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Feature Space Recovery for Efficient Incomplete
Multi-view Clustering

Zhen Long, Ce Zhu, Fellow, IEEE, Pierre Comon, Fellow, IEEE, Yazhou Ren, Member, IEEE, Yipeng
Liu, Senior Member, IEEE

Abstract—T-SVD based incomplete multi-view clustering (IMVC) has received wide attention due to its ability to capture high-order
correlations. However, t-SVD suffers from rotation sensitivity, failing to fully explore both inter- and intra-view consistencies. Besides,

current methods mainly consider inter- or intra-view correlations, ignoring the low-rank information of sample features within views. To
address these weaknesses, we first propose a feature space recovery based IMVC (FSR-IMVC) method, where low-rank feature
space recovery and low-rank tensor ring based consistency learning are considered into a unified framework. Furthermore, we extend
FSR-IMVC by incorporating anchor learning on the latent feature space, resulting in a scalable FSR-IMVC (sFSR-IMVC) approach that
is well-suited to large-scale data. In an iterative way, the learned inter- and intra-view correlations will guide the recovery of missing
features, while the explored low-rank information from feature spaces will in turn facilitate consistency exploration, eventually achieving

outstanding clustering performance. Experimental results show that FSR-IMVC provides a significant improvement over known
state-of-the-art algorithms in terms of ACC, NMI and Purity. Compared with FSR-IMVC, sFSR-IMVC performs slightly worse in
clustering accuracy, but offers a notable advantage in computational efficiency, particularly for large-scale datasets. The codes of
FSR-IMVC and sFSR-IMVC are publicly available at https://github.com/longzhen520/sFSR-IMVC.

Index Terms—Incomplete multi-view clustering, Low-rank tensor ring approximation, Feature space recovery, Anchor learning

1 INTRODUCTION

ADvances in information techniques have revolution-
ized data analysis in real-world applications, allowing
for the description of observed data from multiple views.
For example, in image processing, images captured from
diverse modalities, such as RGB, depth, and infrared, are
commonly available for analysis [1], [2]. In social network
analysis, interactions between individuals can be derived
from multiple sources such as emails, phones, or social
media [3], [4]. The availability of multi-view data, which
provides consensual and complementary information, has
spurred the development of various multi-view learning-
based tasks [5]-[9]. The aim of these tasks is to utilize com-
plementary information from different views to enhance
the performance of models. Among these tasks, multi-view
clustering (MVC) aims to group multi-view data into several
clusters by integrating information from different views. It
finds applications in various fields including image process-
ing, computer vision, and social network analysis [10]-[14].

In practical scenarios, it is common for certain views
to contain missing or incomplete samples due to factors
such as technical limitations and privacy concerns during
data acquisition or transmission [15]-[18], [18]. Directly
applying current MVC methods to such data can result in
poor performance, as the hidden information of missing
samples is ignored. To address the aforementioned problem,
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various incomplete multi-view clustering (IMVC) methods,
including deep IMVC and incomplete multi-view subspace
clustering (IMSC), have been proposed [19]-[22]. Unlike
deep IMVC techniques [17], [23], [24], which require big
databases and huge computing resources to learn embedded
features from incomplete multi-view datasets for clustering,
the IMSC methods easily learn the extraction of diverse
graphs that effectively indicate the memberships among
samples from different views [25]-[30]. For example, Wen
et al. [25] proposed a unified framework that simultane-
ously integrates graph learning and spectral clustering to
obtain a consensus representation for IMVC. However, the
work by Wen et al. [25] has two limitations: 1) it only
considers relationships among observed samples in con-
sensus representation learning, and 2) the learning of each
view is performed separately without incorporating inter-
view similarity structure, which significantly diminishes the
advantages of multi-view data.

Building on this observation, several tensor-based in-
complete multi-view subspace clustering methods have
been proposed to infer missing samples while performing
clustering [26]-[30]. For instance, Xia et al. [27] proposed a
tensor completion-based incomplete multi-view clustering
(TCIMC) method, which employs tensor Schatten p-norm
minimization on multi-view self-representations to infer
missing instances and explore inter-view similarity. Li et
al. [28] proposed a high-order correlation preserved incom-
plete multi-view subspace clustering (HCP-IMSC) frame-
work, incorporating tensor factorization and hypergraph-
induced hyper-Laplacian regularization to explore high-
order correlations and recover the missing instances, re-
spectively. Li et al. [29] developed a tensor-based multi-
view block-diagonal structure diffusion (TMBSD) for clus-
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Fig. 1. The pipeline of FSR-IMVC and sFSR-IMVC. Our methods contain two learning objectives, i.e., feature space recovery
within each view and consistent representation within and across views. Specifically, the within-view feature space recovery
aims at learning the low-rank structure inherent in incomplete multi-view data to mitigate the impact of missing samples.
The consistent representation within and across views is learned by the low-rank TR approximation.

tering incomplete multi-view data, which utilizes tensor
nuclear norm on the spectral embedding matrices of multi-
view data to recover the missing instances and obtain a
better consensus representation. Wen et al. [30] proposed
an incomplete multi-view tensor spectral clustering with
missing-view inferring (IMVTSC-MVI) method, which in-
corporates Frobenius-norm on the feature space and low-
rank tensor constraint on the multi-view self-representations
into a unified framework for inferring and clustering. These
tensor-based methods all use the so-called tensor singu-
lar value decomposition (t-SVD) [31] on the rotated self-
representation tensor to explore the high-order correlations
among different views.

However, the aforementioned t-SVD based IMVC meth-

ods may suffer from the following two limitations:
1)The above works can well explore the correlations across
different views, but they suffer from inadequate exploration
of intra-view information. Because t-SVD only performs ma-
trix SVDs in the first two modes and linear transformations
in the third mode [32], [33].
2) The existing approaches only consider the correlations
of samples across or/and within views to infer missing
features, ignoring the structural correlations of the features
themselves. In fact, the feature spaces within views of multi-
view data are highly redundant [34].

Different from t-SVD, tensor ring (TR) decomposi-
tion [35] can provide a more flexible and expressive repre-
sentation to capture the global information [36]-[39]. There-
fore, we first consider low-rank TR approximation on the
self-representation tensor to capture its global low-rank
structure, ensuring that the consistency within each view
and across different views is learned well. Besides, con-
cerning the low-rank nature of feature spaces within each
view, we integrate the low-rank feature space recovery into
the TR-based self-representation learning framework and
develop a feature space recovery-based incomplete multi-
view clustering framework (FSR-IMVC) as shown in Fig.
1 (Strategy 1) [40]. Finally, the self-representation tensor
is used to construct the affinity matrix for the spectral
clustering algorithm [41]. FSR-IMVC has shown significant
improvements in MVC tasks. Nevertheless, FSR-IMVC re-
quires constructing the membership graph (representation

tensor N x N x V), which involves computing inverses of V'
matrices of size N x N with a computational complexity of
O(V N3) per iteration, where V and N denote the numbers
of views and samples, respectively. This approach can be
inefficient for large-scale data where /N becomes large, and
such scalability is crucial for real-world applications.
Recently, anchor learning based methods are often em-
ployed in large-scale MVC tasks [42]-[45], where an anchor
graph of size M x N is constructed between M anchors and
N samples (M < N) to represent the complex mechanisms
of multi-view data, resulting in reduced computational com-
plexity from O(V N?3) to O(V N M?). Following this, Wang
et al. [46] proposed an incomplete large-scale multi-view
clustering approach based on the consensus bipartite graph
(IMVC-CBG) framework, which integrates anchor selection
and anchor graph construction into a unified framework,
where all samples share the same anchors and anchor graph
to ensure structural consistency across views, enabling fast
IMVC tasks. In contrast to view-shared anchors, Liu et al.
[47] proposed a fast IMVC with view-independent anchors
(FIMVC-VIA) method. It learns individual anchors for each
view and constructs a unified anchor graph to tackle large-
scale IMVC tasks. However, these anchor learning-based
IMVC methods aim at exploring the pairwise correlations
between different views, which limits their ability to fully
exploit the relationship among views. Besides, they all ne-
glect the feature space information of missing samples.
Motivated by these findings, we propose an improve-
ment of FSR-IMVC with anchor learning, namely scalable
FSR-IMVC (sFSR-IMVC), as illustrated in Fig. 1 (Strategy 2).
When the number of samples N is large, anchor learning
is applied to the latent feature subspaces H, to learn the
anchor graph C,, € RM*¥ for each view v = 1,--- , V. Fur-
thermore, low-rank TR approximation is utilized to simulta-
neously explore the inter-view and intra-view information
of the tensor C = Q(Cy,---,Cy) € RMXNXV ) being
an operator which stacks all anchor graphs to a 3-rd order
tensor. Similar to FSR-IMVC, the latent feature subspace H,,
simultaneously learns the correlations of inter/intra-view
and sample features through the updated C,, and the low-
rank structure of X, for recovering the feature space X,,.
In turn, the anchor graph tensor C is adaptively updated
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TABLE 1 Comparison of our method with the others men-
tioned. C #1- #5 denote whether the corresponding ap-
proach is scalable, can recover missing samples, can explore
high-order correlation across views, can capture the consis-
tency within and across views, and can explore feature space
information, respectively.

Algorithms Cluster ways CHI [ CH#2 [ C#3 | C#4 | CH#5
BSV [20] K-means v X X X X
Concat [20] K-means v X X X X
OPIMC [19] Weighted matrix factorization v X X X X
HCPIMSC [28] t-SVD-based subspace clustering X v v X v
TMBSD [29] t-SVI?—bas_ed embedding feature % v v « «
earning and K-means
IMVTSC-MVI [30] | t-SVD-based subspace clustering X v v v X
TCIMC [27] t-SVD-based subspace clustering X X v X X
FIMVC-VIA [47] anchor learning and K-means v X X X X
IMVC-CBG [46] anchor learning and K-means v X X X X
FSR-IMVC [40] TR-based subspace clustering X v v v v
SFSRIMVC (earRebased anchor vl vl v ]y
earning and K-means
from H,,v =1,---,V and the low-rank TR approximation

to obtain a better consistent representation. Finally, the
anchor graph tensor is used to construct the embedded
space for the K-means algorithm [48]. Experimental results
on small multi-view datasets demonstrate that FSR-IMVC
significantly improves the clustering performance compared
to state-of-the-art algorithms in terms of ACC, NMI, and
Purity. Furthermore, sFSR-IMVC also shows superior per-
formance compared to fast IMVC methods on three large-
scale multi-view datasets.

For a clear comparison, we summarize the aforemen-
tioned works in Table 1. Compared to them, our work
mainly makes contributions in three aspects:

o We first develop an FSR-IMVC model, which inte-
grates low-rank feature space recovery and low-rank
TR-based self-representation learning into a unified
framework.

1). This approach applies tensor networks for the
first time to simultaneously explore memberships
across and within views, achieving high-precision
clustering performance on small incomplete multi-
view data.

2). The FSR-IMVC model represents the first at-
tempt to consider low-rank feature space recovery
for IMVC. Experimental results on relatively small
multi-view datasets demonstrate its superior perfor-
mance in comparison to existing methods, as evalu-
ated using three commonly used metrics.

e Based on FSR-IMVC, we extend the approach to
deal with large-scale multi-view data and propose an
sFSR-IMVC model, where TR-based anchor learning
is incorporated to efficiently learn the consistency
within and across views and significantly reduce
computational complexity. Furthermore, experimen-
tal results on large-scale multi-view datasets demon-
strate that sFSR-IMVC outperforms the compared
fast IMVC methods.

The rest of this paper is organized as follows. Section 2
provides a brief introduction to the notations and related
work. Model development, solutions, and complexity anal-
ysis are presented in Section 3. Experimental results and a
comprehensive analysis are presented in Section 4. Finally,
conclusions are drawn in Section 5.

Q

Fig. 2. The graphical illustration for TR decomposition of a
Dth-order tensor.

2 NOTATIONS AND PRELIMINARIES
2.1 Notations

In this paper, a scalar, a vector, a matrix, and a tensor are
written as z, X, X, and X, respectively. For a D-th order

tensor X € R11 X XIp jts (iq,--- ,ip)-th element is denoted
as X(i1,--- ,ip). Indices typically range from 1 to their
capital version, e.g., ig=1,--- ,I5,d=1,---,D.

Definition 1 (TR Decomposition [35]). The goal of TR de-
composition is to represent a higher-order tensor by circularly
multiplying sequences of 3rd-order tensors. Specifically, the TR
decomposition of a Dth-order tensor, Z € R1V*1D s defined
as
Z(il, i27 s ,iD) = trace(gl(:,il, Z) ce gD(Z7 iD, Z)),

where Gy € RFEaxlaxBay1 @ — 1 ... D gre TR core factors,
and {R4}?_ are TR ranks, with Rpy1 = Ry. The TR decompo-
sition can be abbreviated as Z = R(Gy, - - ,Gp). The graphical
illustration of TR decomposition is shown in Fig. 2.

Lemma 1. [49] ||X]|. is the tightest convex lower bound of the
rank(X) on the set {X : || X|| < 1}, where || X||. denotes the
nuclear norm of X, which is the sum of its singular values and
IX]|| is the dual norm of the nuclear norm.

Let P and H be arbitrary matrices with compatible sizes
such that X = PH exists. Then we have the following.
Lemma 2. [50] | X[|. = minx—pu 5(||P[/3 + |H|%).
Corollary 1. From Lemma 2, and because trace(I) is constant,
we obtain: || X||. = minx—pn 3 ||H||} with PTP =L

Therefore, we consider minx—pg 3 ||H||% to explore the
low-rank information of X since the optimization problem
of rank minimization is NP-hard [51].

2.2 Related works

Two well-known frameworks for incomplete multi-view
clustering are introduced in this section.

2.2.1 Incomplete multi-view subspace clustering

The subspace-based IMVC framework aims to identify mul-
tiple low-dimensional subspaces where samples are ex-
pected to lie. Given incomplete multi-view dataset T, €
RPvXN 4y =1, ..., V, where V and N are the numbers
of views and samples, respectively; and D, represents the
feature dimension in the v-th view, the general subspace-
based IMVC optimization model can be formulated as:

min

Vv
U(E,)+A®(Z,) s. t. T,O0, = T,0,Z,+E,,
{Z1)7E71}1‘;/:1 ’Ugl ( )
@
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where O, € RV*N jga diagonal index matrix of v-th view,
which is defined as:

1 n-th sample is observed, n =1,--- | N

0O,(n,n) = {

0 otherwise,

® and U depict the regularization term on the self-
representation matrices and corrupted noise, respectively. A
is a trade-off parameter to balance the effect of the ® and ¥
regulations. For instance, Wen et al. [25] consider the nuclear
norm and ¢; norm on Z, and E, respectively to learn the
intra-view information.

Furthermore, benefiting from well-capturing high-order
correlations among views, tensor self-representation based
IMVC methods have attracted much attention [26]-[30],
which is formulated as:

min
{Ev.Zo . Xo 1,
s. tX, = X, Z, + E1;7 (XU)@v = (TU)@,,7U = 1, cee ,V,
Z:Q(Z17Z27"' 7ZV)aE:[E1;E2;"' ;Ev], )

O(Z) + \U(E)

where O, is the index set of observed samples within v-th
view, the term )(-) merges all self-representation matrices
Z,(v=1,---,V) to a third-order tensor Z € RV*N*V ¢
depicts a low-rank tensor approximation term to explore
the relationship of observed samples. Besides, instead of
directly learning self-representation on multi-view data,
another option for IMVC to improve its clustering perfor-
mance is to learn self-representation on its latent feature
space [52]. In the above tensor self-representation based
IMVC methods, t-S5VD [53] is a commonly used tensor
approximation method to capture high-order correlations
among views for IMVC tasks. However, t-SVD fails to si-
multaneously capture both inter-view and intra-view corre-
lations. Moreover, the above methods neglect the important
low-rank property of the feature space, which is crucial for
incomplete multi-view clustering.

Inspired by them, we first propose a feature space
recovery-based IMVC, as follows [40]:

min

%4
Y 2
d(Z)+ —||H, |5 + M| E,
e (2)+ o IHollF + AlEq[l1

v=1

s.t.X,=P,H,+E* H, =H,Z, + E",

PEP’U - IKa (XU)@U = (TU)@UaU = 17 to aV (3)
According to Corollary 1,
min  J|[H,|2,s. t. X, = P,H, + E2,PTP, = I
{H,.P,}/_, 2

depicts the low-rank property of the recovered feature
spaces X, PP, = Ix means the feature spaces are pro-
jected onto discriminating subspaces [54]; E, = [EZ; E";
and H, = H,Z, + EZ means self-representation ma-
trix is learned on the latent feature spaces. Moreover,
low-rank TR approximation is considered to explore the
similarity structure of the self-representation tensor, e.g.,
Z = R(Gi,---,Gp) denotes ®(Z). Benefiting from TR
approximation, the inter/intra-view information in Z can
be well captured simultaneously.

2.2.2 Anchor Learning for IMVC

In general, subspace-based methods can better extract geo-
metric information from samples for IMVC. However, sub-
space learning-based methods often involve computation-
ally expensive operations, such as eigenvalue computation,
singular value decomposition, and matrix inverse, which
may not be well-suited to large-scale data. To tackle this
problem, anchor learning is considered to deal with large-
scale datasets for IMVC [42]-[45]. The general framework of
an anchor-learning based incomplete multi-view clustering
is constructed as follows:

\4

duin 3 IT0, — ALCLO, |3 + AB(C,)
Colios v=1
S.t.AEA,U:I]w,C,U2071):]_7...,V (4)

where A, € RP»*M is the learned anchor matrix in the v-
th view and M is the number of anchors. C, € RM*V ig
the anchor graph, which is used to describe the relationship
among samples. Usually, M < N, which largely reduces
the computational complexity from O(VN?) to O(V N M?).
In addition, ®(C,) represents the regularization terms. For
example, Liu et al. [47] consider view-specific anchor matrix
A, and consistent anchor graph C and use Frobenius norm
on C for better clustering performance. Following it, Wang
et al. [46] learn anchors and consistent representation in the
latent feature space.

3 PROPOSED METHOD
3.1 Model Development

As shown in Fig. 1 (strategy 2), we learn anchors and anchor
graphs on the latent feature space H,,v = 1,---,V for
efficient incomplete multi-view clustering, where feature
space recovery and inter/intra-view correlations are learned
in a unified framework. The proposed modeling can be
formulated as the optimization problem:

1%
min ZZHHvH%"‘)‘”Ele
{Ey,Co, Py, Hy X}y 2

s.t.X,=P,H,+E*H,=A,C, +E" C, >0,
PEPU = IK7 (X’U)@U = (TU)@V/U = 17 e 7‘/7

C:%(glv ,gD),AEAU:IM (5)
where C = Q(Cy,---,Cy); 2 is an operator which stacks
all anchor graphs C,,v = 1,---,V in a 3-rd order tensor

C € RMXNXV. A ¢ REXM g the anchor matrix for the
v-th views, the ¢; norm is employed on error matrix E,
to remove sparse noise or outliers; and O, is the index
set of observed samples for v-th view; C = R(G1, -+ ,Gp)
represents a low-rank TR approximation of C, which aims
to explore the similarity structure within and across views,
simultaneously.

According to Fig. 1 (strategy 2), the observed data T, can
be reconstructed by assuming its feature space is low-rank,
denoted as X, = P,H,, where PP, = Ix and |H,||r
minimization is applied to enforce the low-rank property
of X,. The anchor graph tensor is then updated adaptively
from H,,v = 1,---,V, and low-rank TR approximation.
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H, in turn learns from the updated C, and the low-
rank prior of the feature space to recover X,, ultimately
improving the clustering performance.

3.2 Solutions

The above optimization problem can be addressed using an
alternating direction of multiplier method (ADMM) frame-
work [55]. To make problem (5) separable, ) is added as an
auxiliary variable as follows:

14
.
> o IHL [+ Ayl

v=1

s.t. X, = P,H, + EiaHv =A,C, + Ega C, >0,
PTP, = I, (X,)o, = (To)o,,v=1,---,V,
C=Y,Y=%RGi, ,Gp),ATA, =1,,. ©)

The corresponding augmented Lagrangian function is for-
mulated as:

L ({C0 B0, Q1 Q3. X0, Pu 1Y, D, Q)

min
{Ey,Cy, Py, Hy X }V_1,Y

\4
i
v=1 2

+< 11}7X’U_P’UH’U_Ei>+<Q12}7H’U_A’UC’U_E1})L>
P1 T P2
JF?”XU -P,H, - EUH% + ?HHU -A,C, - EZLHI%“)

+(Q5,¢ - ) + 2lle - Vi, )

under constraints C, > 0, Y = R(G1,--- ,6p), (Xy)o, =
(Ty)o, and PP, =TI, ATA, =TIj,v=1,---,V,where
{Q?,Qy}Y_, and Qj are Lagrange multipliers and py, p2, p3
are penalty factors. Using an ADMM framework, which
alternately updates one variable with others fixed, problem
(7) is split into several subproblems.

Update {P,}V_,: Fixing other variables, the subproblem
of P, is rewritten as:

trace(P,(H,(Q7 + ;1 X, — PlEi)T» ®)

max
P,:PTP,=Ix
This subproblem is a well-known orthogonal Procrustes
problem. Letting M = H,(QY + p1X, — mE2)T, and
[S,V,D] = svd(M), the solution of P, is P, = DST,
where svd is the Singular Value Decomposition.
Update {H,}”_,: Fixing other variables, the sub-
problem of H, can be rewritten as:

- 2
min L HL|2

v

+ < 11)7Xv - PvHv - E§> + <Q37H'U - Ava - EZ>

+ ZIX, ~ P.H, ~ B2+ T H, - A,C, - ELJR).

©)
Differentiating the formula (9) and setting it to zero, we can
obtain
PE‘(Qll) + plXU - plEqmj) + pQ(AUCU + Eg) — Qg

H, =
v+ prtp2

(10)
Update {X,}_;: The subproblem of X, is:

min(Q}, X, — P, H, —E}) + £ |X, — P, H, ~ E] [} (1)

5

under constraints (X,)o, = (Ty)o,. Similarly, by differen-

tiating the formula (11) and setting it to zero, we can obtain
the following:

X,(:5,n) = Xo(n),n & Oy
T,(:,n),n € Oy,
where X, = P,H, + EZ — (1/p1)QY.

Update {A,}”_;: The subproblem of solving A, is
formulated as:

(12)

trace(A,(Cy(Q3 + p2H, — PQEZ)T))~ (13)

max
A, ATA, =Ty
Following the same framework of solving P,,, the updating
of A, is A, = DST, where D and S are the right and left
singular matrices of M, respectively; M = C,(Q} + po H,, —
p2El)T.
Update {C,}"_,: By setting the derivative of the objec-
tive function (7) w.r.t. C,, to zero , the solution of C,, can be
obtained via:

C, = max(C,,0), (14)

where

G — AT(QS + paH, — p2ER) + Q5 (p3Y + Q3)
v 2+ p3 5

Q! is the inverse operator along v-th view, e.g., Q. 1(C) =
C,.

Update {E,}/_,: The solution of E, can be split into
two parts and updated by

E} = sth(Xy, — PyH, + (1/p1)QY, A/ p1)
Eg = Sth<Hv -A,C, + (1/02) 12)7 )\/,02)7

(15)

where sth(z, 7) is the well-known soft thresholding opera-
tor, denoted as: sth(z, 7) = sgn(z) max(|z| — 7,0).

Update )Y: For ), the problem (7) can be transformed
into the following formulation:

1Y = (€ = (1/p3)Qs) IIF,

It can be solved by TR-ALS algorithm in [35] , where the
input tensor is C — (1/p3) Q3.
Update Lagrangian multipliers:

Q =Q+mX,-P,H, -E}),v=1,---,V
Q12):Q12)+p2(Hv_Ava_EZL)7’U:]-7"' V
Q3 =93+ p3(¥Y—0C).

Finally, the right singular vectors of S = 21‘)/:1 (oh
will be used in the K-means algorithm for the final clus-
tering result [46], [47]. The approach is summarized in
Algorithm 1. The convergence condition is reached when
min(RE-X, RE-H, RE-C, RSE) < 10~°, where RE-X, RE-H,
RE-C indicate the maximum variation of recovered feature
spaces, latent feature subspaces, anchor graphs between ad-
jacent iterations. For instance, RE-X=max, ||X{ — X!~/ .,
where X! is the recovered data of v-th view in ¢-th iteration.
RSE denotes the maximum relative square error between
the recovered feature space X! and the original space T,

min
Yy

17)

in the observed indices, e.g., RSE = max,

. [ENCHI ’
where X! is the recovered feature space without the con-
straint (X, )0, = (Ty)o, in t-th iteration; o, is the index

vector of observed entries of v-th view.
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Algorithm 1 Scale feature space recovery based incomplete
multi-view clustering (sFSR-IMVC)

1: Input: incomplete multi-view data {T,}"_;, the num-
ber of anchors M ,v, TR ranks R;

2: Initialize: Y=93=0; P,=0, H,=0, E’=0, A,=0,
C,=0, Efj:O, v=1,--- ,V;p1=p2=p3=1074;€=1077
1.8; K=B + 1, B is the number of clusters.

: while not converged do

forv=1,---,V do
Update P, via equation (8)

Update H, via equation (9)

Update X, via equation (12)
Update A, via equation (13)
Update C, via equation (14)

10: Update E,, via equation (15)

11: Update Qf and Q3 via equation (17)

122 end for

13:  Update Y via equation (16)

14:  Update Q3 via equation (17)

15:  p1 = min (np1, 10'1), po = min (np2, 10'1);

16: end wh11e

172 8= L3V, Cl;

18: Apply the K—means algorithm on the right singular

vectors of S.
19: Output: Clustering result

O P NG

TABLE 2 The complexity analysis of FSR-IMVC/ sFSR-
IMVC for one iteration, where D,, N, and V are the di-
mension of features in v-th view, the number of samples,
and views, respectively. Note that the notation ‘-’ indicates
no mentioned variable in the method.

Variables  Storage Complexity =~ Computational Complexity
P, D,K/D,K O(K*D,)/O(K*D,)
H, KN/KN O(N?)/O(KDyN)

X, D,N/D,N O(KDyN)/O(KDyN)
Z, N?/- O(N?)/—

C, -/MN -/O(KMN)

A, -/KM -/O(M?K)

E? D,N/D,N O(DyKN)/O(DyKN)
E! KN/KN O(KN?)/O(KMN)

Yy N2V/MNV O(R®*N?V?)/O(R®*MNV?)

3.3 Complexity Analysis

Table 2 summarizes the storage and computational com-
plexity of FSR-IMVC [40] and sFSR-IMVC. It can be ob-
served that the main storage complexity of both FSR-IMVC
and sFSR-IMVC comes from variable ). Additionally, the
main computational complexity of FSR-IMVC stems from
the updates of Z, and H,, requiring O(N?). Conversely,
sFSR-IMVC exhibits a lower computational complexity of
O(N), making it scalable for large-scale data.

4 NUMERICAL EXPERIMENTS
4.1
4.1.1 Multi-view Datasets

Experimental Settings

Eight well-known multi-view datasets were chosen to eval-
uate the effectiveness of our method, namely:

6
TABLE 3 Statistics of different multi-view datasets.

Datasets #Sample  #View  #Cluster #Feature (I , 1)
Yale 165 3 15 3304,4096,6750 (M 11,15,3)
Coil20 1440 3 20 4096,3304,6750 (M,40,36,3)
BDGP 2500 4 5 1000,500,250,79 (M,50,50,4)
Scenel5 4485 3 15 1800, 1180, 1240  (M,65,69,3)
ccv 6700 3 20 20,20,20 (M,67,100,3)
Caltech-all 9120 5 102 48,40,254,521,928  (M,114,80,4)
ALOI 10800 4 100 77,13,64,125 (M,108,100,4)
Reuters 18750 5 6 21531,24892,34251, (1 450 195 5)

15506,11547

Yale! contains 165 samples belonging to 15 clusters, with
11 samples per subject. We utilized three views, namely
LBP (viewl), intensity (view2), and Gabor (view3), as the
features. Coil20 [56] consists of 1400 image samples from 20
clusters, with three views: intensity (viewl), LBP (view2),
and Gabor (view3). BDGP [57] comprises 2500 samples
from 5 classes, with four views: lateral (viewl), dorsal
(view2), ventral (view3), and texture (view4). Scenel5 [58]
contains 4485 image samples with 15 scene categories from
both indoor and outdoor environments. We used three com-
mon image features: GIST (view1), PHOG (view2), and LBP
(view3). Columbia Consumer Video (CCV) [59] comprises
6773 web videos belonging to 20 semantic categories. It
utilizes three well-known audio/visual features, namely
SIFT (view1), STIP (view2), and MFCC (view3). We removed
the last 73 samples in our experiment, resulting in 6700
samples. Caltech-all [60] consists of 9144 samples catego-
rized into 102 classes. It employs five different features,
namely Gabor (view1), Wavelet-moments (view2), Cenhist
(view3), GIST (view4), and LBP (view5). We removed the
last 24 samples in our experiments to obtain 9120 samples.
Amsterdam Library of Object Images (ALOI) [61] is a
collection of 110250 images of 1000 small objects captured
under various lighting conditions and rotation angles. Fol-
lowing the approach in [62], we used the first 100 classes as
our testing dataset and obtained 10800 samples with four
views, including color similarity (viewl), haralick features
(view2), RGB color histograms (view3), and HSV color his-
tograms (view4). Retuers [63] comprises 111740 articles with
feature characteristics of documents written in 5 different
languages and their translations, covering a standard set
of 6 categories. In our experiments, we utilized a subset
of Reuters consisting of 18750 samples with five views,
including English (view1), French (view2), German (view3),
Italian (view4), and Spanish (view5).

The statistical information of the above datasets is
summarized in Table 3. The anchor graph tensor of size
M x N xV is rearranged into a 4th-order with M x AxBxV,
where N = AB to facilitate low-rank TR approximation. A
and B are balanced as closely as possible, as shown in the
last column of Table 3. This balancing is crucial for effective
low-rank TR approximation, which has proven effective for
approximating high-order data [37]-[39]. Furthermore, due
to computational limitations, CCV, Caltech-all, ALOI, and
Reuters were only applied to the scalable IMVC methods.

4.1.2 Missing Data Construction and Evaluation Metrics

To generate incomplete multi-view data, we randomly re-
move P samples for each view, ensuring that all samples
have at least one view. The missing ratio (MR) is MR = P/N

1. http:/ /vision.ucsd.edu/ content/yale-face-database
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Fig. 3. The change of ACC as parameters v, R and A vary in
FSR-IMVC on Yale dataset with different MRs.

for each view, where N is the total number of samples. MR
is varied at values of 10%, 30%, 50%, and 70%. Additionally,
normalized mutual information (NMI), accuracy (ACC), pu-
rity, and CPU time are used to evaluate the performance in
this experiment [20]. Larger values of these metrics, except
for CPU time, indicate better clustering performance. Each
experiment is repeated 10 times, and the statistical results of
these metrics are reported. Note that instead of repeating the
final clustering method (K-means or spectral clustering) 10
times, we re-randomly generate missing sets while keeping
MR unchanged and repeatedly test the performance of the
clustering algorithm.

4.1.3 Compared Clustering Algorithms

Nine IMVC methods, including (best single view)
BSV, Concat, one-pass incomplete multi-view clustering
(OPIMC) (OPIMC) [AAAI 2019] [19], HCPIMSC [IEEE TIP,
2022] [28], TMBSD [ICME, 2021] [29], IMVTSC-MVI[AAAI,
2021] [30], TCIMC [IEEE TC, 2022] [27], FIMVC-VIA [IEEE
TNNLS,2022] [47], and IMVC-CBG [CVPR, 2022] [46] are
selected to compare clustering performance. Among them,
BSV achieves the best K-means clustering results across all
single views, while Concat reports the clustering results
obtained by stacking all views [20]. HCPIMSC, TMBSD,
IMVTSC-MVI, and TCIMC are tensor-based IMVC methods.
IMVC-CBG and FIMVC-VIA are fast IMVC methods, all of
which consider anchor learning. In our experiments, each
method is tuned to perform optimally on different datasets.
All experiments are conducted on a desktop computer with
2.4 GHz Quad-Core Intel Core i5 Processor and 16 GB 2133
MHz LPDDR3 Memory.

4.1.4 Parameter settings

For FSR-IMVC, there are three groups of parameters A,
and TR ranks R4=R,d=1,--- ,4 need to be tuned. We tune
the parameters via brute force search, where R varies in
[4-16], v and A vary in [107° — 10?], respectively. Fig.
3 reports the change of ACC along R, A, and ~ on Yale
with different MRs. It can be observed that the performance
of FSR-IMVC is related to the MR. As the MR increases,
the FSR-IMVC method will require a higher R, a smaller
v, and a larger A to achieve the best clustering perfor-
mance. This implies that as the MR increases, the perfor-
mance of low-rank feature space recovery will decrease.
Simultaneously, more noise will be introduced in the self-
representation learning process, leading to a more complex
self-representation tensor. According to this strategy, we
choose R=8, A\=100, v=10"° for Yale; R=6, A\=10, y=10"°

Yale: R=8; MR=10% ALOI: R=6; MR=10%

ACC(%)

(a) ACCvs. aand v
——MR=10% —=-MR=30% —MR=50% —MR=70%|

Yale: z|=0.1;'y=10'4 ALOI: a=0.002;'y=10'4
80 100

70 80

60,

ACC(%)
3
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Fig. 4. The change of ACC as parameters v, £ and a vary in
SFSR-IMVC on Yale and ALOI datasets.
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Fig. 5. The clustering performance of FSR-IMVC and sFSR-
IMVC on the Yale dataset with respect to X when MR=10%,
R=8\A=100and v = 107,

for Coil20; R=6, A=1, v=10"° for BDGP; R=4, \=1, ~=10"°
for Scenel5 in the experiments.

Contrary to FSR-IMVC, sFSR-IMVC has groups of pa-
rameters: TR ranks (R4, d=1, - - - , 4), trade-off parameters (\
and ), and the number of anchors (M=|aN |, where |.]
represents the flooring function and a is an anchor ratio).
To simplify, we set A=1 and R4=R, d=1,--- ,4 for all multi-
view datasets. a depends on the dataset size, ranging from
[0.02, 0.05, 0.1, 0.3, 0.5 ] for Yale and Coil20, and [0.0005,
0.001, 0.002, 0.005, 0.02] for BDGP, Scenel5, CCV, Caltech-all,
ALOI, and Reuters. Fig. 4a reports the change of ACC along
v and a on Yale and ALOI datasets with 10% MR. From
it, the performance on Yale performs well when a=0.1 and
v € [107° — 107 1]. Instead, for ALOI, our method performs
stably when « € [10~* — 10~!] and @=0.001.

This is because the number of anchors (M) needed for
optimal performance varies depending on the dataset size
(N). For example, with a = 0.001, 10 anchors (|0.001 x
10800 ) are sufficient for representing the relationships
among samples in ALOI, while 16 anchors (|0.1 x 165])
are needed for Yale. In addition, we fix a=0.1 and y=10"*
for Yale and a=0.002 and y=10"2 for ALOI to choose the
parameter R in [4—16]. As shown in Fig. 4b, we can observe
the clustering performance first increases and then decreases
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TABLE 4 Comparison results(ACC(%), average(variance)) using all methods on four small multi-view datasets as MR

ranges from 10% to 70%.

Datasets | MR (%) | BSV | Concat | OPIMC | TMBSD | HCP-IMSC | IMVISC-MVI | TCIMC | FIMVC-VIA | IMVC-CBG | FSR-IMVC | sFSRIMVC
10.0 | 41.85(2.12) | 35.03(9.85) | 38.12(3.20) | 66.24(433) | 72.00(0.75) | 70.30(0.81) | 61.33(4.31) | 59.39(4.05) | 50.61(1.96) | 100.00( 0.00) | 77.64( 3.55)

Yale 300 | 31.65(1.90) | 21.70(3.34) | 33.70(4.45) | 61.94(429) | 71.64(3.19) | 67.09(5.09) | 61.03(5.22) | 56.24(4.71) | 50.79(2.47) | 99.58(1.34) | 77.95(4.00)
500 | 23.56(1.65) | 21.39(2.89) | 28.48(2.66) | 60.67(5.55) | 60.91(5.04) | 39.15(2.34) | 55.88(5.80) | 55.27(5.17) | 52.73(3.14) | 97.64(3.63) | 71.62(2.71)

70.0 | 23.16(1.62) | 22.06(3.35) | 2891(2.12) | 40.61(3.48) | 37.94(3.15) | 30.79(4.11) | 39.03(3.58) | 57.58(3.92) | 51.45(3.92) | 83.09(8.45) | 60.96(2.27)

10.0 | 53.40(0.69) | 58.68(5.47) | 58.24(3.65) | 80.34(3.68) | 70.75(2.01) | 88.03(0.20) | 84.55(0.72) | 71.50(3.28) | 57.40(1.80) | 85.85(4.16) | 83.70(2.17)

Coil20 300 | 41.40(0.95) | 46.41(4.58) | 54.89(4.46) | 79.58(4.32) | 73.87(0.53) | 86.01(157) | 81.20(2.64) | 69.39(2.78) | 57.16(4.73) | 87.03(2.44) | 84.00( 2.50)
50.0 | 31.39(0.66) | 32.53(3.00) | 49.12(4.83) | 77.59(3.89) | 63.24(4.46) | B8321(133) | 79.47(2.09) | 71.10(2.28) | 57.03(5.36) | 86.33(3.81) | 81.95(2.89)

70.0 | 30.89(1.26) | 2817(2.27) | 31.59(230) | 76.04(3.44) | 36.34(0.98) | 49.40(2.84) | 41.17(1.10) | 72.48(2.04) | 57.49(6.34) | 83.38(3.74) | 59.77(3.75)

10.0 | 49.70(2.23) | 52.85(11.23) | 74.78(8.23) | 43.39(3.83) | 80.38(1.72) | 99.62(0.13) | 25.79(5.56) | 37.48(0.29) | 52.38(6.80) | 99.96(0.13) | 96.66( 5.97)

BDGP 300 | 41.18(1.80) | 43.97(12.00) | 64.74(4.60) | 43.21(4.04) | 79.89(6.14) | 99.10(0.15) | 34.96(5.14) | 38.46(0.58) | 61.98(0.06) | 98.68(3.54) | 98.03(1.89)
50.0 | 34.10(0.89) | 31.61(7.18) | 55.88(6.50) | 39.41(4.19) | 61.21(7.12) | 96.70(0.74) | 30.82(3.38) | 39.11(0.81) | 61.97(0.10) | 100.00( 0.01) | 98.39( 1.82)

70.0 | 2935(1.00) | 27.67(3.23) | 37.46(2.74) | 37.88(2.63) | 29.40(258) | 83.92(2.61) | 23.37(0.89) | 3849(3.34) | 47.57(4.97) | 96.50(6.04) | 97.17(3.49)

100 | 39.81(0.96) | 38.67(2.87) | 42.40(2.24) | 70.93(456) | 48.20(1.34) | 80.17(2.34) | 50.38(3.06) | 55.60(1.28) | 50.43(1.63) | 88.44(0.62) | 68.77(1.96)

cemets | 300 | 2754(0.98) | 2935(3.17) | 3509(249) | 6875(440) | 37.87(1.14) | 7862(195) | 5352(0.97) | 5611(024) | 50.00(1.02) | 88.34(237) | 66.67(159)
50.0 | 2057(0.61) | 21.93(1.27) | 28.27(2.99) | 53.45(2.69) | 27.68(1.89) | 80.05(1.19) | 46.31(2.66) | 56.41(1.07) | 49.62(1.25) | 81.07(2.80) | 62.70( 2.69)

700 | 17.16(0.70) | 15.98(1.02) | 18.82(131) | 29.74(2.46) | 17.78(156) | 56.41(2.29) | 26.31(1.23) | 56.98(0.96) | 50.71(147) | 51.45(5.69) | 33.40( 3.46)

TABLE 5 Comparison results (ACC (%), average (variance))
using fast IMVC methods on large-scale datasets as MR
ranges from 10% to 70%.

methods | 10(%) | 30(%) | 50(%) | 70(%)
CCV (R=10,7=10—*, a=0.002)

BSV 16.11(5.66) | 1423(5.01) | 12.98(456) | 11.60(4.08)
Concat 13.46( 475) | 11.92(422) | 10.93(3.85) | 10.36(3.66)
OPIMC | 15.30(5.39) | 13.93(497) | 12.15(4.28) | 10.70(3.79)

FIMVC-VIA | 2026(7.12) | 20.66(7.28) | 19.86(6.99) | 20.17(7.10)

IMVC-CBG | 17.45(6.14) | 16.91(5.95) | 16.50( 5.84) | 18.38( 6.46)

SFSR-IMVC | 58.09(2.69) | 55.25(2.19) | 47.22(142) | 27.22(2.04)
Caltech-all (R=10,y=10"%, a=0.002)

BSV 22.87(029) | 19.21(026) | 1630(021) | 13.48(0.21)
Concat 20.89(0.75) | 16.30(0.40) | 13.15(0.49) | 11.08(0.46)
OPIMC | 2573(1.02) | 23.48(1.52) | 20.18(0.86) | 13.76(0.77)

FIMVC-VIA | 2696(0.15) | 27.36(0.34) | 27.78(0.18) | 27.80(0.44)

IMVC-CBG | 29.02(0.60) | 29.10(0.91) | 28.77(1.01) | 30.33(0.84)

SFSRIMVC | 50.14(047) | 48.67(047) | 41.75(0.66) | 41.88(0.59)
ALOI (R=6,y=10-3, a=0.001)

BSV 38.17(0.27) | 29.83(0.47) | 21.76(0.33) | 14.07(0.17)
Concat 3820(1.41) | 27.82(1.03) | 2027(0.37) | 16.05(0.45)
OPIMC | 11.83(1.50) | 845(1.16) | 6.44(0.61) | 5.28(0.58)

FIMVC-VIA | 65.03(0.86) | 65.58(091) | 66.30(0.01) | 62.80(0.95)

IMVC-CBG | 3898(131) | 39.85(0.91) | 38.63(1.01) | 39.74(0.88)

SFSRIMVC | 98.94(1.14) | 96.32(1.69) | 70.77(436) | 60.85(7.97)
Reuters (R=2,y=10"3, a=0.0001)

BSV 42.70(2.60) | 3536(1.66) | 29.36(0.46) | 27.64(0.25)
Concat 39.96(4.83) | 33.86(4.48) | 32.65(4.08) | 30.85(2.07)
OPIMC | 45.49(436) | 48.58(4.46) | 48.11(4.02) | 44.16(3.95)

FIMVC-VIA | 49.71(3.17) | 48.80(2.58) | 48.99(1.92) | 52.10(0.52)
IMVC-CBG | 3893(7.73) | 42.78(5.15) | 37.65(4.05) | 37.27(457)
SFSRIMVC | 64.39(151) | 66.76(1.61) | 66.43(1.88) | 64.33(1.10)

as R grows up. Besides, the smaller the MR, the smaller R
to achieve high ACC. According to this strategy, we choose
R=8,v=10"%, a=0.1 for Yale; R=4, v=103, a=0.05 for Coil20;
R=4, y=1075, a=0.002 for BDGP; R=4, v=10"3, a=0.002
for Scenel5; R=4, v=10, a=0.002 for CCV; R=10, v=10"4,
a=0.002 for Caltech-all; R=6, y=10"3, a=0.001 for ALOI;
R=2,v=1073, a=0.0001 for Reuters in the experiments.

Fig. 5 reports the clustering performance of FSR-IMVC
and sFSR-IMVC changes along with the subspace dimen-
sion K. It can be observed that the ACC first increases as
K grows, and performs stable when K > 15. However, the
CPU time increases as K grows. Notably, for the Yale dataset,
the number of clusters is 15. Therefore, we set the subspace

dimension K as B +1 for FSR-IMVC and sFSR-IMVC in the
experiments, where B is the number of clusters.

4.2 Clustering Performance Analysis

Table 4 presents the clustering performance of all methods
on four small multi-view datasets, as measured by ACC,
with MR values ranging from 10% to 70%. The best and
second best results are written in bold and underlined for-
matting, respectively. In most cases, FSR-IMVC consistently
outperforms the state-of-the-art methods on all multi-view
datasets and MR values. Specifically, on the Yale dataset,
FSR-IMVC demonstrates significant improvements of 28%,
27.94%, and 36.73% compared to HCP-IMSC, respectively,
for MR values of 10%, 30%, and 50%. Furthermore, sFSR-
IMVC achieves the second-best performance. Notably, in
the case of small MRs, sFSR-IMVC exhibits better clustering
accuracy than FIMVC-VIA and IMVC-CBG for the anchor-
leaning based IMVC methods. For the Coil20, BDGP, and
Scenel5, tensor-based IMVC methods, including IMVTSC-
MVI, FSR-IMVC, and sFSR-IMVC, exhibit higher ACC per-
formance at MR values of 10%, 30%, and 50%.

Table 5 compares performance on large datasets using
fast IMVC methods. It can be observed that sFSR-IMVC
performs the best in most cases. Specifically, the improve-
ment in clustering performance achieved by sFSR-IMVC on
the CCV dataset is notably remarkable. For instance, for
MR values of 10% and 30%, the clustering performance of
sFSR-IMVC has exhibited notable enhancements of 37.83%
and 34.59% respectively, in comparison to FIMVC-VIA. For
the Caltech-all, sFSR-IMVC outperforms other methods for
all MRs, with improvements of 21.12%, 19.57%, 12.98%,
and 11.55%, respectively, compared to IMVC-CBG. For
the ALOI, sFSR-IMVC shows a performance advantage of
33.91% and 30.74% over FIMVC-VIA at small MRs such
as 10% and 30% , and performs the second best as MR
increases. In the case of Reuters, whose size is larger than
other large-scale datasets, sSFSR-IMVC demonstrates the best
performance across all MRs.

Fig. 6 presents the performance of our methods and sev-
eral other state-of-the-art algorithms on different datasets in
terms of NMI, Purity, and CPU time, as MR ranges from 10%
to 70%. It can be observed that FSR-IMVC outperforms other
methods in most cases for Yale, COil20, BDGP, and Scenel5
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Fig. 7. The clustering performance of sFSR-IMVC on all incomplete multi-view data with/without completion procedure.

TABLE 6 The clustering performance of BSV on incomplete multi-view data/recovered multi-view data (obtained by sFSR-

IMVC) varies as the MR changes from 10% to 70%.

D ACC Purity
atasets
\ 10 (%) \ 30 (%) \ 50 (%) \ 70 (%) \ 10 (%) \ 30 (%) \ 50 (%) \ 70 (%)

Yale 41.85/49.66 | 31.65/57.52 | 23.56/63.05 | 23.16/60.07 | 43.88/51.35 | 33.91/59.25 | 25.90/64.90 | 25.68/62.55
Coil20 53.40/64.07 | 41.40/62.00 | 31.39/60.17 | 30.89/56.31 | 57.75/68.60 | 44.59/65.45 | 33.58/62.31 | 32.86/58.93
BDGP 49.70/56.42 | 41.18/55.95 | 34.10/60.26 | 29.35/66.02 | 51.78/58.76 | 43.36/57.60 | 35.65/61.47 | 30.42/66.53
Scenel5 39.81/49.95 | 27.54/44.81 | 20.57/39.43 | 17.16/30.37 | 42.45/55.02 | 28.22/48.62 | 20.96/42.89 | 18.58/32.51
CCv 17.59/23.55 | 16.19/25.83 | 15.17/26.71 | 14.09/25.37 | 18.58/32.51 | 18.58/32.51 | 18.58/32.51 | 18.58/32.51
Caltech-all | 22.87/25.55 | 19.21/27.41 | 16.30/25.73 | 13.48/13.92 | 40.85/44.10 | 33.60/43.36 | 26.42/39.94 | 19.40/20.14
ALOI 38.17/42.36 | 29.83/43.54 | 21.76/27.90 | 14.07/15.36 | 42.17/47.09 | 33.02/48.81 | 24.01/31.96 | 15.80/17.58
Reuters 42.70/39.56 | 35.36/34.37 | 29.36/31.62 | 27.64/29.68 | 49.29/48.22 | 37.91/43.52 | 30.21/38.39 | 27.84/33.53

in terms of NMI and Purity. As an extension of FSR-IMVC,
the clustering results of sFSR-IMVC are slightly inferior to
those of FSR-IMVC. This implies that the similarity matrix
constructed from the anchor graph is not as accurate as that
from the self-representation matrix. However, sFSR-IMVC
significantly reduces the required CPU time compared to
FSR-IMVC. Specifically, on Scenel5, sFSR-IMVC processes
data in only 51.50 seconds, whereas FSR-IMVC takes 3257
seconds, making it nearly 63 times faster. Furthermore,
sFSR-IMVC exhibits superior performance on large-scale
datasets, particularly on the Caltech-all and Reuters, in
terms of NMI and Purity, indicating its effectiveness in
large-scale IMVC tasks. Overall, FSR-IMVC and sFSR-IMVC
demonstrate significant potential for IMVC tasks.

4.3 Model Discussion
4.3.1 Ablation Study

To investigate the usefulness of FSR in sFSR-IMVC, we
removed the low-rank completion part in equation (5) and
reported the clustering result on all multi-view datasets
in Fig. 7. Each parameter was tuned to achieve the best
performance. From Fig. 7, two observations can be made:

o Without the FSR component, the proposed method
still performs well in the case of MR=10%. For in-
stance, the ACC values on Caltech-all, ALOI, and
Reuters are about 42%, 88%, and 60% respectively,
which are better than the values obtained by other
compared algorithms. It implies that the low-rank

TR approximation in sFSR-IMVC can effectively ex-

plore the correlations of inter/intra-view, leading to
improved clustering performance.

As MR increases, the ACC of the proposed method
decreases significantly without FSR. However, incor-
porating FSR into the proposed method leads to a
significant improvement in terms of ACC, especially
when MR=50%, 70%. It implies that FSR can explore
more useful information for IMVC from incomplete
multi-view data.

Furthermore, to further validate the benefits of the recov-
ered multi-view data in enhancing clustering, we applied
the BSV method to both the incomplete multi-view data and
the multi-view data recovered using the sFSR-IMVC. The
BSV achieves the best K-means clustering results across all
single views. The comparative results are presented in Table
6. It can be observed that, except for the Reuters datasets,
the recovered multi-view data demonstrates enhanced clus-
tering performance across all datasets. Notably, when MR is
high for the Reuters dataset, the recovered multi-view data
also improves the clustering performance.

4.3.2

Fig. 8a illustrates how the clustering performance of FSR-
IMVC changes as the number of views varies within the
Yale dataset. The Yale dataset consists of three views: LBP,
intensity, and Gabor. Here, the term “1 view” refers to the
usage of the LBP feature, whereas “2 views” indicates the
utilization of both LBP and intensity features. Similarly, Fig.
8a shows the results of sFSR-IMVC on the ALOI datasets.
The ALOI dataset consists of four views: color similarity,

Impact of the number of views
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Fig. 8. Comparison between clustering performance of FSR-
IMVC and sFSR-IMVC on Yale and ALOI datasets with
different numbers of views, respectively.

haralick features, RGB color histograms, and HSV color
histograms. Here, the terms “1 view”, “2 views”, “3 views”,
and “4 views” respectively refer to the first, the first two, the
first three, and the first four features.

The results in the first column of Fig. 8a and Fig. 8b
highlight a notable trend: The fewer the number of views,
the smaller the TR rank required for achieving optimal
clustering performance. This is due to the fact that each view
contains both consistent and view-specific information. As
the number of views increases, the self-representation ten-
sor/anchor graph tensor becomes more complex. Therefore,
in order to capture these correlations, a higher TR rank is
required. Furthermore, we can observe that as the number
of views increases, our method becomes less sensitive to
variations in parameters. For example, when utilizing 3
views, FSR-IMVC achieves the best clustering performance
with XA €[1073 — 102] and v €[107° — 10°]. In contrast, with
2 views, FSR-IMVC achieves the best clustering outcomes
when ) falls within the range of 107! to 10%, and ~ within
the range of 107° to 1071

4.3.3 Convergence analysis

Fig. 9 shows the convergence performance of the proposed
method on eight multi-view datasets with MR=30%. When
min(RE-X, RE-H, RE-C, RSE) < 1075, our method will stop
iterating. It can be observed from the subfigures for RE-X,
RE-H, RE-C that the variation of X,, H,, C, is consistent
during the first 20 iterative updates. Meanwhile, the RSE
rises during the first few iterations and then stays the same
until around the 20th iteration. It implies that in the first
about 20 iterations, the inter/intra-view correlation learned
with C, is passed through H, to guide the recovery of
missing features in X,,, while X, in turn passes the feature
space correlation through H, to influence C,,’s update, thus
benefiting the clustering.

2
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Fig. 9. The convergence performance of sFSR-IMVC on all
multi-view datasets with MR=30% in terms of RE-X, RE-H,
RE-C and RSE.

5 CONCLUSION

In this paper, we propose an extension to our method
FSR-IMVC by incorporating anchor learning, resulting in
a more efficient sFSR-IMVC model. The proposed model
integrates low-rank matrix learning of the original feature
space, anchor learning of the latent feature space, and
low-rank TR approximation-based inter/intra-view captur-
ing, within a unified framework for incomplete multi-
view clustering. These three processes leverage inter/intra-
view and feature space correlations through latent feature
spaces and anchor graphs, leading to improved cluster-
ing performance. Numerical experiments on five relatively
small multi-view datasets with different MRs demonstrate
that our FSR-IMVC method outperforms state-of-the-art
methods in terms of clustering performance, as measured
by ACC, NMI, and Purity. Furthermore, the sFSR-IMVC
demonstrates its capability to handle large multi-view
datasets effectively and efficiently.

Similar to two-step IMVC methods, the underlying
clustering structure extracted from FSR-IMVC/sFSR-IMVC
might encounter inaccuracies and could become computa-
tionally demanding when applied to large-scale datasets. To
address these issues, a promising approach is to combine
binary clustering structure learning [64] with tensor-based
representation learning from incomplete multi-view data
within a unified framework.
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