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Abstract

Reformulating linear physics using second kind Fredholm equations is very standard practice. One of the straight-
forward consequences is that the resulting integrals can be expanded (when the Neumann expansion converges) and
probabilized, leading to path statistics and Monte Carlo estimations. An essential feature of these algorithms is that
they also allow to estimate propagators for all types of sources, including initial conditions. The resulting practice is
a single Monte Carlo run, for one given set of sources, producing propagators that can later be used with any other set
of sources for fast simulations, typically as parts of optimization, inversion, sensitivity analysis and command control
algorithms. The present paper illustrates how this practice can be extended to problems involving several interacting
physics, provided that their coupling is only at the boundary of the system or at interfaces between sub-parts, and may
itself be given the form of a second kind Fredholm equation. A full practical implementation is described as part of the
Stardis code, with the example of transfering heat via the coupling of radiation, reaction-diffusion and convection as
typically expected in the multidisciplinary context of urban climate modeling. Besides, we show how recent advances
in computer graphics indicate that these algorithms can be made numerically extremely efficient when facing large
CAD geometries: computing the propagator becomes strictly independent of the geometry refinement, i.e. is identical
whatever the number of triangles and tetraedra used to numerize the surface and volume descriptions. To the best of
our knowledge this is the first report of propagator computations that remains practical for coupled physics in large
CAD geometries.
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PROGRAM SUMMARY1

Program Title: Stardis 0.7.2 (built on stardis-solver 0.12.3)2

CPC Library link to program files: (to be added by Technical Editor)3

Developer’s repository link: https://www.meso-star.com/projects/stardis/stardis.html4

Code Ocean capsule: (to be added by Technical Editor)5

Licensing provisions: GPLv36

Programming language: ANSI C7

Supplementary material: (Zip folder added to submission)8

Nature of problem: Estimating temperatures in coupled heat transfer systems involving large CAD and/or large numbers of spa-9

tially distributed sources.10

Solution method: Stardis uses the Monte Carlo Method. Each emperature estimate constructs a propagator of each of the energy11
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sources within the system: initial temperature, temperature boundary conditions, volume powers and surface fluxes. The propaga-12

tor can be stored for further use outside the Monte Carlo code.13

Additional comments including restrictions and unusual features: The Stardis estimates of propagators are only reliable when14

radiative transfer can be linearized around a reference temperature. Stardis can deal with the nonlinearity of radiation when com-15

puting temperatures, but then nothing can be interpreted as a meaningfull propagator for any external usage.16

17

18

1. Introduction19

First simple illustration. Starting from G. Green’s theory, the propagator concept was introduced by R. Feynman as
a way to picture, in integral terms, the solution O(�x, t) of a field physics problem at a location �x and time t, when this
physics is linear : O(�x, t) is viewed as an integral over all sources S (�xS , tS ) at all locations �x inside the domainD and
all times preceding t (down to initial time tI), multiplied by a scalar ζ(�x, t, �xS , tS )1 :

O(�x, t) =
�

D
d�xS

� t

tI

dtS ζ(�x, t, �xS , tS ) S (�xS , tS ) (1)

The propagator ζ(�x, t, �xS , tS ) indicates how each source impacts the solution, and invites for intuitions of the sources20

being propagated in space and time throughout the system, toward the considered location �x and time t. Historically,21

this rewriting of G. Green’s formalism is mainly significant with regards to the physical pictures it suggests. Here, we22

will concentrate on translating these pictures in pure computational terms: since ζ(�x, t, �xS , tS ) is independent of the23

source values, it can be numerically evaluated on its own. Then, any set of sources values can be plugged into Eq. (1)24

to compute the corresponding O(�x, t).25

Let us illustrate this concept with a standard practice in radiative transfer, where the factors associated with
the propagative point of view are named "shape factors" or "exchange surfaces" (depending on the context and
the chosen formulations). Let us take a simple scene with stationary radiative transfer between a camera and two
lamps of respective powers P1 and P2. Let O denote the radiative flux incident on a chosen pixel of the camera.

Figure 1: P1 light source on and P2 off. Figure 2: P2 light source on and P1 off.

Evaluating the shape factor ξ1 between the first lamp and the target pixel can be obtained by switching on the first lamp
alone and solving the radiative transfer equation to get the corresponding pixel flux O1 (see Fig. 1). The shape factor
associated with this first lamp is then ξ1 = O1

P1
. The same radiative transfer equation can also be solved to evaluate the

pixel flux O2 when only the second lamp is on, and the shape factor of the second lamp is ξ2 = O2
P2

(see Fig. 2). Once
these factors are known, since they are independent of the powers of the lamps, they can be used to evaluate the pixel
flux Õ for any other set of lamp powers P̃1 and P̃2 when the two lamps are on simultaneously:

Õ = ξ1P̃1 + ξ2P̃2 (2)

1In such a formulation all source types are integrated over all times in [tI , t] and all locations inD. Boundary sources are therefore spatial Diracs
at ∂D and the initial conditions are translated into temporal Diracs at tI .
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The required number of shape factors can be huge, for example in the domain of infrared radiation where all sur-26

face and volume parts of the system can emit radiation, so the question of the efficient numerical evaluation of large27

numbers of shape factors has raised numerous technical questions, in particular for multiple scattering and multiple28

reflection configurations with semi-transparent materials. A classical approach is to use reverse Monte Carlo algo-29

rithms in which optical paths are tracked from the receptor (the target pixel in our example) backward to sources (the30

lamps). The procedure can be duplicated for each target of interest (e.g. the other pixels of the camera).31

Such algorithms, initially designed to estimate O, can also be used to estimate each shape factor (from each lamp32

to the target pixel), with no additional computational cost: the paths sampled in one single computation can yield33

estimates of O as well as all the shape factors. In our example, the reverse Monte Carlo computation can then be34

made only once for a given set of the two lamps power, and does not need to be repeated for each lamp one by one.35

Once evaluated, the shape factors can be linearly combined with any sets of lamp powers. In this practice, there is one36

point of concern: we need to consider statistical correlations when evaluating the estimate uncertainty ("error bars")37

because the estimates are built using the same set of sampled optical paths over different sets of lamps power. Taking38

this point into account, the approach is then straightforward: only the shape factors required to estimate O are to be39

computed using a reverse Monte Carlo.40

The question in broader terms. Path-integral statistics allow to address the very same question (a single Monte Carlo41

run computing entirely the propagator) now for advanced linear physics. Without coupling, i.e. when only one42

single physical phenomenon is at work, the most common approach to propagator computation consists in translating43

the corresponding partial differential equation (typically a Boltzmann-type transport equation, a reaction-diffusion44

equation, Maxwell equation, etc) into a second kind Fredholm equation and developping the solution as a Neumann45

expansion [1, 2]. The expansion is then interpreted in statistical terms to define path-integral statistics, i.e. writting46

the solution as the expectation of a random variable associated to a stochastic path. The corresponding path-integrals47

address only the solution for a fixed set of sources, but structurally the functional dependance to each source is48

linear and expressing the propagator using the very same path-integral statistics is straightforward. This extends the49

illustration of the above simple example. Even for advanced physics or more complex geometries, Monte Carlo50

algorithms may be designed so that they sample paths along which propagation information can be stored. Then, the51

propagation information can be directly used when addressing a new set of sources, instead of re-running the Monte52

Carlo.53

In most applicative contexts, computing the propagator with such a Monte Carlo approach would be of great54

significance. However, this is not yet feasible because of coupling between different physics. Thus, our question55

becomes the following: can the path-integral approach be theoretically extended to coupled physics and does it remain56

computationnaly convenient? The present paper briefly initiates a possible answer to the theoretical part: Thanks to57

double randomization, the Fredholm approach can be extended by probabilizing the coupling. Then, the question of58

practicability is restricted to only one particular type of coupling: physics interacting via interfaces only (and not at59

all locations within the field). This restriction allows to stick to a very active field of research in both the physics and60

computer graphics communities: the design of recursive grids for acceleration of path tracing in complex geometries,61

leading essentially to Monte Carlo algorithms that are strictly insensitive to geometry refinement: same computation62

times for scenes described with hundreds of triangles, hundred of voxels, or billions of them [3]. By mentionning63

voxels, we want here to point out that the restriction to coupling via interfaces does not exclude advanced field64

descriptions, and even multiple physics at work at the same location in the field: only the coupling is not within the65

field. When randomizing the coupling at the interfaces, the features of the stochastic paths inside each subpart of66

the field are strictly preserved and the available schemes for accelerating their construction remain unchanged. This67

leads to Monte Carlo codes computing propagators inside systems involving coupled physics and displaying the same68

property of being insensitive to geometrical refinement.69

The implementation reported here is made within the Stardis code. Stardis was recently used to explore ways70

toward the definition of new climate services for analysts and designers anticipating climate change in urban area. In71

this context, Stardis strength was its ability to deal simultaneously with all the spatial and temporal scales involved in72

the modeling of energy exchanges, from the milimeter scale of windows and heat seals to the kilometers extensions73

of cities, and from the minute scale of wind and solar fluctuations to typically fifty-year lifetimes of the ground74

installations to be planed. Radiative transfer inside and outside buildings could be modeled together with full three-75

dimension heat diffusion inside the solid structures, as well as convection inside each fluid cell, providing the first76
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reported attempt to model energy transfers in a complete city, without any compromise on its geometrical description77

[4]. The corresponding approach was name "teapot in a city" by reference to the "teapot in a stadium" paradigm in78

computer graphics where it was indeed shown that ray tracing Monte Carlo algorithms could deal with quasi-infinite79

scale ratios on an industrial basis when producing cinema and video-game images. Retaining Stardis for illustration80

of the present theoretical discussion of propagator estimation in complex systems, we want to highlight an essential81

idea to be added to the perspective statements of [4]: using Feynman-Kac strategy to extend the computer graphics82

strategies to other physics than light transport allows one to model the heat transfer in geometrically complex systems,83

but also the systematic computation of all the propagators associated to each energy source. We will concentrate on84

standard heat transfer physics, but the statement is valid for all the physical contexts where same path-integral Monte85

Carlo strategies were already reported, either using similitudes with slightly modified versions of Stardis (e.g. linear-86

Boltzmann equation coupled with reaction-diffusion-advection in porous structures [5]), or with independent codes87

using the same path-tracing libraries (e.g. electromagnetism, photosynthesis and molecular spectroscopy, in their88

linear parts [6, 7]).89

The article is structured as follows:90

• Sec. 2 provides the theoretical background.91

• Sec. 3 describes the physics involved in the standard version of Stardis.92

• Sec. 4 describes the reverse Monte Carlo path sampling strategy solving this model.93

• Sec. 5 describes how Stardis stores the propagation data.94

• Sec. 6 describes stardis-solver, an implementation of reference used by Stardis.95

• Sec. 7 depicts simulation examples.96

• Sec. 8 gives some hints towards a generalisation to non-uniform and time-dependent sources, before concluding97

remarks in Sec. 9.98

2. Theory99

2.1. From second-kind Fredholm equations to path-statistics100

For the sake of exposition, consider a single model for the field of a quantity θ ≡ θ(�x, t) at location �x and time t
within a domain Ω of boundary ∂Ω, where sources S are known, in the volume only (no source at the boundary) and
where initial conditions are reported to −∞. Let us further assume that this model can be formulated as a second kind
Fredholm equation:

θ(�x, t) =
� t

−∞
dtb

�

∂Ω

d�xb Gb(�xb, tb|�x, t) θ(�xb, tb) +
� t

−∞
dt�

�

Ω

d�x �
�
S (�x �, t�) +G(�x �, t�|�x, t) θ(�x �, t�)� (3)

where the Green functions G and Gb are known. To illustrate how such a Fredholm equation leads to a path-integral
statistical description, let us further assume that θ(�x, t) is known at the boundary: θ(�x, t) = θb(�x, t) ∀�x ∈ ∂Ω where θb is
fixed (this condition will translate into a coupling issue in section 2.2). Then, assuming convergence as in a standard
Neumann expansion, replacing θ(�x �, t�) by a recursive call to Eq. 3 yields:

θ(�x, t) =
� t

−∞
dtb,1

�

∂Ω

d�xb,1 Gb,1(�xb,1, tb,1|�x, t) θb(�xb,1, tb,1)

+

� t

−∞
dt1

�

Ω

d�x1

�
S (�x1, t1) +G(�x1, t1|�x, t)

�� t1

−∞
dtb,2

�

∂Ω

d�xb,2 Gb,2(�xb,2, tb,2|�x1, t1) θb(�xb,2, tb,2)

+

� t1

−∞
dt2

�

Ω

d�x2
�
S (�x2, t2) +G(�x2, t2|�x1, t1) ...

���
(4)
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This expression can be, in turn, probabilized to define a random path backward in time, starting at (�x,�t) and ending at
the boundary at a previous time:

θ(�x, t) = Pb(�x, t)
� t

−∞
dtb,1

�

∂Ω

d�xb,1 pb(�xb,1, tb,1|�x, t) Gb,1(�xb,1, tb,1|�x, t) θb(�xb,1, tb,1)
Pb(�x, t) pb(�xb,1, tb,1|�x, t)

+ (1 − Pb(�x, t))
� t

−∞
dt1

�

Ω

d�x1 p(�x1, t1|�x, t)
�

S (�x1, t1)
(1 − Pb(�x, t)) p(�x1, t1|�x, t)

+
G(�x1, t1|�x, t)

(1 − Pb(�x, t)) p(�x1, t1|�x, t)
�
Pb(�x1, t1)

� t1

−∞
dtb,2

�

∂Ω

d�xb,2 pb(�xb,2, tb,2|�x1, t1)
Gb,2(�xb,2, tb,2|�x1, t1) θb(�xb,2, tb,2)

Pb(�x1, t1) pb(�xb,2, tb,2|�x1, t1)

+ (1 − Pb(�x1, t1))
� t1

−∞
dt2

�

Ω

d�x2 p(�x2, t2|�x1, t1)
�

S (�x2, t2)
(1 − Pb(�x1, t1)) p(�x2, t2|�x1, t1)

+
G(�x2, t2|�x, t)

(1 − Pb(�x1, t1)) p(�x2, t2|�x1, t1)
...

���

(5)
In this probabilistic reading of the Neumann expansion, the main sum between the integral over the boundary and101

the integral over the domain is translated into a Bernoulli test between the two integrals. When the boundary integral102

is retained, a location is sampled at the boundary and the process is stopped because θ has been set to be known at the103

boundary. When the domain integral is retained, a location is sampled inside the domain, and since θ is unknown, the104

process is continued from the last sampled location and time, up to a choice of the boundary integral.105

In principle, the probabilities Pb (to select the boundary at the i-th step) and probability densities pb and p (of the106

sampled location and time at the i-th step knowing the location and time of the preceding step) are arbitrary, but we can107

rely on the Monte Carlo literatures dedicated to each physic to indicate the meaningful choices in terms of variance108

reduction. Overall, in most linear physics where such converging Neumann expansions are available, the theoretical109

construction and numerical practice of sampling such paths are already available. In box 2.1, we briefly illustrate this110

starting point with a famous academic example using Feynman-Kac formula. Let us add some details regarding the111

two main physics addressed in the following sections: radiation physics and reaction-diffusion in confined domains.112

Radiative transfer (or linear transport Bolzmann equation in neutronics, biology, etc) is straightforward. The only113

specificity is that the domain is in phase space and not only in geometrical space. Apart from this, expressing the114

linear Bolzmann equation in Fredholm terms, and probabilizing it, is very common and leads to elementary pictures115

such as multiple scattering or multiple reflection path tracing. In terms of of radiative transfer theory, θ is the specific116

intensity. Its value at a given location in a given direction can be viewed as an average of radiative energy transported117

along the line of sight. The probabilities Pb to reach the boundary are essentially Beer exponential extinction along118

the line and the probability density of volume collisions, p, is the spatial derivative of this exponential decrease (see119

Fig. 3). Translating radiative transfer in terms of path-statistics is straightforward and fully rigorous.120

Regarding reaction-diffusion equations, the theoretical background is heavier as it involves Brownian motion in121

confined spaces for which very little can be done with no numerical approximations. When dealing with thermal122

diffusion with spatially distributed sources, our approach will therefore be approximate. This implies that Eq. 3123

will only hold when a spatial discretization is applied after a Brownian motion. This is typically the case for walk-on-124

sphere algorithms that are among the most efficient available path-sampling approaches to confined diffusion [8, 9, 10].125

At each step, a location is sampled on the smallest sphere tangenting the boundary and this location is projected on the126

boundary when its distance to the boundary is lower than a numerical parameter �. The probability Pb is therefore the127

fraction of the sphere satisfying this condition (see Fig. 4) and p is a uniform distribution along the rest of the sphere.128

A slightly modified version of this algorithm will be used for essentially two reasons: 1) including heterogeneous129

sources and 2) designing an algorithm using line-boundary intersections (and not line-sphere intersections) so that we130

benefit from the path-tracing acceleration techniques of computer graphics when dealing with complex geometries.131

The principle is depicted in Fig. 5 and details will be provided in the following sections.132
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Figure 3: An heterogeneous, multiple scattering and emitting/absorbing medium D is bounded by a partially reflecting wall ∂D. Physical images
associated to the evaluation of a local radiative quantity at the location x0 (for instance, the monospectral radiative intensity) with a reverse Monte
Carlo algorithm are as follows. Photons are followed from the location x0 in the unit direction −�u0 until the emission/absorption location, either
in the volume D or on the wall ∂D (see xb,13). At each step j of the optical path within the medium, a free path l j is sampled according to the
exponential Beer law, enabling the computation of the next step location x j = x j−1 − l j�u j−1. If the location x j is in the medium D, the event
may be an absorption, a scattering (see x1,x3,x4,x6,x7,x9,x11 and x12) or a null-collision (see x2 and x10). A null-collision event corresponds to a
pure-forward scattering event in which �u j = �u j−1 (see box 2.1). If the location x j reaches the wall ∂D, the event may be an absorption (see xb,13)
or a reflexion (see xb,5 and xb,8).

Figure 4: Illustration of the sampling of a random path using the
random walk-on-sphere method to estimate density at location x.
In order to end the random walk, the boundary of the domain is
thickened of a small value � in which the final position x3 is pro-
jected on the boundary.

Figure 5: Illustration of a random path sampling compatible with
path-tracing acceleration techniques of computer graphics. Each
sphere has the same radius δs and is adjusted when getting close
to the domain boundary.

133
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Feynman-Kac

The most famous example of expressing the solution of a field physics partial differential equation as a second
kind Fredholm equation is Feynman-Kac formula. We use it here to illustrate the class of physical problems
addressed in the present article. Let us consider the following reaction-diffusion equation:

∂θ

∂t����
temporal evolution

= − �∇ ·
�
−D�∇θ

�
������������������

diffusion

− �∇ · ��vθ���������
advection

− ν (θ − θ0)������������
reaction

(6)

where D is the diffusion coefficient, �v an advection speed and ν the reaction frequency. When this frequency
is function of time and/or space, an overestimate ν̂ can be introduced [11] to write

∂θ

∂t
= −�∇ ·

�
−D�∇θ

�
− �∇ · ��vθ� − ν̂

�
θ −

�
ν

ν̂
θ0 −

�
1 − ν
ν̂

�
θ
��

(7)

and applying Feynman-Kac formula [12] gives

θ(x, t) = E


e−ν̂(t−T )θb (XT , T )����������������������������������

boundary

+

� t

T
dt�ν̂e−ν̂(t−t�)

�
ν (Xt� , t�)
ν̂

θ0
�
Xt� , t�

�
+

�
1 − ν (Xt� , t�)

ν̂

�
θ
�
Xt� , t�

��

����������������������������������������������������������������������������������������������������������������������������������������������������������������
volume


(8)

where Xt� is the associated Weiner process backward in time, starting at location x at time t and first encoun-
tering the boundary at T . The solution θ(x, t) is herefore expressed as an expectation of a random expression
that includes θ (Xt� , t�), i.e. the solution of the very same problem at another location and another time. This
implies that the integral formulation of this expectation is a second kind Fredholm equation of the general
type that we used as starting point in Eq. 3:

θ(x, t) =
� t

−∞
dtb

�

∂Ω

dxb Gb(xb, tb|x, t) θb(xb, tb)

+

� t

−∞
pT (tb)dtb

� t

tb
dt�

�

Ω

dx�
�
S (x�, t�) +G(x�, t�|x, t) θ(x�, t�)

� (9)

with

Gb(xb, tb|x, t) = pXT (xb, tb) e−ν̂(t−tb)

G(x�, t�|x, t) = ν̂e−ν̂(t−t�) pXt� (x�|T = tb)
�
1 − ν(x�, t�)

ν̂

�

S (x�, t�) = e−ν̂(t−t�) pXt� (x�|T = tb) ν(x�, t�) θ0(x�, t�)

(10)

where pXT (xb, tb) is the probability density of the location xb and time tb at which the Wiener process en-
counters the boundary and pXt� (x�|T = tb) is the probability density that Xt� = x� knowing T = tb. The only
noticeable difference with Eq. 3 is that the t� integral over ] − ∞, t] is expressed as a convolution product,
requiring the sampling of the boundary encountering time also for the volume part of the Fredholm equation,
which makes no difference as far as the following derivations are concerned.

134

2.2. Coupling via interfaces between sub-parts with distinct physics135

The two examples above illustrate the broad variety of available path-statistics dealing with linear field physics
(see Fig. 3 and Box 2.1). However, they hold when the addressed quantity θ is unique. Here, our objective is to discuss
coupling in the particular case where coupling occurs via internal interfaces. Several physics are involved, defining
field quantities θ1, θ2 ... θN only known at the boundary of the overall system. These quantities are not known at the
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interfaces between two sub-parts of the system. At these interfaces, the coupling constraint is assumed to express each
θi using linear integral operators over the connected fields, i.e. for each �xb ∈ ∂Ωi and each time tb,

θi(�xb, tb) =
N�

j=1


� tb

−∞
dt�b

�

∂Ω j

d�xb
�Fbi j(�xb

�, t�b|�xb, tb) θ j(�xb
�, t�b) +

� tb

−∞
dt
�

Ω j

d�x Fi j(�x, t|�xb, tb) θ j(�x, t)
 (11)

where Ωi is the sub-part of Ω where θi is defined, ∂Ωi its boundary (a part of which may belong to the boundary
of the overall system), j is the index referring to a different sub-part of the system over the total N sub-parts, and
Fi j and Fbi j are known (they are null if θ j is not defined in either of the two sub-parts separated by the considered
interface). The approach consists in probabilizing this integral constraint exactly the same way the Fredholm equations
are probabilized in their respective fields for each single physics (see Eq. 5):

θi(�xb, tb) =
N�

j=1

Pi j

Pbi j

� tb

−∞
dt�b

�

∂Ω j

d�xb
� pbi j(�xb

�, t�b|�xb, tb)
Fbi j(�xb

�, t�b|�xb, tb) θ j(�xb
�, t�b)

Pbi j pbi j(�xb
�, t�b|�xb, tb)

+ (1 − Pbi j)
� tb

−∞
dt
�

Ω j

d�x pi j(�x, t|�xb, tb)
Fi j(�x, t|�xb, tb) θ j(�x, t)

(1 − Pbi j)pi j(�x, t|�xb, tb)



(12)

where Pi j is the probability of selecting the θ j branch when estimating θi at the interface (see Fig. 6). Pi j, Pbi j, pi j and136

pbi j are then the strict equivalent to P, Pb, p and pb in Eq. 5.137

Figure 6: Ω domain is compound of N sub-domains such as Ω = {Ω1,Ω2, ...,ΩN } where θ1, θ2, ..., θN are only known at the boundary ∂Ω of the
overall system. When estimating θi at a location �xb and a time tb at the interface ∂Ω j between Ωi and Ω j, selecting the θ j branch is given by
probability Pi j. If this branch is selected, then θi(�xb, tb) either takes the value θ j(�xb, t�b) with probability Pbi j (same location, different time), or the
value θ j(�x, t) with probability probability 1 − Pbi j (different location within domain Ω j, different time). The path sampling goes on until a known
temperature at the boundary ∂Ω is reached.

The parallel with the path-statistics described above for single physics is complete and suffices to recursively138

define statistical paths for the coupled problem:139

• When estimating θi at a given location withinΩi, the path starts as if the physics of θi was uncoupled and reaches140

a location at the boundary of Ωi.141

• At this stage, for an uncoupled problem, θi would be known and the path would end. However, the location142

reached on ∂Ωi may either be on ∂Ω or located at an interface between Ωi and other sub-parts of the system.143

• If this location is on ∂Ω, it means that the boundary of the overall system is reached, thus θi is known and the144

path ends.145

• If this location is at an interface between Ωi and other sub-parts of the system, then a new physics is sampled146

among those involved at this interface and the question is transformed into the estimation of θ j either inside Ω j147

or at the boundary ∂Ω j.148
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• This question is solved by the same algorithm, now for θ j instead of θi.149

• The path is therefore continued and this alternation between the coupled physics occurs at each encountered150

interface until ∂Ω is reached.151

A plain picture of full paths comprised of successions of coupled sub-paths is therefore established. Each sub-path152

corresponds to one physics (same statistics as those of the corresponding uncoupled sub-path), the full path ends at153

the overall boundary ∂Ω with a known value θbk and the index k corresponds to the last visited physics (that of the last154

sub-path, reaching the boundary). Fig. 7 illustrates the general pattern for a coupled heat transfer situation in which155

the objective is to evaluate the probe temperature at a specific time and location2.156

We will prove practical illustrations in the following sections.157

Figure 7: A coupled situation is illustrated in which fluid areas and solid areas, represented respectively in blue and brown surfaces, involve heat
transfer by conduction, convection and radiation. The green dot in the central solid area is the probe position from which the paths start. Conductive
sub-paths are represented in brown, radiative sub-paths are represented in red with a broken line symbol and convective sub-paths are represented
in blue with a symbol indicating a capacity. In this example, the paths can either end in the domain, within the solid or fluid areas, if the initial
condition has been reached, or on the boundary of the outer rectangle acting as boundary conditions. Ten paths are being displayed. They have been
produced using a simplified version of Stardis that we use in didactic contexts (http://www.edstar.cnrs.fr/prod/fr/training/tool/).

2.3. Monte Carlo and the storage of propagators158

At a first aim, the equations Eqs. (5) and (12) have been developed to evaluate the quantity θ with a reverse Monte159

Carlo algorithm. However, the essential point is this: by fully developing a formulation corresponding to Eq. (5)160

up to the coupling described by Eq. (12), the propagator ξ is made explicit and can be built up along the successive161

path samplings. This is exactly the concept described in introduction by the example with the two lamps. A major162

consequence is that the procedure to evaluate the propagator applies to a large class of physical problems, in complex163

geometries, with the same strategy as for evaluating a physics as simple as shape factors.164

2Fig. 7 was created on an online application [13] solving two-dimensional coupled thermal problems. The implementation relies on the same
ray-tracing acceleration libraries used for the complex geometries presented in the present article. The use of this application is described in a
Bachelor’s level learning scenario [14].
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In other words, whatever the number of physics addressed, whatever the number of sub-zones and thus of sampled165

sub-paths, whatever the shapes of these sub-zones, the evaluation of the propagator ξ is performed recursively along166

the sampling of these random paths, successively crossing the various physics as diverse as they might be.167

As a matter of fact, in Eq. 5, θ is expressed as an expectation along one path within the volume. In Eq. 12, θi is also168

expressed as an expectation in which coupling occurs at boundaries. If θ j(x, t) from Eq. 12 is replaced by θ(x, t) of169

Eq. 5, recursivity appears in a single expectation. Hence, if both equations are coupled, they define a space of infinite170

dimension, either recursive in volume or at boundaries. Moreover, in this infinite-dimension expectation expression,171

sources from Green’s theory are made explicit and each source contribution can be formally separated to express the172

propagator itself as an expectation. Hence, as all the sources are visited explicitly during one simulation (i.e. along173

the path sampling), all propagators (all source contributions) can be stored all along, without any significant additional174

computation effort. A simulation is performed “as if” θ was the quantity to be estimated for a given set of sources,175

and, more importantly, when a source is visited, the pre-factor of the corresponding source contribution is stored for176

later use with different sets of sources. In short, the propagators expectation needs to be estimated only once.177

A main strength of the Stardis code used in the following practical illustration is its ability to deal with huge178

amounts of physical and geometrical data. In [4], the city is simulated with interacting buildings, each of them179

described in full details, room per room, and the main message is that the computation time is fully insensitive to the180

level of refinement of this description3. The same observation can be made concerning the computation of propagators:181

the computation times required for the estimation of the propagators, and for their use in external codes with new sets182

of sources, are also both insensitive to the refinement level.183

3. Model184

3.1. System description185

At this stage the focus is set on radiation, diffusion and convection coupled inside systems typical of the heat-186

transfer engineering practice. The system is delimited with a system-boundary surface S that is split into NS sub-187

surfaces Si. The internal volume Ω is split into NΩ sub-volumes Ωi of boundaries ∂Ωi (see Fig. 8).188

Each sub-volume is either a uniform opaque solid or a perfectly mixed transparent fluid. The contact between189

adjacent solid sub-volumes is perfect (although Stardis deals with thermal contact resistances, they will not be de-190

scribed here) and the boundary layers at solid-fluid interfaces are not described explicitly: they are summarized by191

a convective exchange coefficients. The thermal properties of a solid sub-volume Ωi are the thermal conductivity λi,192

the mass density ρi and the mass thermal capacity ci. For a fluid sub-volume, the fluid volume Vi is required with the193

thermal properties ρi and ci. A power density ψi can also be prescribed inside each solid sub-volume. There cannot194

be two fluid sub-volumes adjacent to each other: a fluid sub-volume is always a fluid cell enclosed by solids.195

The ensemble of all solid-fluid interfaces (between adjacent sub-volumes of different types) is noted I. It is split196

into NI sub-interfaces Ii. The surface properties are uniform along each sub-interface: the convective exchange197

coefficient is noted hi; the surface of the solid is grey of emissivity �i and reflection is modeled using a fraction αi of198

specular reflection and a fraction 1 − αi of diffuse reflection.199

On each sub-surface Si, the boundary condition can be of the following types:200

• type-1 - Si is along a solid sub-volume and the solid temperature is known at this boundary, noted TB,i.201

• type-2 - Si is along a solid sub-volume and the boundary flux density is known, noted ϕB,i.202

• type-3 - Si is along a solid sub-volume, a transparent fluid is facing it, and the fluid temperature is known, noted203

TBF,i. The boundary flux density is then the sum of the convective flux density and the radiative flux density,204

with uniform values of the convective exchange coefficient hi, the emissivity �i and the specular/diffuse ratio205

αi. At such a boundary, for incident directions that come from outside the system, the radiance temperature is206

known, noted θBR.207

3A similar illustration is provided at https://www.meso-star.com/projects/stardis/stardis.html using a porous medium of in-
creasing refinement levels.
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Figure 8: Sketch of the general configuration. The system boundary is S. Three internal volumes Ω1, Ω2 and Ω3 are represented. Inside Ω1, there
is a fluid inclusion Ωi and a sub-solid Ωi+2. Ii is the solid/fluid boundary between Ω1 and Ωi. ∂Ωi+2 is the solid boundary between Ωi+2 and Ω1.
Similarly, Ω2 contains a fluid inclusion Ωi+1 and Ii+1 is the solid/fluid boundary. The last volume Ω3 contains a solid volume Ωi+3 and the solid
boundary is ∂Ωi+3. Conduction occurs in the solid volumes, radiation and convection occur in the different fluid volumes. h is the convective heat
transfer coefficient.

• type-4 - Si is at the limit of a fluid sub-volume and the limit temperature is known, noted TB,i. This temperature208

is to be interpreted as the one of a solid surface enclosing the fluid cell, with uniform values of the convective209

exchange coefficient hi, the emissivity �i and the specular/diffuse ratio αi.210

3.2. Radiation211

The solids are opaque, the fluids are transparent and photon transport is instantaneous: radiative heat transfer can
be summarized to instantaneous exchanges between solid surfaces. At a location �y at the surface of a solid sub-volume
Di facing a fluid, the radiative flux density ϕR(�y, t) is the difference between absorption of radiation in all incident
directions �ω and emission by the solid due to its local temperature Ti(�y, t) :

ϕR(�y, t) = −�i
�
σTi(�y, t)4 −

�

Hi(�y)
|�ω.�ni(�y)| I(�ω,�y, t) d�ω

�
(13)

where I(�ω,�y, t) is the spectrally integrated intensity at �y in direction �ω, σ is the Stefan-Boltzmann constant, �ni(�y) is212

the unit normal to the solid at �y andHi(�y) is the hemisphere of all incident directions at �y.213

It is assumed that radiative transfer can be linearized with respect to temperature around a given reference temper-214

ature Tref, which means that T 4
i ≈ T 4

ref + 4T 3
ref(Ti − Tref) leading to the expression hR = 4�iσT 3

ref. We then make the215

choice of translating the spectrally integrated intensity into a radiance temperature θR =
�
DΓ pγT (�xγ)dγ, i.e. a mean216

radiative temperature seen at the solid/fluid interface due to radiative exchanges through the fluid phase.217

Observing that
�
Hi(�y)

|�ω.�ni(�y)|
π

d�ω = 1, Eq. (13) becomes

ϕR(�y, t) = −hR

�
Ti(�y, t) −

�

Hi(�y)

|�ω.�ni(�y)|
π

θR(�ω,�y, t) d�ω
�

(14)

We note �z ≡ �z(�y,−�ω) the location of first intersection with a solid sub-volume Ω j of a straight line starting from
�y in direction −�ω. If there is no intersection (�z at infinity), then θR(�ω,�y, t) equals the incident radiance θBR(�ω,�y, t)
known at the system boundary. Otherwise, θR(�ω,�y, t) = θR(�ω,�z, t) (pure transport) and θR(�ω,�z, t) is modeled as the
sum of the emission by the solid at temperature T j(�z, t), the specular reflection of incoming radiation in direction −�ωS
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where −�ωS is the symmetric of �ω around �n j(�z), and the diffuse reflection of radiation incident in all the directions �ω�

of the incident hemisphereH j(�z) at �z. Altogether,



If �z at∞ : θR(�ω,�y, t) = θBR(�ω,�y, t)
If �z ∈ ∂D j : θR(�ω,�y, t) = � jT j(�z, t) + (1 − � j)α jθR(−�ωS ,�z, t)

+ (1 − � j)(1 − α j)
�

H j(�z)

|�ω�.�n j(�z)|
π

θR(�ω�,�z, t) d�ω�
(15)

3.3. Diffusion218

At any location �x inside a solid sub-volume Di, at any time t, the solid temperature Ti ≡ Ti(�x, t) is solution of the
following heat equation,

ρici
∂Ti

∂t
= λiΔTi + ψi (16)

where ψi ≡ ψi(�x, t) is the local value of the power density. The initial condition at time tI is

Ti(�x, tI) = TI,i(�x) (17)

At any location �y at the boundary of Di (i.e. �y ∈ ∂Di), at any time t, the modeling of the interface or the boundary219

condition is one of the following :220

• If �y is at an interface with another solid sub-volume Ω j,

λi�∇Ti.�ni = λ j�∇T j.�ni (18)

• If �y is at an interface Ik with a fluid sub-volumeD j (with hR = 4�kσT 3
ref),

− λi�∇Ti.�ni = hk(T j − Ti) − hR

�
Ti −

�

Hi(�y)

|�ω.�ni(�y)|
π

θR(�ω,�y, t) d�ω
�

(19)

• If �y is at the boundary of the system, in a sub-surface S j with a type-1 boundary condition,

Ti = TB, j (20)

• If �y is at the boundary of the system, in a sub-surface S j with a type-2 boundary condition,

− λi�∇Ti.�ni = ϕB, j (21)

• If �y is at the boundary of the system, in a sub-surface S j with a type-3 boundary condition (with hR = 4� jσT 3
ref),

− λi�∇Ti.�ni =

h j(TBF, j − Ti) − hR

�
Ti −

�

Hi(�y)

|�ω.�ni(�y)|
π

θR(�ω,�y, t) d�ω
� (22)

3.4. Convection221

Inside a fluid sub-volume Di, at any time t, the fluid temperature Ti ≡ Ti(t) is uniform and its evolution equation
is

ρiciVi
dTi

dt
=

�

∂Di

h(�y)(TS (�y) − Ti)d�y (23)

where h(�y) and TS (�y) are respectively the convective exchange coefficient and the surface temperature at �y on one of222

the solid surfaces delimiting the fluid cell. If �y is at an interface Ik with a solid sub-volume D j, then h(�y) = hk and223

TS (�y) = T j(�y, t). If �y is at the boundary of the system, in a sub-surface S j with a type-4 boundary condition, then224

h(�y) = h j and TS (�y) = TB, j(�y, t).225
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4. Path sampling and propagation226

In this section, the reverse Monte Carlo algorithm is exposed, where sampling paths is driven by the model above,227

to estimate a local temperature at location �x and time t, or a radiance temperature at location �x and time t in direction228

�ω.229

When integrated quantities are required (an average temperature on a volume or a surface, a spatially and angularly230

integrated radiance for simulation of infrared camera pixels, ...), the only algorithmic change is that, prior to initiating231

a thermal path, �x and/or �ω are sampled accordingly. Further description of such extensions will not be provided here.232

4.1. A path sampling Monte Carlo algorithm233

Depending on the choice of the quantity of interest, the estimate will yield either θR(�ω, �x, t) for �x inside a fluid sub-
volume, either Ti(�x, t) for �x inside a solid sub-volume, or Ti(., t) for any location inside a given fluid sub-volume. In
each case, N thermal paths γ j are sampled and each path is used to produce a Monte Carlo weight wγ j . These weights
are then averaged to produce an estimate m of the addressed quantity, together with a standard error s associated to
this estimate, that can be interpreted in term of a numerical uncertainty.

Ti(�x, t) or Ti(., t) or θR(�ω, �x, t) ≈ m =
1
N

N�

j=1

wγ j (24)

s =
1√
N


1
N

N�

j=1

w2
γ j
− m2



1
2

(25)

The focus is here set on the calculation of wγ for any path γ, highlighting its propagative nature and how the informa-234

tion about the sources is collected along the path.235

A thermal path is structured as a succession of diffusive, convective and radiative sub-paths. From this point of236

view, the only difference between the paths used to evaluate θR(�ω, �x, t) in a fluid, Ti(�x, t) in a solid or Ti(., t) in a fluid is237

that they start with a radiative sub-path, a diffusive sub-path or a convective sub-path respectively. Each sub-path can238

be therefore considered independently, only keeping in mind that: a) at the beginning of the first sub-path the Monte239

Carlo weight is initialized to wγ = 0, and b) that the end of each sub-path is either the start of a new sub-path, or the240

end of the whole path γ. Each path γ ends at a location �xγ,end, either inside the system at the initial time tI or at the241

boundary at a time tγ,end. When it ends with a known incident radiant temperature at the boundary, the corresponding242

incident direction is �ωγ,end.243

As announced in the preceding theoretical part (Sec. 2), we start the description "as if" the only objective was244

the Monte Carlo estimation of temperatures or radiances, and not their associated propagators. This description is245

exhaustive as far as the path-sampling algorithms are concerned, but we do not recall the theoretical developments246

justifying them [4, 15]. We will focus successively on the sub-paths associated to each of the three physics considered247

(Secs. 4.1.1, 4.1.2 and 4.1.3), then on the probabilization of the coupling at the interfaces (Sec. 4.2). Once the whole248

path-sampling Monte Carlo algorithm is set, i.e. when the weight associated to each path is fully defined (Sec. 4.3),249

we will explain how propagators are constructed for each source by splitting the weight expression into parts and250

storing the corresponding data (Sec. 5).251

4.1.1. Radiative sub-paths252

Radiative sub-paths are constructed using a standard backward tracking multiple-reflection algorithm. Starting253

from �x with the objective of evaluating θR(�ω, �x, t), a ray is traced in the scene in direction −�ω, looking for a first254

intersection �z1 with a solid surface. If no intersection is found (�z1 is at infinity), then our radiation model says that255

θR(�ω, �x, t) = θBR(�ω, �x, t) where θBR is a known incident radiance temperature. In this case, the path γ is ended at256

location �xγ,end = �x, the time tγ,end = t and the direction �ωγ,end = �ω.257

The Monte Carlo weight is increased by θBR:

wγ += θBR(�ωγ,end, �xγ,end, tγ,end) (26)
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Otherwise �z1 belongs either to a sub-surface S j or a sub-interface S j where the emissivity � j and the specular/diffuse258

fraction α j are known. A Bernoulli test of probability � j is made to decide whether absorption occurs. If the test is true,259

the radiative sub-path is ended at �z1. If not, reflection occurs with another Bernoulli test to decide between specular260

or diffuse reflection, with a Lambertian sampling of the reflection direction in the latter case. The path tracing process261

is then continued from �z1 in the direction of reflection −�ω1, etc, thus defining a succession of possible reflections at262

locations �z1, �z2, �z3 ... until either no reflection is found or absorption occurs. If no reflection is found, the path is263

ended with the Monte Carlo weight increment of Eq. (26). When absorption occurs as a location �zk, then there are264

two possible cases :265

• If �zk belongs to a sub-surface at the system boundary, the temperature TB is known at this surface (a radiative
path travels necessarily in a fluid and only a type-4 boundary condition can be encountered), the path γ is ended
and the Monte Carlo weight is increased by TB:

wγ += TB(�xγ,end, tγ,end) (27)

with �xγ,end = �zk and tγ,end = t.266

• If �zk belongs to a sub-interface, then the encountered solid is inside the system and its temperature is unknown.267

The path γ must be continued with a new sub-path (with no change of wγ) and a test is made to decide between268

the three heat transfer modes occurring at this interface: a radiative sub-path back into the fluid, a convective269

sub-path also in the fluid, or a diffusive path inside the solid. This test is the object of Sec. 4.2.270

Radiative sub-paths : Summary

• A radiative sub-path is an instantaneous backward traced ray in a transparent fluid with multiple reflections at solid
surfaces.

• If the sub-path encounters a known incident radiance or a known solid temperature, then γ is ended and the Monte
Carlo weight is increased by θBR or TB.

• Otherwise, the Monte Carlo weight is unchanged and at the absorption location, γ is continued with the start of
another sub-path at the corresponding solid-fluid interface.

271

4.1.2. Diffusive sub-paths272

Conductive sub-paths are approximate Brownian motions backward in time and space inside a solid. They are273

constructed as successions of jumps of arbitrary length δ and in isotropically sampled directions. Convergence towards274

the exact solution is obtained for δ → 0 (Brownian motion is only exact at the limit δ = 0 [16]). However, as275

the computational time increases considerably when the value of δ decreases, a compromise is required between276

computational cost and precision. Hence, δ needs to be set sufficiently low to ensure a satisfactory accuracy on the277

obtained solution and sufficiently high to provide an appropriate computational time.278

Starting from �x with the objective of evaluating T (�x, t), the first algorithmic step is the sampling of a backward
time shift δt according to an exponential law of parameter τi =

δ2ρici
6λi

, i.e.

δt = −τi ln(r) (28)

where r is sampled uniformly on [0, 1]. If t − δt < tI (the backward shift has crossed the initial time), then γ is ended
and the Monte Carlo weight is increased by the initial temperature:

wγ += TI(�xγ,end) (29)

with �xγ,end = �x. Otherwise a direction �u is sampled isotropically in the unit sphere, a jump is made from �x to �x + δ�u
and the Monte Carlo weight is increased to account for the local power density ψ:

wγ += βψ(�x)ψ(�x, t − δt) (30)

14



with βψ = δ2

6λi
.279

In the vicinity of a solid surface, δ is adjusted depending on �u so that �x + δ�u may either remain inside the solid280

or reach the solid surface exactly. While �x + δ�u remains in the solid, say Di, then the diffusive sub-path is repeatedly281

continued from location to location until reaching the surface ∂Di.282

When �x + δ�u reaches ∂Di, say at a location �z and time tz, the diffusive sub-path is stopped. If �z belongs to an283

interface with another solid sub-volumeD j, then the temperature of the interface is unknown and γ must be continued284

with another diffusive sub-path, initiated either inside Di or inside D j. If �z belongs to an interface with a fluid sub-285

volume, then the temperature of the interface is also unknown and γ must also be continued, and the next sub-path can286

be either a diffusive one, back intoDi, or a convective or a radiative one inside or through the fluid. The corresponding287

tests are described in Sec. 4.2.288

If �z is at the boundary of the system, then the algorithm depends on the boundary condition type:289

• For a type-1 boundary condition, the boundary temperature TB is known and γ is stopped and the Monte Carlo
weight is increased by TB:

wγ += TB(�xγ,end, tγ,end) (31)

with �xγ,end = �z and tγ,end = tz.290

• For a type-2 boundary condition, the location is shifted back into the solid sub-volume, of a distance δ along
the normal, the diffusive sub-path is continued from this new location, and the Monte Carlo weight is increased
to account for the value of the local flux density:

wγ += βϕ(�z)ϕ(�z, tz) (32)

with βϕ = δ
λi

.291

• For a type-3 boundary condition, neither the boundary temperature nor the flux density is known and γ is
continued exactly the same way as for a solid-fluid interface inside the system (see Sec. 4.2). The only difference
is that when the following sub-path is a convective one, then the fluid temperature TBF is known and γ is ended.
In this case, the Monte Carlo weight is increased by TBF:

wγ += TBF(�xγ,end, tγ,end) (33)

with �xγ,end = �z and tγ,end = tz (tz is the time at which the �z location was reached).292

Diffusive sub-paths : Summary

• A diffusive sub-path is a Brownian motion backward in time inside a solid sub-volume until it reaches either the
initial time or the sub-volume boundary.

• If the initial time is reached, then γ is ended and the Monte Carlo weight is increased by TI.

• If the system boundary is reached at location where the temperature is known, then γ is ended and the Monte Carlo
weight is increased by TB.

• If the system boundary is reached at location where the flux density is known, then a new diffusive sub-path is
initiated, inside the same sub-volume, and the Monte Carlo weight is increased by βϕϕ.

• In all other cases, the diffusive sub-path has reached a location where neither the temperature nor the flux density is
known, and a new sub-path (diffusive, convective or radiative) must be initiated from the corresponding interface.

• Along the path, the Monte Carlo weight is increased to account for the local value of the volume source density ψ.

• As Brownian motion is approximated with discrete jumps of length δ, the continuous effect of the source is replaced
by a Monte Carlo weight increment of βψψ at each jump.

293
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4.1.3. Convective sub-paths294

Convective sub-paths inside a fluid sub-volume Di are independent of their initial location: the fluid cells are
perfectly mixed so Ti is only a function of time, and the only required information is the time t at which the convective
sub-path was initiated. From t, a backward time shift δt is sampled according to an exponential law of parameter hiVi

ρiciS i
,

i.e.
δt =

hiVi

ρiciS i
ln(r) (34)

where S i and Vi are respectively the surface and volume of the fluid cavity, and r is sampled uniformly on [0, 1]. If
t − δt < tI (the backward shift has crossed the initial time), then γ is ended and the Monte Carlo weight is increased
by the initial temperature:

wγ += TI,i (35)

Otherwise a location �z is sampled on ∂Di according to probability density p�Z proportional to the local value of the
convective exchange coefficient:

p�Z(�z) =
h(�z)�

∂Di
h(�z�)d�z�

(36)

and the time is shifted to tz = t − δt.295

If �z is at the system boundary, then this corresponds necessarily to a type-4 boundary condition and the boundary
temperature TB is known, so γ is ended and the Monte Carlo weight is increased by TB:

wγ += TB(�xγ,end, tγ,end) (37)

with �xγ,end = �z and tγ,end = tz. Otherwise �z is at a solid-fluid interface inside the system and the interface temperature296

is unknown. γ is then continued with a new diffusive, convective or radiative sub-path as described in Sec. 4.2.297

Convective sub-paths : Summary

• A convective sub-path inside a fluid sub-volume is only a backward exponential shift in time.

• If the initial time is reached, then γ is ended and the Monte Carlo weight is increased by TI.

• Otherwise a location is sampled on one of the solid surfaces surrounding the fluid.

• If this location is at the boundary of the system and the surface temperature is known, then γ is ended and the Monte
Carlo weight is increased by TB.

• Otherwise the convective path has reached an interface where the temperature is unknown and a new sub-path
(diffusive, convective or radiative) must be initiated from this interface.

298

4.2. Choosing the next sub-path at an interface299

4.2.1. Solid-solid interface300

When describing diffusive sub-paths, we encountered an algorithmic step where a location �z was reached, at the
interface between two solid sub-volumes Di and D j, at time tz. At this interface, the temperature was unknown and
γ had to be continued. The same question is raised when γ needs to be started at such a location in order to evaluate
T (�x, t) with �x = �z and t = tz. This is achieved by first shifting �z along the normal, either by a distance δi inside
Di or by a distance δ j inside D j, where δi and δ j are the values of the numerical parameter δ used inside Di and
inside D j respectively (depending of their characteristic dimensions). Then a diffusive sub-path is started from this
shifted location, still at the same date. Choosing the side is made by retainingDi with probability Pcond,i andD j with
probability Pcond, j :

Pcond,i =

λi
δi

λi
δi
+
λ j

δ j

Pcond, j = 1 − Pcond,i

(38)
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4.2.2. Solid-fluid interface301

When describing each of the three sub-path types, we encountered the possibility that a location �z is reached, at an302

interface Ik between a solid sub-volumeDi and a fluid sub-volumeD j, at time tz. At this interface the temperature is303

unknown and γ is to be continued. The same question is raised when γ needs to be started at such a location in order304

to evaluate T (�x, t) with �x = �z and t = tz. The same question is also encountered when a diffusive sub-path reaches a305

location at the system boundary with type-4 boundary condition. We focus the description on the case of an internal306

interface betweenDi andD j.307

At such an interface, all three heat transfer modes are present: diffusion insideDi, convection and radiation inside
Ω j. A test is therefore made to pick among a diffusive, a convective or a radiative sub-path. Conductive, convective
and radiative sub-paths are picked with probabilities Pcond, Pconv and Pray respectively, with

Pcond =

λi
δi

λi
δi
+ hk + hR

Pconv =
hk

λi
δi
+ hk + hR

Pray = 1 − Pcond − Pconv

(39)

If diffusion is retained, then �z is shifted by a distance δi along the normal inside Di and the diffusive sub-path is308

initiated at this shifted location. For convection or radiation, the corresponding sub-path is initiated at �z at time tz.309

Choosing the next sub-path at a solid-solid or solid-fluid interface : Summary

• Departing from a solid-solid or a solid-fluid interface is made by initiating a sub-path with a heat transfer mode that
is sampled according to probabilities reflecting the flux continuity through the interface.

• When a diffusive sub-path is chosen, the starting location is shifted by a distance δ inside the solid.

• In all cases, there is no increment made to the Monte Carlo weight.
310

4.3. The Monte Carlo weight311

As mentioned above, each path γ ends at a location �xγ,end, either inside the system at the initial time tI or at the312

boundary at a time tγ,end. When it ends with a known incident radiant temperature at the boundary, the corresponding313

incident direction is �ωγ,end. In each case, the Monte Carlo weight is increased by a temperature value that can be314

TI(�xγ,end), TB(�xγ,end, tγ,end), TBF(�xγ,end, tγ,end) or θBR(�ωγ,end, �xγ,end, tγ,end). Let µγ,end denote the type of ending, from 0 to315

3 in the order of this list.316

We can then define Tγ,end ≡ Tγ,end(�xγ,end, tγ,end, �ωγ,end, µγ,end) as :

Tγ,end(�xγ,end, tγ,end, �ωγ,end, 0) = TI(�xγ,end)
Tγ,end(�xγ,end, tγ,end, �ωγ,end, 1) = TB(�xγ,end, tγ,end)
Tγ,end(�xγ,end, tγ,end, �ωγ,end, 2) = TBF(�xγ,end, tγ,end)
Tγ,end(�xγ,end, tγ,end, �ωγ,end, 3) = θBR(�ωγ,end, �xγ,end, tγ,end)

(40)

Along γ, diffusive sub-paths may have crossed solid sub-volumes with a volume power source ψ, and we have seen317

that the Monte Carlo weight was increased by βψψ at each discrete jump location. Let Nψ denote the number of such318

locations, and �xγ,ψ(k) and tγ,ψ(k) the location and time of the k-th of these Monte Carlo weight increments. Similarly,319

diffusive sub-paths may have visited boundary locations where the flux density ϕ is known, and we have seen that the320

Monte Carlo weight was increased by βϕϕ at each such visit. Let Nϕ denote the number of such visits, and �xγ,ϕ(k) and321

tγ,ϕ(k) the location and time of the k-th of these Monte Carlo weight increments.322
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With these notations, the complete expression of the Monte Carlo weight associated to γ is

wγ =
Nψ�

k=1

βψ(�xγ,ψ(k)) ψ
�
�xγ,ψ(k), tγ,ψ(k)

�

+

Nϕ�

k=1

βϕ(�xγ,ϕ(k)) ϕ
�
�xγ,ϕ(k), tγ,ϕ(k)

�

+ Tγ,end(�xγ,end, tγ,end, �ωγ,end, µγ,end)

(41)

The reading of this weight expression illustrates the relation between such path sampling Monte Carlo algorithms323

and Green’s theory. From Green’s point of view, the temperature solution of the problem at (�x∗, t∗), or the radiance324

temperature at (�ω∗, �x∗, t∗) results from an integral of all the sources, TI, TB, TBF, θBR, ψ and ϕ, at (�x, t, �ω) multiplied325

by a propagator density that is independent of the source values. From Monte Carlo point of view, it results from the326

average of a large number of weights that carry the same sources from (�xγ,end, tγ,end, �ωγ,end) or from (�xγ,ψ(k), tγ,ψ(k))327

and (�xγ,ϕ(k), tγ,ϕ(k)), multiplied by factors that are independent of the source values: the factor is 1 for TI, TB, TBF and328

θBR, it is βψ for ψ and βϕ for ϕ. The paths sample ζ(�x, t, �xS , tS )S (�xS , tS ) in a backward manner.329

5. Stardis : storing the propagation data330

5.1. Illustration of the principle in the case of two sources331

Figure 9: Schemes of the solid cube with two isothermal faces S 1 and S 2, respectively at temperature TB,1 and TB,2, with a location �x inside the
solid volume.

Let us start by considering a simple configuration akin to the radiative transfer example with two lamps of power332

P1 and P2 viewed from a camera pixel.333

Here, the heat transfer mode is diffusion inside a cubic solid with two isothermal faces S1 and S2, facing each
other, at temperatures TB,1 and TB,2, the other four faces being adiabatic (see Fig. 9). The addressed quantity is the
stationary temperature T (�x) at a location �x inside the solid. In terms of Green’s theory, as the problem is stationary, no
propagator is required for the initial condition (reported to −∞). There are no volume sources and the only imposed
surface flux is null (at the adiabatic faces). The only sources are therefore TB,1 and TB,2 and we note ζB,1(�x) and ζB,2(�x)
the corresponding propagators:

T (�x) = ζB,1(�x)TB,1 + ζB,2(�x)TB,2 (42)

Considering the expression of the Monte Carlo weight in Eq. (41), how can we provide an estimate for ζB,1(�x) and one334

for ζB,2(�x) using the same thermal paths as those used to estimate T (�x)?335

In the expression of the Monte Carlo weight of the preceding section, for this simple case, the sums over Nψ and
Nϕ vanish (no surface flux, no volume flux), �ωγ,end is not used (we estimate a local temperature and not a radiance

18



temperature), tγ,end is unused (the problem is stationary) and µγ,end = 1 (the path can only end at S1 or S2, i.e. at a
boundary with a known solid temperature). Eq. (41) reduces to

wγ = Tγ,end(�xγ,end, 1) (43)

with Tγ,end(�xγ,end, 1) = TB,1 if �xγ,end ∈ S1 and Tγ,end(�xγ,end, 1) = TB,2 if �xγ,end ∈ S2.336

In the spirit of the example used in introduction, let us address ζB,1(�x) by "turning off" the second source, i.e.337

TB,2 = 0, so that ζB,1(�x) = T (�x)
TB,1

.338

This defines the Monte Carlo weight to be used for estimating ζB,1(�x) as : wB,1
γ =

wγ
TB,1
=

Tγ,end(�xγ,end,1)
TB,1

339

with Tγ,end(�xγ,end, 1) = TB,1 if �xγ,end ∈ S1 and Tγ,end(�xγ,end, 1) = 0 if �xγ,end ∈ S2,340

namely, wB,1
γ = 1 if �xγ,end ∈ S1 and wB,1

γ = 0 if �xγ,end ∈ S2.341

This writes
wB,1
γ = H(�xγ,end ∈ S1) (44)

whereH is a test function, taking the value 1 if the condition is valid and 0 otherwise. Similarly,

wB,2
γ = H(�xγ,end ∈ S2) (45)

In algorithmic terms,342

• N paths γ j are sampled;343

• wB,1
γ j is computed for each path (1 if S1 is reached, 0 otherwise);344

• wB,2
γ j is computed for each path (1 if S2 is reached, 0 otherwise);345

• the Monte Carlo estimate of ζB,1(�x) is mB,1 =
1
N
�N

j=1 wB,1
γ j ;346

• the Monte Carlo estimate of ζB,2(�x) is mB,2 =
1
N
�N

j=1 wB,2
γ j .347

Then, Eq. (42) can be used to estimate the results for any set of source values.348

349

5.2. Implementation in Stardis350

In Stardis, we consider scenes where boundary conditions can be split into a set of constant and uniform sources:351

θiBR does not depend on location, time and direction, and for each geometrical element i, TB,i, ϕB,i and ψi are constant352

and uniform, TI,i does not depend on location. λi, ρi, ci, hi, �i and αi are also considered uniform over element i.353

Under these assumptions, ζ(�x, t, �xS , tS ) can be aggregated by geometrical element as done above in Eqs. (44) and
(45). For this, we use the test function to build one weight expression for each geometrical element i and each type of
source, following:

wI,i
γ = H(�xγ,end ∈ Ωi)H(µγ,end = 0)

wB,i
γ = H(�xγ,end ∈ Si)H(µγ,end = 1)

wBF,i
γ = H(�xγ,end ∈ Si)H(µγ,end = 2)

wBR
γ = H(µγ,end = 3)

wψ,iγ =
Nψ�

k=1

H(�xγ,ψ(k) ∈ Ωi)βψ(�xγ,ψ(k))

wϕ,iγ =
Nϕ�

k=1

H(�xγ,ϕ(k) ∈ Si)βϕ(�xγ,ϕ(k))

(46)

19



These weights are then just a splitting of the weights given by Eq. 41 and only them need to be stored while solving
the latter. The Monte Carlo algorithm is therefore modified to estimate:

mI,i =
1
N

N�

j=1

wI,i
γ j

mB,i =
1
N

N�

j=1

wB,i
γ j

mBF,i =
1
N

N�

j=1

wBF,i
γ j

mBR =
1
N

N�

j=1

wBR
γ j

mψ,i =
1
N

N�

j=1

wψ,iγ j

mϕ,i =
1
N

N�

j=1

wϕ,iγ j

(47)

Finally, once these estimates have been constructed, they can be used to estimate the addressed quantity for any set of
sources:

T (�x, t) or T (t) or θR(�ω, �x, t) ≈ m =
Nω�

i=1

mI,i TI,i

+

NS�

i=1

mB,i TB,i

+

NS�

i=1

mBF,i TBF,i

+mBR θBR

+

Nω�

i=1

mψ,i ψi

+

NS�

i=1

mϕ,i ϕi

(48)

5.3. Uncertainty estimation354

Since thermal paths are all used to estimate the different propagators, each propagator estimate is correlated to355

another. Furthermore, surfacic and volumetric sources are encountered along thermal paths and therefore each path356

does not visit only one single source (the final temperature). Altogether, the question of quantifying the uncertainty357

associated to T (�x, t) requires some attention as soon as it is computed using the data stored along a Monte Carlo ran358

with another set of sources.359

If, in any applicative context, there was some need for estimating the uncertainty of each propagator (and not only360

of the resulting uncertainty on T (�x, t)), then, from Eq. (47), it appears clearly that a Monte Carlo approach is used for361

estimating each propagator as an average of dedicated weights. We could therefore compute an uncertainty associated362

to each of these estimates by computing the standard error of the Monte Carlo weights for each propagator. This363

would indeed provide a faithful information about the uncertainty with which each propagator is known for a given364

number of sampled thermal-paths. However, this information would be insufficient to estimate the uncertainty of the365
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finally addressed quantity (T (�x, t) in Eq. 48): since the same set of thermal-paths has been used to estimate all the366

propagators (in one single Monte Carlo run), the propagator estimates are correlated. Estimating the uncertainty of367

T (�x, t) then requires to take into account the correlation matrix for all the propagators.368

Leaving aside the idea of quantifying the uncertainty of each propagator and computing only the uncertainty on
T (�x, t) gives us more freedom on how the stored data can be aggregated. All the required information is stored along
each path (i.e. which source and how many times this source is encountered). When evaluating the temperature with
the Green function, we could therefore recalculate the Monte Carlo weights and hence, recalculate at the same time
the square weight to evaluate the uncertainty as in the case of a regular Monte Carlo computation (see Eq. (25)). The
quantification would be made exactly as if the Monte Carlo had been re-run, with the same samples but other source
values. This would include all the above mentioned correlations. However, operating this way may be cumbersome if
a high amount of information has been stored (large number of sources, for instance). But then, we can simply gather
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the information into squared sums and cross–sums for volumetric/surfacic sources:

ssqI,i =

N�

j=1

�
wI,i
γ j

�2

ssqB,i =

N�

j=1

�
wB,i
γ j

�2

ssqBF,i =

N�

j=1

�
wBF,i
γ j

�2

ssqBR =

N�

j=1

�
wBR
γ j

�2

ssqψ,i =
N�

j=1

�
wψ,iγ j

�2

ssqϕ,i =
N�

j=1

�
wϕ,iγ j

�2

scI,i,ψ,k =

N�

j=1

wI,i
γ j

wψ,kγ j

scI,i,ϕ,k =

N�

j=1

wI,i
γ j

wϕ,kγ j

scB,i,ψ,k =

N�

j=1

wB,i
γ j

wψ,kγ j

scB,i,ϕ,k =

N�

j=1

wB,i
γ j

wϕ,kγ j

scBF,i,ψ,k =

N�

j=1

wBF,i
γ j

wψ,kγ j

scBF,i,ϕ,k =

N�

j=1

wBF,i
γ j

wϕ,kγ j

scBR,ψ,k =

N�

j=1

wBR
γ j

wψ,kγ j

scBR,ϕ,k =

N�

j=1

wBR
γ j

wϕ,kγ j

scψ,i,ϕ,k =
N�

j=1

wψ,iγ j wϕ,kγ j

(49)
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We then compute s as:

s =
1√
N

�
1
N

� Nω�

i=1

�
ssqI,i T 2

I,i +

Nω�

k=1

scI,i,ψ,k TI,i ψk +

NS�

k=1

scI,i,ϕ,k TI,i ϕk

�

+

NS�

i=1

�
ssqB,i T 2

B,i +

Nω�

k=1

scB,i,ψ,k TB,i ψk +

NS�

k=1

scB,i,ϕ,k TB,i ϕk

�

+

NS�

i=1

�
ssqBF,i T 2

BF,i +

Nω�

k=1

scBF,i,ψ,k TBF,i ψk +

NS�

k=1

scBF,i,ϕ,k TBF,i ϕk

�

+ssqBR θ
2
BR +

Nω�

k=1

scBR,ψ,k θBR ψk +

NS�

k=1

scBR,ϕ,k θBR ϕk

+

Nω�

i=1

ssqψ,i ψ2
i

+

NS�

i=1

ssqϕ,i ϕ2
i

+

Nω�

i=1

NS�

k=1

scψ,i,ϕ,k ψi ϕk

�

−m2
�1/2

(50)

6. Implementation369

The implementation of stardis-solver, that is presented here, is a reference implementation suitable for exe-370

cution with conventional computing resources (low-end personal computer).371

The source code of the solver is designed to be easy to understand and suitable for training purposes. Users can372

then rely on this implementation and make it evolve according to their needs.373

The current implementation is a compromise between the different possibilities described in Sec. 5. This compro-374

mise consists in:375

• Grouping the terms related to volume power densities and heat flux densities, restraining heat flux and power to376

be uniform over time and space.377

• Keeping all positions and times for other sources (initial temperature, ambient radiation temperature, fluid378

temperature, imposed temperature), allowing these sources to vary, either over time or space or both.379

Although most of the propagators that we compute in practice are integrals of the Green function over the system380

parts where the sources are uniform, we make use of the post-fix green for the corresponding parts of the code.381

6.1. Code structure382

Code structure is briefly presented to help the reader understand the topics related to the Green function. All the383

data structures and functions described thereafter in a literate programming-inspired way [17], are located in the file384

sdis_green.c . The file is structured as follows:385
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<sdis_green.c> =
<license>
<inclusions>
<secondary types and functions>
<green data structures> (1)
<helper functions>
<build functions> (2)
<evaluation functions> (3)386

The three main parts of interest and detailed below are:387

(1) Data structures used to store the Green function (see Sec. 6.2).388

(2) Functions used to fill up these data structures in the construction of the Green function (see Sec. 6.3).389

(3) Functions using these data structures to evaluate the temperature for a given set of source values (see Sec. 6.4).390

The source code for the data structures and functions described in these three sections are grouped in Appendix391

A at the end of the document.392

6.2. Data structures393

When building the Green function, the Monte-Carlo weights are not computed, but the data needed to compute394

them is stored, path by path, for later use. This storage requires two different types: one to store the data collected395

along individual Green paths, and another one to store the Green function itself, including the data of the sampled396

Green paths, as well as all the shared data referenced by the paths (materials, interfaces, ...):397

<green data structures> =
<green path data structure>
<green function data structure>398

Path storage. Green paths are constructed by stardis-solver, following the very same algorithm as when evalu-399

ating a temperature. The difference between temperature computation and the construction of the Green function is400

that when a path is sampled, some of the information is stored in the data structure corresponding to the Green path401

instead of being used on the fly to compute a temperature (see List. 2). Then, each path sampled by the solver results402

in a Green path data structure storing the information as follows:403

<green path data structure> =
struct green_path {

<path elapsed time>
<flux density terms collection>
<power density terms collection>
<end of path>
<miscellaneous variables>

};404

Elapsed time is trivially a double:405

<path elapsed time> =
double elapsed_time;406

Flux and power terms encountered along the path are partially merged and stored in dynamic arrays. Merging is407

done by material and interface: all contributions along the path are accumulated and stored as a single term associated408

with a given material or interface.409
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<flux density terms collection> =
struct darray_flux_term flux_terms;

<power density terms collection> =
struct darray_power_term power_terms;410

As flux terms can only appear at interfaces, merged flux terms consist of an interface identifier, the involved side411

and the corresponding cumulated flux value. On the other hand, power terms appear in media, thus merged power412

terms consist of a medium identifier and the cumulated power value.413

struct flux_term {
double term;
unsigned id; /* Identifier of the interface */
enum sdis_side side;

};

struct power_term {
double term;
unsigned id; /* Identifier of the medium */

};414

The end of the path can be of three types: at a boundary (fragments), in a volume (vertex), or a radiative415

exchange with the surrounding environment. This end of the path is represented by an union which is interpreted416

according to the value of the field limit_type, which also allows to interpret limit_id as being an identifier417

of medium (case in volume) or interface (case at boundary); note that the radiative case requires neither an union418

member nor a limit_id:419

<end of path> =
union {

struct sdis_rwalk_vertex vertex;
struct sdis_interface_fragment fragment;

} limit;
unsigned limit_id;
enum sdis_green_path_end_type end_type;420

Green function storage. The main structure is used to store everything allowing the later evaluation of a temperature421

estimator. This includes the description of the sampled paths as well as all the shared data referenced by the sampled422

paths (see List. 1).423

<green function data structure> =
struct sdis_green_function {

<media collection>
<interfaces collection>
<paths collection>
<miscellaneous variables>

};424

Collections of media and interfaces accumulate the media and interfaces that have been visited when constructing425

the Green function. Individual paths can then reference this shared information. These collections are hash tables,426

i.e. associative containers that favor fast and constant time lookup, to ensure unique storage of only the media and427

interfaces visited by the paths:428

<media collection> =
struct htable_medium media;

<interfaces collection> =
struct htable_interf interfaces;429
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The paths collection is the set of the paths sampled for the construction of the Green function. It is a dynamic430

array that is well suited for iterative storage and path iteration:431

<paths collection> =
struct darray_green_path paths;432

6.3. Building propagation information433

Various functions are needed to fill in the Green function’s data structures. They can be divided in two groups:434

<build functions> =
<functions building the green function>
<functions building green paths>435

Functions building the Green function itself do not need further description, as they are limited to collections436

management. Functions building green paths are divided in two groups:437

<functions building green paths> =
<functions that store path ending>
<functions that accumulate data along a path>438

6.3.1. Storing path ending439

Since there are three different ways to end a path, there are three different functions that can be called to store440

information about the end of paths (see List. 3):441

<functions that store path ending> =
<store path’s end at an interface>
<store path’s end in a medium>
<store radiative path’s end>442

Let’s start by describing the first function:443

<store path’s end at an interface> =
res_T
green_path_set_limit_interface_fragment

(struct green_path_handle* handle,
struct sdis_interface* interf,
const struct sdis_interface_fragment* frag,
const double elapsed_time)

{
res_T res = RES_OK;
<check input arguments>
<register interface ’interf’ against the green function>
<store path duration>
<store the location at interface>
<store identifier of interface ’interf’>
<store the path ends up at an interface>
return RES_OK;

}444

The current path ends at an interface that must be available at the time the Green function is evaluated. We start445

by making sure that is the case, returning an error if the process fails.446

<register interface ’interf’ against the green function> =
res = ensure_interface_registration(handle->green, interf);
if(res != RES_OK) return res;447
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Then the elapsed time is stored:448

<store path duration> =
handle->path->elapsed_time = elapsed_time;449

Then the information related to the location at interface is stored (including position, normal, parametric coordi-450

nates and time):451

<store the location at interface> =
handle->path->limit.fragment = *frag;452

Then the interface identifier is stored:453

<store identifier of interface ’interf’> =
handle->path->limit_id = interface_get_id(interf);454

Finally, the type of the path ending is stored:455

<store the path ends up at an interface> =
handle->path->end_type = SDIS_GREEN_PATH_END_AT_INTERFACE;456

The other two functions are built using the same pattern and are sketched thereafter:457

<store path’s end in a medium> =
res_T
green_path_set_limit_interface_fragment

(struct green_path_handle* handle,
struct sdis_medium* mdm,
const struct sdis_rwalk_vertex* vert,
const double elapsed_time)

{
res_T res = RES_OK;
<check input arguments>
<register medium ’mdm’ against the green function>
<store path duration>
<store the location in medium>
<store identifier of medium ’mdm’>
<store the path ends up in a medium>
return RES_OK;

}458

<store radiative path’s end> =
res_T
green_path_set_limit_interface_fragment

(struct green_path_handle* handle,
const double elapsed_time)

{
res_T res = RES_OK;
<check input arguments>
<store path duration>
<store the path ends up radiative>
return RES_OK;

}459
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6.3.2. Accumulating data along a path460

The data accumulated along a path is volume power density terms and flux density terms.461

<functions that accumulate data along a path> =
<register a power term>
<register a flux term>462

It is performed through the following two functions, that share the same pattern:463

<register a power term> =
res_T
green_path_add_power_term

(struct green_path_handle* handle,
struct sdis_medium* mdm,
const struct sdis_rwalk_vertex* vtx,
const double val)

{
<local variables>
<check input arguments>
<register medium ’mdm’ against the green function>
<search for a power term associated to ’mdm’>
<if a power term exist for ’mdm’> {

<add ’val’ to this power term>
} else {

<register ’val’ as the power term of ’mdm’>
}
<finalize the add_power_term function>

}464

<register the accumulated flux term> =
res_T
green_path_add_flux_term

(struct green_path_handle* handle,
struct sdis_interface* interf,
const struct sdis_interface_fragment* frag,
const double val)

{
<local variables>
<check input arguments>
<register the interface ’interf’ against the green function>
<search for a flux term associated to ’interf’>
<if a flux term exist for ’interf’> {

<add ’val’ to this flux term>
} else {

<register ’val’ as the flux term of ’interf’>
}
<finalize the add_flux_term function>

}465

6.3.3. Examples of Green paths vs. Monte Carlo paths466

Two examples of paths sampled by the Stardis probe temperature solver are shown in Figs. 10 and 11. For each467

example, the archived information for the construction of the Green path is shown in Tabs. 1 and 2.468
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Figure 10: First path example.

Step number Path position βψ(�xγ,ψ(1)) value µγi ,end identifier

1 �xγ j ∈ Ωi 0 -

2 �xγ j ∈ Ω1
δ22

6λ1
-

3 �xγ j ∈ Ω1
δ22

6λ1
+
δ23

6λ1
-

4 �xγ j ,end ∈ Ωi
δ22

6λ1
+
δ23

6λ1
0

Table 1: Successive data stored (framed in green rectangles and referred
as green path ) during Monte Carlo calculation for the first Green path.

The first path starts at the probe point �x. Contributions βψ(�xγ,ψ(1)) related to the power density term Ψ1 in the469

medium Ω1 will accumulate when the path crosses the medium, i.e. during the second and third jump (δ2 and δ3).470

Path ends with the initial temperature condition TI associated to the medium Ωi (see Fig. 10).471

Monte Carlo weight would be as follows:472

wγ j = ψ1βψ(�xγ,ψ(1)) + Tγ,end(�xγ,end, tγ,end, �ωγ,end, 0) (51)

Data stored for the Green path (framed in green in Tab. 1) are: successive positions �xγ j , power density term473

contribution βψ(�xγ,ψ(1)) along the path and the identifier of the boundary condition encountered µγ,end = 0 (Ti,I : initial474

condition type-0).475

Figure 11: Second path example.

Step number Path position βϕ(�xγ,ϕ(i)) value µγi ,end identifier

1 �xγ j ∈ Ωi 0 -

2 �xγ j ∈ Si 0 -

3 �xγ j ∈ Ωi
δ22
λi

-

4 �xγ j ∈ Si
δ22
λi

-

5 �xγ j ∈ Ωi
δ22
λi
+
δ24
λi

-

6 �xγ j ,end ∈ S2
δ22
λi
+
δ24
λi

1

Table 2: Successive data stored (framed in green rectangles and referred
as green path ) during Monte Carlo calculation for the second Green
path.

The second path starts at the probe point �x. Contributions βϕ(�xγ,ϕ(i)) related to flux density ϕi at Si interface will476

accumulate when the path hits this interface, i.e. on the second and fourth jump (δ2 et δ4). The path ends at the477

interface S2 with the temperature imposed on this interface TB (see Fig. 11).478

Monte Carlo weight would be as follows:479

wγ j = ϕiβϕ(�xγ,ϕ(i)) + Tγ,end(�xγ,end, tγ,end, �ωγ,end, 1) (52)

Data stored for the Green path (framed in green in Tab. 2) are: successive positions �xγ j , density flux contribution480

βϕ(�xγ,ϕ(i)) along the path and the identifier of the boundary condition encountered µγ,end = 1 (TB : type-1 boundary481

condition).482
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6.4. Using propagation information483

Once a set of sampled paths is stored in the Green function, dedicated evaluation functions are needed to apply484

the Green function to a set of source values (see List. 5). These functions are presented thereafter. Note that when485

using helper functions which are also used for standard Monte-Carlo computations ( solid_get_volumic_power ,486

interface_side_get_flux ), they have to provide a vertex, even though the computation is time and space inde-487

pendent in the Green function context.488

<evaluation functions> =
res_T
sdis_green_function_solve

(struct sdis_green_function* green,
struct sdis_estimator** out_estimator)

{
<local variables>
<check input arguments>
<create the estimator>

<for each green path stored into ’green’> {
<compute the weight of this green path>
<accumulate the resulting weight>

}
<setup the estimator>
<finalize the solve function>

}489

The computation of the weight associated to a path is done with a dedicated function (see List. 4):490

<compute the weight of this green path> =
double w; /* Monte Carlo weight to compute */
res = green_function_solve_path(green, ipath, &w);
<handle error code returned in ’res’>491

The dedicated function simply takes into account the different contributions that have been stored in the current492

path (power, flux and end of path), and uses them to produce the Monte-Carlo weight of the path:493

<evaluation functions> +=
res_T
green_function_solve_path

(struct sdis_green_function* green,
const size_t ipath,
double* weight)

{
<local variables>
<check input arguments>

<compute the power collected along the path>
<compute the flux collected along the path>
<fetch the end of path>
<compute the overall Monte-Carlo weight>

<finalize the solve_path fuction>
}494

The volume power along the path is computed by considering each medium encountered along the path and accu-495

mulating the corresponding volume power contribution. Each volume power term power_terms[i] (see Eq. (46)),496
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previously accumulated by the function green_path_add_power_term is multiplied by the given volume power497

density value solid_get_volumic_power(medium, &vtx) . The total volume power contribution obtained for498

the path is power :499

<Compute the volume power collected along the path> =
power = 0;
n = darray_power_term_size_get(&path->power_terms);
power_terms = darray_power_term_cdata_get(&path->power_terms);

FOR_EACH(i, 0, n) {
vtx.time = INF;
medium = green_function_fetch_medium(green, power_terms[i].id);
power += power_terms[i].term * solid_get_volumic_power(medium, &vtx);

}500

The flux along the path is computed by considering each interface encountered along the path and accumulating501

the corresponding flux contribution.502

Each flux terms flux_terms[i] (see Eq. (46)), previously accumulated by the function green_path_add_flux_term503

is multiplied by the given flux density value interface_side_get_flux(interf, &frag) . The flux term ob-504

tained for the path is flux:505

<Compute the flux collected along the path> =
flux = 0;
n = darray_flux_term_size_get(&path->flux_terms);
flux_terms = darray_flux_term_cdata_get(&path->flux_terms);

FOR_EACH(i, 0, n) {
frag.time = INF;
frag.side = flux_terms[i].side;
interf = green_function_fetch_interf(green, flux_terms[i].id);
flux += flux_terms[i].term * interface_side_get_flux(interf, &frag);

}506

The temperature at the end of the path, depending on the type of end, is the given interface temperature value507

interface_side_get_temperature(interf, &frag) , the given temperature value of the medium medium_get_temperature(interf,508

or the given ambient radiative temperature value509

sdis_scene_get_ambient_radiative_temperature(scn, &end_temperature) :510
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<fetch the end of path> =
switch(path->end_type) {

case SDIS_GREEN_PATH_END_AT_INTERFACE:
interf = green_function_fetch_interf(green, path->limit_id);
frag = path->limit.fragment;
end_temperature = interface_side_get_temperature(interf, &frag);
break;

case SDIS_GREEN_PATH_END_IN_VOLUME:
medium = green_function_fetch_medium(green, path->limit_id);
vtx = path->limit.vertex;
end_temperature = medium_get_temperature(medium, &vtx);
break;

case SDIS_GREEN_PATH_END_RADIATIVE:
SDIS(green_function_get_scene(green, &scn));
SDIS(scene_get_ambient_radiative_temperature(scn, &end_temperature));
if(end_temperature < 0) { /* Cannot be negative if used */

res = RES_BAD_ARG;
goto error;

}
break;

default: FATAL("Unreachable code.\n"); break;
}511

Path weight weight , computed from the source values, is then simply the sum of the different contributions:512

power , flux and end_temperature .513

<compute the overall Monte-Carlo weight> =
*weight = power + flux + end_temperature;514

7. Simulation examples515

This section illustrates a typical use of the storage and use of the propagation information described in the previ-516

ous sections. The geometrical and physical descriptions of the configurations used for this illustration, as well as the517

Stardis input files, are available in the enclosed zip file. The objective is essentially to show that a computation per-518

formed using the stored propagation information recovers the result that would be obtained with a complete MC run519

(with a particular attention to the associated statistical errorbars) and to illustrate the benefits in terms of computation520

times. As far as validation is concerned, we concentrate on the parts of the code constructing and using the propaga-521

tors, not on the main code itself: Stardis is already validated elsewhere [18, 19]. However, we still reproduce parts of522

this validation by providing, together with each simulation example, a systematic comparison with the solution com-523

puted with a standard deterministic solver [20] (referred as COMSOL Multiphysics® hereafter and "Deterministic" in524

figures).525

Two academic configurations are considered. They are designed as simplified versions of porous media, one526

with open porosities (see Fig. C.13 a)), the other with closed porosities (see Fig. C.13 c)). This benchmark has been527

already used by Sans et. al [21] for the purpose of validating Monte Carlo simulations of coupled diffusion-radiation528

heat transfer. The open-porosity configuration corresponds to a heterogeneous 3D honeycomb that can be assimilated529

to a porous medium with open channels, like a heat exchanger configuration. The closed-porosity configuration has530

22 enclosed cavities and may be assimilated to an insulation material.531

The physical assumptions are those of Sec. 3.1 with same values for λ, ρ, c and ψ throughout the whole solid532

phase and same values for h and � along all the solid-fluid interfaces. For open porosity, there is one single imposed533

fluid temperature TBF (type-3 boundary condition), the same inside the channels and outside the system. For closed534

porosity, TBF is only imposed outside the system (fluid cells temperatures are free). In both cases, the incoming535
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radiance temperature outside the system θBR is uniform and isotropic, the solid temperature TB is imposed at the536

top surface (type-1 boundary condition) and a flux density ϕB is imposed at the bottom surface (type-2 boundary537

condition). The initial temperature TI is uniform.538

The estimated quantity is the temperature T (�xc, t) at the center �xc of the geometry for a given observation time t539

as a function depending on the six available sources:540

• the initial temperature TI,541

• the top boundary solid temperature TB,542

• the ambient fluid temperature TBF,543

• the ambient radiance temperature θBR,544

• the flux density at the bottom boundary ϕ,545

• the power density throughout the solid phase ψ.546

Tests are conducted first without radiation (� = 0, see Fig. C.14, Fig. C.15 and Fig. C.16 ) and then with radiation547

(black surfaces, � = 1, see Fig. C.17, Fig. C.18 and Fig. C.19). For each case, the propagation information are stored548

using a single Monte Carlo run. These propagation information are then used to predict T (�xc, t) (and to estimate its549

uncertainty) when varying the sources values with factors in the [10−2, 102] range around a fixed reference value for550

each source: T ref
I , T ref

B , T ref
BF, θref

BR, ϕref and ψref (results labeled "Propagator" in the figures). Validation is achieved by551

comparing with standard Monte Carlo results, labeled "Monte-Carlo" in the figures. The perfect adequacy between552

the "Propagator" and "Monte-Carlo" results in Figs. C.14, C.15,C.16 C.17, C.18 and C.19 validates the implemented553

code and the quality of the stored propagation information. Fig. 12 gathers all the computation times, illustrating that554

the benefits of using the stored propagation information, instead of running the Monte Carlo, is a computation time555

reduction by a factor 103 to 104 [22].556

In closer details, the following comments can be made:557

• "Propagator" (using the propagator) and "Monte-Carlo" results (re-running a Monte Carlo for control) are in558

perfect agreement, as expected, because "Propagator" is statistically rigorously equivalent to re-running the559

Monte Carlo (see Fig. C.14 a) and Fig. C.15 a)). However, for the validation runs, new random numbers are560

used to sample the paths, whereas all "Propagator" simulations are based on the same sampled paths. Therefore,561

although the errorbars associated to "Propagator" can be fully trusted, the simulations made for various values562

of the sources are all correlated: typically, there are no statistical fluctuations in the errorbars, and when a563

simulation result for a given source value happens to be below the reference (within the errorbar, otherwise the564

validation would have failed), it remains below the reference for all other values of the source.565

• "Propagator" (or "Monte-Carlo") and "Deterministic" are in perfect agreement as long as the linearization of566

heat transfer remains relevant. It is well-known that, exchanged radiative heat flux being proportional to T 4,567

radiative heat transfer causes non-linear propagation. Moreover, the higher the thermal gradients are, the higher568

such non-linear effects occur and the larger the bias induced by radiative transfer linearization. Here, without569

radiation and/or any thermal dependance of the thermal properties, "Propagator" predict the correct temperature570

for a very wide range of sources values (see Fig. C.14, Fig. C.15 and Fig. C.16). Close to the set of reference571

values for sources, temperature gradients were purposely chosen as low as suitable for the frame of linear heat572

transfer. Thus, "Propagator" and "Deterministic" are in good agreement (see Fig. C.17 b)). Outside this range of573

source values, "Propagator" fails to predict the correct temperature field because the linearization of radiation,574

at the heart of Stardis, becomes meaningless (see Fig. C.17 a)). Here, two different physical models are solved:575

Stardis linearizes radiation where COMSOL Multiphysics® does not. Hence, the gaps observed between the576

"Propagator" and the "Deterministic" method come from the capacity of a given source to increase thermal577

gradients, and thus to strengthen non-linearity effects (see Fig. C.17, Fig. C.18 and Fig. C.19). We are presently578
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101 102
10-4

10-3

Open-porosity geometry  without radia�ve transfer

Open-porosity geometry with rad a�ve transfer

Closed-porosity geometry without radia�ve transfer

Closed-porosity geometry with radia�ve transfer

Figure 12: Ratio of computation times
tPropagator

tMC
for the corresponding tMC. tPropagator is the computation time for the propagator function and tMC

is the computation time for the corresponding Monte Carlo computation.

working on this issue, starting from the non-linear Monte Carlo approach given by [6]). The latest available579

versions of Stardis already include a first representation of the T 4 radiation dependance, by use of branching580

statitsics, but the complete evaluation of this new potential is still under progress. In any case, when nonlinear581

effects are significant, computing the propagator is meaningless: the descriptions made in the present article are582

strictly rooted in linear physics and their application will always remain strictly restricted to linear heat transfer.583

• There is a notable distinction between open-porosity and closed-porosity as far as computation time is con-584

cerned. In the open-porosity case, a thermal path starting at the center of the system can encounter the flow585

quite rapidly and then the path is stopped because the fluid temperature is known. In the closed-porosity case,586

a thermal path starting at the center of the system can also encounter the flow inside a fluid cell quite rapidly,587

but then the flow temperature is unknown and the path is continued until a source is encountered (either the588

initial condition at any location, or a known temperature at the boundary). These paths are significantly longer589

and so is the computation time required for their construction. It can even be extremely long if the number590

of closed cells is increased: Monte Carlo may encounter difficulties when addressing insulating materials with591

large numbers of closed cells along all directions. However, this difficulty is not reported in "Propagator": even592

if the computation cost associated to path-sampling in the reference Monte Carlo run is higher in the closed-593

porosity case, the propagation information stored are similar in the open-porosity and the closed-porosity cases594

and the computation times associated to the use, by "Propagator", of these propagation information are the same595

in both cases. The computation benefit of using "Propagator" instead of running a full Monte Carlo is therefore596

stronger for closed porosities.597
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8. Going further: Propagation information storage in case of non-uniform and time-dependent sources598

When constructing estimates for the propagators, we have split the initial Monte Carlo weight and gathered all599

the propagation information corresponding to parts of the system where the sources were uniform and constant (see600

Sec. 5). As was already mentioned, Stardis makes uniformity and constancy assumptions for each geometrical part601

but ‘stardis-solver‘ does not. And indeed, in the Monte Carlo weight expression of Eq. (41), nothing prevents602

the initial temperatures, the imposed temperatures at the boundary, the incoming radiance temperature, the surface603

flux densities imposed at the boundary and the volume power densities imposed inside the solids to be non-uniform604

and non-constant fields: ψ
�
�xγ,ψ(k), tγ,ψ(k)

�
, ϕ

�
�xγ,ϕ(k), tγ,ϕ(k)

�
and Tγ,end(�xγ,end, tγ,end, �ωγ,end, µγ,end) can hold this infor-605

mation as it is provided, whatever the geometric structure. This means that even running Stardis with uniform and606

constant sources in each part, if we store the locations, times and directions used when constructing Monte Carlo607

weights, then this information can be later used to virtually re-run the Monte Carlo simulation with non-uniform608

time-dependent sources.609

In algorithmic terms:610

• N thermal paths are sampled exactly as in the Monte Carlo algorithm of Sec. 4.1;611

• Along each path γ j, we store the Nϕ, j locations �xγ j,ϕ(k) and times tγ j,ϕ(k) at which surface flux densities were612

accessed;613

• Similarly we store the Nψ, j locations �xγ j,ψ(k) and times tγ j,ψ(k) at which volume power densities were accessed;614

• The information concerning the end of the path are also stored: �xγ j,end, tγ j,end, �ωγ j,end and µγ j,end;615

• When a Monte Carlo estimate is required for any set of non-uniform time-dependent source fields T̃I, T̃B, T̃BF,
θ̃BR, ψ̃ and ϕ̃, it is constructed the following way:

T̃ (�x, t) or T̃ (t) or θ̃R(�ω, �x, t) ≈ m̃ =
1
N

N�

j=1

w̃ j (53)

with
w̃ j = H(µγ j,end = 0) T̃I(�xγ j,end)
+H(µγ j,end = 1) T̃B(�xγ j,end, tγ j,end)
+H(µγ j,end = 2) T̃BF(�xγ j,end, tγ j,end)
+H(µγ j,end = 3) θ̃BR(�xγ j,end, tγ j,end, �ωγ j,end)

+

Nψ, j�

k=1

βψ(�xγ j,ψ(k)) ψ̃
�
�xγ j,ψ(k), tγ j,ψ(k)

�

+

Nϕ, j�

k=1

βϕ(�xγ j,ϕ(k)) ϕ̃
�
�xγ j,ϕ(k), tγ j,ϕ(k)

�

(54)

For this last strategy, dealing with uncertainties is straightforward. The estimate m̃ in Eq. (53) is finally built616

exactly as if the Monte Carlo was re-run using new sources. The uncertainty s̃ associated to m̃ is therefore the same as617

for any Monte Carlo simulation (using an estimate of the standard deviation of the Monte Carlo weights) as detailed618

in Eq. (25).619

In terms of code changes, storing unmerged flux and power terms allows code simplification, as a significant part620

of the merged-storage version of the code is about retrieving the term to which the current contribution needs to be621

merged. On the other hand, allowing all types of non-uniform and time-dependent sources is still at the cost of storing622

more propagation since information terms data structures have to store the term’s location (time and space). The data623

structures and functions that implement the unmerged storage of sources’ contributions are available in Appendix B.624
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9. Conclusion625

One of the strengths of Monte Carlo approaches is the ease with which information can be stored, during one run,626

and then used offline to learn about the physics, preserving all geometric features. The simplest example is the storing627

of the paths themselves (or of a large enough fraction of the paths). For coupled heat transfer, displaying a selection628

of the paths and analyzing how they visit the system, both in time and space, switching from one heat transfer mode629

to the other, is indeed a very practical way to learn how the sources are viewed from one location, how their impact630

is delayed by the inertial parts of the system, and therefore how a design can be adjusted to achieve a given objective.631

In the present paper, we have left aside these details about the paths themselves. We focused on the act of quantifying632

the propagation and not on the analysis of the physical phenomena and the coupling processes responsible for the633

propagation. But these two practices, computing the propagators and visualizing the propagation processes, are worth634

being considered sideways in all engineering contexts requiring a close understanding of heat transfer physics at the635

system scale. Therefore, in addition to the functionalities of Stardis described in Sec. 6, a set of post-treatment tools636

have also been designed to help visualizing and analyzing thermal paths throughout large scale geometries [19].637

For automated engineering practices, e.g. inversion, optimization or command algorithms, analyzing the paths638

is useless; all is needed is the addressed quantity as a function of the sources: the tools described in the present639

paper are therefore self-sufficient. However there are numerous questions of direct interest to thermal engineers that640

cannot be addressed this way. These are all the dependencies on parameters that cannot be considered as sources641

(in the general sense provided by Green’s theory). Typically the dependence on emissivities, convective exchange642

coefficients, conductivities or capacities rises more complex questions. If only sensitivities were required, i.e. the643

derivative with respect to each parameter, then the general theory of sensitivity evaluation in Monte Carlo algorithms644

could be used [23], but we would not build the complete dependence (the function) as we did here with the sources.645

Addressing the complete non-linear dependence on other parameters than sources is not theoretically unfeasible: it646

has notably been achieved in the field of radiative transfer under the literature name of "Symbolic Monte Carlo"647

[24, 25, 26, 27] and we have started to work on extending these symbolic techniques to coupled heat transfer, with the648

objective of implementing them inside stardis-solver [28, 29].649

By far more difficult would be the question of addressing the dependence on geometrical parameters. Here also,650

some attempts have already been made in the field of radiative transfer, but to the best of our knowledge and although651

large impacts could be expected in terms of applications, there is no report available of any attempt to go beyond the652

computation of derivatives (geometrical sensitivities). Constructing a thermal heat transfer observable as a symbolic653

function of a geometric parameter is a question that has not yet been addressed.654

Another difficult point associated to strong applicative concerns is the withdraw of the linearization of radiative655

transfer. This linearization is at the heart of present Monte Carlo approaches to coupled heat transfer. There are656

convincing perspectives as far as handling non-linearities in the Monte Carlo framework is concerned [6], and some657

of the corresponding propositions could be used to avoid the linearization of radiation, but then the overall coupled658

physical problem would be non-linear and the concept of propagation could not be used anymore. All our present659

proposition would then have to be revisited.660

Finally, we have highlighted the fact that storing propagators allows the design of fast external solvers: adressing661

the same observable for other sources without reruning the Monte Carlo. But another quite significant usage is un-662

certainty propagation. As the model is linear, any statistical distribution of source-uncertainties is propagated without663

transformation and the propagator tells us how (exactly the same way it computes the observabale when changing664

the sources). Typically, if a given source has a normal distribution, the technique described in the present paper will665

provide the center of the resulting normal distribution of the observable and computing its standard deviation will666

require nothing more than the square of the propagator. If the Monte Carlo run is very accurate, there will be no667

need for any consideration of the Monte Carlo uncertainties when studying such source-uncertainty propagations. Of668

course, if the source uncertainty and the Monte Carlo uncertainty are of the same order of magnitude, then further669

attention will have to be devoted to the resulting statistical correlations, typically when several sources are uncertain,670

possibly correlated, their associated propagators being themselves correlated because they were computed using the671
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same Monte Carlo run. But again, all the required information is in the data already stored at the Monte Carlo weight672

level when running Stardis and only a post treatment is required when such further statistics are required.673
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Appendix A. Source code chunks implementing merged storage768

Listing 1: struct sdis_green_function and related types

s t r u c t s d i s _ g r e e n _ f u n c t i o n {769

s t r u c t htab le_medium media ;770

s t r u c t h t a b l e _ i n t e r f i n t e r f a c e s ;771

s t r u c t d a r r a y _ g r e e n _ p a t h p a t h s ; / * L i s t o f p a t h s used t o e s t i m a t e t h e green * /772

773

s i z e _ t n p a t h s _ v a l i d ;774

s i z e _ t n p a t h s _ i n v a l i d ;775

776

s t r u c t accum r e a l i s a t i o n _ t i m e ; / * Time per r e a l i s a t i o n * /777

778

s t r u c t s s p _ r n g _ t y p e r n g _ t y p e ;779

FILE* r n g _ s t a t e ;780

781

r e f _ T r e f ;782

s t r u c t s d i s _ s c e n e * scn ;783

} ;784

Listing 2: struct green_path

s t r u c t g r e e n _ p a t h {785

double e l a p s e d _ t i m e ;786

s t r u c t d a r r a y _ f l u x _ t e r m f l u x _ t e r m s ; / * L i s t o f f l u x t e r m s * /787

s t r u c t d a r r a y _ p o w e r _ t e r m power_ te rms ; / * L i s t o f v o l u m i c power t e r m s * /788

union {789

s t r u c t s d i s _ r w a l k _ v e r t e x v e r t e x ;790

s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t f r a g m e n t ;791

} l i m i t ;792

unsigned l i m i t _ i d ; / * I d e n t i f i e r o f t h e l i m i t medium / i n t e r f a c e * /793

enum s d i s _ g r e e n _ p a t h _ e n d _ t y p e e n d _ t y p e ;794

795

/ * I n d i c e s o f t h e l a s t a c c e s s e d medium / i n t e r f a c e . Used t o speed up t h e a c c e s s796

* t o t h e medium / i n t e r f a c e . * /797

u i n t 1 6 _ t i l a s t _ m e d i u m ;798

u i n t 1 6 _ t i l a s t _ i n t e r f ;799

} ;800

801

s t r u c t power_term {802

double t e rm ;803

unsigned i d ; / * I d e n t i f i e r o f t h e medium * /804

} ;805

806

s t r u c t f l u x _ t e r m {807

double t e rm ;808

unsigned i d ; / * I d e n t i f i e r o f t h e i n t e r f a c e * /809

enum s d i s _ s i d e s i d e ;810

} ;811

Listing 3: green functions to store path data

re s_T812

g r e e n _ p a t h _ s e t _ l i m i t _ i n t e r f a c e _ f r a g m e n t813

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,814

s t r u c t s d i s _ i n t e r f a c e * i n t e r f ,815

c o n s t s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t * f r a g ,816

c o n s t double e l a p s e d _ t i m e )817

{818

r e s_T r e s = RES_OK ;819

ASSERT( h a n d l e && i n t e r f && f r a g ) ;820

ASSERT( hand le −>pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_TYPES_COUNT__ ) ;821

r e s = e n s u r e _ i n t e r f a c e _ r e g i s t r a t i o n ( hand le −>green , i n t e r f ) ;822

i f ( r e s != RES_OK) re turn r e s ;823
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hand le −>pa th −>e l a p s e d _ t i m e = e l a p s e d _ t i m e ;824

hand le −>pa th −> l i m i t . f r a g m e n t = * f r a g ;825

hand le −>pa th −> l i m i t _ i d = i n t e r f a c e _ g e t _ i d ( i n t e r f ) ;826

hand le −>pa th −>e n d _ t y p e = SDIS_GREEN_PATH_END_AT_INTERFACE ;827

re turn RES_OK ;828

}829

830

r e s_T831

g r e e n _ p a t h _ s e t _ l i m i t _ v e r t e x832

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,833

s t r u c t sdis_medium * mdm,834

c o n s t s t r u c t s d i s _ r w a l k _ v e r t e x * v e r t ,835

c o n s t double e l a p s e d _ t i m e )836

{837

r e s_T r e s = RES_OK ;838

ASSERT( h a n d l e && mdm && v e r t ) ;839

ASSERT( hand le −>pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_TYPES_COUNT__ ) ;840

r e s = e n s u r e _ m e d i u m _ r e g i s t r a t i o n ( hand le −>green , mdm ) ;841

i f ( r e s != RES_OK) re turn r e s ;842

hand le −>pa th −>e l a p s e d _ t i m e = e l a p s e d _ t i m e ;843

hand le −>pa th −> l i m i t . v e r t e x = * v e r t ;844

hand le −>pa th −> l i m i t _ i d = medium_get_ id (mdm ) ;845

hand le −>pa th −>e n d _ t y p e = SDIS_GREEN_PATH_END_IN_VOLUME ;846

re turn RES_OK ;847

}848

849

r e s_T850

g r e e n _ p a t h _ s e t _ l i m i t _ r a d i a t i v e851

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,852

c o n s t double e l a p s e d _ t i m e )853

{854

ASSERT( h a n d l e ) ;855

ASSERT( hand le −>pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_TYPES_COUNT__ ) ;856

hand le −>pa th −>e l a p s e d _ t i m e = e l a p s e d _ t i m e ;857

hand le −>pa th −>e n d _ t y p e = SDIS_GREEN_PATH_END_RADIATIVE ;858

re turn RES_OK ;859

}860

861

r e s_T862

g r e e n _ p a t h _ a d d _ p o w e r _ t e r m863

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,864

s t r u c t sdis_medium * mdm,865

c o n s t s t r u c t s d i s _ r w a l k _ v e r t e x * vtx ,866

c o n s t double v a l )867

{868

s t r u c t g r e e n _ p a t h * p a t h ;869

s t r u c t power_term * t e r m s ;870

s i z e _ t n t e rm s ;871

s i z e _ t i t e r m ;872

unsigned i d ;873

r e s_T r e s = RES_OK ;874

ASSERT( h a n d l e && mdm && v t x ) ;875

876

/ * Unused p o s i t i o n and t i m e : t h e c u r r e n t i m p l e m e n t a t i o n o f t h e green f u n c t i o n877

* assumes t h a t t h e power i s c o n s t a n t i n space and t i m e per medium . * /878

( void ) v t x ;879

880

r e s = e n s u r e _ m e d i u m _ r e g i s t r a t i o n ( hand le −>green , mdm ) ;881

i f ( r e s != RES_OK) goto e r r o r ;882

883

p a t h = hand le −>p a t h ;884

t e r m s = d a r r a y _ p o w e r _ t e r m _ d a t a _ g e t (& path −>power_ te rms ) ;885

n t e r ms = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;886

i d = medium_get_ id (mdm ) ;887

i t e r m = SIZE_MAX ;888
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889

/ * E a r l y f i n d * /890

i f ( pa th −> i l a s t _ m e d i u m < n t e r ms && t e r m s [ pa th −> i l a s t _ m e d i u m ] . i d == i d ) {891

i t e r m = pa th −> i l a s t _ m e d i u m ;892

} e l s e {893

/ * L i n e a r s e a r c h o f t h e s u b m i t t e d medium * /894

FOR_EACH( i t e r m , 0 , n t e rm s ) i f ( t e r m s [ i t e r m ] . i d == i d ) break ;895

}896

897

/ * Add t h e power term t o t h e pa th wr t t h e s u b m i t t e d medium * /898

i f ( i t e r m < n t e r ms ) {899

t e r m s [ i t e r m ] . te rm += v a l ;900

} e l s e {901

s t r u c t power_term term = POWER_TERM_NULL__;902

t e rm . te rm = v a l ;903

t e rm . i d = i d ;904

r e s = d a r r a y _ p o w e r _ t e r m _ p u s h _ b a c k (& hand le −>pa th −>power_terms , &term ) ;905

i f ( r e s != RES_OK) goto e r r o r ;906

}907

908

/ * R e g i s t e r t h e s l o t i n t o which t h e l a s t a c c e s s e d medium l i e s * /909

CHK( i t e r m < UINT16_MAX ) ;910

pa th −> i l a s t _ m e d i u m = ( u i n t 1 6 _ t ) i t e r m ;911

912

e x i t :913

re turn r e s ;914

e r r o r :915

goto e x i t ;916

}917

918

r e s_T919

g r e e n _ p a t h _ a d d _ f l u x _ t e r m920

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,921

s t r u c t s d i s _ i n t e r f a c e * i n t e r f ,922

c o n s t s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t * f r a g ,923

c o n s t double v a l )924

{925

s t r u c t g r e e n _ p a t h * p a t h ;926

s t r u c t f l u x _ t e r m * t e r m s ;927

s i z e _ t n t e rm s ;928

s i z e _ t i t e r m ;929

unsigned i d ;930

r e s_T r e s = RES_OK ;931

ASSERT( h a n d l e && i n t e r f && f r a g && v a l >= 0 ) ;932

933

r e s = e n s u r e _ i n t e r f a c e _ r e g i s t r a t i o n ( hand le −>green , i n t e r f ) ;934

i f ( r e s != RES_OK) goto e r r o r ;935

936

p a t h = hand le −>p a t h ;937

t e r m s = d a r r a y _ f l u x _ t e r m _ d a t a _ g e t (& path −> f l u x _ t e r m s ) ;938

n t e r ms = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;939

i d = i n t e r f a c e _ g e t _ i d ( i n t e r f ) ;940

i t e r m = SIZE_MAX ;941

942

/ * E a r l y f i n d * /943

i f ( pa th −> i l a s t _ i n t e r f < n t e r ms944

&& t e r m s [ pa th −> i l a s t _ i n t e r f ] . i d == i d945

&& t e r m s [ pa th −> i l a s t _ i n t e r f ] . s i d e == f r a g −> s i d e ) {946

i t e r m = pa th −> i l a s t _ i n t e r f ;947

} e l s e {948

/ * L i n e a r s e a r c h o f t h e s u b m i t t e d i n t e r f a c e * /949

FOR_EACH( i t e r m , 0 , n t e rm s ) {950

i f ( t e r m s [ i t e r m ] . i d == i d && t e r m s [ i t e r m ] . s i d e == f r a g −> s i d e ) {951

break ;952

}953
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}954

}955

956

/ * Add t h e f l u x term t o t h e pa th wr t t h e s u b m i t t e d i n t e r f a c e * /957

i f ( i t e r m < n t e r ms ) {958

t e r m s [ i t e r m ] . te rm += v a l ;959

} e l s e {960

s t r u c t f l u x _ t e r m term = FLUX_TERM_NULL__ ;961

t e rm . te rm = v a l ;962

t e rm . i d = i d ;963

t e rm . s i d e = f r a g −> s i d e ;964

r e s = d a r r a y _ f l u x _ t e r m _ p u s h _ b a c k (& handle −>pa th −> f l u x _ t e r m s , &term ) ;965

i f ( r e s != RES_OK) goto e r r o r ;966

}967

968

/ * R e g i s t e r t h e s l o t i n t o which t h e l a s t a c c e s s e d i n t e r f a c e l i e s * /969

CHK( i t e r m < UINT16_MAX ) ;970

pa th −> i l a s t _ i n t e r f = ( u i n t 1 6 _ t ) i t e r m ;971

972

e x i t :973

re turn r e s ;974

e r r o r :975

goto e x i t ;976

}977

Listing 4: green_function_solve_path

s t a t i c r e s_T978

g r e e n _ f u n c t i o n _ s o l v e _ p a t h979

( s t r u c t s d i s _ g r e e n _ f u n c t i o n * green ,980

c o n s t s i z e _ t i p a t h ,981

double * we ig h t )982

{983

c o n s t s t r u c t power_term * power_ te rms = NULL;984

c o n s t s t r u c t f l u x _ t e r m * f l u x _ t e r m s = NULL;985

c o n s t s t r u c t g r e e n _ p a t h * p a t h = NULL;986

c o n s t s t r u c t sdis_medium * medium = NULL;987

c o n s t s t r u c t s d i s _ i n t e r f a c e * i n t e r f = NULL;988

s t r u c t s d i s _ s c e n e * scn = NULL;989

s t r u c t s d i s _ r w a l k _ v e r t e x v t x = SDIS_RWALK_VERTEX_NULL ;990

s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t f r a g = SDIS_INTERFACE_FRAGMENT_NULL ;991

double power ;992

double f l u x ;993

double e n d _ t e m p e r a t u r e ;994

s i z e _ t i , n ;995

r e s_T r e s = RES_OK ;996

ASSERT( g r e e n && i p a t h < d a r r a y _ g r e e n _ p a t h _ s i z e _ g e t (& green −>p a t h s ) && w ei gh t ) ;997

998

p a t h = d a r r a y _ g r e e n _ p a t h _ c d a t a _ g e t (& green −>p a t h s ) + i p a t h ;999

i f ( pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_ERROR) { / * R e j e c t e d pa th * /1000

r e s = RES_BAD_OP ;1001

goto e r r o r ;1002

}1003

1004

/ * Compute medium power t e r m s * /1005

power = 0 ;1006

n = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;1007

power_ te rms = d a r r a y _ p o w e r _ t e r m _ c d a t a _ g e t (& path −>power_ te rms ) ;1008

FOR_EACH( i , 0 , n ) {1009

v t x . t ime = INF ;1010

medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , power_ te rms [ i ] . i d ) ;1011

power += power_ te rms [ i ] . t e rm * s o l i d _ g e t _ v o l u m i c _ p o w e r ( medium , &v t x ) ;1012

}1013

1014

/ * Compute i n t e r f a c e f l u x e s * /1015
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f l u x = 0 ;1016

n = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;1017

f l u x _ t e r m s = d a r r a y _ f l u x _ t e r m _ c d a t a _ g e t (& path −> f l u x _ t e r m s ) ;1018

FOR_EACH( i , 0 , n ) {1019

f r a g . t ime = INF ;1020

f r a g . s i d e = f l u x _ t e r m s [ i ] . s i d e ;1021

i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , f l u x _ t e r m s [ i ] . i d ) ;1022

f l u x += f l u x _ t e r m s [ i ] . t e rm * i n t e r f a c e _ s i d e _ g e t _ f l u x ( i n t e r f , &f r a g ) ;1023

}1024

1025

/ * Compute pa th ’ s end t e m p e r a t u r e * /1026

sw i t ch ( pa th −>e n d _ t y p e ) {1027

case SDIS_GREEN_PATH_END_AT_INTERFACE :1028

i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , pa th −> l i m i t _ i d ) ;1029

f r a g = pa th −> l i m i t . f r a g m e n t ;1030

e n d _ t e m p e r a t u r e = i n t e r f a c e _ s i d e _ g e t _ t e m p e r a t u r e ( i n t e r f , &f r a g ) ;1031

break ;1032

case SDIS_GREEN_PATH_END_IN_VOLUME :1033

medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , pa th −> l i m i t _ i d ) ;1034

v t x = pa th −> l i m i t . v e r t e x ;1035

e n d _ t e m p e r a t u r e = m e d i u m _ g e t _ t e m p e r a t u r e ( medium , &v t x ) ;1036

break ;1037

case SDIS_GREEN_PATH_END_RADIATIVE :1038

SDIS ( g r e e n _ f u n c t i o n _ g e t _ s c e n e ( green , &scn ) ) ;1039

SDIS ( s c e n e _ g e t _ a m b i e n t _ r a d i a t i v e _ t e m p e r a t u r e ( scn , &e n d _ t e m p e r a t u r e ) ) ;1040

i f ( e n d _ t e m p e r a t u r e < 0) { / * Cannot have i t n e g a t i v e i f used * /1041

r e s = RES_BAD_ARG;1042

goto e r r o r ;1043

}1044

break ;1045

d e f a u l t : FATAL( " U n r e a c h a b l e � code . \ n " ) ; break ;1046

}1047

1048

/ * Compute t h e pa th w e i g h t * /1049

* we ig h t = power + f l u x + e n d _ t e m p e r a t u r e ;1050

1051

e x i t :1052

re turn r e s ;1053

e r r o r :1054

goto e x i t ;1055

}1056

Listing 5: green_function_solve

re s_T1057

s d i s _ g r e e n _ f u n c t i o n _ s o l v e1058

( s t r u c t s d i s _ g r e e n _ f u n c t i o n * green ,1059

s t r u c t s d i s _ e s t i m a t o r ** o u t _ e s t i m a t o r )1060

{1061

s t r u c t s d i s _ e s t i m a t o r * e s t i m a t o r = NULL;1062

s i z e _ t n p a t h s ;1063

s i z e _ t i p a t h ;1064

s i z e _ t N = 0 ; / * # r e a l i s a t i o n s * /1065

double accum = 0 ;1066

double accum2 = 0 ;1067

r e s_T r e s = RES_OK ;1068

1069

i f ( ! g r e e n | | ! o u t _ e s t i m a t o r ) {1070

r e s = RES_BAD_ARG;1071

goto e r r o r ;1072

}1073

1074

n p a t h s = d a r r a y _ g r e e n _ p a t h _ s i z e _ g e t (& green −>p a t h s ) ;1075

1076

/ * Cr ea t e t h e e s t i m a t o r * /1077
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r e s = e s t i m a t o r _ c r e a t e ( green −>scn−>dev , SDIS_ESTIMATOR_TEMPERATURE , &e s t i m a t o r ) ;1078

i f ( r e s != RES_OK) goto e r r o r ;1079

1080

/ * S o l v e t h e green f u n c t i o n * /1081

FOR_EACH( i p a t h , 0 , n p a t h s ) {1082

double w;1083

1084

r e s = g r e e n _ f u n c t i o n _ s o l v e _ p a t h ( green , i p a t h , &w ) ;1085

i f ( r e s == RES_BAD_OP) c o n t i nu e ;1086

i f ( r e s != RES_OK) goto e r r o r ;1087

1088

accum += w;1089

accum2 += w*w;1090

++N;1091

}1092

1093

/ * S e t u p t h e e s t i m a t e d t e m p e r a t u r e * /1094

e s t i m a t o r _ s e t u p _ r e a l i s a t i o n s _ c o u n t ( e s t i m a t o r , npa ths , N ) ;1095

e s t i m a t o r _ s e t u p _ t e m p e r a t u r e ( e s t i m a t o r , accum , accum2 ) ;1096

e s t i m a t o r _ s e t u p _ r e a l i s a t i o n _ t i m e1097

( e s t i m a t o r , green −> r e a l i s a t i o n _ t i m e . sum , green −> r e a l i s a t i o n _ t i m e . sum2 ) ;1098

1099

e x i t :1100

i f ( o u t _ e s t i m a t o r ) * o u t _ e s t i m a t o r = e s t i m a t o r ;1101

re turn r e s ;1102

e r r o r :1103

i f ( e s t i m a t o r ) {1104

SDIS ( e s t i m a t o r _ r e f _ p u t ( e s t i m a t o r ) ) ;1105

e s t i m a t o r = NULL;1106

}1107

goto e x i t ;1108

}1109

Appendix B. Source code chunks implementing unmerged storage1110

Listing 6: unmerged terms structs

s t r u c t unmerged_power_term {1111

double t e rm ;1112

unsigned i d ; / * I d e n t i f i e r o f t h e medium * /1113

s t r u c t s d i s _ r w a l k _ v e r t e x v e r t e x ; / * l o c a t i o n o f t h e term * /1114

} ;1115

1116

s t r u c t unmerged_ f lux_ t e rm {1117

double t e rm ;1118

unsigned i d ; / * I d e n t i f i e r o f t h e i n t e r f a c e * /1119

s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t f r a g m e n t ; / * l o c a t i o n o f t h e term * /1120

} ;1121

Listing 7: green functions to store unmerged path data

re s_T1122

g r e e n _ p a t h _ a d d _ p o w e r _ t e r m1123

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,1124

s t r u c t sdis_medium * mdm,1125

c o n s t s t r u c t s d i s _ r w a l k _ v e r t e x * vtx ,1126

c o n s t double v a l )1127

{1128

s t r u c t g r e e n _ p a t h * p a t h ;1129

s t r u c t unmerged_power_term * t e r m s ;1130

s t r u c t power_term term = POWER_TERM_NULL__;1131

s i z e _ t n t e rm s ;1132

unsigned i d ;1133

r e s_T r e s = RES_OK ;1134

ASSERT( h a n d l e && mdm && v t x ) ;1135
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1136

r e s = e n s u r e _ m e d i u m _ r e g i s t r a t i o n ( hand le −>green , mdm ) ;1137

i f ( r e s != RES_OK) goto e r r o r ;1138

1139

p a t h = hand le −>p a t h ;1140

t e r m s = d a r r a y _ p o w e r _ t e r m _ d a t a _ g e t (& path −>power_ te rms ) ;1141

n t e r ms = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;1142

i d = medium_get_ id (mdm ) ;1143

1144

/ * s t o r e term * /1145

t e rm . te rm = v a l ;1146

t e rm . i d = i d ;1147

t e rm . v e r t e x = * v t x ;1148

r e s = d a r r a y _ p o w e r _ t e r m _ p u s h _ b a c k (& hand le −>pa th −>power_terms , &term ) ;1149

i f ( r e s != RES_OK) goto e r r o r ;1150

1151

e x i t :1152

re turn r e s ;1153

e r r o r :1154

goto e x i t ;1155

}1156

1157

r e s_T1158

g r e e n _ p a t h _ a d d _ f l u x _ t e r m1159

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,1160

s t r u c t s d i s _ i n t e r f a c e * i n t e r f ,1161

c o n s t s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t * f r a g ,1162

c o n s t double v a l )1163

{1164

s t r u c t g r e e n _ p a t h * p a t h ;1165

s t r u c t f l u x _ t e r m * t e r m s ;1166

s t r u c t unmerged_ f lux_ t e rm term = FLUX_TERM_NULL__ ;1167

s i z e _ t n t e rm s ;1168

unsigned i d ;1169

r e s_T r e s = RES_OK ;1170

ASSERT( h a n d l e && i n t e r f && f r a g && v a l >= 0 ) ;1171

1172

r e s = e n s u r e _ i n t e r f a c e _ r e g i s t r a t i o n ( hand le −>green , i n t e r f ) ;1173

i f ( r e s != RES_OK) goto e r r o r ;1174

1175

p a t h = hand le −>p a t h ;1176

t e r m s = d a r r a y _ f l u x _ t e r m _ d a t a _ g e t (& path −> f l u x _ t e r m s ) ;1177

n t e r ms = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;1178

i d = i n t e r f a c e _ g e t _ i d ( i n t e r f ) ;1179

1180

/ * s t o r e term * /1181

t e rm . te rm = v a l ;1182

t e rm . i d = i d ;1183

t e rm . f r a g m e n t = * f r a g ;1184

r e s = d a r r a y _ f l u x _ t e r m _ p u s h _ b a c k (& handle −>pa th −> f l u x _ t e r m s , &term ) ;1185

i f ( r e s != RES_OK) goto e r r o r ;1186

1187

e x i t :1188

re turn r e s ;1189

e r r o r :1190

goto e x i t ;1191

}1192

Listing 8: green_function_solve_path for unmerged terms

s t a t i c r e s_T1193

g r e e n _ f u n c t i o n _ s o l v e _ p a t h1194

( s t r u c t s d i s _ g r e e n _ f u n c t i o n * green ,1195

c o n s t s i z e _ t i p a t h ,1196

double * we ig h t )1197
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{1198

c o n s t s t r u c t power_term * power_ te rms = NULL;1199

c o n s t s t r u c t f l u x _ t e r m * f l u x _ t e r m s = NULL;1200

c o n s t s t r u c t g r e e n _ p a t h * p a t h = NULL;1201

c o n s t s t r u c t sdis_medium * medium = NULL;1202

c o n s t s t r u c t s d i s _ i n t e r f a c e * i n t e r f = NULL;1203

s t r u c t s d i s _ s c e n e * scn = NULL;1204

double power ;1205

double f l u x ;1206

double e n d _ t e m p e r a t u r e ;1207

s i z e _ t i , n ;1208

r e s_T r e s = RES_OK ;1209

ASSERT( g r e e n && i p a t h < d a r r a y _ g r e e n _ p a t h _ s i z e _ g e t (& green −>p a t h s ) && w ei gh t ) ;1210

1211

p a t h = d a r r a y _ g r e e n _ p a t h _ c d a t a _ g e t (& green −>p a t h s ) + i p a t h ;1212

i f ( pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_ERROR) { / * R e j e c t e d pa th * /1213

r e s = RES_BAD_OP ;1214

goto e r r o r ;1215

}1216

1217

/ * Compute medium power t e r m s * /1218

power = 0 ;1219

n = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;1220

power_ te rms = d a r r a y _ p o w e r _ t e r m _ c d a t a _ g e t (& path −>power_ te rms ) ;1221

FOR_EACH( i , 0 , n ) {1222

medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , power_ te rms [ i ] . i d ) ;1223

power += power_ te rms [ i ] . t e rm1224

* s o l i d _ g e t _ v o l u m i c _ p o w e r ( medium , &power_ te rms [ i ] . v e r t e x ) ;1225

}1226

1227

/ * Compute i n t e r f a c e f l u x e s * /1228

f l u x = 0 ;1229

n = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;1230

f l u x _ t e r m s = d a r r a y _ f l u x _ t e r m _ c d a t a _ g e t (& path −> f l u x _ t e r m s ) ;1231

FOR_EACH( i , 0 , n ) {1232

i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , f l u x _ t e r m s [ i ] . i d ) ;1233

f l u x += f l u x _ t e r m s [ i ] . t e rm1234

* i n t e r f a c e _ s i d e _ g e t _ f l u x ( i n t e r f , &f l u x _ t e r m s [ i ] . f r a g m e n t ) ;1235

}1236

1237

/ * Compute pa th ’ s end t e m p e r a t u r e * /1238

sw i t ch ( pa th −>e n d _ t y p e ) {1239

case SDIS_GREEN_PATH_END_AT_INTERFACE :1240

i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , pa th −> l i m i t _ i d ) ;1241

e n d _ t e m p e r a t u r e =1242

i n t e r f a c e _ s i d e _ g e t _ t e m p e r a t u r e ( i n t e r f , &path −> l i m i t . f r a g m e n t ) ;1243

break ;1244

case SDIS_GREEN_PATH_END_IN_VOLUME :1245

medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , pa th −> l i m i t _ i d ) ;1246

e n d _ t e m p e r a t u r e = m e d i u m _ g e t _ t e m p e r a t u r e ( medium , &path −> l i m i t . v e r t e x ) ;1247

break ;1248

case SDIS_GREEN_PATH_END_RADIATIVE :1249

SDIS ( g r e e n _ f u n c t i o n _ g e t _ s c e n e ( green , &scn ) ) ;1250

SDIS ( s c e n e _ g e t _ a m b i e n t _ r a d i a t i v e _ t e m p e r a t u r e ( scn , &e n d _ t e m p e r a t u r e ) ) ;1251

i f ( e n d _ t e m p e r a t u r e < 0) { / * Cannot have i t n e g a t i v e i f used * /1252

r e s = RES_BAD_ARG;1253

goto e r r o r ;1254

}1255

break ;1256

d e f a u l t : FATAL( " U n r e a c h a b l e � code . \ n " ) ; break ;1257

}1258

1259

/ * Compute t h e pa th w e i g h t * /1260

* we ig h t = power + f l u x + e n d _ t e m p e r a t u r e ;1261

1262
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e x i t :1263

re turn r e s ;1264

e r r o r :1265

goto e x i t ;1266

}1267
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Appendix C. Figures1268

Figure C.13: Schemes of the two benchmark configurations. a) Geometry with open cavities; b) Different sources applied to this first benchmark
for the physical problem. - c) Geometry with enclosed cavities, d) Sources applied the second benchmark for the physical problem.
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Figure C.14: Open-porosity geometry without radiative transfer : a) Ambient fluid temperature b) Power density c) Flux density d) Solid boundary
temperature e) Initial temperature. Volume and surface of the geometry are noted V and S and L = 4V/S (L = 1m) is retained as the characteristic
size. The probe location �xc = (0.5, 0.5, 0.5) (at the center of the solid). The probe time estimation is t∗ = λt

ρcL2=0.89
(t = 1×106). The fluid reference

temperature T ref
BF = 505K. The reference physical parameters are

T ref
I −T ref

BF
T ref

BF
= −0.01 (reference initial temperature T ref

I = 500K),
T ref

B −T ref
BF

T ref
BF

= +0.01

(known reference boundary temperature T ref
B = 510K). The convective heat transfer coefficient h = 10 W.m−2.K−1 and the thermal conductivity

λ = 1 W.m−1.K−1 leading to Bi = hL
λ = 10.68 (h = 10 W.m−2.K−1). For propagator function, initial calculation uses a dimensionless numerical step

δ
L = 0.05 and N = 104. The reference volume power value Ψref = 20W.m−3. The reference density flux ϕref = 2000W.m−2.
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Figure C.15: Closed-porosity geometry without radiative transfer : a) Ambient fluid temperature b) Power density c) Flux density d) Solid
boundary temperature e) Initial temperature. Volume and surface of the geometry are noted V and S and L = 4V/S (L = 2.4358m) is retained
as the characteristic size. The probe location �xc = (0.5, 0.5, 0.5) (at the center of the solid). The probe time estimation is t∗ = λt

ρcL2=0.169

(t = 1 × 107). The fluid reference temperature T ref
BF = 505K. The reference physical parameters are

T ref
I −T ref

BF
T ref

BF
= −0.01 (reference initial temperature

T ref
I = 500K),

T re f
B −T ref

BF
T ref

BF
= +0.01 (known reference boundary temperature T ref

B = 510K). The convective heat transfer coefficient is expressed as

h = 10 W.m−2.K−1, this is leading to Bi = hL
λ = 24.358 with λ = 1 W.m−1.K−1. For propagator function, initial calculation uses a dimensionless

numerical step δL = 0.05 and N = 104. The reference volume power value Ψref = 1W.m−3. The reference density flux ϕref = 5W.m−2.
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Figure C.16: Closed-porosity geometry without radiative transfer : a) ambient fluid temperature b) power density c) flux density d) solid boundary
temperature e) initial temperature.
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Figure C.17: open-porosity geometry with radiative transfer : a-b) ambient fluid temperature c) power density d) flux density e) solid boundary
temperature f) initial temperature g-h) ambient radiant temperature. Volume and surface of the geometry are noted V and S and L = 4V/S
(L = 1m) is retained as the characteristic size. The probe location �xc = (0.5, 0.5, 0.5) (at the center of the solid). The probe time estimation is

t∗ = λt
ρcL2=0.89

(t = 1 × 106). The fluid reference temperature T ref
BF = 505K. The reference physical parameters are

T ref
I −θref

BR
θref

BR
= −0.01 (reference

initial temperature T ref
I = 500K and ambient radiative temperature θref

BR = 505K),
T ref

B −θref
BR

θref
BR

= +0.01 (known reference boundary temperature

T ref
B = 510K). The radiative transfer coefficient is expressed as hR = 4�σT 3

ref = 29.21 with the emissivity epsilon � = 1, the Stefan-Boltzmann
constant σ = 5.6703×10−8 J.s−1.m−2.K−4 and the reference temperature Tref = 305K. This is leading to BiR =

hRL
λ = 31.21, with λ = 1 W.m−1.K−1

and Bi = hL
λ = 10.68 (h = 10 W.m−2.K−1). For propagator function, initial calculation uses a dimensionless numerical step δL = 0.05 and N = 104.

The reference volume power value Ψref = 20W.m−3. The reference density flux ϕref = 2000W.m−2.
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Figure C.18: closed-porosity geometry with radiative transfer : a-b) ambient fluid temperature c-d) power density e-f) flux density. Volume and
surface of the geometry are noted V and S and L = 4V/S (L = 1m) is retained as the characteristic size. The probe location �xc = (0.5, 0.5, 0.5)
(at the center of the solid). The probe time estimation is t∗ = λt

ρcL2=2.4358
(t = 1 × 106). The fluid reference temperature T ref

BF = 505K. The

reference physical parameters are
T ref

I −θref
BR

θref
BR

= −0.01 (reference initial temperature T ref
I = 500K and ambient radiative temperature θref

BR = 505K),

T ref
B −θref

BR
θref

BR
= +0.01 (known reference boundary temperature T ref

B = 510K). The radiative transfer coefficient is expressed as hR = 4�σT 3
ref = 29.21

with the emissivity epsilon � = 1, the Stefan-Boltzmann constant σ = 5.6703 × 10−8 J.s−1.m−2.K−4 and the reference temperature Tref = 305K.
This is leading to BiR =

hRL
λ = 76.017, with λ = 1 W.m−1.K−1 and Bi = hL

λ = 24.358 (h = 10 W.m−2.K−1). For propagator function, initial
calculation uses a dimensionless numerical step δL = 0.05 and N = 104. The reference volume power value Ψref = 1W.m−3. The reference density
flux ϕref = 5W.m−2.
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Figure C.19: Closed-porosity geometry with radiative transfer : a-b) solid boundary temperature c-d) ambient radiant temperature e-f) initial
temperature.
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