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T-SVD based incomplete multi-view clustering (IMVC) has received wide attention due to its ability to capture high-order correlations. However, t-SVD suffers from rotation sensitivity, failing to fully explore both inter-and intra-view consistencies. Besides, current methods mainly consider inter-or intra-view correlations, ignoring the low-rank information of sample features within views. To address these weaknesses, we first propose a feature space recovery based IMVC (FSR-IMVC) method, where low-rank feature space recovery and low-rank tensor ring based consistency learning are considered into a unified framework. Furthermore, we extend FSR-IMVC by incorporating anchor learning on the latent feature space, resulting in a scalable FSR-IMVC (sFSR-IMVC) approach that is well-suited to large-scale data. In an iterative way, the learned inter-and intra-view correlations will guide the recovery of missing features, while the explored low-rank information from feature spaces will in turn facilitate consistency exploration, eventually achieving outstanding clustering performance. Experimental results show that FSR-IMVC provides a significant improvement over known state-of-the-art algorithms in terms of ACC, NMI and Purity. Compared with FSR-IMVC, sFSR-IMVC performs slightly worse in clustering accuracy, but offers a notable advantage in computational efficiency, particularly for large-scale datasets. The codes of FSR-IMVC and sFSR-IMVC are publicly available at https://github.com/longzhen520/sFSR-IMVC.

INTRODUCTION

A Dvances in information techniques have revolution- ized data analysis in real-world applications, allowing for the description of observed data from multiple views. For example, in image processing, images captured from diverse modalities, such as RGB, depth, and infrared, are commonly available for analysis [START_REF] Wang | Learning discriminative crossmodality features for rgb-d saliency detection[END_REF], [START_REF] Long | Trainable subspaces for low rank tensor completion: Model and analysis[END_REF]. In social network analysis, interactions between individuals can be derived from multiple sources such as emails, phones, or social media [START_REF] Shuai | A comprehensive study on social network mental disorders detection via online social media mining[END_REF], [START_REF] Lin | Detecting stress based on social interactions in social networks[END_REF]. The availability of multi-view data, which provides consensual and complementary information, has spurred the development of various multi-view learningbased tasks [START_REF] Zheng | A closed form solution to multi-view low-rank regression[END_REF]- [START_REF] Chao | A survey on multiview clustering[END_REF]. The aim of these tasks is to utilize complementary information from different views to enhance the performance of models. Among these tasks, multi-view clustering (MVC) aims to group multi-view data into several clusters by integrating information from different views. It finds applications in various fields including image processing, computer vision, and social network analysis [START_REF] Zhang | Latent multi-view subspace clustering[END_REF]- [START_REF] Xu | Multi-level feature learning for contrastive multi-view clustering[END_REF].

In practical scenarios, it is common for certain views to contain missing or incomplete samples due to factors such as technical limitations and privacy concerns during data acquisition or transmission [START_REF] Zhang | Multi-view missing data completion[END_REF]- [START_REF] Chao | Incomplete multiview clustering with multiple imputation and ensemble clustering[END_REF], [START_REF] Chao | Incomplete multiview clustering with multiple imputation and ensemble clustering[END_REF]. Directly applying current MVC methods to such data can result in poor performance, as the hidden information of missing samples is ignored. To address the aforementioned problem, various incomplete multi-view clustering (IMVC) methods, including deep IMVC and incomplete multi-view subspace clustering (IMSC), have been proposed [START_REF] Hu | One-pass incomplete multi-view clustering[END_REF]- [START_REF] Yang | Robust multiview clustering with incomplete information[END_REF]. Unlike deep IMVC techniques [START_REF] Xu | Adaptive feature projection with distribution alignment for deep incomplete multi-view clustering[END_REF], [START_REF] Wen | Cdimcnet: Cognitive deep incomplete multi-view clustering network[END_REF], [START_REF] Lin | Completer: Incomplete multi-view clustering via contrastive prediction[END_REF], which require big databases and huge computing resources to learn embedded features from incomplete multi-view datasets for clustering, the IMSC methods easily learn the extraction of diverse graphs that effectively indicate the memberships among samples from different views [START_REF] Wen | Incomplete multiview spectral clustering with adaptive graph learning[END_REF]- [START_REF] Wen | Unified tensor framework for incomplete multi-view clustering and missing-view inferring[END_REF]. For example, Wen et al. [START_REF] Wen | Incomplete multiview spectral clustering with adaptive graph learning[END_REF] proposed a unified framework that simultaneously integrates graph learning and spectral clustering to obtain a consensus representation for IMVC. However, the work by Wen et al. [START_REF] Wen | Incomplete multiview spectral clustering with adaptive graph learning[END_REF] has two limitations: 1) it only considers relationships among observed samples in consensus representation learning, and 2) the learning of each view is performed separately without incorporating interview similarity structure, which significantly diminishes the advantages of multi-view data.

Building on this observation, several tensor-based incomplete multi-view subspace clustering methods have been proposed to infer missing samples while performing clustering [START_REF] Liu | Incomplete multi-view subspace clustering with low-rank tensor[END_REF]- [START_REF] Wen | Unified tensor framework for incomplete multi-view clustering and missing-view inferring[END_REF]. For instance, Xia et al. [START_REF] Xia | Tensor completion-based incomplete multiview clustering[END_REF] proposed a tensor completion-based incomplete multi-view clustering (TCIMC) method, which employs tensor Schatten p-norm minimization on multi-view self-representations to infer missing instances and explore inter-view similarity. Li et al. [START_REF] Li | Highorder correlation preserved incomplete multi-view subspace clustering[END_REF] proposed a high-order correlation preserved incomplete multi-view subspace clustering (HCP-IMSC) framework, incorporating tensor factorization and hypergraphinduced hyper-Laplacian regularization to explore highorder correlations and recover the missing instances, respectively. Li et al. [START_REF] Li | Tensorbased multi-view block-diagonal structure diffusion for clustering incomplete multi-view data[END_REF] developed a tensor-based multiview block-diagonal structure diffusion (TMBSD) for clus-
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Fig. 1. The pipeline of FSR-IMVC and sFSR-IMVC. Our methods contain two learning objectives, i.e., feature space recovery within each view and consistent representation within and across views. Specifically, the within-view feature space recovery aims at learning the low-rank structure inherent in incomplete multi-view data to mitigate the impact of missing samples. The consistent representation within and across views is learned by the low-rank TR approximation.

tering incomplete multi-view data, which utilizes tensor nuclear norm on the spectral embedding matrices of multiview data to recover the missing instances and obtain a better consensus representation. Wen et al. [START_REF] Wen | Unified tensor framework for incomplete multi-view clustering and missing-view inferring[END_REF] proposed an incomplete multi-view tensor spectral clustering with missing-view inferring (IMVTSC-MVI) method, which incorporates Frobenius-norm on the feature space and lowrank tensor constraint on the multi-view self-representations into a unified framework for inferring and clustering. These tensor-based methods all use the so-called tensor singular value decomposition (t-SVD) [START_REF] Kilmer | Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging[END_REF] on the rotated selfrepresentation tensor to explore the high-order correlations among different views.

However, the aforementioned t-SVD based IMVC methods may suffer from the following two limitations: 1)The above works can well explore the correlations across different views, but they suffer from inadequate exploration of intra-view information. Because t-SVD only performs matrix SVDs in the first two modes and linear transformations in the third mode [START_REF] Liu | Improved robust tensor principal component analysis via low-rank core matrix[END_REF], [START_REF] Feng | Multiplex transformed tensor decomposition for multidimensional image recovery[END_REF].

2) The existing approaches only consider the correlations of samples across or/and within views to infer missing features, ignoring the structural correlations of the features themselves. In fact, the feature spaces within views of multiview data are highly redundant [START_REF] Zhou | Dual shared-specific multiview subspace clustering[END_REF].

Different from t-SVD, tensor ring (TR) decomposition [START_REF] Zhao | Tensor ring decomposition[END_REF] can provide a more flexible and expressive representation to capture the global information [START_REF] Liu | Tensor Computation for Data Analysis[END_REF]- [START_REF] Liu | Smooth compact tensor ring regression[END_REF]. Therefore, we first consider low-rank TR approximation on the self-representation tensor to capture its global low-rank structure, ensuring that the consistency within each view and across different views is learned well. Besides, concerning the low-rank nature of feature spaces within each view, we integrate the low-rank feature space recovery into the TR-based self-representation learning framework and develop a feature space recovery-based incomplete multiview clustering framework (FSR-IMVC) as shown in Fig. 1 (Strategy 1) [START_REF] Long | Feature space recovery for incomplete multi-view clustering[END_REF]. Finally, the self-representation tensor is used to construct the affinity matrix for the spectral clustering algorithm [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]. FSR-IMVC has shown significant improvements in MVC tasks. Nevertheless, FSR-IMVC requires constructing the membership graph (representation tensor N × N × V ), which involves computing inverses of V matrices of size N × N with a computational complexity of O(V N 3 ) per iteration, where V and N denote the numbers of views and samples, respectively. This approach can be inefficient for large-scale data where N becomes large, and such scalability is crucial for real-world applications.

Recently, anchor learning based methods are often employed in large-scale MVC tasks [START_REF] Xia | Tensorized bipartite graph learning for multi-view clustering[END_REF]- [START_REF] Wang | Fast parameter-free multi-view subspace clustering with consensus anchor guidance[END_REF], where an anchor graph of size M × N is constructed between M anchors and N samples (M ≪ N ) to represent the complex mechanisms of multi-view data, resulting in reduced computational complexity from O(V N 3 ) to O(V N M 2 ). Following this, Wang et al. [START_REF] Wang | Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph[END_REF] proposed an incomplete large-scale multi-view clustering approach based on the consensus bipartite graph (IMVC-CBG) framework, which integrates anchor selection and anchor graph construction into a unified framework, where all samples share the same anchors and anchor graph to ensure structural consistency across views, enabling fast IMVC tasks. In contrast to view-shared anchors, Liu et al. [START_REF] Liu | Fast incomplete multiview clustering with view-independent anchors[END_REF] proposed a fast IMVC with view-independent anchors (FIMVC-VIA) method. It learns individual anchors for each view and constructs a unified anchor graph to tackle largescale IMVC tasks. However, these anchor learning-based IMVC methods aim at exploring the pairwise correlations between different views, which limits their ability to fully exploit the relationship among views. Besides, they all neglect the feature space information of missing samples.

Motivated by these findings, we propose an improvement of FSR-IMVC with anchor learning, namely scalable FSR-IMVC (sFSR-IMVC), as illustrated in Fig. 1 (Strategy 2). When the number of samples N is large, anchor learning is applied to the latent feature subspaces H v to learn the anchor graph C v ∈ R M ×N for each view v = 1, • • • , V . Furthermore, low-rank TR approximation is utilized to simultaneously explore the inter-view and intra-view information of the tensor

C = Ω(C 1 , • • • , C V ) ∈ R M ×N ×V
, Ω being an operator which stacks all anchor graphs to a 3-rd order tensor. Similar to FSR-IMVC, the latent feature subspace H v simultaneously learns the correlations of inter/intra-view and sample features through the updated C v and the lowrank structure of X v , for recovering the feature space X v . In turn, the anchor graph tensor C is adaptively updated TABLE 1 Comparison of our method with the others mentioned. C #1-#5 denote whether the corresponding approach is scalable, can recover missing samples, can explore high-order correlation across views, can capture the consistency within and across views, and can explore feature space information, respectively.

Algorithms

Cluster ways [START_REF] Hu | One-pass incomplete multi-view clustering[END_REF] Weighted matrix factorization ✓ × × × × HCPIMSC [START_REF] Li | Highorder correlation preserved incomplete multi-view subspace clustering[END_REF] t-SVD-based subspace clustering

C #1 C #2 C #3 C #4 C #5 BSV [20] K-means ✓ × × × × Concat [20] K-means ✓ × × × × OPIMC
× ✓ ✓ × ✓
TMBSD [START_REF] Li | Tensorbased multi-view block-diagonal structure diffusion for clustering incomplete multi-view data[END_REF] t-SVD-based embedding feature × ✓ ✓ × × learning and K-means IMVTSC-MVI [START_REF] Wen | Unified tensor framework for incomplete multi-view clustering and missing-view inferring[END_REF] t-SVD-based subspace clustering × ✓ ✓ ✓ × TCIMC [START_REF] Xia | Tensor completion-based incomplete multiview clustering[END_REF] t-SVD-based subspace clustering × × ✓ × × FIMVC-VIA [START_REF] Liu | Fast incomplete multiview clustering with view-independent anchors[END_REF] anchor learning and K-means [START_REF] Wang | Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph[END_REF] anchor learning and K-means ✓ × × × × FSR-IMVC [START_REF] Long | Feature space recovery for incomplete multi-view clustering[END_REF] TR-based subspace clustering

✓ × × × × IMVC-CBG
× ✓ ✓ ✓ ✓ sFSR-IMVC TR-based anchor ✓ ✓ ✓ ✓ ✓ learning and K-means from H v , v = 1, • • • , V
and the low-rank TR approximation to obtain a better consistent representation. Finally, the anchor graph tensor is used to construct the embedded space for the K-means algorithm [START_REF] Hartigan | Algorithm as 136: A k-means clustering algorithm[END_REF]. Experimental results on small multi-view datasets demonstrate that FSR-IMVC significantly improves the clustering performance compared to state-of-the-art algorithms in terms of ACC, NMI, and Purity. Furthermore, sFSR-IMVC also shows superior performance compared to fast IMVC methods on three largescale multi-view datasets.

For a clear comparison, we summarize the aforementioned works in Table 1. Compared to them, our work mainly makes contributions in three aspects:

• We first develop an FSR-IMVC model, which integrates low-rank feature space recovery and low-rank TR-based self-representation learning into a unified framework. 1). This approach applies tensor networks for the first time to simultaneously explore memberships across and within views, achieving high-precision clustering performance on small incomplete multiview data.

2). The FSR-IMVC model represents the first attempt to consider low-rank feature space recovery for IMVC. Experimental results on relatively small multi-view datasets demonstrate its superior performance in comparison to existing methods, as evaluated using three commonly used metrics.

•

Based on FSR-IMVC, we extend the approach to deal with large-scale multi-view data and propose an sFSR-IMVC model, where TR-based anchor learning is incorporated to efficiently learn the consistency within and across views and significantly reduce computational complexity. Furthermore, experimental results on large-scale multi-view datasets demonstrate that sFSR-IMVC outperforms the compared fast IMVC methods.

The rest of this paper is organized as follows. Section 2 provides a brief introduction to the notations and related work. Model development, solutions, and complexity analysis are presented in Section 3. Experimental results and a comprehensive analysis are presented in Section 4. Finally, conclusions are drawn in Section 5. 

NOTATIONS AND PRELIMINARIES

Notations

In this paper, a scalar, a vector, a matrix, and a tensor are written as x, x, X, and X , respectively. For a D-th order tensor

X ∈ R I1ו••×I D , its (i 1 , • • • , i D )-th element is denoted as X (i 1 , • • • , i D )
. Indices typically range from 1 to their capital version, e.g.,

i d = 1, • • • , I d , d = 1, • • • , D.
Definition 1 (TR Decomposition [START_REF] Zhao | Tensor ring decomposition[END_REF]). The goal of TR decomposition is to represent a higher-order tensor by circularly multiplying sequences of 3rd-order tensors. Specifically, the TR decomposition of a Dth-order tensor,

Z ∈ R I1ו••×I D , is defined as Z(i 1 , i 2 , • • • , i D ) = trace(G 1 (:, i 1 , :) • • • G D (:, i D , :)), where G d ∈ R R d ×I d ×R d+1 , d = 1, • • • , D are TR core factors, and {R d } D d=1 are TR ranks, with R D+1 = R 1 .
The TR decomposition can be abbreviated as

Z = R(G 1 , • • • , G D ).
The graphical illustration of TR decomposition is shown in Fig. 2. Lemma 1. [START_REF] Recht | Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[END_REF] ∥X∥ * is the tightest convex lower bound of the rank(X) on the set {X : ∥X∥ ≤ 1}, where ∥X∥ * denotes the nuclear norm of X, which is the sum of its singular values and ∥X∥ is the dual norm of the nuclear norm.

Let P and H be arbitrary matrices with compatible sizes such that X = PH exists. Then we have the following. Lemma 2. [ F to explore the low-rank information of X since the optimization problem of rank minimization is NP-hard [START_REF] Cai | A singular value thresholding algorithm for matrix completion[END_REF].

Related works

Two well-known frameworks for incomplete multi-view clustering are introduced in this section.

Incomplete multi-view subspace clustering

The subspace-based IMVC framework aims to identify multiple low-dimensional subspaces where samples are expected to lie. Given incomplete multi-view dataset

T v ∈ R Dv×N , v = 1, • • • , V
, where V and N are the numbers of views and samples, respectively; and D v represents the feature dimension in the v-th view, the general subspacebased IMVC optimization model can be formulated as:

min {Zv,Ev} V v=1 V v=1 Ψ(E v )+λΦ(Z v ) s. t. T v O v = T v O v Z v +E v , (1) 
where

O v ∈ R N ×N is a diagonal index matrix of v-th view, which is defined as: O v (n, n) = 1 n-th sample is observed, n = 1, • • • , N 0 otherwise,
Φ and Ψ depict the regularization term on the selfrepresentation matrices and corrupted noise, respectively. λ is a trade-off parameter to balance the effect of the Φ and Ψ regulations. For instance, Wen et al. [START_REF] Wen | Incomplete multiview spectral clustering with adaptive graph learning[END_REF] consider the nuclear norm and ℓ 1 norm on Z v and E v respectively to learn the intra-view information. Furthermore, benefiting from well-capturing high-order correlations among views, tensor self-representation based IMVC methods have attracted much attention [START_REF] Liu | Incomplete multi-view subspace clustering with low-rank tensor[END_REF]- [START_REF] Wen | Unified tensor framework for incomplete multi-view clustering and missing-view inferring[END_REF], which is formulated as:

min {Ev,Zv,Xv} V v=1 Φ(Z) + λΨ(E) s. t.X v = X v Z v + E v , (X v ) Ov = (T v ) Ov , v = 1, • • • , V, Z = Ω(Z 1 , Z 2 , • • • , Z V ), E = [E 1 ; E 2 ; • • • ; E V ], (2) 
where O v is the index set of observed samples within v-th view, the term Ω(•) merges all self-representation matrices

Z v (v = 1, • • • , V ) to a third-order tensor Z ∈ R N ×N ×V , Φ
depicts a low-rank tensor approximation term to explore the relationship of observed samples. Besides, instead of directly learning self-representation on multi-view data, another option for IMVC to improve its clustering performance is to learn self-representation on its latent feature space [START_REF] Zhang | Low-rank tensor regularized views recovery for incomplete multiview clustering[END_REF]. In the above tensor self-representation based IMVC methods, t-SVD [START_REF] Wang | Low-rank and sparse tensor representation for multi-view subspace clustering[END_REF] is a commonly used tensor approximation method to capture high-order correlations among views for IMVC tasks. However, t-SVD fails to simultaneously capture both inter-view and intra-view correlations. Moreover, the above methods neglect the important low-rank property of the feature space, which is crucial for incomplete multi-view clustering.

Inspired by them, we first propose a feature space recovery-based IMVC, as follows [START_REF] Long | Feature space recovery for incomplete multi-view clustering[END_REF]:

min {Ev,Zv,Pv,Hv,Xv} V v=1 Φ(Z) + V v=1 γ 2 ∥H v ∥ 2 F + λ∥E v ∥ 1 s. t. X v = P v H v + E x v , H v = H v Z v + E h v , P T v P v = I K , (X v ) Ov = (T v ) Ov , v = 1, • • • , V. (3) 
According to Corollary 1,

min {Hv,Pv} V v=1 γ 2 ∥H v ∥ 2 F , s. t. X v = P v H v + E x v , P T v P v = I K
depicts the low-rank property of the recovered feature spaces X v , P T v P v = I K means the feature spaces are projected onto discriminating subspaces [START_REF] Xu | Re-weighted discriminatively embedded k -means for multi-view clustering[END_REF];

E v = [E x v ; E h v ]; and H v = H v Z v + E h
v means self-representation matrix is learned on the latent feature spaces. Moreover, low-rank TR approximation is considered to explore the similarity structure of the self-representation tensor, e.g.,

Z = R(G 1 , • • • , G D ) denotes Φ(Z).
Benefiting from TR approximation, the inter/intra-view information in Z can be well captured simultaneously.

Anchor Learning for IMVC

In general, subspace-based methods can better extract geometric information from samples for IMVC. However, subspace learning-based methods often involve computationally expensive operations, such as eigenvalue computation, singular value decomposition, and matrix inverse, which may not be well-suited to large-scale data. To tackle this problem, anchor learning is considered to deal with largescale datasets for IMVC [START_REF] Xia | Tensorized bipartite graph learning for multi-view clustering[END_REF]- [START_REF] Wang | Fast parameter-free multi-view subspace clustering with consensus anchor guidance[END_REF]. The general framework of an anchor-learning based incomplete multi-view clustering is constructed as follows:

min {Cv} V v=1 V v=1 ∥T v O v -A v C v O v ∥ 2 F + λΦ(C v ) s. t. A T v A v = I M , C v ≥ 0, v = 1, • • • , V (4) 
where A v ∈ R Dv×M is the learned anchor matrix in the vth view and M is the number of anchors. C v ∈ R M ×N is the anchor graph, which is used to describe the relationship among samples. Usually, M ≪ N , which largely reduces the computational complexity from

O(V N 3 ) to O(V N M 2 ).
In addition, Φ(C v ) represents the regularization terms. For example, Liu et al. [START_REF] Liu | Fast incomplete multiview clustering with view-independent anchors[END_REF] consider view-specific anchor matrix A v and consistent anchor graph C and use Frobenius norm on C for better clustering performance. Following it, Wang et al. [START_REF] Wang | Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph[END_REF] learn anchors and consistent representation in the latent feature space.

PROPOSED METHOD

Model Development

As shown in Fig. 1 (strategy 2), we learn anchors and anchor graphs on the latent feature space H v , v = 1, • • • , V for efficient incomplete multi-view clustering, where feature space recovery and inter/intra-view correlations are learned in a unified framework. The proposed modeling can be formulated as the optimization problem:

min {Ev,Cv,Pv,Hv,Xv} V v=1 V v=1 γ 2 ∥H v ∥ 2 F + λ∥E v ∥ 1 s. t. X v = P v H v + E x v , H v = A v C v + E h v , C v ≥ 0, P T v P v = I K , (X v ) Ov = (T v ) Ov , v = 1, • • • , V, C = R(G 1 , • • • , G D ), A T v A v = I M (5) 
where

C = Ω(C 1 , • • • , C V ); Ω is an operator which stacks all anchor graphs C v , v = 1, • • • , V in a 3-rd order tensor C ∈ R M ×N ×V ; A v ∈ R K×M
is the anchor matrix for the v-th views, the ℓ 1 norm is employed on error matrix E v to remove sparse noise or outliers; and O v is the index set of observed samples for v-th view;

C = R(G 1 , • • • , G D )
represents a low-rank TR approximation of C, which aims to explore the similarity structure within and across views, simultaneously.

According to Fig. 1 (strategy 2), the observed data T v can be reconstructed by assuming its feature space is low-rank, denoted as X v = P v H v , where P T v P v = I K and ∥H v ∥ F minimization is applied to enforce the low-rank property of X v . The anchor graph tensor is then updated adaptively from H v , v = 1, • • • , V , and low-rank TR approximation.

H v in turn learns from the updated C v and the lowrank prior of the feature space to recover X v , ultimately improving the clustering performance.

Solutions

The above optimization problem can be addressed using an alternating direction of multiplier method (ADMM) framework [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF]. To make problem (5) separable, Y is added as an auxiliary variable as follows:

min {Ev,Cv,Pv,Hv,Xv} V v=1 ,Y V v=1 γ 2 ∥H v ∥ 2 F + λ∥E v ∥ 1 s. t. X v = P v H v + E x v , H v = A v C v + E h v , C v ≥ 0, P T v P v = I K , (X v ) Ov = (T v ) Ov , v = 1, • • • , V, C = Y, Y = R(G 1 , • • • , G D ), A T v A v = I M . (6) 
The corresponding augmented Lagrangian function is formulated as:

L {C v , E v , Q v 1 , Q v 2 , X v , P v , H v } V v=1 , Y, Q 3 = V v=1 ( γ 2 ∥H v ∥ 2 F + λ∥E v ∥ 1 +⟨Q v 1 , X v -P v H v -E x v ⟩ + ⟨Q v 2 , H v -A v C v -E h v ⟩ + ρ 1 2 ∥X v -P v H v -E x v ∥ 2 F + ρ 2 2 ∥H v -A v C v -E h v ∥ 2 F ) +⟨Q 3 , C -Y⟩ + ρ 3 2 ∥C -Y∥ 2 F , (7) 
under constraints

C v ≥ 0, Y = R(G 1 , • • • , G D ), (X v ) Ov = (T v ) Ov and P T v P v = I K , A T v A v = I M , v = 1, • • • , V , where {Q v 1 , Q v 2 } V v=1
and Q 3 are Lagrange multipliers and ρ 1 , ρ 2 , ρ 3 are penalty factors. Using an ADMM framework, which alternately updates one variable with others fixed, problem [START_REF] Zhang | Consensus one-step multi-view subspace clustering[END_REF] is split into several subproblems.

Update {P v } V v=1 : Fixing other variables, the subproblem of P v is rewritten as:

max Pv:P T v Pv=I K trace(P v (H v (Q v 1 + ρ 1 X v -ρ 1 E x v ) T )). ( 8 
)
This subproblem is a well-known orthogonal Procrustes problem.

Letting M = H v (Q v 1 + ρ 1 X v -ρ 1 E x v ) T , and [S, V, D] = svd(M), the solution of P v is P v = DS T ,
where svd is the Singular Value Decomposition.

Update {H v } V v=1 : Fixing other variables, the subproblem of H v can be rewritten as:

min Hv γ 2 ∥H v ∥ 2 F + ⟨Q v 1 , X v -P v H v -E x v ⟩ + ⟨Q v 2 , H v -A v C v -E h v ⟩ + ρ 1 2 ∥X v -P v H v -E x v ∥ 2 F + ρ 2 2 ∥H v -A v C v -E h v ∥ 2 F ). (9) 
Differentiating the formula [START_REF] Chao | A survey on multiview clustering[END_REF] and setting it to zero, we can obtain

H v = P T v (Q v 1 + ρ 1 X v -ρ 1 E x v ) + ρ 2 (A v C v + E h v ) -Q v 2 γ + ρ 1 + ρ 2 (10) Update {X v } V v=1 : The subproblem of X v is: min Xv ⟨Q v 1 , X v -P v H v -E x v ⟩ + ρ 1 2 ∥X v -P v H v -E x v ∥ 2 F (11)
under constraints (X v ) Ov = (T v ) Ov . Similarly, by differentiating the formula [START_REF] Wang | Exclusivityconsistency regularized multi-view subspace clustering[END_REF] and setting it to zero, we can obtain the following:

X v (:, n) = Xv (:, n), n ̸ ∈ O v T v (:, n), n ∈ O v , (12) 
where

Xv = P v H v + E x v -(1/ρ 1 )Q v 1 . Update {A v } V v=1 :
The subproblem of solving A v is formulated as:

max Av:A T v Av=I M trace(A v (C v (Q v 2 + ρ 2 H v -ρ 2 E h v ) T )). ( 13 
)
Following the same framework of solving P v , the updating of A v is A v = DS T , where D and S are the right and left singular matrices of M, respectively;

M = C v (Q v 2 +ρ 2 H v - ρ 2 E h v ) T . Update {C v } V v=1 :
By setting the derivative of the objective function [START_REF] Zhang | Consensus one-step multi-view subspace clustering[END_REF] w.r.t. C v to zero , the solution of C v can be obtained via:

C v = max( Ĉv , 0), (14) 
where

Ĉv = A T v (Q v 2 + ρ 2 H v -ρ 2 E h v ) + Ω -1 v (ρ 3 Y + Q 3 ) ρ 2 + ρ 3 , Ω -1 v is the inverse operator along v-th view, e.g., Ω -1 v (C) = C v . Update {E v } V v=1 :
The solution of E v can be split into two parts and updated by

E x v = sth(X v -P v H v + (1/ρ 1 )Q v 1 , λ/ρ 1 ) E h v = sth(H v -A v C v + (1/ρ 2 )Q v 2 , λ/ρ 2 ), (15) 
where sth(x, τ ) is the well-known soft thresholding operator, denoted as: sth(x, τ ) = sgn(x) max(|x| -τ, 0). Update Y: For Y, the problem (7) can be transformed into the following formulation:

min Y ∥Y -(C -(1/ρ 3 )Q 3 ) ∥ 2 F , s. t. Y = R(G 1 , • • • , G D ). (16) 
It can be solved by TR-ALS algorithm in [START_REF] Zhao | Tensor ring decomposition[END_REF] , where the input tensor is C -

(1/ρ 3 )Q 3 .
Update Lagrangian multipliers:

     Q v 1 = Q v 1 + ρ 1 (X v -P v H v -E x v ), v = 1, • • • , V Q v 2 = Q v 2 + ρ 2 (H v -A v C v -E h v ), v = 1, • • • , V Q 3 = Q 3 + ρ 3 (Y -C). (17) 
Finally, the right singular vectors of S = 1 V V v=1 C T v will be used in the K-means algorithm for the final clustering result [START_REF] Wang | Highly-efficient incomplete large-scale multi-view clustering with consensus bipartite graph[END_REF], [START_REF] Liu | Fast incomplete multiview clustering with view-independent anchors[END_REF]. The approach is summarized in Algorithm 1. The convergence condition is reached when min(RE-X, RE-H, RE-C, RSE) ≤ 10 -6 , where RE-X, RE-H, RE-C indicate the maximum variation of recovered feature spaces, latent feature subspaces, anchor graphs between adjacent iterations. For instance, RE-X=max v ∥X t v -X t-1 v ∥ ∞ , where X t v is the recovered data of v-th view in t-th iteration. RSE denotes the maximum relative square error between the recovered feature space Xt v and the original space T v in the observed indices, e.g., RSE = max v

∥ Xt v (ov)-Tv(ov)∥F ∥Tv(ov)∥F
, where Xt v is the recovered feature space without the constraint (X v ) Ov = (T v ) Ov in t-th iteration; o v is the index vector of observed entries of v-th view.

Algorithm 1 Scale feature space recovery based incomplete multi-view clustering (sFSR-IMVC) 1: Input: incomplete multi-view data {T v } V v=1 , the number of anchors M ,γ, TR ranks R; 2: Initialize: 

Y=Q 3 =0; P v =0, H v =0, E x v =0, A v =0, C v =0, E h v =0, v=1, • • • , V ; ρ 1 =ρ 2 =ρ 3 =10 -4 ;
for v = 1, • • • , V do 5:
Update P v via equation [START_REF] Li | A survey of multi-view representation learning[END_REF] 6:

Update H v via equation [START_REF] Chao | A survey on multiview clustering[END_REF] 7:

Update X v via equation [START_REF] Xu | Self-supervised discriminative feature learning for deep multi-view clustering[END_REF] 8:

Update A v via equation [START_REF] Wang | Gmc: Graph-based multi-view clustering[END_REF] 9:

Update C v via equation [START_REF] Xu | Multi-level feature learning for contrastive multi-view clustering[END_REF] 10:

Update E v via equation [START_REF] Zhang | Multi-view missing data completion[END_REF] 11:

Update Q v 1 and Q v 2 via equation ( 17 
)
12:

end for 13:

Update Y via equation ( 16)

14:

Update Q 3 via equation [START_REF] Xu | Adaptive feature projection with distribution alignment for deep incomplete multi-view clustering[END_REF] 15: 2 The complexity analysis of FSR-IMVC/ sFSR-IMVC for one iteration, where D v , N , and V are the dimension of features in v-th view, the number of samples, and views, respectively. Note that the notation '-' indicates no mentioned variable in the method.

ρ 1 = min ηρ 1 , 10

Variables Storage Complexity Computational Complexity

Pv DvK/DvK O(K 2 Dv)/O(K 2 Dv) Hv KN /KN O(N 3 )/O(KDvN ) Xv DvN /DvN O(KDvN )/O(KDvN ) Zv N 2 /- O(N 3 )/- Cv -/M N -/O(KM N ) Av -/KM -/O(M 2 K) E x v DvN /DvN O(DvKN )/O(DvKN ) E h v KN /KN O(KN 2 )/O(KM N ) Y N 2 V /M N V O(R 2 N 2 V 2 )/O(R 2 M N V 2 )

Complexity Analysis

Table 2 summarizes the storage and computational complexity of FSR-IMVC [START_REF] Long | Feature space recovery for incomplete multi-view clustering[END_REF] and sFSR-IMVC. It can be observed that the main storage complexity of both FSR-IMVC and sFSR-IMVC comes from variable Y. Additionally, the main computational complexity of FSR-IMVC stems from the updates of Z v and H v , requiring O(N 3 ). Conversely, sFSR-IMVC exhibits a lower computational complexity of O(N ), making it scalable for large-scale data.

NUMERICAL EXPERIMENTS

Experimental Settings

Multi-view Datasets

Eight well-known multi-view datasets were chosen to evaluate the effectiveness of our method, namely: 

, GIST (view4), and LBP (view5). We removed the last 24 samples in our experiments to obtain 9120 samples. Amsterdam Library of Object Images (ALOI) [START_REF] Houle | Can shared-neighbor distances defeat the curse of dimensionality?[END_REF] is a collection of 110250 images of 1000 small objects captured under various lighting conditions and rotation angles. Following the approach in [START_REF] Liang | Multi-view graph learning by joint modeling of consistency and inconsistency[END_REF], we used the first 100 classes as our testing dataset and obtained 10800 samples with four views, including color similarity (view1), haralick features (view2), RGB color histograms (view3), and HSV color histograms (view4). Retuers [START_REF] Amini | Learning from multiple partially observed views-an application to multilingual text categorization[END_REF] comprises 111740 articles with feature characteristics of documents written in 5 different languages and their translations, covering a standard set of 6 categories. In our experiments, we utilized a subset of Reuters consisting of 18750 samples with five views, including English (view1), French (view2), German (view3), Italian (view4), and Spanish (view5). The statistical information of the above datasets is summarized in Table 3. The anchor graph tensor of size M ×N ×V is rearranged into a 4th-order with M ×A×B×V , where N = AB to facilitate low-rank TR approximation. A and B are balanced as closely as possible, as shown in the last column of Table 3. This balancing is crucial for effective low-rank TR approximation, which has proven effective for approximating high-order data [START_REF] Long | Bayesian low rank tensor ring for image recovery[END_REF]- [START_REF] Liu | Smooth compact tensor ring regression[END_REF]. Furthermore, due to computational limitations, CCV, Caltech-all, ALOI, and Reuters were only applied to the scalable IMVC methods.

Missing Data Construction and Evaluation Metrics

To generate incomplete multi-view data, we randomly remove P samples for each view, ensuring that all samples have at least one view. The missing ratio (MR) is MR = P/N 1. http://vision.ucsd.edu/content/yale-face-database for each view, where N is the total number of samples. MR is varied at values of 10%, 30%, 50%, and 70%. Additionally, normalized mutual information (NMI), accuracy (ACC), purity, and CPU time are used to evaluate the performance in this experiment [START_REF] Wen | A survey on incomplete multiview clustering[END_REF]. Larger values of these metrics, except for CPU time, indicate better clustering performance. Each experiment is repeated 10 times, and the statistical results of these metrics are reported. Note that instead of repeating the final clustering method (K-means or spectral clustering) 10 times, we re-randomly generate missing sets while keeping MR unchanged and repeatedly test the performance of the clustering algorithm. 

Parameter settings

For FSR-IMVC, there are three groups of parameters λ, γ and TR ranks R d =R, d=1, • • • , 4 need to be tuned. We tune the parameters via brute force search, where R varies in [START_REF] Lin | Detecting stress based on social interactions in social networks[END_REF][START_REF] Zheng | A closed form solution to multi-view low-rank regression[END_REF][START_REF] Xu | Deep embedded complementary and interactive information for multiview classification[END_REF][START_REF] Zhang | Consensus one-step multi-view subspace clustering[END_REF][START_REF] Li | A survey of multi-view representation learning[END_REF][START_REF] Chao | A survey on multiview clustering[END_REF][START_REF] Zhang | Latent multi-view subspace clustering[END_REF][START_REF] Wang | Exclusivityconsistency regularized multi-view subspace clustering[END_REF][START_REF] Xu | Self-supervised discriminative feature learning for deep multi-view clustering[END_REF][START_REF] Wang | Gmc: Graph-based multi-view clustering[END_REF][START_REF] Xu | Multi-level feature learning for contrastive multi-view clustering[END_REF][START_REF] Zhang | Multi-view missing data completion[END_REF][START_REF] Lin | Dual contrastive prediction for incomplete multi-view representation learning[END_REF], γ and λ vary in [10 -5 -10 2 ], respectively. Fig. 3 reports the change of ACC along R, λ, and γ on Yale with different MRs. It can be observed that the performance of FSR-IMVC is related to the MR. As the MR increases, the FSR-IMVC method will require a higher R, a smaller γ, and a larger λ to achieve the best clustering performance. This implies that as the MR increases, the performance of low-rank feature space recovery will decrease. Simultaneously, more noise will be introduced in the selfrepresentation learning process, leading to a more complex self-representation tensor. According to this strategy, we choose R=8, λ=100, γ=10 -5 for Yale; R=6, λ=10, γ=10 -5 This is because the number of anchors (M ) needed for optimal performance varies depending on the dataset size (N ). For example, with a = 0.001, 10 anchors (⌊0.001 × 10800⌋ ) are sufficient for representing the relationships among samples in ALOI, while 16 anchors (⌊0.1 × 165⌋) are needed for Yale. In addition, we fix a=0.1 and γ=10 -4 for Yale and a=0.002 and γ=10 -3 for ALOI to choose the parameter R in [START_REF] Lin | Detecting stress based on social interactions in social networks[END_REF][START_REF] Zheng | A closed form solution to multi-view low-rank regression[END_REF][START_REF] Xu | Deep embedded complementary and interactive information for multiview classification[END_REF][START_REF] Zhang | Consensus one-step multi-view subspace clustering[END_REF][START_REF] Li | A survey of multi-view representation learning[END_REF][START_REF] Chao | A survey on multiview clustering[END_REF][START_REF] Zhang | Latent multi-view subspace clustering[END_REF][START_REF] Wang | Exclusivityconsistency regularized multi-view subspace clustering[END_REF][START_REF] Xu | Self-supervised discriminative feature learning for deep multi-view clustering[END_REF][START_REF] Wang | Gmc: Graph-based multi-view clustering[END_REF][START_REF] Xu | Multi-level feature learning for contrastive multi-view clustering[END_REF][START_REF] Zhang | Multi-view missing data completion[END_REF][START_REF] Lin | Dual contrastive prediction for incomplete multi-view representation learning[END_REF]. As shown in Fig. 4b, we can observe the clustering performance first increases and then decreases as R grows up. Besides, the smaller the MR, the smaller R to achieve high ACC. According to this strategy, we choose R=8, γ=10 -4 , a=0.1 for Yale; R=4, γ=10 -3 , a=0.05 for Coil20; R=4, γ=10 -5 , a=0.002 for BDGP; R=4, γ=10 -3 , a=0.002 for Scene15; R=4, γ=10, a=0.002 for CCV; R=10, γ=10 -4 , a=0.002 for Caltech-all; R=6, γ=10 -3 , a=0.001 for ALOI; R=2, γ=10 -3 , a=0.0001 for Reuters in the experiments. Fig. 5 reports the clustering performance of FSR-IMVC and sFSR-IMVC changes along with the subspace dimension K. It can be observed that the ACC first increases as K grows, and performs stable when K ≥ 15. However, the CPU time increases as K grows. Notably, for the Yale dataset, the number of clusters is 15. Therefore, we set the subspace dimension K as B + 1 for FSR-IMVC and sFSR-IMVC in the experiments, where B is the number of clusters.

Clustering Performance Analysis

Table 4 presents the clustering performance of all methods on four small multi-view datasets, as measured by ACC, with MR values ranging from 10% to 70%. The best and second best results are written in bold and underlined formatting, respectively. In most cases, FSR-IMVC consistently outperforms the state-of-the-art methods on all multi-view datasets and MR values. Specifically, on the Yale dataset, FSR-IMVC demonstrates significant improvements of 28%, 27.94%, and 36.73% compared to HCP-IMSC, respectively, for MR values of 10%, 30%, and 50%. Furthermore, sFSR-IMVC achieves the second-best performance. Notably, in the case of small MRs, sFSR-IMVC exhibits better clustering accuracy than FIMVC-VIA and IMVC-CBG for the anchorleaning based IMVC methods. For the Coil20, BDGP, and Scene15, tensor-based IMVC methods, including IMVTSC-MVI, FSR-IMVC, and sFSR-IMVC, exhibit higher ACC performance at MR values of 10%, 30%, and 50%.

Table 5 compares performance on large datasets using fast IMVC methods. It can be observed that sFSR-IMVC performs the best in most cases. Specifically, the improvement in clustering performance achieved by sFSR-IMVC on the CCV dataset is notably remarkable. For instance, for MR values of 10% and 30%, the clustering performance of sFSR-IMVC has exhibited notable enhancements of 37.83% and 34.59% respectively, in comparison to FIMVC-VIA. For the Caltech-all, sFSR-IMVC outperforms other methods for all MRs, with improvements of 21.12%, 19.57%, 12.98%, and 11.55%, respectively, compared to IMVC-CBG. For the ALOI, sFSR-IMVC shows a performance advantage of 33.91% and 30.74% over FIMVC-VIA at small MRs such as 10% and 30% , and performs the second best as MR increases. In the case of Reuters, whose size is larger than other large-scale datasets, sFSR-IMVC demonstrates the best performance across all MRs.

Fig. 6 presents the performance of our methods and several other state-of-the-art algorithms on different datasets in terms of NMI, Purity, and CPU time, as MR ranges from 10% to 70%. It can be observed that FSR-IMVC outperforms other methods in most cases for Yale, COil20, BDGP, and Scene15 

Model Discussion

Ablation Study

To investigate the usefulness of FSR in sFSR-IMVC, we removed the low-rank completion part in equation ( 5) and reported the clustering result on all multi-view datasets in Fig. 7. Each parameter was tuned to achieve the best performance. From Fig. 7, two observations can be made:

• Without the FSR component, the proposed method still performs well in the case of MR=10%. For instance, the ACC values on Caltech-all, ALOI, and Reuters are about 42%, 88%, and 60% respectively, which are better than the values obtained by other compared algorithms. It implies that the low-rank TR approximation in sFSR-IMVC can effectively ex-plore the correlations of inter/intra-view, leading to improved clustering performance.

•

As MR increases, the ACC of the proposed method decreases significantly without FSR. However, incorporating FSR into the proposed method leads to a significant improvement in terms of ACC, especially when MR=50%, 70%. It implies that FSR can explore more useful information for IMVC from incomplete multi-view data.

Furthermore, to further validate the benefits of the recovered multi-view data in enhancing clustering, we applied the BSV method to both the incomplete multi-view data and the multi-view data recovered using the sFSR-IMVC. The BSV achieves the best K-means clustering results across all single views. The comparative results are presented in Table 6. It can be observed that, except for the Reuters datasets, the recovered multi-view data demonstrates enhanced clustering performance across all datasets. Notably, when MR is high for the Reuters dataset, the recovered multi-view data also improves the clustering performance.

Impact of the number of views

Fig. 8a illustrates how the clustering performance of FSR-IMVC changes as the number of views varies within the Yale dataset. The Yale dataset consists of three views: LBP, intensity, and Gabor. Here, the term "1 view" refers to the usage of the LBP feature, whereas "2 views" indicates the utilization of both LBP and intensity features. Similarly, Fig. 8a shows the results of sFSR-IMVC on the ALOI datasets. The ALOI dataset consists of four views: color similarity, haralick features, RGB color histograms, and HSV color histograms. Here, the terms "1 view", "2 views", "3 views", and "4 views" respectively refer to the first, the first two, the first three, and the first four features.

The results in the first column of Fig. 8a and Fig. 8b highlight a notable trend: The fewer the number of views, the smaller the TR rank required for achieving optimal clustering performance. This is due to the fact that each view contains both consistent and view-specific information. As the number of views increases, the self-representation tensor/anchor graph tensor becomes more complex. Therefore, in order to capture these correlations, a higher TR rank is required. Furthermore, we can observe that as the number of views increases, our method becomes less sensitive to variations in parameters. For example, when utilizing 3 views, FSR-IMVC achieves the best clustering performance with λ ∈[10 -3 -10 2 ] and γ ∈[10 -5 -10 0 ]. In contrast, with 2 views, FSR-IMVC achieves the best clustering outcomes when λ falls within the range of 10 -1 to 10 2 , and γ within the range of 10 -5 to 10 -1 .

Convergence analysis

Fig. 9 shows the convergence performance of the proposed method on eight multi-view datasets with MR=30%. When min(RE-X, RE-H, RE-C, RSE) ≤ 10 -6 , our method will stop iterating. It can be observed from the subfigures for RE-X, RE-H, RE-C that the variation of X v , H v , C v is consistent during the first 20 iterative updates. Meanwhile, the RSE rises during the first few iterations and then stays the same until around the 20th iteration. It implies that in the first about 20 iterations, the inter/intra-view correlation learned with C v is passed through H v to guide the recovery of missing features in X v , while X v in turn passes the feature space correlation through H v to influence C v 's update, thus benefiting the clustering. 

CONCLUSION

In this paper, we propose an extension to our method FSR-IMVC by incorporating anchor learning, resulting in a more efficient sFSR-IMVC model. The proposed model integrates low-rank matrix learning of the original feature space, anchor learning of the latent feature space, and low-rank TR approximation-based inter/intra-view capturing, within a unified framework for incomplete multiview clustering. These three processes leverage inter/intraview and feature space correlations through latent feature spaces and anchor graphs, leading to improved clustering performance. Numerical experiments on five relatively small multi-view datasets with different MRs demonstrate that our FSR-IMVC method outperforms state-of-the-art methods in terms of clustering performance, as measured by ACC, NMI, and Purity. Furthermore, the sFSR-IMVC demonstrates its capability to handle large multi-view datasets effectively and efficiently. Similar to two-step IMVC methods, the underlying clustering structure extracted from FSR-IMVC/sFSR-IMVC might encounter inaccuracies and could become computationally demanding when applied to large-scale datasets. To address these issues, a promising approach is to combine binary clustering structure learning [START_REF] Zhang | Binary multiview clustering[END_REF] with tensor-based representation learning from incomplete multi-view data within a unified framework.
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		1 2 (∥P∥ 2 F + ∥H∥ 2 F ).
	Corollary 1. From Lemma 2, and because trace(I) is constant,
	we obtain: ∥X∥ * = min X=PH	1 2 ∥H∥ 2 F with P T P = I.
	Therefore, we consider min X=PH	1 2 ∥H∥ 2

  ε=10 -7 ; η= 1.8; K=B + 1, B is the number of clusters.

3: while not converged do 4:

  11 , ρ 2 = min ηρ 2 , 10 11 ; 16: end while 17: S = 1

	V	V v=1 C T v ;
	18: Apply the K-means algorithm on the right singular
	vectors of S.

19: Output: Clustering result TABLE

TABLE 3

 3 Statistics of different multi-view datasets.

	Datasets	#Sample #View #Cluster	#Feature	(I1, • • • , I4)
	Yale	165	3	15	3304,4096,6750	(M,11,15,3)
	Coil20	1440	3	20	4096,3304,6750	(M,40,36,3)
	BDGP	2500	4	5	1000,500,250,79	(M,50,50,4)
	Scene15	4485	3	15	1800, 1180, 1240	(M,65,69,3)
	CCV	6700	3	20	20,20,20	(M,67,100,3)
	Caltech-all	9120	5	102	48,40,254,521,928	(M,114,80,4)
	ALOI	10800	4	100	77,13,64,125	(M,108,100,4)
	Reuters	18750	5	6	21531,24892,34251, (M,150,125,5) 15506,11547
	Yale 1 contains 165 samples belonging to 15 clusters, with
	11 samples per subject. We utilized three views, namely
	LBP (view1), intensity (view2), and Gabor (view3), as the
	features. Coil20 [56] consists of 1400 image samples from 20
	clusters, with three views: intensity (view1), LBP (view2),
	and Gabor (view3). BDGP [57] comprises 2500 samples
	from 5 classes, with four views: lateral (view1), dorsal
	(view2), ventral (view3), and texture (view4). Scene15 [58]
	contains 4485 image samples with 15 scene categories from
	both indoor and outdoor environments. We used three com-
	mon image features: GIST (view1), PHOG (view2), and LBP
	(view3). Columbia Consumer Video (CCV) [59] comprises
	6773 web videos belonging to 20 semantic categories. It
	utilizes three well-known audio/visual features, namely
	SIFT (view1), STIP (view2), and MFCC (view3). We removed
	the last 73 samples in our experiment, resulting in 6700

samples. Caltech-all

[START_REF]Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories[END_REF] 

consists of 9144 samples categorized into 102 classes. It employs five different features, namely Gabor (view1), Wavelet-moments (view2), Cenhist

TABLE 4

 4 Comparison results(ACC(%), average(variance)) using all methods on four small multi-view datasets as MR ranges from 10% to 70%.

	Datasets MR (%)	BSV	Concat	OPIMC	TMBSD	HCP-IMSC IMVTSC-MVI	TCIMC	FIMVC-VIA IMVC-CBG	FSR-IMVC	sFSR-IMVC
		10.0	41.85( 2.12)	35.03( 9.85)	38.12( 3.20) 66.24( 4.33)	72.00( 0.75)	70.30( 0.81)	61.33( 4.31)	59.39( 4.05)	50.61( 1.96)	100.00( 0.00)	77.64( 3.55)
	Yale	30.0 50.0	31.65( 1.90) 23.56( 1.65)	21.70( 3.34) 21.39( 2.89)	33.70( 4.45) 61.94( 4.29) 28.48( 2.66) 60.67( 5.55)	71.64( 3.19) 60.91( 5.04)	67.09( 5.09) 39.15( 2.34)	61.03( 5.22) 55.88( 5.80)	56.24( 4.71) 55.27( 5.17)	50.79( 2.47) 52.73( 3.14)	99.58( 1.34) 97.64( 3.63)	77.95( 4.00) 71.62( 2.71)
		70.0	23.16( 1.62)	22.06( 3.35)	28.91( 2.12) 40.61( 3.48)	37.94( 3.15)	30.79( 4.11)	39.03( 3.58)	57.58( 3.92)	51.45( 3.92)	83.09( 8.45)	60.96( 2.27)
		10.0	53.40( 0.69)	58.68( 5.47)	58.24( 3.65) 80.34( 3.68)	70.75( 2.01)	88.03( 0.20)	84.55( 0.72)	71.50( 3.28)	57.40( 1.80)	85.85( 4.16)	83.70( 2.17)
	Coil20	30.0 50.0	41.40( 0.95) 31.39( 0.66)	46.41( 4.58) 32.53( 3.00)	54.89( 4.46) 79.58( 4.32) 49.12( 4.83) 77.59( 3.89)	73.87( 0.53) 63.24( 4.46)	86.01( 1.57) 83.21( 1.33)	81.20( 2.64) 79.47( 2.09)	69.39( 2.78) 71.10( 2.28)	57.16( 4.73) 57.03( 5.36)	87.03( 2.44) 86.33( 3.81)	84.00( 2.50) 81.95( 2.89)
		70.0	30.89( 1.26)	28.17( 2.27)	31.59( 2.30) 76.04( 3.44)	36.34( 0.98)	49.40( 2.84)	41.17( 1.10)	72.48( 2.04)	57.49( 6.34)	83.38( 3.74)	59.77( 3.75)
		10.0	49.70( 2.23) 52.85( 11.23) 74.78( 8.23) 43.39( 3.83)	80.38( 1.72)	99.62( 0.13)	25.79( 5.56)	37.48( 0.29)	52.38( 6.80)	99.96( 0.13)	96.66( 5.97)
	BDGP	30.0 50.0	41.18( 1.80) 43.97( 12.00) 64.74( 4.60) 43.21( 4.04) 34.10( 0.89) 31.61( 7.18) 55.88( 6.50) 39.41( 4.19)	79.89( 6.14) 61.21( 7.12)	99.10( 0.15) 96.70( 0.74)	34.96( 5.14) 30.82( 3.38)	38.46( 0.58) 39.11( 0.81)	61.98( 0.06) 61.97( 0.10)	98.68( 3.54) 100.00( 0.01)	98.03( 1.89) 98.39( 1.82)
		70.0	29.35( 1.00)	27.67( 3.23)	37.46( 2.74) 37.88( 2.63)	29.40( 2.58)	83.92( 2.61)	23.37( 0.89)	38.49( 3.34)	47.57( 4.97)	96.50( 6.04)	97.17( 3.49)
		10.0	39.81( 0.96)	38.67( 2.87)	42.40( 2.24) 70.93( 4.56)	48.20( 1.34)	80.17( 2.34)	50.38( 3.06)	55.60( 1.28)	50.43( 1.63)	88.44( 0.62)	68.77( 1.96)
	Scene15	30.0 50.0	27.54( 0.98) 20.57( 0.61)	29.35( 3.17) 21.93( 1.27)	35.09( 2.49) 68.75( 4.40) 28.27( 2.99) 53.45( 2.69)	37.87( 1.14) 27.68( 1.89)	78.62( 1.95) 80.05( 1.19)	53.52( 0.97) 46.31( 2.66)	56.11( 0.24) 56.41( 1.07)	50.00( 1.02) 49.62( 1.25)	88.34( 2.37) 81.07( 2.80)	66.67( 1.59) 62.70( 2.69)
		70.0	17.16( 0.70)	15.98( 1.02)	18.82( 1.31) 29.74( 2.46)	17.78( 1.56)	56.41( 2.29)	26.31( 1.23)	56.98( 0.96)	50.71( 1.47)	51.45( 5.69)	33.40( 3.46)

TABLE 5
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	Comparison results (ACC (%), average (variance))
	using fast IMVC methods on large-scale datasets as MR
	ranges from 10% to 70%.			
	methods	10 (%)	30 (%)	50 (%)	70 (%)
		CCV (R=10,γ=10 -4 , a=0.002)	
	BSV	16.11( 5.66)	14.23( 5.01)	12.98( 4.56)	11.60( 4.08)
	Concat	13.46( 4.75)	11.92( 4.22)	10.93( 3.85)	10.36( 3.66)
	OPIMC	15.30( 5.39)	13.93( 4.97)	12.15( 4.28)	10.70( 3.79)
	FIMVC-VIA	20.26( 7.12)	20.66( 7.28)	19.86( 6.99)	20.17( 7.10)
	IMVC-CBG	17.45( 6.14)	16.91( 5.95)	16.50( 5.84)	18.38( 6.46)
	sFSR-IMVC	58.09( 2.69)	55.25( 2.19)	47.22( 1.42)	27.22( 2.04)
		Caltech-all (R=10,γ=10 -4 , a=0.002)	
	BSV	22.87( 0.29)	19.21( 0.26)	16.30( 0.21)	13.48( 0.21)
	Concat	20.89( 0.75)	16.30( 0.40)	13.15( 0.49)	11.08( 0.46)
	OPIMC	25.73( 1.02)	23.48( 1.52)	20.18( 0.86)	13.76( 0.77)
	FIMVC-VIA	26.96( 0.15)	27.36( 0.34)	27.78( 0.18)	27.80( 0.44)
	IMVC-CBG	29.02( 0.60)	29.10( 0.91)	28.77( 1.01)	30.33( 0.84)
	sFSR-IMVC	50.14( 0.47)	48.67( 0.47)	41.75( 0.66)	41.88( 0.59)
		ALOI (R=6,γ=10 -3 , a=0.001)	
	BSV	38.17( 0.27)	29.83( 0.47)	21.76( 0.33)	14.07( 0.17)
	Concat	38.20( 1.41)	27.82( 1.03)	20.27( 0.37)	16.05( 0.45)
	OPIMC	11.83( 1.50)	8.45( 1.16)	6.44( 0.61)	5.28( 0.58)
	FIMVC-VIA	65.03( 0.86)	65.58( 0.91)	66.30( 0.01)	62.80( 0.95)
	IMVC-CBG	38.98( 1.31)	39.85( 0.91)	38.63( 1.01)	39.74( 0.88)
	sFSR-IMVC	98.94( 1.14)	96.32( 1.69)	70.77( 4.36)	60.85( 7.97)
		Reuters (R=2,γ=10 -3 , a=0.0001)	
	BSV	42.70( 2.60)	35.36( 1.66)	29.36( 0.46)	27.64( 0.25)
	Concat	39.96( 4.83)	33.86( 4.48)	32.65( 4.08)	30.85( 2.07)
	OPIMC	45.49( 4.36)	48.58( 4.46)	48.11( 4.02)	44.16( 3.95)
	FIMVC-VIA	49.71( 3.17)	48.80( 2.58)	48.99( 1.92)	52.10( 0.52)
	IMVC-CBG	38.93( 7.73)	42.78( 5.15)	37.65( 4.05)	37.27( 4.57)
	sFSR-IMVC	64.39( 1.51)	66.76( 1.61)	66.43( 1.88)	64.33( 1.10)

TABLE 6

 6 The clustering performance of BSV on incomplete multi-view data/recovered multi-view data (obtained by sFSR-IMVC) varies as the MR changes from 10% to 70%. .66 31.65/57.52 23.56/63.05 23.16/60.07 43.88/51.35 33.91/59.25 25.90/64.90 25.68/62.55 Coil20 53.40/64.07 41.40/62.00 31.39/60.17 30.89/56.31 57.75/68.60 44.59/65.45 33.58/62.31 32.86/58.93 BDGP 49.70/56.42 41.18/55.95 34.10/60.26 29.35/66.02 51.78/58.76 43.36/57.60 35.65/61.47 30.42/66.53 Scene15 39.81/49.95 27.54/44.81 20.57/39.43 17.16/30.37 42.45/55.02 28.22/48.62 20.96/42.89 18.58/32.51 CCV 17.59/23.55 16.19/25.83 15.17/26.71 14.09/25.37 18.58/32.51 18.58/32.51 18.58/32.51 18.58/32.51 Caltech-all 22.87/25.55 19.21/27.41 16.30/25.73 13.48/13.92 40.85/44.10 33.60/43.36 26.42/39.94 19.40/20.14 ALOI 38.17/42.36 29.83/43.54 21.76/27.90 14.07/15.36 42.17/47.09 33.02/48.81 24.01/31.96 15.80/17.58 Reuters 42.

	Datasets		ACC				Purity	
		10 (%)	30 (%)	50 (%)	70 (%)	10 (%)	30 (%)	50 (%)	70 (%)
	Yale	41.85/49						

70/39.56 35.36/34.37 29

  .36/31.62 27.64/29.68 49.29/48.22 37.91/43.52 30.21/38.39 27.84/33.53

	in terms of NMI and Purity. As an extension of FSR-IMVC,
	the clustering results of sFSR-IMVC are slightly inferior to
	those of FSR-IMVC. This implies that the similarity matrix
	constructed from the anchor graph is not as accurate as that
	from the self-representation matrix. However, sFSR-IMVC
	significantly reduces the required CPU time compared to
	FSR-IMVC. Specifically, on Scene15, sFSR-IMVC processes
	data in only 51.50 seconds, whereas FSR-IMVC takes 3257
	seconds, making it nearly 63 times faster. Furthermore,
	sFSR-IMVC exhibits superior performance on large-scale
	datasets, particularly on the Caltech-all and Reuters, in
	terms of NMI and Purity, indicating its effectiveness in
	large-scale IMVC tasks. Overall, FSR-IMVC and sFSR-IMVC
	demonstrate significant potential for IMVC tasks.