in hot regions (Zittis, 2021), causing
increased peak demand during those events. The potential power outages that may result from increased peak demand
are a matter of concern for health systems (Patel, 2022). Depending on the scenario of socioeconomic development,
2 to 5 billion people are at risk of facing deadly heat and are unable to afford air conditioning systems (Mora, 2017;
Andrijevic, 2021). CO, emissions from power generation constitute a further consequence of climate-induced changes
in power demand. An increase in demand for air conditioning and, thus, power generation in subtropical latitudes will
subsequently increase the amount of CO, emissions from these regions. However, this effect may be counterbalanced
at a global scale by a decrease in heating demand in high latitudes leading to lower CO, emissions. Our study ad-
dresses this phenomenon specifically in Japan. Japan is one of the largest economies in the world, with the third-

largest Gross Domestic Product (GDP) internationally (IMF, 2022).

In 2020, power generation reached 987 TWh, i.e., 7.9 MWh per capita (IEA, 2020), ranking the country in the top 20
largest consumers of electricity per capita in the world. The residential sector is the third largest sector for power
demand in Japan, after commercial and public services and industry. Japan comprises a territory ranging from 46° to
20° north (2200 km long from northeast to southwest), and de facto includes a wide range of climates, from humid

continental to subtropical. The country is divided into ten distinct geographical areas administered by designated



power companies. Each region is characterized by a specific climate, population density, urbanization rate, GDP per
capita, etc., all factors determining power demand. For example, the adoption rate of household air conditioning is
around 90% on a national scale (De Cian et al., 2019), but it varies across regions from north to south. Whereas fewer
homes are equipped with cooling systems in Hokkaido, where heating needs are more important, the tropical climate
in Okinawa induces a strong demand for air conditioning. Although 80% of the nation’s power is produced with fossil
fuels (IEA, 2022), some regions use more renewables than others. Each region thus has a specific carbon intensity for
power generation depending on the energy mix used by the local power company. We use Japan as a case study to
investigate how climate change can influence CO, emissions by changing power demand and influencing the carbon
intensity of the energy mix. We analyze climate change impacts at national and regional scales and develop regional
statistical models to derive monthly and seasonal trends and annual net changes in CO, emissions until 2100. These
models incorporate the effects of climate change and specific regional socio-economic factors (population, GDP, and
environmental policies aiming to decarbonize the energy mix) to project power demand, carbon intensity, and CO,
emissions. Detailed energy mix and climate data are available homogeneously for all ten regions. Hiruta et al. (2022a)
used similar data to develop a method that acquires regional temperature response functions (TRFs) for power demand
and investigates the effect of climate change on power demand. Although our method to obtain regional models
projecting power demand is similar to Hiruta et al. (2022a), we use more up-to-date climate data for the projections:
our climate variables are from the last phase of the CMIP project, CMIP6, instead of CMIPS5 for the Hiruta study.
Unlike the Hiruta study, we further explore long-term changes in CO, emissions that can be caused by changes in
power demand and carbon intensity under future climate and socioeconomic scenarios. Our proposed method for
modeling power demand, carbon intensity, and CO, emissions in Japan is of significant local interest as it has the
potential to inform policy and decision-making related to energy production and consumption, as well as inform
strategies for reducing greenhouse gas emissions. Furthermore, understanding Japan’s specific challenges and
opportunities in relation to climate change can also contribute to global efforts to address the issue. As the third largest
economy in the world and the 11th most populous country, Japan is a major contributor to global greenhouse gas

emissions.

Our study on Japan will not only provide insight into how energy demand and related CO, emissions may evolve un-
der climate change in Japan specifically but will also offer valuable insight into the challenges and opportunities facing
larger industrialized nations in transitioning to low-carbon economies. The findings of such a study can inform global
efforts to mitigate and adapt to climate change by identifying successful strategies and best practices that can be
replicated in other countries. Additionally, with its wide range of climates, Japan is an ideal case study for
understanding the possible evolution of power demand under different climatic conditions. Section 2 details the data
used and the algorithms tested to develop models that simulate power demand and carbon intensity. It also describes

the method to calculate CO, emissions under three future scenarios: SSP1-2.6, SSP3-7.0, and SSP5-8.5. Section 3



presents the results; it describes the regional relationships between predictive variables and power demand and carbon
intensity, details the regional and temporal impact of climate on power demand, carbon intensity, and CO, emissions,
compares our results to those of Hiruta et al. (2022b) and discusses the relative importance of climate and
socioeconomic factors in determining the power demand, carbon intensity, and CO, emissions. Section 4 discusses

the results under a broader context, including caveats of our study. Section 5 concludes the paper.

2. Data and methods

The work presented in this article is built around three main steps (Figure 1): i) model development and selection, ii)
projections of power demand and carbon intensity under future climate scenarios, and iii) projections of CO, emissions
under future climate and socioeconomic scenarios. This section details the datasets needed for the different steps

(Table 1), the model development, and the projection stage.

2.1. Training Data

We trained a statistical model on climate reanalysis data from the ERAS5 project (Muiioz Sabater, 2019) to reproduce
the observed daily power demand and carbon intensity for all ten regions. Six raw climate variables were used as
predictors: temperature, relative humidity, solar and thermal radiation, wind, and precipitation (Table 1). Those data
were downloaded from the Climate Data Store website (CDS 2022) at an hourly time resolution over the period 2016
- 2020 and a spatial resolution of 0.08° T2M, RH, SSRD, STRD, and U hourly values were averaged over days, while
TP was summed over days. Finally, all these climate variables were regionally averaged. Five human exposure indices
were calculated from these climate variables and also used as predictors: the dew point temperature at which the air
is saturated with water vapor (Td), the wet bulb temperature (Tw), which is the lowest temperature to which air can
be cooled by water evaporation, the discomfort index, which is often used to calibrate air conditioner (DI), the
Humidex (Hx), which explains what the temperature feels like for the human body and the Heat Index (HI), which
represents what the combination of temperature and relative humidity feels like for the human body. Equations used
to calculate these indices (Thom, 1959; Sohar et al., 1963; Stathopoulou et al., 2005; Epstein and Moran, 2006; Buzan
et al., 2014; Maia- Silva et al., 2020) are detailed in supplementary materials (Section S1). We also used the days of
the week (DOW) as a proxy for human activity. Each day is assigned a numerical value to quantify its effect in our

models: Monday is 0, Tuesday 1,..., and Sunday 6.

Table 1

Current (ERAS for training) and future (ISIMIP3b for projections) climate data used in our analysis.
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Figure 1: Flowchart of the methodological procedures used in this study. Current (ERAS for training) and future

(ISIMIP3b for projections) climate data used in our analysis.

Hourly data for power demand and the energy mix was obtained directly from the website of the ten power utilities
(supplementary materials, Section S2). Data have been available since April 2016 and provided for eight types of
power supply: fossil, nuclear, photovoltaic, wind, hydroelectricity, geothermal, biomass, and pumped-storage
hydroelectricity. The energy mix of each region is detailed in supplementary materials (Section S2, Table S1). Further
details on the types of fossil fuel (coal, gas, and oil share) are unavailable at the hourly scale. Still, the Japanese agency

for natural resources and energy from the Ministry of Economy, Trade, and Industry (METI) provides monthly



fractions of coal, gas, and oil used in the regional energy mixes from 2017 to 2020. The fossil energy mix is relatively
constant over these four years, with approximately 50% of gas, 40% of coal, and 10% of oil. The regional daily carbon

intensity of power generation was calculated assuming this ratio constant.

2.2. Model development and selection

We tested three non-parametric models of daily power demand and carbon intensity; random forest classifier (Ho,
1995; Breiman, 2001), histogram-based gradient boosting (Friedman, 1999), and Multivariate Adaptive Regression
Spline (MARS) (Friedman, 1991). We trained the algorithms for all ten regions with twelve predictors: six climate
variables, five human exposure indices, and human activity proxy (DOW), all twelve described in section 2.1. The
training dataset represented 75% of the data, and the test dataset accounted for 25%. We evaluated the performances
of the algorithms on both datasets using three metrics: the coefficient of determination (R2), the Mean Absolute

Percentage Error (MAPE), and the Root Mean Square Error (RMSE).

Results are very similar between random forest and MARS, and both algorithms perform better than gradient boosting
(Table S2 and Figure S1, Section S3, supplementary materials). As it is faster to optimize random forest
hyperparameters, we decided to proceed with this algorithm for the projection stage. Although the methodology used
for the model development and selection stage is the same as Hiruta et al. (2022a), we developed our models with a

different algorithm and used ditferent evaluation metrics.

We used interpretability methods, including Partial Dependence Plots (PDPs) (Friedman, 2001; Greenwell, 2017) and
Shapley values (Roth, 1988; Winter, 2002), to analyze the effect of predictors on our model predictions. These

methods can be distinguished into global and local diagnostics:

¢ Global diagnostics provide insights into the average behavior of the model, thus giving hints on the mechanisms
that influence the prediction. PDPs are part of these diagnostics. Such plots illustrate the marginal effect of a single
predictor on the model output (here, power demand or carbon intensity). These plots are generated by averaging the
lines of Individual Conditional Expectation (ICE) plots. ICE plots represent the prediction changes for each

observation as a predictor varies.

¢ Local diagnostics, such as Shapley values, explain individual predictions of a machine learning model. The Shapley
values are interpreted as follows: “Given the current set of feature values, the contribution of a feature value to the
difference between the actual prediction and the mean prediction is the estimated Shapley value” (Molnar, 2020). One

can interpret Shapley values as a way to represent the probability of an impact of a predictor in the projection; a



negative Shapley value shifts the predicted value in a negative direction, whereas a positive Shapley value shifts it in

a positive direction.

PDPs and Shapley values enable the interpretation of the regional models obtained with random, showing how each
predictor affects the model outputs. PDPs were calculated from a subsample of fifty observations, and Shapley

values were calculated for each observation of each predictor.

2.3. Projections

Once the regional models were calibrated for current climate conditions (i.e., the period 2016-2020), we employed
them to project the evolution of power demand and carbon intensity under different climate scenarios over 2020- 2100
(Figures 2¢ and 2d). We worked with three scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5) and used bias-corrected
and statistically downscaled climate projections from the ISIMIP3b simulation round (Lange, 2021) at a daily
timescale as predictors. Those data come from five different Earth System Models from the 6th phase of the CMIP
project (CMIP6); GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2- HR, MRI-ESM2-0, and UKESM1-0-LL. Figure 2a
shows the projected temperatures for all ten regions and three scenarios as an example of the projected climate
predictors. We calculated human exposure indices (DI (Figure 2b), Hx, HI, Td, and Tw) from the projected climate
predictors. We checked the consistency of ERAS data and ISMIP projections over the period 2016-2020 and found
good compatibility, with ERAS values in the range of the ISIMIP projections (Figure S2 in the supplementary
materials section S5). Finally, we simulated daily climate-induced CO, emission projections by multiplying daily

power demand and carbon intensity projections.

2.4. Socioeconomic scenarios

The last step of our study was to include the impacts of socioeconomic factors on CO, emissions for all three SSPs.
The Climate Change Adaptation Information Platform from the National Institute for Environmental Studies (NIES),
Japan (A-PLAT, 2022), provides population projections at the prefecture scale. We aggregated such projections at the
regional scale. Those data predict a decrease in Japan’s population in all SSPs (Figure 3a). We obtained regional GDP
projections (Figure 3b) by scaling Japan’s GDP projections provided by the OECD (Riahi et al., 2017; Dellink et al.,
2017) with current ratios between Japan’s total GDP and regional GDP. Given the absence of regional GDP
projections, we assumed that all regional GDP projections follow the same trend. We calculated Japan’s carbon
intensity projections (Figure 3c¢) based on national projections of the IMAGE3.2 model (Van Vuuren et al., 2021). We
downscaled the national carbon intensity projection to regional levels with the same methodology as for GDP. Further
details can be found in the supplementary material (Section S4). We quantified the individual influence of each factor

(climate change, population, GDP, and environmental policies aiming to decarbonize the energy mix) on total CO,



emissions by varying one factor at a time. For example, to quantify the individual influence of GDP on total CO,
emissions over the whole period, we varied only the values of GDP when running the models and we fixed all the

other variables (climate, population, and carbon intensity) to their 2016 values.
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Figure 2: Current and future projections under climate change of average daily temperature (a), DI (b), power demand

(c), and carbon intensity (d) for the ten regions of Japan. The color scale on the maps indicates the level for the period

2016-2020. Projections for the period 2020-2100 are shown in solid bands. Lines give mean values from five models;



shaded areas show standard deviations. Future projections in panels ¢ and d are shown in percentage (relative changes

to present levels).
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3. Results

3.1. Regional models: important features explaining daily power demand and carbon intensity

variations in each region

Normalized Mean Absolute Shapley Values
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Figure 4: Radar plot showing the relative importance of the main predictors explaining power demand across regions
(T2M, DOW, SSRD, DI, and Hx - see Table 1), obtained from the normalized mean absolute Shapley values of all
observations for each predictor. The relative importance of the predictor is calculated for each region by normalizing

the mean absolute Shapley value of every predictor.

We calculated Shapley values for all predictors in all ten regions. Of twelve predictors, five consistently appear among
the most important to explain the power demand (Figure 4): the temperature (T2M), the day of the week (DOW), the
solar radiation (SSRD), the discomfort index (DI} and the Humidex (Hx). T2M is the most important predictor in all
regions except Chubu and Okinawa, followed by DOW. The order between T2M and DOW is reversed in Chubu. DI
is the second most important predictor instead of DOW in Okinawa (Figure 4). The third most important predictor

varies by region, but in general, it is DI (for six regions).

We looked at the PDPs of the main predictors and the Shapley values (Figures 5 and S3 in the supplementary materials
section S6) to better understand the non-linear influence of the predictors in our regional models. For example, with
the Tokyo region, the PDP for T2M shows a U-shaped dependency of power demand to temperature (Figure 5a). Two
temperature thresholds can be identified: power demand is increasing under 10 °C for heating purposes and above 18
°C for cooling purposes. The power demand is more or less constant between those two temperatures. Shapley values
(Figure 5d) show that when temperature values are either high or low (red and blue tones), power demand shifts in a
positive direction, thus confirming the behavior observed with the partial dependence plot. The same relationship
between temperature and power demand is also observed in several other regions (Figure S3, Section S6,
supplementary materials). However, Hokkaido and Okinawa show different relationships. Power demand decreases
when the temperature increases in Hokkaido and remains constant above 10°C, suggesting that power demand is
controlled only by heating demand. The opposite effect is observed in Okinawa; power demand is constant under
24°C and increases once this temperature is exceeded. The specific regional thresholds triggering power demand for

heating or cooling reflect households’ structure and population behavior.
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Figure 5: Partial dependence plot (thick line) and Individual Conditional Expectation plots (thin lines) for 100 model
realizations for three main predictors explaining the power demand for the Tokyo region: air temperature at two meters
above ground T2M (a), day of week DOW (b - the letters on the x-axis indicate the days of the week) and discomfort
index DI (c). The vertical red bars show the predictor values distribution. The lower panels represent the Shapley
values for each predictor for power demand (d) and carbon intensity (e). The figures for the other regions can be found

in the supplementary material, section S6.

We also analyzed the dependency of power demand on the days of the week (DOW) with PDP and Shapley Values
(Figures 5b and 5d). Power demand is constant from zero to four (Monday to Friday) and decreases above four,
reflecting a lower demand during weekends. Figure 5d highlights the clear separation between weekends and working
days. The same relationship is observed for all regions, although the impact of weekends on power demand is larger

in Chubu (Figure S2e and Figure 4).

Finally, we analyzed the relationship between the DI and power demand (Figures 5c and 5d). Power demand increases

when the threshold of 21 is exceeded. This behavior is observed for all regions having the DI as one of the three most



influential predictors (Figure S3, supplementary material). Previous studies identified 21 as the threshold above which
people start to feel heat stress (Thom, 1959; Stathopoulou et al., 2005), and DI is often used to calibrate air conditioners

(Sohar et al., 1963; Epstein and Moran, 2006; Buzan et al., 2014; Maia-Silva et al., 2020), explaining such behavior.

We analyzed the relationships between carbon intensity and all 12 predictors with Shapley values (Figure 5e). In the
example of Tokyo, DI is the most important predictor. It positively shifts carbon intensity predictions when the
predictor values are low, meaning that more fossil fuels are used for power generation when DI is low. Surface solar
radiation downward (SSRD) is the second most important predictor. SSRD negatively shifts carbon intensity
predictions when the SSRD value is high, probably because solar panels more easily exploit solar energy under a clear
sky with much incoming solar radiation than under a cloudy condition. It should be noted that too strong solar radiation
can inhibit the efficiency of power production from solar panels. Precipitation (TP) has the opposite effect. Carbon
intensity predictions are shifted positively when TP is important, meaning less use is made of renewable energies. The
order of importance of predictors for carbon intensity predictions varies more across regions than for power demand.
However, more climate predictors are among the most important predictors, reflecting the dependency of the daily

variability of the renewable energy capacity on the daily weather.

3.2. Impact of future climate change on power demand, carbon intensity, and CO, emissions

Power demand projections for all ten regions and three scenarios (Figure 2c, Section 2) show that climate change’s
impact on power demand differs between regions throughout the century. Such projections show a warming-induced
decrease in power demand under SSP3-7.0 and SSP5-8.5 in most regions (up to -3.2% in Hokkaido and Hokuriku).
However, the projections reveal a net increase in the daily power demand in Okinawa and Kyushu, the two hottest
regions (Figure 2a, Section 2). This increase is up to 1.6% in Kyushu and is even more pronounced in Okinawa (+1.6%
for SSP1-2.6 and +11.1% for SSP5-8.5). Changes in the power demand across regions (except Okinawa) under SSP1-
2.6 are small, ranging from -0.1 to 0.5%. Such results indicate that a decrease in the power demand in winter under
future warming leads to an annual decrease in power demand in cold regions like Hokkaido. However, this possible
decrease in winter power demand is overcompensated by a summer increase in hot regions such as Okinawa or
Kyushu, leading to an annual increase. Climate change’s impact on carbon intensity also varies across regions (Figure
2d), but results are less significant than for power demand. Carbon intensity projections are less accurately simulated
by our models (higher RMSE and lower R2). Nevertheless, the projections show that most regions see their carbon
intensity negatively affected by climate change. Tohoku and Shikoku, the regions with the highest average carbon
intensity (roughly 600 gCO,eq/kWh), are the only regions showing a climate-induced increase in carbon intensity
under SSP3-7.0 and SSP5-8.5 (+1.3% and +2.3%, respectively). For Chugoku, Hokuriku, and Okinawa, the projected

changes in carbon intensity are small and within the models’ error range.



Figure 6 shows how the influence of climate change on power demand and carbon intensity translates into carbon
emissions. In the "no climate change scenario" (plain line), climate variables were held constant at their 2016 values.
Therefore, are only influenced by changes in population, GDP, and carbon intensity. In the "climate change scenario”
(dashed line), we varied all four factors (climate, population, GDP, and carbon intensity) with time. Climate variables
values varied according to the ISIMIP projection, and socioeconomic variables according to the projection presented
in Figure 3. The difference between the solid and dashed lines for each region and scenario represents the difference
in emissions due to climate change alone. In Figure 6, we show the results of four regions. Results for the other regions
are displayed in Figure S4 (Section S7, supplementary material). The regions with the most extreme temperatures
(Hokkaido and Okinawa) indicate the largest differences. Climate change leads to a decrease in CO, emissions in
Hokkaido but an increase in Okinawa. Okinawa and Shikoku are the only regions with higher emissions from climate
change. The power demand is projected to increase strongly in Okinawa, especially under SSP5-8.5, which explains
an increase in CO, emissions. On the other hand, the CO, emissions increase in Shikoku is due to an increase in carbon
intensity simulated by the model. In all other regions, climate change leads to an increase in CO, emissions. In Kyushu,
the CO, emissions decrease with climate change because the decline in carbon intensity takes over the increase in

power demand. Such an effect can also be found in the Tokyo region, albeit to a lesser extent.
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Figure 6: Annual CO2 emissions from power generation under SSP1-2.6, SSP3-7.0, and SSP5-8.5, after considering
socioeconomic impacts with (dashed line) and without (solid line) climate change impact for four regions: Hokkaido
(a), Tokyo (b), Kansai (c) and Okinawa (d). The shaded area represents the 1-sigma standard deviation from the five

climate models for the scenario considering climate change impact (dashed line).
3.3. Attribution of the changes in power demand and CO, emissions

This section analyzes the effect of seasons and hot and cold periods on power demand and their respective
contributions to the total annual change in power demand between 2020-2030 and 2090-2100. We divided days into
four categories (cold, cool, warm, and hot) based on temperature distributions during 2016-2020. We calculated the

number of days in each category under the three SSPs during 2020- 2030 and 2090-2100. We attributed the



contribution of the change in power demand in each category to the total change in power demand (Figure S6, section
S8, supplementary material). The number of hot days increases in all ten regions. Increasing power demand during
hot days is associated with cooling demand. However, such an increase is counterbalanced by a decrease in power

demand in other categories of days. Okinawa is an exception; power demand increases in all categories of days.
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Figure 7: Monthly and regional changes (in percentage) in CO2 emissions between the decade 2020-2030 and 2090-

2100 due to climate impacts on future power demand. The mean results of the five models for SSP5-8.5 are shown.

Figure 7 shows the changes in CO, emissions between 2020-2030 and 2090-2100 due to changes in power demand
and carbon intensity under SSP5-8.5 at monthly and regional levels. This figure allows for comparing our results with
those of Hiruta et al. (2022b) (see Section 4 for the comparison). Most regions are projected to see a decrease in annual

CO, emissions from power generation due to climate change, ranging from -0.3% to -5.1%. Shikoku and Okinawa are



exceptions; their CO, emissions are projected to increase by 2.5 and 10%, respectively. Larger differences emerge at
the monthly scale; the largest increases in CO, emissions (up to 23% increase in Okinawa) occur during a few transition
months before and after the hottest months (i.e., May, June, September, and October) for all regions except Hokkaido
and Tohoku. The largest increases occur during the warmest months in these two relatively cold regions. Such results
indicate that the "next-warmest months" (May, June, September, and October) are most susceptible to future climate.
A threshold temperature above which the demand for air conditioning starts was identified for each region in section
3.1 with partial dependence plots. Building on that, we formulate a possible explanation for the observed monthly
changes; during July and August, the threshold temperatures triggering cooling demand are already exceeded for most
days in all regions (except in Hokkaido and Tohoku). Thus, a further increase in power demand for cooling demand
is not expected. However, with future warming, the temperature thresholds could be exceeded earlier in the year (in
May or June) and longer (until September or October), explaining why the largest increase in power demand is
projected to occur in the "next-warmest months". Similar monthly changes are observed for power demand but not
for carbon intensity (Figures S7a and S7b, Section S9, supplementary material), indicating that monthly changes in

regional CO, emissions are driven more by power demand than carbon intensity.

3.4. Comparison of different factors influencing CO, emissions of power generation

Figure 8 compares the impact of climate change on CO, emissions from power generation with those of socioeconomic
factors (population, GDP, and carbon intensity). We quantified the amount of CO, emitted by each factor individually
by varying one factor at a time. Note that the total in Figure 8 is the arithmetic sum of the individual changes from
each factor, which is different from the total (with climate change) in Figure 6, calculated from the compounded
change from all factors. With such a method, the results show that climate change plays a minor role in determining
future changes in CO, emissions (Figure 8). The decreasing population under all scenarios negatively affects CO,
emissions in all ten regions. GDP influences emissions in different directions according to scenarios; the GDP effect
is negative under SSP3-7.0 due to projected GDP decrease, whereas it is positive under SSP1-2.6 and SSP5-8.5 as
GDP grows. Under SSP5-8.5, GDP is by far the most important factor determining CO, emissions in all ten regions.
The effect of carbon intensity on CO, emissions is small under SSP5-8.5 and SSP3-7.0, as carbon intensity is not
projected to decrease much in these scenarios. However, carbon intensity is the most important factor under SSP1-

2.6, leading to a decrease in CO, emissions in most regions.

To summarize, when individual effects of climate, population, GDP, and carbon intensity on CO, emissions are
considered separately, as in Figure 8, the climatic factor is overshadowed by the other factors. However, Figure 6
shows that climate change may have a significant impact when all factors are combined to project CO, emissions in

certain regions under SSP5-8.5. The importance of the climate change impact on CO, emissions depends on the type



of climate of the region and future climate scenarios; it also depends on the month of the year, as indicated in Figure

7.

4. Discussion

Our methodology allows for establishing regional statistical models that adequately reproduce the observations of
daily power demand and carbon intensity. Seasonal cycles are well captured by the models for power demand, just as
intra-weekly cycles (i.e., the distinction between working days and weekends). Interpretation methods such as partial
dependence plots and Shapley values gave insights into understanding underlying mechanisms that control the
dependency of power demand and carbon intensity on the predictors. As we are able to understand the impact of
predictors on the outputs based on underlying mechanisms, such methods give us confidence in the projections of
power demand and carbon intensity obtained using these models. Nevertheless, the models’ inherent error is important

for carbon intensity.
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Figure 8: Individual contributions of changes in climate, population, GDP, and environmental policies to the changes
in total CO2 emissions of power generation over the period 2020-2100. The figure shows the change in CO2 emissions
due to each factor relative to the level with all other factors kept at current values. The figure shows the results for

four representative regions from north to south: Hokkaido (a), Tokyo (b), Kansai (c), and Okinawa (d).

A well-known default of machine learning models is their bad performance outside their calibration range. For the
projection, we calculated the percentage of days that have an average daily temperature outside the training
temperature range period: 0.8% for SSP1-2.6, 3.6% for SSP3-7.0, and 5.2% for SSP5-8.5. For the projection period,
we argue that the percentage of days with an average temperature outside the training range is small enough to avoid

overfitting.

Hiruta et al. used a comparable methodology (Hiruta et al., 2022a) and also projected regional power demand in Japan
with statistical models (Hiruta et al., 2022b). However, we went one step further by modeling the influence of climate
on carbon intensity and, eventually, CO, emissions. We obtained similar results for regional power demand; a decrease
in power demand in cold regions and an increase in hot regions. However, we found a maximal increase in power
demand during "next-warmest months" (May, June, September, and October). In contrast, the Hiruta study found it
during the warmest months (July and August). This difference between the two studies has important implications for
the power grid infrastructure in the future. Projecting the future power demand for air conditioning under changing
climate is a critical issue in Japan, as revealed by the power supply situation in the summer of 2022. At the end of
June 2022, Japan experienced a serious power deficit during weeks unusually hot for this month but not during equally
hot weeks in July or August. The power deficit occurred in June as some thermal power plants were under periodic
inspection before the high season and were not being operated (METI 2022). With climate change, there will be an
increased risk of having peak demand earlier in the season. Power companies will have to consider it to avoid the

problems of June 2022 happening again.

Here we discuss factors that can influence power demand but are not considered in our study. Firstly, the Urban Heat
Island effect (UHI) is known to influence power demand. UHI amplifies power demand for air conditioning in densely
populated cities in hot regions while it translates into a decrease in the demand for heating in colder regions (Xiaoma
et al., 2019; Roxon et al., 2020). Xiaoma et al. (2019) showed that the UHI effect could increase the need for cooling
energy by 19% and decrease the need for heating by 18.7% on average. According to the World Bank, 90% of the
population lives in urban areas in Japan, with 60% of the country’s 126 million inhabitants concentrated in the
metropolitan areas of Tokyo, Nagoya, and Osaka. Hence, the UHI effect is probably not negligible and translates into

a warming that is already a few degrees higher in cities than in rural areas (Takane et al., 2014; Takaya et al., 2014).



The earth system models that generated the climate data we used for projection do not resolve UHI, implying that the

future power demand in our projections may be underestimated in densely populated regions.

Secondly, a study by De Cian et al. (2019) predicts that almost 100% of Japanese homes will adopt air conditioning
by mid-century for all scenarios. Even though Japan is al- ready among the countries with the highest air conditioning
adoption rate per household, about 90% nationwide in 2011 (De Cian et al., 2019), the effect of increased access to air
conditioning was not taken into account in our model. Such an increase could boost power demand if all other factors,
such as the efficiency of air conditioning and the housing insulation, are kept the same. Specifically, it could
significantly change the climate response functions for power demand in cold regions like Hokkaido as, for now, these
regions have fewer houses equipped with cooling systems compared to the rest of the country. However, with our

methodology, there is not enough data to model the power demand linked to air conditioner usage in such regions.

Thirdly, human exposure indices use thresholds to account for the level of heat stress felt by the population. For the
DI, there is no discomfort below 21; between 21 and 24, less than 50% of the population feels discomfort; between 24
and 27, more than 50% of the population feels discomfort; between 27 and 29, most of the population suers discomfort;
between 29 and 32, everyone feels severe stress; above 32, the state of medical emergency is reached (Stathopoulou
et al., 2005). Figure 2b shows the projection for the annual maximal DI. The threshold of 24 has never been exceeded
in Hokkaido for now. By the end of the century, DI could reach 27 in Hokkaido (Figure 2b). The maximal DI was 28
in Okinawa in 2020. At the end of the century, it could reach the dangerous threshold of 32. Exceeding such thresholds
may lead to an underestimation of the power demand for air conditioning in all regions because there is no data to

calibrate human behavior regarding the use of air conditioning when these thresholds are exceeded.

Finally, while our machine learning models developed to simulate the response of power demand to future climate are
elaborated, how power demand responds to the future evolution of socioeconomic variables is modeled in a simpler
way. Similarly, while we used projections of climate variables with a rather high spatial resolution (CMIP6 data,
widely used in the scientific community), the projections used for the socioeconomic variables were only at the
national scale for GDP and carbon intensity. Given the data availability, there are differences in the spatial and
temporal resolutions of climate and socioeconomic data used in our analysis, which might have affected the accuracy

of power demand projections from our model.

In conclusion, our study on Japan has revealed two key findings. The first pertains to the local impact of climate
change and highlights the potential for increased power out- ages and grid saturation during the "next-warmest
months" in Japan. The second finding is of global significance and demonstrates the usefulness of Japan as a case
study to develop and test a methodology for assessing the evolution of power demand and CO, emissions under the

influence of climate change. The selection of Japan as a case study was motivated by its diverse range of climates,



which can be representative of various regions of the world and provide insight into potential variations in power
demand. Based on the findings from our research, which examined various regions in Japan, it is projected that there
will be a decline in demand in cold and temperate regions and an increase in tropical regions. This outcome aligns
with previous studies using different modeling methods, such as the research conducted by Van Ruijven et al. (2019),

which examined the evolution of energy demand on a global scale.
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Variable and description ERAS ISIMIP3b

name unit name unit
Near surface atmospheric temperature (2m above the surface) T2M K TAS K
Relative Humidity (water vapor pressure as a percentage of the values at RH % HURS %
which the air becomes saturated
Surface solar radiation downward (amount of shortwave radiation that SSRD  Jm? RSDS W.m™
reaches a horizontal plane at the surface)
Surface thermal radiation downward (amount of longwave radiation STRD  J.m? RLDS W.m>

emitted by the atmosphere and clouds that reaches a horizontal plane at

the surface

Wind (speed of horizontal wind 10m above the surface U m.s' SFCWIND m.s’
Precipitation (total amount oof water that fall at the surface) TP m PR kg.m?s’!




Climate change affects power demand, carbon intensity, and CO; emissions.

Regional data-based models were developed for Japan to project power demand, carbon
intensity, and CO2 emissions under different scenarios until 2100.

Seasonal and regional disparities were found in the response of power demand to climate
change.

The effect of socioeconomic factors such as population, GDP, and environmental policies was
accounted for.
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