
HAL Id: hal-04204702
https://hal.science/hal-04204702v1

Preprint submitted on 9 Jan 2022 (v1), last revised 17 Oct 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stardis: Propagator evaluation for coupled heat transfer
in large geometric models

Léa Penazzi, Stéphane Blanco, Cyril Caliot, C Coustet, Mouna El-Hafi,
Richard A Fournier, Jacques Gautrais, Morgan Sans

To cite this version:
Léa Penazzi, Stéphane Blanco, Cyril Caliot, C Coustet, Mouna El-Hafi, et al.. Stardis: Propagator
evaluation for coupled heat transfer in large geometric models. 2022. �hal-04204702v1�

https://hal.science/hal-04204702v1
https://hal.archives-ouvertes.fr


Stardis: Propagator evaluation for coupled heat transfer in large geometric
models

L. Penazzia,b,∗, S. Blancoc, C. Caliotd, C. Coustete, M. El Hafia, R. Fournierc, J. Gautraisf, M. Sansa

aRAPSODEE, UMR CNRS 5302, IMT Mines Albi, Campus Jarlard, Albi, France
bPROMES-CNRS, UPR 851, 7 rue du Four Solaire, 66120 Font Romeu Odeillo, France

cLAPLACE, UMR CNRS 5213, Université Paul Sabatier, 118 Route de Narbonne - 31062 Toulouse, France
dLMAP, UMR CNRS 5142, Université de Pau et des Pays de l’Adour, Avenue de l’Université, 64013 Pau, France

eMéso-Star - 8 rue des Pêchers, 31410 Longages, France
fCentre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul

Sabatier - Toulouse, France

Abstract

When heat transfer is linear or can be linearized around a given temperature field, a common engineering practice is
to evaluate a propagator for each of the energy sources as well as of the initial temperature field (regarded itself as
a source) so that the temperature at a given location and at a later time (a probe point) can be expressed as a simple
sum of all sources at all previous times, multiplied by the value of the propagator towards the probe. These simple
expressions are then immediately usable for all types of optimization, inversion, sensitivity analysis and command
control objectives. However, when facing large CAD geometry models or large numbers of spatially distributed
sources, evaluating the relevant propagator values with standard deterministic meshed methods can be a quite difficult
or computationally expensive numerical task. On the contrary, Monte Carlo is well known for directly addressing
these propagator values as well as for handling large geometrical models with ease. Until quite recently, very few
Monte Carlo algorithms could be implemented for coupled transient heat transfer. Recent work on Green formulation
and stochastic processes have led to the definition of conducto-convecto-radiative paths and they can now be sampled
efficiently using advanced computer graphic tools in order to evaluate the temperature at a probe point, whatever the
level of geometrical refinement is. The Stardis project holds an implementation of such recent advances, computing
how sources propagate towards a probe point in space-time. A remarkable feature is that Stardis output propagation
data themselves, which in turn can be repeatedly used for fast estimation over lots of sets of source values. We detail
here this feature of the code and provide all the theoretical background required by a thermal scientist facing the need
to use and adapt Stardis.

Keywords: Propagator, Monte Carlo method, Large geometric models, Coupled heat transfer

PROGRAM SUMMARY
Program Title: Stardis 0.7.2 (built on stardis-solver 0.12.3)
CPC Library link to program files: (to be added by Technical Editor)
Developer’s repository link: https://www.meso-star.com/projects/stardis/stardis.html
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: GPLv3
Programming language: ANSI C
Supplementary material: (Zip folder added to submission)
Nature of problem: Estimating a probe temperature at given time and location in a coupled heat transfer system involving large
CAD and/or large numbers of spatially distributed sources.
Solution method: Stardis uses Monte Carlo Method in order to solve coupled thermal systems for cases where radiative transfer
can be linearized. It evaluates the probe temperature as a propagator from each energy source in the system: the initial temperature,
temperature boundary condition, volume power and surface heat flux.

∗Corresponding author.
E-mail address: lea.penazzi@mines-albi.fr

Preprint submitted to Computer Physics Communications December 14, 2021

https://www.meso-star.com/projects/stardis/stardis.html


Additional comments including restrictions and unusual features: Stardis estimate of the propagator is reliable when linearization
of radiative transfer is relevant. For linearization, a temperature of reference has to be chosen in accord with the system under
consideration.

1. Introduction

Stardis is a Monte Carlo code for estimating propagation data in the context of linear heat transfer.
Starting from G. Green’s theory, the propagator concept was introduced by R. Feynmann as a way to picture, in

integral terms, the solution O(~x, t) of a field physics problem at a location ~x and time t, when this physics is linear :
O(~x, t) is viewed as an integral over all sources S (~xS , tS ) at all locations ~x inside the domainD and all times preceding
t (down to initial time tI), multiplied by a scalar ζ(~x, t, ~xS , tS ) :

O(~x, t) =

∫
D

d~xS

∫ t

tI

dtS ζ(~x, t, ~xS , tS ) S (~xS , tS ) (1)

The propagator ζ(~x, t, ~xS , tS ) indicates how each source impacts the solution, and invites for intuitions of the
sources being propagated in space and time throughout the system, toward the considered location ~x and time t.
Historically, this rewriting of G. Green’s formalism is mainly significant with regards to the physical pictures it
suggests. Here, we will concentrate on translating these pictures in pure computational terms : since ζ(~x, t, ~xS , tS ) is
independent of the source values, it can be numerically evaluated on its own. Then, any set of sources values can be
plugged into Eq. (1) to compute the corresponding O(~x, t).

Let us illustrate this concept with a standard practice in radiative transfer, where the factors associated with the
propagative point of view are named "shape factors" or "exchange surfaces" (depending on the context and the chosen
formulations). Let us take a simple scene with stationary radiative transfer between a camera and two lamps of
respective powers P1 and P2. Let O denote the radiative flux incident on a chosen pixel of the camera.

Figure 1: P1 light source on and P2 off Figure 2: P2 light source on and P1 off

Evaluating the shape factor ξ1 between the first lamp and the target pixel can be obtained by switching on the
first lamp alone and solving the radiative transfer equation to get the corresponding pixel flux O1 (see Fig. 1). The
shape factor associated with this first lamp is then ξ1 = O1

P1
. The same radiative transfer equation can also be solved

to evaluate the pixel flux O2 when only the second lamp is on, and the shape factor of the second lamp is ξ2 = O2
P2

(see Fig. 2). Once these factors are known, since they are independent of the powers of the lamps, they can be used to
evaluate the pixel flux Õ for any other set of lamp powers P̃1 and P̃2 when the two lamps are on simultaneously:

Õ = ξ1P̃1 + ξ2P̃2 (2)

The required number of shape factors can be huge, for example in the domain of infrared radiation where all sur-
face and volume parts of the system can emit radiation, so the question of the efficient numerical evaluation of large
numbers of shape factors has raised numerous technical questions, in particular for multiple scattering and multiple

2



reflection configurations with semi-transparent materials. A classical approach is to use reverse Monte Carlo algo-
rithms in which optical paths are tracked from the receptor (the target pixel in our example) backward to sources (the
lamps). The procedure can be duplicated for each target of interest (e.g. the other pixels of the camera).

Such algorithms, initially designed to estimate O, can also be used to estimate each shape factor (from each lamp
to the target pixel), with no additional computational cost : the paths sampled in one single computation can yield
estimates of O as well as all the shape factors. In our example, the reverse Monte Carlo computation can then be
made only once for a given set of the two lamps power, and does not need to be repeated for each lamp one by one.
Once evaluated, the shape factors can be linearly combined with any sets of lamp powers. In this practice, there is one
point of concern : we need to consider statistical correlations when evaluating the estimate uncertainty ("error bars")
because the estimates are built using the same set of sampled optical paths over different sets of lamps power. Taking
this point into account, the approach is then straightforward : only the shape factors required to estimate O are to be
computed using a reverse Monte Carlo.

The Monte Carlo code of Stardis is based on such a reverse approach for estimating ζ(~x, t, ~xS , tS ) in the context
of linear heat transfer. It samples thermal paths throughout the system, from the target (~x, t), backward in time to
its thermal sources. In the context of heat transfer, this implies a comprehensive definition of sources, in order to
encompass all the information that may impact the solution : this will include the expected standard power sources,
like imposed volume or surface power densities, but also all imposed boundary temperatures as well as the initial
temperature field.

It is only quite recently that Monte Carlo can address the transient coupling of conduction, convection and radiation
in geometric models with a complexity typical of industrial CAD, typically to address how the temperature of a
junction inside an electronic device depends on the history of imposed fluctuating electrical currents or fluctuating
radiator temperatures... We show here that such advances offer the same benefits in terms of ζ(~x, t, ~xS , tS ) computation
as those experimented in radiative transfer. For the point of interest (~x, t), the code can be run once for a given
description of thermal sources (volume power, heat flux, imposed temperatures at the boundary, initial conditions)
and all relevant propagation data can be stored.

One of the strongest significance of storing propagation data is that, then, basic algebraic functions can be coded to
evaluate the temperature at (~x, t) for any set of values for thermal sources, namely sums of sources values multiplied
by the corresponding ζ(~x, t, ~xS , tS ). That would yield very fast estimations. Avoiding the cost of computing full
heat transfer for each set, these fast functions can then be used as part of standard design optimisation or command
algorithms, where estimations are needed over lots of varying sets of sources values.

The present article describes how the Stardis project implements these ideas:

• Sec. 2 describes the physical model for coupled heat transfer.

• Sec. 3 describes how a reverse Monte Carlo path sampling can be used to solve this model.

• Sec. 4 describes how Stardis stores the propagation data.

• Sec. 5 describes stardis-solver, an implementation of reference used by Stardis.

• Sec. 6 depicts simulation examples.

• Sec. 7 gives some hints towards a generalisation to non-uniform and time-dependent sources, before concluding
remarks in Sec. 8.

2. Model for coupled heat transfer

2.1. System description

The system is delimited with a system-boundary surface S that is split into NS sub-surfaces Si. The internal
volume Ω is split into NΩ sub-volumes Ωi of boundaries ∂Ωi (see Fig. 3).

Each sub-volume is either a uniform opaque solid or a perfectly mixed transparent fluid. The contact between
adjacent solid sub-volumes is perfect (the thermal contact resistance is null) and the boundary layers at solid-fluid
interfaces are not described explicitly (they are summarized by a convective exchange coefficients). The thermal

3



Figure 3: Sketch of the general configuration. The system is delimited with a S boundary, three internal volumes Ω1, Ω2 and Ω3 are represented.
In Ω1 solid medium, there is a fluid medium Ωi and a sub-solid volume corresponding to Ωi+2. Ii is the solid/fluid boundary between Ω1 and Ωi.
∂Ωi+2 is the solid boundary between Ωi+2 and Ω1. Similarly, Ω2 contains a fluid sub-volume Ωi+1 and Ii+1 is the solid/fluid boundary. The last
volume Ω3 contains a solid volume Ωi+3 and the solid boundary is ∂Ωi+3. Conduction occurs in the solid volumes, radiation and convection occur
in the different fluid volumes. h represents the convective heat transfer coefficient.

properties of a solid sub-volume Ωi are the thermal conductivity λi, the mass density ρi and the mass thermal capacity
ci. For a fluid sub-volume, the required thermal properties are only ρi, ci and the fluid volume Vi. A power density ψi

can also be prescribed inside each solid sub-volume. There cannot be two fluid sub-volumes adjacent to each other: a
fluid sub-volume is always a fluid cell enclosed by solids.

The ensemble of all solid-fluid interfaces (between adjacent sub-volumes of different types) is noted I. It is split
into NI sub-interfaces Ii. The surface properties are uniform along each sub-interface: the convective exchange
coefficient is noted hi; the surface of the solid is grey of emissivity εi and reflection is modeled using a fraction αi of
specular reflection and a fraction 1 − αi of diffuse reflection.

On each sub-surface Si, the boundary condition can be of the following types:

• type-1 - Si is along a solid sub-volume and the solid temperature is known at this boundary, noted TB,i.

• type-2 - Si is along a solid sub-volume and the boundary flux density is known, noted ϕB,i.

• type-3 - Si is along a solid sub-volume, a transparent fluid is facing it, and the fluid temperature is known, noted
TBF,i. The boundary flux density is then the sum of the convective flux density and the radiative flux density,
with uniform values of the convective exchange coefficient hi, the emissivity εi and the specular/diffuse ratio
αi. At such a boundary, for incident directions that come from outside the system, the radiance temperature is
known, noted θBR.

• type-4 - Si is at the limit of a fluid sub-volume and the limit temperature is known, noted TB,i. This temperature
is to be interpreted as that of a solid surface enclosing the fluid cell, with uniform values of the convective
exchange coefficient hi, the emissivity εi and the specular/diffuse ratio αi.

2.2. Radiation
As the solids are opaque, the fluids are transparent and photon transport is instantaneous, radiative heat transfer

can be summarized to instantaneous exchanges between solid surfaces. At a location ~y at the surface of a solid sub-
volume Di facing a fluid, the radiative flux density ϕR(~y, t) is the difference between absorption of radiation in all
incident directions ~ω and emission by the solid due to its local temperature Ti(~y, t) :

ϕR(~y, t) = −εi

(
σTi(~y, t)4 −

∫
Hi(~y)
|~ω.~ni(~y)| I(~ω,~y, t) d~ω

)
(3)

4



where I(~ω,~y, t) is the spectrally integrated intensity at ~y in direction ~ω, σ is the Stefan-Boltzmann constant, ~ni(~y) is
the unit normal to the solid at ~y andHi(~y) is the hemisphere of all incident directions at ~y.

It is assumed that radiative transfer can be linearized with respect to the temperature around a given reference
temperature Tref, which means that T 4

i ≈ T 4
ref + 4T 3

ref(Ti − Tref) leading to the expression hR = 4εiσT 3
ref. We then make

the choice of translating the spectrally integrated intensity into a radiance temperature θR =
∫
DΓ

pγT (~xγ)dγ, i.e. a
mean radiative temperature seen at the solid/fluid interface due to radiative exchanges through the fluid phase.

Observing that
∫
Hi(~y)

|~ω.~ni(~y)|
π

d~ω = 1, Eq. (3) becomes

ϕR(~y, t) = −hR

(
Ti(~y, t) −

∫
Hi(~y)

|~ω.~ni(~y)|
π

θR(~ω,~y, t) d~ω
)

(4)

We note ~z ≡ ~z(~y,−~ω) the location of first intersection with a solid sub-volume Ω j of a straight line starting from
~y in direction −~ω. If there is no intersection (~z at infinity), then θR(~ω,~y, t) equals the incident radiance θBR(~ω,~y, t)
known at the system boundary. Otherwise, θR(~ω,~y, t) = θR(~ω,~z, t) (pure transport) and θR(~ω,~z, t) is modeled as the
sum of the emission by the solid at temperature T j(~z, t), the specular reflection of incoming radiation in direction −~ωS

where −~ωS is the symmetric of ~ω around ~n j(~z), and the diffuse reflection of radiation incident in all the directions ~ω′

of the incident hemisphereH j(~z) at ~z. Altogether,
If ~z at∞ : θR(~ω,~y, t) = θBR(~ω,~y, t)

If ~z ∈ ∂D j : θR(~ω,~y, t) = ε jT j(~z, t) + (1 − ε j)α jθR(−~ωS ,~z, t)

+ (1 − ε j)(1 − α j)
∫
H j(~z)

|~ω′.~n j(~z)|
π

θR(~ω′,~z, t) d~ω′
(5)

2.3. Conduction
At any location ~x inside a solid sub-volume Di, at any time t, the solid temperature Ti ≡ Ti(~x, t) is solution of the

following heat equation,

ρici
∂Ti

∂t
= λi∆Ti + ψi (6)

where ψi ≡ ψi(~x, t) is the local value of the power density. The initial condition at time tI is

Ti(~x, tI) = TI,i(~x) (7)

At any location ~y at the limit ofDi (i.e. ~y ∈ ∂Di), at any time t, the modeling of the interface or the boundary condition
is one of the following :

• If ~y is at an interface with another solid sub-volume Ω j,

λi~∇Ti.~ni = λ j~∇T j.~ni (8)

• If ~y is at an interface Ik with a fluid sub-volumeD j (with hR = 4εkσT 3
ref),

− λi~∇Ti.~ni = hk(T j − Ti) − hR

(
Ti −

∫
Hi(~y)

|~ω.~ni(~y)|
π

θR(~ω,~y, t) d~ω
)

(9)

• If ~y is at the boundary of the system, in a sub-surface S j with a type-1 boundary condition,

Ti = TB, j (10)

• If ~y is at the boundary of the system, in a sub-surface S j with a type-2 boundary condition,

− λi~∇Ti.~ni = ϕB, j (11)

• If ~y is at the boundary of the system, in a sub-surface S j with a type-3 boundary condition (with hR = 4ε jσT 3
ref),

− λi~∇Ti.~ni =

h j(TBF, j − Ti) − hR

(
Ti −

∫
Hi(~y)

|~ω.~ni(~y)|
π

θR(~ω,~y, t) d~ω
) (12)

5



2.4. Convection
Inside a fluid sub-volume Di, at any time t, the fluid temperature Ti ≡ Ti(t) is uniform and its evolution equation

is
ρiciVi

dTi

dt
=

∫
∂Di

h(~y)(TS (~y) − Ti)d~y (13)

where h(~y) and TS (~y) are respectively the convective exchange coefficient and the surface temperature at ~y on one of
the solid surfaces delimiting the fluid cell. If ~y is at an interface Ik with a solid sub-volume D j, then h(~y) = hk and
TS (~y) = T j(~y, t). If ~y is at the boundary of the system, in a sub-surface S j with a type-3 boundary condition, then
h(~y) = h j and TS (~y) = TB, j(~y, t).

3. Path sampling and propagation

In this section, we expose our reverse Monte Carlo algorithm, sampling paths driven by the model above, to
estimate a local temperature at location ~x and time t, or a radiance temperature at location ~x and time t in direction ~ω.

When integrated quantities are required (an average temperature on a volume or a surface, a spatially and angularly
integrated radiance for simulation of infrared camera pixels, ...), the only algorithmic change is that, prior to initiating
a thermal path, ~x and/or ~ω are sampled accordingly. We will not provide here description of such extensions.

3.1. A path sampling Monte Carlo algorithm
Depending on the choice of the quantity of interest, the estimate will yield either θR(~ω, ~x, t) for ~x inside a fluid

sub-volume, either Ti(~x, t) for ~x inside a solid sub-volume, or Ti(t) for ~x inside a fluid sub-volume. In each case, N
thermal paths γ j are sampled and each path is used to produce a Monte Carlo weight wγ j . These weights are then
averaged to produce an estimate m of the addressed quantity, together with a standard deviation s associated to this
estimate, that can be interpreted in term of a numerical uncertainty.

Ti(~x, t) or Ti(t) or θR(~ω, ~x, t) ≈ m =
1
N

N∑
j=1

wγ j (14)

s =
1
√

N

 1
N

N∑
j=1

w2
γ j
− m2

 (15)

We concentrate here on the calculation of wγ for any path γ, highlighting its propagative nature and how the informa-
tion about the sources is gathered along the path.

A thermal path is structured as a succession of conductive, convective and radiative sub-paths. From this point of
view, the only difference between the paths used to evaluate θR(~ω, ~x, t) in a fluid, Ti(~x, t) in a solid or Ti(t) in a fluid is
that they start with a radiative sub-path, a conductive sub-path or a convective sub-path respectively. We can therefore
consider each sub-path independently, only keeping in mind that : a) at the beginning of the first sub-path the Monte
Carlo weight is initiated to wγ = 0, and b) that the end of each sub-path is either the start of a new sub-path, or the
end of the whole path γ. Each path γ ends at a location ~xγ,end, either inside the system at the initial time tI or at the
boundary at a time tγ,end. When it ends with a known incident radiant temperature at the boundary, the corresponding
incident direction is ~ωγ,end.

3.1.1. Radiative sub-paths
Radiative sub-paths are constructed using a standard backward tracking multiple-reflection algorithm. Starting

from ~x with the objective of evaluating θR(~ω, ~x, t), a ray is traced in the scene in direction −~ω, looking for a first
intersection ~z1 with a solid surface. If no intersection is found (~z1 is at infinity), then our radiation model says that
θR(~ω, ~x, t) = θBR(~ω, ~x, t) where θBR is a known incident radiance temperature. In this case, the path γ is ended at
location ~xγ,end = ~x, the time tγ,end = t and the direction ~ωγ,end = ~ω.

The Monte Carlo weight is increased by θBR:

wγ += θBR(~ωγ,end, ~xγ,end, tγ,end) (16)

6



Otherwise ~z1 belongs either to a sub-surface S j or a sub-interface S j where the emissivity ε j and the specular/diffuse
fraction α j are known. A Bernoulli test of probability ε j is made to decide whether absorption occurs. If the test
is true, the radiative sub-path is ended at ~z1. If not, reflection occurs (with another Bernoulli test to decide between
specular or diffuse reflection and a Lambertian sampling of the reflection direction in the diffuse case) and the path
tracing process is continued from ~z1 in the direction of reflection −~ω1, etc, thus defining a succession of possible
reflections at locations ~z1, ~z2, ~z3 ... until either no reflection is found or absorption occurs. If no reflection is found,
the path is ended with the Monte Carlo weight increment of Eq. (16). When absorption occurs as a location ~zk, then
there are two possible cases :

• If~zk belongs to a sub-surface at the system boundary and the temperature TB is known at this surface (a radiative
path travels necessarily in a fluid and only a type-4 boundary condition can be encountered), the path γ is ended
and the Monte Carlo weight is increased by TB:

wγ += TB(~xγ,end, tγ,end) (17)

with ~xγ,end = ~zk and tγ,end = t.

• If ~zk belongs to a sub-interface, then the encountered solid is inside the system and its temperature is unknown.
The path γ must be continued with a new sub-path (with no change of wγ) and a test is made to decide between
the three heat transfer modes occurring at this interface: a radiative sub-path back into the fluid, a convective
sub-path also in the fluid, or a conductive path inside the solid. This test is the object of Sec. 3.2.

Summary. : A radiative sub-path is an instantaneous backward traced ray in a transparent fluid with multiple reflec-
tions at solid surfaces. If the sub-path encounters a known incident radiance or a known solid temperature, then γ is
ended and the Monte Carlo weight is increased by θBR or TB. Otherwise, the Monte Carlo weight is unchanged and at
the absorption location, γ is continued with the start of another sub-path at the corresponding solid-fluid interface.

3.1.2. Conductive sub-paths
Conductive sub-paths are approximate Brownian motions backward both in time and space inside a solid. They

are constructed as successions of jumps of arbitrary length δ and in isotropically sampled directions. Convergence
towards the exact solution is obtained for δ → 0 (Brownian motion is only exact at the limit δ = 0). However,
as the computational time increases considerably when the value of δ decreases, a compromise is required between
computational cost and precision. Hence, δ needs to be set sufficiently low to ensure a satisfactory accuracy on the
obtained solution and sufficiently high to provide an appropriate computational time.

Starting from ~x with the objective of evaluating T (~x, t), the first algorithmic step is the sampling of a backward
time shift δt according to an exponential law of parameter τi =

δ2ρici
6λi

, i.e.

δt = −τi ln(r) (18)

where r is sampled uniformly on [0, 1]. If t − δt < tI (the backward shift has crossed the initial time), then γ is ended
and the Monte Carlo weight is increased by the initial temperature:

wγ += TI(~xγ,end) (19)

with ~xγ,end = ~x. Otherwise a direction ~u is sampled isotropically in the unit sphere, a jump is made from ~x to ~x + δ~u
and the Monte Carlo weight is increased to account for the local power density ψ:

wγ += βψ(~x)ψ(~x, t − δt) (20)

with βψ = δ2

6λi
. δ is adjusted according to ~u in the vicinity of a solid surface so that ~x + δ~u may either remain inside the

solid or reach the solid surface exactly.
If ~x + δ~u is still inside the same solid sub-volume, sayDi, then the conductive sub-path is simply continued from

this new location and this recursively until reaching the surface ∂Di at a location ~z and time tz where the conductive
sub-path is stopped.

7



If the corresponding location belongs to an interface with another solid sub-volume D j, then the temperature of
the interface is unknown and γ must be continued with another conductive sub-path, initiated either insideDi or inside
D j. If ~z belongs to an interface with a fluid sub-volume, then the temperature of the interface is also unknown and γ
must be continued, but the next sub-path can be either a conductive one, back into Di, or a convective or a radiative
one inside or through the fluid. The corresponding tests are described in Sec. 3.2.

If ~z is at the boundary of the system, then the algorithm depends on the boundary condition type:

• For a type-1 boundary condition, the boundary temperature TB is known and γ is stopped and the Monte Carlo
weight is increased by TB:

wγ += TB(~xγ,end, tγ,end) (21)

with ~xγ,end = ~z and tγ,end = tz.

• For a type-2 boundary condition, the location is shifted back into the solid sub-volume, of a distance δ along the
normal, the conductive sub-path is continued from this new location, and the Monte Carlo weight is increased
to account for the value of the local flux density:

wγ += βϕ(~z)ϕ(~z, tz) (22)

with βϕ = δ
λi

.

• For a type-3 boundary condition, neither the boundary temperature nor the flux density is known and γ is
continued exactly the same way as for a solid-fluid interface inside the system (see Sec. 3.2). The only difference
is that when the following sub-path is a convective one, then the fluid temperature TBF is known and γ is ended.
In this case, the Monte Carlo weight is increased by TBF:

wγ += TBF(~xγ,end, tγ,end) (23)

with ~xγ,end = ~z and tγ,end = tz.

Summary. : A conductive sub-path is a Brownian motion backward in time inside a solid sub-volume until it reaches
either the initial time or the sub-volume boundary. If the initial time is reached, then γ is ended and the Monte Carlo
weight is increased by TI. If the system boundary is reached at location where the temperature is known, then γ is
ended and the Monte Carlo weight is increased by TB. If the system boundary is reached at location where the flux
density is known, then a new conductive sub-path is initiated, inside the same sub-volume, and the Monte Carlo weight
is increased by βϕϕ. In all other cases, the conductive sub-path has reached a location where neither the temperature
nor the flux density is known, and a new sub-path (conductive, convective or radiative) must be initiated from the
corresponding interface. Along the path, the Monte Carlo weight is increased to account for the local value of the
volume source density ψ. As Brownian motion is approximated with discrete jumps of length δ, the continuous effect
of the source is replaced by a Monte Carlo weight increment of βψψ at each jump.

3.1.3. Convective sub-paths
Convective sub-paths inside a fluid sub-volume Di are independent of their initial location: the fluid cells are

perfectly mixed so Ti is only a function of time, and the only required information is the time t at which the convective
sub-path was initiated. From t, a backward time shift δt is sampled according to an exponential law of parameter hiVi

ρiciS i
,

i.e.
δt =

hiVi

ρiciS i
ln(r) (24)

where S i and Vi are respectively the surface and volume of the fluid cavity, r is sampled uniformly on [0, 1]. If
t − δt < tI (the backward shift has crossed the initial time), then γ is ended and the Monte Carlo weight is increased
by the initial temperature:

wγ += TI,i (25)

8



Otherwise a location ~z is sampled on ∂Di according to probability density p~Z proportional to the local value of the
convective exchange coefficient:

p~Z(~z) =
h(~z)∫

∂Di
h(~z′)d~z′

(26)

and the time is shifted to tz = t − δt.
If ~z is at the system boundary, then this corresponds necessarily to a type-4 boundary condition and the boundary

temperature TB is known, so γ is ended and the Monte Carlo weight is increased by TB:

wγ += TB(~xγ,end, tγ,end) (27)

with ~xγ,end = ~z and tγ,end = tz. Otherwise ~z is at a solid-fluid interface inside the system and the interface temperature
is unknown. γ is then continued with a new conductive, convective or radiative sub-path as described in Sec. 3.2.

Summary. : A convective sub-path inside a fluid sub-volume is only a backward exponential shift in time. If the
initial time is reached, then γ is ended and the Monte Carlo weight is increased by TI. Otherwise a location is sampled
on one of the solid surfaces surrounding the fluid. If this location is at the boundary of the system and the surface
temperature is known, then γ is ended and the Monte Carlo weight is increased by TB. Otherwise the convective path
has reached an interface where the temperature is unknown and a new sub-path (conductive, convective or radiative)
must be initiated from this interface.

3.2. Choosing the next sub-path at a solid-solid or a solid-fluid interface
When describing conductive sub-paths, we encountered an algorithmic step where a location ~z was reached, at

the interface between two solid sub-volumes Di and D j, at time tz. At this interface, the temperature was unknown
and γ had to be continued. The exact same question is raised when γ needs to be started at such a location in order
to evaluate T (~x, t) with ~x = ~z and t = tz. This is achieved by first shifting ~z along the normal, either by a distance δi

inside Di or by a distance δ j inside D j, where δi and δ j are the values of the numerical parameter δ used inside Di

and insideD j respectively (depending of their characteristic dimensions). Then a conductive sub-path is started from
this shifted location, still at the same date. Choosing the side is made by retaining Di with probability Pcond,i and D j

with probability Pcond, j :

Pcond,i =

λi
δi

λi
δi

+
λ j

δ j

Pcond, j = 1 − Pcond,i

(28)

When describing each of the three sub-path types, we encountered the possibility that a location ~z is reached, at an
interface Ik between a solid sub-volume Di and a fluid sub-volume D j, at time tz. At this interface the temperature
is unknown and γ is to be continued. The exact same question is raised when γ needs to be started at such a location
in order to evaluate T (~x, t) with ~x = ~z and t = tz. The same question is also encountered when a conductive sub-path
reaches a location at the system boundary with type-4 boundary condition. We concentrate the description on the case
of an internal interface betweenDi andD j.

At such an interface, all three heat transfer modes are present: conduction inside Di, convection and radiation
inside Ω j. A test is therefore made to decide among a conductive, a convective or a radiative sub-path. Conductive,
convective and radiative sub-paths are decided with probabilities Pcond, Pconv and Pray respectively, with

Pcond =

λi
δi

λi
δi

+ hk + hR

Pconv =
hk

λi
δi

+ hk + hR

Pray = 1 − Pcond − Pconv

(29)

If conduction is retained, then ~z is shifted of along the normal of a distance δi inside Di and the conductive sub-path
is initiated at this shifted location. For convection or radiation, the corresponding sub-path is initiated at ~z at time tz.

9



Summary. : Departing from a solid-solid or a solid-fluid interface is made by initiating a sub-path with a heat transfer
mode that is sampled according to probabilities reflecting the flux continuity through the interface. When a conduction
sub-path is chosen, the start location is shifted by a distance δ inside the solid. In all cases, there is no increment made
to the Monte Carlo weight.

3.3. The Monte Carlo weight

As mentioned above, each path γ ends at a location ~xγ,end, either inside the system at the initial time tI or at the
boundary at a time tγ,end. When it ends with a known incident radiant temperature at the boundary, the corresponding
incident direction is ~ωγ,end. In each case, the Monte Carlo weight is increased by a temperature value that can be
TI(~xγ,end), TB(~xγ,end, tγ,end), TBF(~xγ,end, tγ,end) or θBR(~ωγ,end, ~xγ,end, tγ,end). Let µγ,end denote the type of ending, from 0 to
3 in the order of this list.

We can then define Tγ,end ≡ Tγ,end(~xγ,end, tγ,end, ~ωγ,end, µγ,end) as :

Tγ,end(~xγ,end, tγ,end, ~ωγ,end, 0) = TI(~xγ,end)
Tγ,end(~xγ,end, tγ,end, ~ωγ,end, 1) = TB(~xγ,end, tγ,end)
Tγ,end(~xγ,end, tγ,end, ~ωγ,end, 2) = TBF(~xγ,end, tγ,end)
Tγ,end(~xγ,end, tγ,end, ~ωγ,end, 3) = θBR(~ωγ,end, ~xγ,end, tγ,end)

(30)

Along γ, conductive sub-paths may have crossed solid sub-volumes with a volume power source ψ, and we have seen
that the Monte Carlo weight was increased by βψψ at each discrete jump location. Let Nψ denote the number of such
locations, and ~xγ,ψ(k) and tγ,ψ(k) the location and time of the k-th of these Monte Carlo weight increments. Similarly,
conductive sub-paths may have visited boundary locations where the flux density ϕ is known, and we have seen that
the Monte Carlo weight was increased by βϕϕ at each such visit. Let Nϕ denote the number of such visits, and ~xγ,ϕ(k)
and tγ,ϕ(k) the location and time of the k-th of these Monte Carlo weight increments.

With these notations, the complete expression of the Monte Carlo weight associated to γ is

wγ =

Nψ∑
k=1

βψ(~xγ,ψ(k)) ψ
(
~xγ,ψ(k), tγ,ψ(k)

)
+

Nϕ∑
k=1

βϕ(~xγ,ϕ(k)) ϕ
(
~xγ,ϕ(k), tγ,ϕ(k)

)
+ Tγ,end(~xγ,end, tγ,end, ~ωγ,end, µγ,end)

(31)

The reading of this weight expression illustrates the intimate relation between such path sampling Monte Carlo
algorithms and Green’s theory. As mentioned above, Green’s theory considers the temperature as a solution of the
problem at (~x∗, t∗), or the radiance temperature at (~ω∗, ~x∗, t∗), which results in an integral of all the sources, TI, TB,
TBF, θBR, ψ and ϕ, at (~x, t, ~ω) multiplied by a propagator density that is independent of the source values; Monte Carlo
considers it as the average of a large number of weights that carry the same sources from (~xγ,end, tγ,end, ~ωγ,end) or from
(~xγ,ψ(k), tγ,ψ(k)) and (~xγ,ϕ(k), tγ,ϕ(k)), multiplied by factors that are independent of the source values: the factor is 1 for
TI, TB, TBF and θBR, it is βψ for ψ and βϕ for ϕ. The paths sample ζ(~x, t, ~xS , tS )S (~xS , tS ) in a backward manner.

4. Stardis : storing the propagation data

4.1. Illustration of the principle in the case of two sources

Let us start by considering a simple configuration akin to the radiative transfer example with two lamps of power
P1 and P2 viewed from a camera pixel.

Here, the heat transfer mode is conduction inside a cubic solid with two isothermal faces S1 and S2, facing each
other, at temperatures TB,1 and TB,2, the other four faces being adiabatic (see Fig. 4). The addressed quantity is the
stationary temperature T (~x) at a location ~x inside the solid. In terms of Green’s theory, as the problem is stationary, no
propagator is required for the initial condition (reported to −∞). There are no volume sources and the only imposed

10



Figure 4: Schemes of the solid cube with two isothermal faces S 1 and S 2, respectively at temperature TB,1 and TB,2, with a location ~x inside the
solid volume.

surface flux is null (at the adiabatic faces). The only sources are therefore TB,1 and TB,2 and we note ζB,1(~x) and ζB,2(~x)
the corresponding propagators:

T (~x) = ζB,1(~x)TB,1 + ζB,2(~x)TB,2 (32)

Considering the expression of the Monte Carlo weight in Eq. (31), how can we provide an estimate for ζB,1(~x) and one
for ζB,2(~x) using the same thermal paths as those used to estimate T (~x)?

In the expression of the Monte Carlo weight of the preceding section, for this simple case, the sums over Nψ and
Nϕ vanish (no surface flux, no volume flux), ~ωγ,end is not used (we estimate a local temperature and not a radiance
temperature), tγ,end is unused (the problem is stationary) and µγ,end = 1 (the path can only end at S1 or S2, i.e. at a
boundary with a known solid temperature). Eq. (31) reduces to

wγ = Tγ,end(~xγ,end, 1) (33)

with Tγ,end(~xγ,end, 1) = TB,1 if ~xγ,end ∈ S1 and Tγ,end(~xγ,end, 1) = TB,2 if ~xγ,end ∈ S2.
In the spirit of the example used in introduction, let us address ζB,1(~x) by "turning off" the second source, i.e.

TB,2 = 0, so that ζB,1(~x) =
T (~x)
TB,1

.

This defines the Monte Carlo weight to be used for estimating ζB,1(~x) as : wB,1
γ =

wγ

TB,1
=

Tγ,end(~xγ,end,1)
TB,1

with Tγ,end(~xγ,end, 1) = TB,1 if ~xγ,end ∈ S1 and Tγ,end(~xγ,end, 1) = 0 if ~xγ,end ∈ S2,
namely, wB,1

γ = 1 if ~xγ,end ∈ S1 and wB,1
γ = 0 if ~xγ,end ∈ S2.

This writes
wB,1
γ = H(~xγ,end ∈ S1) (34)

whereH is a test function, taking the value 1 if the condition is valid and 0 otherwise. Similarly,

wB,2
γ = H(~xγ,end ∈ S2) (35)

In algorithmic terms,

• N paths γ j are sampled;

• wB,1
γ j is computed for each path (1 if S1 is reached, 0 otherwise);

• wB,2
γ j is computed for each path (1 if S2 is reached, 0 otherwise);

• the Monte Carlo estimate of ζB,1(~x) is mB,1 = 1
N

∑N
j=1 wB,1

γ j ;

• the Monte Carlo estimate of ζB,2(~x) is mB,2 = 1
N

∑N
j=1 wB,2

γ j .

Then, Eq. (32) can be used to estimate the results for any set of source values.

11



4.2. Implementation in Stardis

In Stardis, we consider scenes where boundary conditions can be split into a set of constant and uniform sources:
θiBR does not depend on location, time and direction, and for each geometrical element i, TB,i, ϕB,i and ψi are constant
and uniform, TI,i does not depend on location. λi, ρi, ci, hi, εi and αi are also considered uniform over element i.

Under these assumptions, ζ(~x, t, ~xS , tS ) can be aggregated by geometrical element as done above in Eqs. (34) and
(35). For this, we use the test function to build one weight expression for each geometrical element i and each type of
source, following:

wI,i
γ = H(~xγ,end ∈ Ωi)H(µγ,end = 0)

wB,i
γ = H(~xγ,end ∈ Si)H(µγ,end = 1)

wBF,i
γ = H(~xγ,end ∈ Si)H(µγ,end = 2)

wBR
γ = H(µγ,end = 3)

wψ,i
γ =

Nψ∑
k=1

H(~xγ,ψ(k)) ∈ Ωi)βψ(~xγ,ψ(k))

wϕ,i
γ =

Nϕ∑
k=1

H(~xγ,ϕ(k) ∈ Si)βϕ(~xγ,ϕ(k))

(36)

These weights are then just a splitting of the weights given by Eq. 31 and only them need to be stored while solving
the latter. The Monte Carlo algorithm is therefore modified to estimate:

mI,i =
1
N

N∑
j=1

wI,i
γ j

mB,i =
1
N

N∑
j=1

wB,i
γ j

mBF,i =
1
N

N∑
j=1

wBF,i
γ j

mBR =
1
N

N∑
j=1

wBR
γ j

mψ,i =
1
N

N∑
j=1

wψ,i
γ j

mϕ,i =
1
N

N∑
j=1

wϕ,i
γ j

(37)

Finally, once these estimates have been constructed, they can be used to estimate the addressed quantity for any set of

12



sources:

T (~x, t) or T (t) or θR(~ω, ~x, t) ≈ m =

Nω∑
i=1

mI,i TI,i

+

NS∑
i=1

mB,i TB,i

+

NS∑
i=1

mBF,i TBF,i

+mBR θBR

+

Nω∑
i=1

mψ,i ψi

+

NS∑
i=1

mϕ,i ϕi

(38)

4.3. Uncertainty estimation
The question of quantifying the uncertainty is less trivial than with an usual Monte Carlo (see Eq. (15)). In

Eq. (37), it appears clearly that a Monte Carlo approach is used for estimating each propagator as an average of
dedicated weights. We could therefore compute an uncertainty associated to each of these estimates by estimating the
standard deviation of the Monte Carlo weights for each propagator. This would indeed provide a faithful information
about the uncertainty with which each propagator is known for a given number of sampled thermal-paths, but this
information would be insufficient to estimate the uncertainty of the finally addressed quantity (T (~x, t) for instance).
The reason is that the same set of thermal-paths has been used to estimate all the propagators (in one single Monte
Carlo run) and therefore the propagator estimates are correlated. When estimating T (~x, t) for a new set of sources in
Eq. (38), i.e. summing the known sources multiplied by their propagators, these correlations seem to indicate that
addressing the uncertainty of this estimate requires the knowledge of a correlation matrix.

In practice, this can be avoided because the paths that have been used to estimate each propagator are precisely
those that would be used in a Monte Carlo run addressing T (~x, t). Although we have chosen to store the propagators for
parts of the system (and not all the information carried by each path independently) we can still address the estimation
of the uncertainty of the estimate m of T (~x, t) as if we had stored the paths. Somehow, the uncertainty is always to be
estimated using Eq. (15). Practically, this means that for each sampled path, we increment a counter for the sum of
the squares of the Monte Carlo weights for each propagator, leading to the final storing of the following sums,

ssqI,i =

N∑
j=1

(
wI,i
γ j

)2

ssqB,i =

N∑
j=1

(
wB,i
γ j

)2

ssqBF,i =

N∑
j=1

(
wBF,i
γ j

)2

ssqBR =

N∑
j=1

(
wBR
γ j

)2

ssqψ,i =

N∑
j=1

(
wψ,i
γ j

)2

ssqϕ,i =

N∑
j=1

(
wϕ,i
γ j

)2

(39)

13



that are then used to compute s as

s =
1
√

N

(
1
N

( Nω∑
i=1

ssqI,i T 2
I,i

+

NS∑
i=1

ssqB,i T 2
B,i

+

NS∑
i=1

ssqBF,i T 2
BF,i

+ssqBR θ
2
BR

+

Nω∑
i=1

ssqψ,i ψ2
i

+

NS∑
i=1

ssqϕ,i ϕ2
i

)
− m2

)1/2

(40)

Of course, if for some reasons one propagator is to be addressed independently, its uncertainty can always be addressed
using the sum of the square of the corresponding weights. The only point is that although this uncertainty would tell us
about the accuracy with which the propagator is known, because of the correlations, it will not be a faithful information
about how accurately T (~x, t) is known. Eq. (38) is to be preferred.

5. Implementation

The implementation of stardis-solver, that is presented here, is a reference implementation suitable for exe-
cution with conventional computing resources (low-end personal computer).

The source code of the solver is designed to be easy to understand and suitable for training purposes. Users can
then rely on this implementation and make it evolve according to their needs.

The current implementation is a compromise between the different possibilities described in Sec. 4. This compro-
mise consists in:

• Grouping the terms related to volume power densities and heat flux densities, restraining heat flux and power to
be uniform over time and space.

• Keeping all positions and times for other sources (initial temperature, ambient radiation temperature, fluid
temperature, imposed temperature), allowing these sources to vary, either over time or space or both.

5.1. Code structure
Code structure is briefly presented to help the reader understand the topics related to the Green function. First, all

the data structures and functions described thereafter in a literate programming-inspired way [1], are located in the
file sdis_green.c. The file is structured as follows:

<sdis_green.c> =
<license>
<inclusions>
<secondary types and functions>
<green data structures> (1)
<helper functions>
<evaluation functions> (3)
<build functions> (2)

The three main parts of interest and detailed below are:

(1) Data structures used to store the Green function (see Sec. 5.2).

14



(2) Functions used to fill up these data structures in the construction of the Green function (see Sec. 5.3).

(3) Functions using these data structures to evaluate the temperature for a given set of source values (see Sec. 5.4).

The source code for the data structures and functions described in these three sections are grouped in Appendix
A at the end of the document.

5.2. Data structures
When building the Green function, the Monte-Carlo weights are not computed, but the data needed to compute

them is stored, path by path, for later use. This storage requires two different types: one to store the data collected
along individual Green paths, and another one to store the Green function itself, including the data of the sampled
Green paths, as well as all the shared data referenced by the paths (materials, interfaces, ...):

<green data structures> =
<green path data structure>
<green function data structure>

Path storage. Green paths are constructed by stardis-solver, following the very same algorithm as when evalu-
ating a temperature. The difference between temperature computation and the construction of the Green function is
that when a path is sampled, some of the information is stored in the data structure corresponding to the Green path
instead of being used on the fly to compute a temperature (see List. 2). Then, each path sampled by the solver results
in a Green path data structure storing the information as follows:

<green path data structure> =
struct green_path {

<path elapsed time>
<flux density terms collection>
<power density terms collection>
<end of path>
<miscellaneous variables>

};

Elapsed time is trivially a double:

<path elapsed time> =
double elapsed_time;

Flux and power terms encountered along the path are partially merged and stored in dynamic arrays. Merging is
done by material and interface: all contributions along the path are accumulated and stored as a single term associated
with a given material or interface.

<flux density terms collection> =
struct darray_flux_term flux_terms;

<power density terms collection> =
struct darray_power_term power_terms;

As flux terms can only appear at interfaces, merged flux terms consist of an interface identifier, the involved side
and the corresponding cumulated flux value. On the other hand, power terms appear in media, thus merged power
terms consist of a medium identifier and the cumulated power value.

struct power_term {
double term;
unsigned id; /* Identifier of the medium */

};

struct flux_term {

15



double term;
unsigned id; /* Identifier of the interface */
enum sdis_side side;

};

The end of the path can be of three types: at a boundary (fragments), in a volume (vertex), or a radiative
exchange with the surrounding environment. Classically this end is represented by an union which is interpreted
according to the value of the field limit_type, which also allows to interpret limit_id as being an identifier of
medium (case in volume) or interface (case at boundary); note that the radiative case require neither an union member
nor a limit_id:

<end of path> =
union {

struct sdis_rwalk_vertex vertex;
struct sdis_interface_fragment fragment;

} limit;
unsigned limit_id;
enum sdis_green_path_end_type end_type;

Green function storage. The main structure is used to store everything allowing the later evaluation of a temperature
estimator. This includes the description of the sampled paths as well as all the shared data referenced by the sampled
paths (see List. 1).

<green function data structure> =
struct sdis_green_function {

<media collection>
<interfaces collection>
<paths collection>
<miscellaneous variables>

};

Collections of media and interfaces accumulate the media and interfaces that have been visited when constructing
the Green function. Individual paths can then reference this shared information. These collections are hash tables,
i.e. associative containers that favor fast and constant time lookup, to ensure unique storage of only the media and
interfaces visited by the paths:

<media collection> =
struct htable_medium media;

<interfaces collection> =
struct htable_interf interfaces;

The paths collection is the set of the paths sampled for the construction of the propagator. It is a dynamic array
that is well suited for iterative storage and path iteration:

<paths collection> =
struct darray_green_path paths;

5.3. Building propagation information
Various functions are needed to fill up the Green function’s data structures. They can be divided in two groups:

<build functions> =
<functions building the green function>
<functions building green paths>

Functions building the Green function itself do not need further description, as they are limited to collections
management.

<functions building green paths> =
<functions that store path ending>
<functions that accumulate data along a path>

16



5.3.1. Storing path ending
Since there are three different ways to end a path, there are three different functions that can be called to store

information about the end of paths (see List. 3):

<functions that store path ending> =
<store path’s end at an interface>
<store path’s end in a medium>
<store radiative path’s end>

Let’s start by describing the first function:

<store path’s end at an interface> =
res_T
green_path_set_limit_interface_fragment

(struct green_path_handle* handle,
struct sdis_interface* interf,
const struct sdis_interface_fragment* frag,
const double elapsed_time)

{
res_T res = RES_OK;
<check input arguments>
<register interface ’interf’ against the green function>
<store path duration>
<store the location at interface>
<store identifier of interface ’interf’>
<store the path ends up at an interface>
return RES_OK;

}

The current path ends at an interface that must be available at the time the Green function is evaluated. We start
by making sure that is the case, returning an error if the process fails.

<register interface ’interf’ against the green function> =
res = ensure_interface_registration(handle->green, interf);
if(res != RES_OK) return res;

Then the elapsed time is stored:

<store path duration> =
handle->path->elapsed_time = elapsed_time;

Then the information related to the location at interface is stored (including position, normal, parametric coordi-
nates and time):

<store the location at interface> =
handle->path->limit.fragment = *frag;

Then the interface identifier is stored:

<store identifier of interface ’interf’> =
handle->path->limit_id = interface_get_id(interf);

Finally, the type of the path ending is stored:

<store the path ends up at an interface> =
handle->path->end_type = SDIS_GREEN_PATH_END_AT_INTERFACE;

The other two functions are built using the same pattern and are sketched thereafter:

17



<store path’s end in a medium> =
res_T
green_path_set_limit_interface_fragment

(struct green_path_handle* handle,
struct sdis_medium* mdm,
const struct sdis_rwalk_vertex* vert,
const double elapsed_time)

{
res_T res = RES_OK;
<check input arguments>
<register medium ’mdm’ against the green function>
<store path duration>
<store the location in medium>
<store identifier of medium ’mdm’>
<store the path ends up in a medium>
return RES_OK;

}

<store radiative path’s end> =
res_T
green_path_set_limit_interface_fragment

(struct green_path_handle* handle,
const double elapsed_time)

{
res_T res = RES_OK;
<check input arguments>
<store path duration>
<store the path ends up radiative>
return RES_OK;

}

5.3.2. Accumulating data along a path
The data accumulated along a path is volume power density terms and flux density terms. It is performed through

the following two functions, that share the same pattern:

<functions that accumulate data along a path> =
<register a power term>
<register a flux term>

<register a power term> =
res_T
green_path_add_power_term

(struct green_path_handle* handle,
struct sdis_medium* mdm,
const struct sdis_rwalk_vertex* vtx,
const double val)

{
<local variables>
<check input arguments>
<register medium ’mdm’ against the green function>
<search for a power term associated to ’mdm’>
<if a power term exist for ’mdm’> {

<add ’val’ to this power term>
} else {

<register ’val’ as the power term of ’mdm’>
}

18



<finalize the add_power_term function>
}

<register the accumulated flux term> =
res_T
green_path_add_flux_term

(struct green_path_handle* handle,
struct sdis_interface* interf,
const struct sdis_interface_fragment* frag,
const double val)

{
<local variables>
<check input arguments>
<register the interface ’interf’ against the green function>
<search for a flux term associated to ’interf’>
<if a flux term exist for ’interf’> {

<add ’val’ to this flux term>
} else {

<register ’val’ as the flux term of ’interf’>
}
<finalize the add_flux_term function>

}

Examples of Green paths vs. Monte Carlo paths. Two examples of paths sampled by the Stardis probe temperature
solver are shown in Figs. 5 and 6. For each example, the archived information for the construction of the Green path
is shown in Tabs. 1 and 2.

Figure 5: First path example

Step number Path position βψ(~xγ,ψ(1)) value µγi ,end identifier

1 ~xγ j ∈ Ωi 0 -

2 ~xγ j ∈ Ω1
δ22

6λ1
-

3 ~xγ j ∈ Ω1
δ22

6λ1
+

δ23
6λ1

-

4 ~xγ j ,end ∈ Ωi
δ2

2

6λ1
+

δ2
3

6λ1
0

Table 1: Successive data stored (framed in green rectangles and referred
as green path ) during Monte Carlo calculation for the first Green path.

The first path starts at the probe point ~x. Contributions βψ(~xγ,ψ(1)) related to the power density term Ψ1 in the
medium Ω1 will accumulate when the path crosses the medium, i.e. during the second and third jump (δ2 and δ3).
Path ends with the initial temperature condition TI associated to the medium Ωi (see Fig. 5).

Monte Carlo weight would be as follows:

wγ j = ψ1βψ(~xγ,ψ(1)) + Tγ,end(~xγ,end, tγ,end, ~ωγ,end, 0) (41)

Data stored for the Green path (framed in green in Tab. 1) are: successive positions ~xγ j , power density term
contribution βψ(~xγ,ψ(1)) along the path and the identifier of the boundary condition encountered µγ,end = 0 (Ti,I : initial
condition type-0).

19



Figure 6: Second path example

Step number Path position βϕ(~xγ,ϕ(i)) value µγi ,end identifier

1 ~xγ j ∈ Ωi 0 -

2 ~xγ j ∈ Si 0 -

3 ~xγ j ∈ Ωi
δ22
λi

-

4 ~xγ j ∈ Si
δ22
λi

-

5 ~xγ j ∈ Ωi
δ22
λi

+
δ24
λi

-

6 ~xγ j ,end ∈ S2
δ2

2

λi
+
δ2

4

λi
1

Table 2: Successive data stored (framed in green rectangles and referred
as green path ) during Monte Carlo calculation for the second Green
path.

The second path starts at the probe point ~x. Contributions βϕ(~xγ,ϕ(i)) related to flux density ϕi at Si interface will
accumulate when the path hits this interface, i.e. on the second and fourth jump (δ2 et δ4). The path ends at the
interface S2 with the temperature imposed on this interface TB (see Fig. 6).

Monte Carlo weight would be as follows:

wγ j = ϕiβϕ(~xγ,ϕ(i)) + Tγ,end(~xγ,end, tγ,end, ~ωγ,end, 1) (42)

Data stored for the Green path (framed in green in Tab. 2) are: successive positions ~xγ j , density flux contribution
βϕ(~xγ,ϕ(i)) along the path and the identifier of the boundary condition encountered µγ,end = 1 (TB : type-1 boundary
condition).

5.4. Using propagation information

Once a set of sampled paths is stored in the Green function, dedicated evaluation functions are needed to apply
the Green function to a set of source values (see List. 5). These functions are presented thereafter. Note however
that when using helper functions also used for standard Monte-Carlo computations (solid_get_volumic_power,
interface_side_get_flux), they have to provide a vertex, even though the computation is time and space inde-
pendent in the Green function context.

<evaluation functions> =
res_T
sdis_green_function_solve

(struct sdis_green_function* green,
struct sdis_estimator** out_estimator)

{
<local variables>
<check input arguments>
<create the estimator>

<for each green path stored into ’green’> {
<compute the weight of the current green path>
<accumulate the resulting weight>

}
<setup the estimator>
<finalize the solve function>

}

The computation of the weight associated to a path is done with a dedicated function (see List. 4):

20



<compute the weight of the current green path> =
double w; /* Monte Carlo weight to compute */
res = green_function_solve_path(green, ipath, &w);
<handle error code returned in ’res’>

The dedicated function simply takes into account the different contributions that have been stored in the current
path (power, flux and end of path), and uses them to produce the Monte-Carlo weight of the path:

<evaluation functions> +=
res_T
green_function_solve_path

(struct sdis_green_function* green,
const size_t ipath,
double* weight)

{
<local variables>
<check input arguments>

<compute the power collected along the path>
<compute the flux collected along the path>
<fetch the end of path>
<compute the overall Monte-Carlo weight>

<finalize the solve_path fuction>
}

The volume power along the path is computed by considering each medium encountered along the path and accu-
mulating the corresponding volume power contribution. Each volume power term power_terms[i] (see Eq. (36)),
previously accumulated by the function green_path_add_power_term is multiplied by the new given volume power
density value solid_get_volumic_power(medium, &vtx). The total volume power contribution obtained for the
path is power:

<Compute the volume power collected along the path> =
power = 0;
n = darray_power_term_size_get(&path->power_terms);
power_terms = darray_power_term_cdata_get(&path->power_terms);

FOR_EACH(i, 0, n) {
vtx.time = INF;
medium = green_function_fetch_medium(green, power_terms[i].id);
power += power_terms[i].term * solid_get_volumic_power(medium, &vtx);

}

The flux along the path is computed by considering each interface encountered along the path and accumulating
the corresponding flux contribution.

Each flux terms flux_terms[i] (see Eq. (36)), previously accumulated by the function green_path_add_flux_term
is multiplied by the new given flux density value interface_side_get_flux(interf, &frag). The flux term ob-
tained for the path is flux:

<Compute the flux collected along the path> =
flux = 0;
n = darray_flux_term_size_get(&path->flux_terms);
flux_terms = darray_flux_term_cdata_get(&path->flux_terms);

FOR_EACH(i, 0, n) {
frag.time = INF;

21



frag.side = flux_terms[i].side;
interf = green_function_fetch_interf(green, flux_terms[i].id);
flux += flux_terms[i].term * interface_side_get_flux(interf, &frag);

}

The temperature at the end of the path, depending on the type of end, is the new given interface temperature
value interface_side_get_temperature(interf, &frag), the new given temperature value of the medium
medium_get_temperature(interf, &frag), or the new given ambient radiative temperature value
sdis_scene_get_ambient_radiative_temperature(scn, &end_temperature):

<fetch the end of path> =
switch(path->end_type) {

case SDIS_GREEN_PATH_END_AT_INTERFACE:
interf = green_function_fetch_interf(green, path->limit_id);
frag = path->limit.fragment;
end_temperature = interface_side_get_temperature(interf, &frag);
break;

case SDIS_GREEN_PATH_END_IN_VOLUME:
medium = green_function_fetch_medium(green, path->limit_id);
vtx = path->limit.vertex;
end_temperature = medium_get_temperature(medium, &vtx);
break;

case SDIS_GREEN_PATH_END_RADIATIVE:
SDIS(green_function_get_scene(green, &scn));
SDIS(scene_get_ambient_radiative_temperature(scn, &end_temperature));
if(end_temperature < 0) { /* Cannot be negative if used */

res = RES_BAD_ARG;
goto error;

}
break;

default: FATAL("Unreachable code.\n"); break;
}

Path weight weight, computed from the new source values, is then simply the sum of the different contributions:
power, flux and end_temperature.

<compute the overall Monte-Carlo weight> =
*weight = power + flux + end_temperature;

6. Simulation examples

This section illustrates a typical use of the storage and use of the propagation information described in the previ-
ous sections. The geometrical and physical descriptions of the configurations used for this illustration, as well as the
Stardis input files, are available in the enclosed zip file. The objective is essentially to show that a computation per-
formed using the stored propagation information recovers the result that would be obtained with a complete MC run
(with a particular attention to the associated statistical errorbars) and to illustrate the benefits in terms of computation
times. As far as validation is concerned, we concentrate on the parts of the code constructing and using the propaga-
tors, not on the main code itself: Stardis is already validated elsewhere [2, 3]. However we still reproduce here parts
of this validation by providing, together with each simulation example, a systematic comparison with the solution
computed with a standard deterministic solver [4] (referred as COMSOL Multiphysics® hereafter and "Deterministic"
in figures).

Two academic configurations are considered. They are designed as simplified versions of porous media, one with
open porosities (see Fig. C.8 a)), the other with closed porosities (see Fig. C.8 c)). This benchmark was already used
by Sans et. al [5] for the purpose of validating Monte Carlo simulations of coupled conduction-radiation heat transfer.

22



The open-porosity configuration corresponds to a heterogeneous 3D honeycomb that can be assimilated to a porous
medium with open channels, like a heat exchanger configuration. The closed-porosity configuration has 22 enclosed
cavities and may be assimilated to an insulation material.

The physical assumptions are those of Sec. 2.1 with same values for λ, ρ, c and ψ throughout the whole solid
phase and same values for h and ε along all the solid-fluid interfaces. For open porosity, there is one single imposed
fluid temperature TBF (type-3 boundary condition), the same inside the channels and outside the system. For closed
porosity, TBF is only imposed outside the system (fluid cells temperatures are free). In both cases, the incoming
radiance temperature outside the system θBR is uniform and isotropic, the solid temperature TB is imposed at the
top surface (type-1 boundary condition) and a flux density ϕB is imposed at the bottom surface (type-2 boundary
condition). The initial temperature TI is uniform.

The estimated quantity is the temperature T (~xc, t) at the center ~xc of the geometry for a given observation time t
as a function depending on the six available sources:

• the initial temperature TI,

• the top boundary solid temperature TB,

• the ambient fluid temperature TBF,

• the ambient radiance temperature θBR,

• the flux density at the bottom boundary ϕ,

• the power density throughout the solid phase ψ.

Tests are conducted first without radiation (ε = 0, see Fig. C.9, Fig. C.10 and Fig. C.11 ) and then with radiation
(black surfaces, ε = 1, see Fig. C.12, Fig. C.13 and Fig. C.14). For each case, the propagation information are stored
using a single Monte Carlo run. These propagation information are then used to predict T (~xc, t) (and to estimate its
uncertainty) when varying the sources values with factors in the [10−2, 102] range around a fixed reference value for
each source: T ref

I , T ref
B , T ref

BF, θref
BR, ϕref and ψref (results labeled "Propagator" in the figures). Validation is achieved with

the comparison of standard Monte Carlo results labeled "Monte-Carlo" in the figures. The perfect adequacy between
the "Propagator" and "Monte-Carlo" results in Figs. C.9, C.10,C.11 C.12, C.13 and C.14 validates the implemented
code and the quality of the stored propagation information. Fig. 7 gathers all the computation times, illustrating that
the benefits of using the stored propagation information, instead of running the Monte Carlo, is a computation time
reduction of the order 10−3 to 10−4 [6].

In closer details, the following comments can be made:

• "Propagator" (using the propagator) and "Monte-Carlo" results (re-running a Monte Carlo for control) are in
perfect agreement, as expected, because "Propagator" is statistically rigorously equivalent to re-running the
Monte Carlo (see Fig. C.9 a) and Fig. C.10 a)). However, for the validation runs, new random numbers are used
to sample the paths, whereas all "Propagator" simulations are based on the same sampled paths. Therefore,
although the errorbars associated to "Propagator" can be fully trusted, the simulations made for various values
of the sources are all correlated: typically, there are no statistical fluctuations in the errorbars, and when a
simulation result for a given source value happens to be below the reference (within the errorbar, otherwise the
validation would have failed), it remains below the reference for all other values of the source.

• "Propagator" (or "Monte-Carlo") and "Deterministic" are in perfect agreement as long as the linearization of
heat transfer remains relevant. It is well-known that, exchanged radiative heat flux being proportional to T 4,
radiative heat transfer causes non-linear propagation. Moreover, the higher thermal gradients are, the higher
such non-linear effects occur and the larger the bias induced by radiative transfer linearization. Here, without
radiation and/or any thermal dependance of the thermal properties, "Propagator" predict the correct temperature

23



101 102
10-4

10-3

Open-porosity geometry  without radia�ve transfer

Open-porosity geometry with rad a�ve transfer

Closed-porosity geometry without radia�ve transfer

Closed-porosity geometry with radia�ve transfer

Figure 7: Evolution of the ratio of computation times
tPropagator

tMC
for the corresponding tMC. tPropagator is the computation time for the propagator

function and tMC is the computation time for the corresponding Monte Carlo computation.

24



for a very wide range of sources values (see Fig. C.9, Fig. C.10 and Fig. C.11). Close to the set of reference
values for sources, temperature gradients were purposely chosen as low as suitable for the frame of linear heat
transfer. Thus, "Propagator" and "Deterministic" are in good agreement (see Fig. C.12 b)). Outside this range of
source values, "Propagator" fails to predict the correct temperature field because the linearization of radiation,
at the heart of Stardis, becomes meaningless (see Fig. C.12 a)). Here, two different physical models are solved
: Stardis linearizes radiation where COMSOL Multiphysics® does not. Hence, the gaps observed between the
"Propagator" and the "Deterministic" method come from the capacity of a given source to increase thermal
gradients, and thus to strengthen non-linearity effects (see Fig. C.12, Fig. C.13 and Fig. C.14). We are presently
working on this issue, starting from the non-linear Monte Carlo approach given by [7]).

• There is a notable distinction between open-porosity and closed-porosity as far as computation time is con-
cerned. In the open-porosity case, a thermal path starting at the center of the system can encounter the flow
quite rapidly and then the path is stopped because the fluid temperature is known. In the closed-porosity case,
a thermal path starting at the center of the system can also encounter the flow inside a fluid cell quite rapidly,
but then the flow temperature is unknown and the path is continued until a source is encountered (either the
initial condition at any location, or a known temperature at the boundary). These paths are significantly longer
and so is the computation time required for their construction. It can even be extremely long if the number
of closed cells is increased: Monte Carlo may encounter difficulties when addressing insulating materials with
large numbers of closed cells along all directions. However this difficulty is not reported in "Propagator": even
if the computation cost associated to path-sampling in the reference Monte Carlo run is higher in the closed-
porosity case, the propagation information stored are similar in the open-porosity and the closed-porosity cases
and the computation times associated to the use, by "Propagator", of these propagation information are the same
in both cases. The computation benefit of using "Propagator" instead of running a full Monte Carlo is therefore
stronger for closed porosities.

7. Going further: Propagation information storage in case of non-uniform and time-dependent sources

When constructing estimates for the propagators, we have split the initial Monte Carlo weight and gathered all
the propagation information corresponding to parts of the system where the sources were uniform and constant (see
Sec. 4). As was already mentioned, Stardis makes uniformity and constancy assumptions for each geometrical part
but ‘stardis-solver‘ does not. And indeed, in the Monte Carlo weight expression of Eq. (31), nothing prevents the
initial temperatures, the imposed temperatures at the boundary, the incoming radiance temperature, the surface flux
densities imposed at the boundary and the volume power densities imposed inside the solids to be non-uniform and
non-constant fields: ψ

(
~xγ,ψ(k), tγ,ψ(k)

)
, ϕ

(
~xγ,ϕ(k), tγ,ϕ(k)

)
and Tγ,end(~xγ,end, tγ,end, ~ωγ,end, µγ,end) can hold these informa-

tions as they are provided, whatever their geometric structure. This means that even running Stardis with uniform
and constant sources in each part, if we store the locations, times and directions used when constructing Monte Carlo
weights, then these informations can be later used to virtually re-run the Monte Carlo simulation with non-uniform
time-dependent sources.

In algorithmic terms:

• N thermal paths are sampled exactly as in the Monte Carlo algorithm of Sec. 3.1;

• Along each path γ j, we store the Nϕ, j locations ~xγ j,ϕ(k) and times tγ j,ϕ(k) at which surface flux densities were
accessed;

• Similarly we store the Nψ, j locations ~xγ j,ψ(k) and times tγ j,ψ(k) at which volume power densities were accessed;

• The information concerning the end of the path are also stored: ~xγ j,end, tγ j,end, ~ωγ j,end and µγ j,end;

• When a Monte Carlo estimate is required for any set of non-uniform time-dependent source fields T̃I, T̃B, T̃BF,
θ̃BR, ψ̃ and ϕ̃, it is constructed the following way:

T̃ (~x, t) or T̃ (t) or θ̃R(~ω, ~x, t) ≈ m̃ =
1
N

N∑
j=1

w̃ j (43)

25



with
w̃ j = H(µγ j,end = 0) T̃I(~xγ j,end)

+H(µγ j,end = 1) T̃B(~xγ j,end, tγ j,end)
+H(µγ j,end = 2) T̃BF(~xγ j,end, tγ j,end)
+H(µγ j,end = 3) θ̃BR(~xγ j,end, tγ j,end, ~ωγ j,end)

+

Nψ, j∑
k=1

βψ(~xγ j,ψ(k)) ψ̃
(
~xγ j,ψ(k), tγ j,ψ(k)

)
+

Nϕ, j∑
k=1

βϕ(~xγ j,ϕ(k)) ϕ̃
(
~xγ j,ϕ(k), tγ j,ϕ(k)

)
(44)

For this last strategy, dealing with uncertainties is straightforward. The estimate m̃ in Eq. (43) is finally built
exactly as if the Monte Carlo was re-run using new sources. The uncertainty s̃ associated to m̃ is therefore the same as
for any Monte Carlo simulation (using an estimate of the standard deviation of the Monte Carlo weights) as detailed
in Eq. (15).

In terms of code changes, storing unmerged flux and power terms allows code simplification, as a significant part
of the merged-storage version of the code is about retrieving the term to which the current contribution needs to be
merged. On the other hand, allowing all types of non-uniform and time-dependent sources is still at the cost of storing
more propagation since information terms data structures have to store the term’s location (time and space). The data
structures and functions that implement the unmerged storage of sources’ contributions are available in Appendix B
at the end of the document.

8. Conclusion

One of the strengths of Monte Carlo approaches is the ease with which information can be stored, during one
run, and then used offline to learn about the physics, preserving all geometric features. The simplest example is the
storing of the paths themselves (or of a large enough fraction of the paths). For coupled heat transfer, displaying
a selection of the paths and analyzing how they visit the system, both in time and space, switching from one heat
transfer mode to the other, is indeed a very practical way to learn how the sources are viewed from one location, how
their impact is delayed by the inertial parts of the system, and therefore how a design can be adjusted to achieve a
given objective. In the present paper, we have left aside these details about the paths themselves. We concentrated on
the act of quantifying the propagation and not on the analysis of the physical phenomena and the coupling processes
responsible for the propagation. But these two practices, computing the propagators and visualizing the propagation
processes, are worth being considered sideways in all engineering contexts requiring a close understanding of heat
transfer physics at the system scale. Therefore, in addition to the functionalities of Stardis described in Sec. 5, a set of
post-treatment tools have also been designed to help visualizing and analyzing thermal paths throughout large scale
geometries [3].

For automated engineering practices, e.g. inversion, optimization or command algorithms, analyzing the paths
is useless; all is needed is the addressed quantity as a function of the sources: the tools described in the present
paper are therefore self-sufficient. However there are numerous questions of direct interest to thermal engineers that
cannot be addressed this way. These are all the dependencies on parameters that cannot be considered as sources
(in the general sense provided by Green’s theory). Typically the dependence on emissivities, convective exchange
coefficients, conductivities or capacities rises more complex questions. If only sensitivities were required, i.e. the
derivative with respect to each parameter, then the general theory of sensitivity evaluation in Monte Carlo algorithms
could be used [8], but we would not build the complete dependence (the function) as we did here with the sources.
Addressing the complete non-linear dependence on other parameters than sources is not theoretically unfeasible: it
has notably been achieved in the field of radiative transfer under the literature name of "Symbolic Monte Carlo"
[9, 10, 11, 12] and we have started to work on extending these symbolic techniques to coupled heat transfer, with the
objective of implementing them inside stardis-solver [13, 14].

26



By far more difficult would be the question of addressing the dependence on geometrical parameters. Here also,
some attempts have already been made in the field of radiative transfer, but to the best of our knowledge and although
large impacts could be expected in terms of applications, there is no report available of any attempt to go beyond the
computation of derivatives (geometrical sensitivities). Constructing a thermal heat transfer observable as a symbolic
function of a geometric parameter is a question that has not yet been addressed.

Another difficult point associated to strong applicative concerns is the withdraw of the linearization of radiative
transfer. This linearization is at the heart of present Monte Carlo approaches to coupled heat transfer. There are
convincing perspectives as far as handling non-linearities in the Monte Carlo framework is concerned [7], and some
of the corresponding propositions could be used to avoid the linearization of radiation, but then the overall coupled
physical problem would be non-linear and the concept of propagation could not be used anymore. All our present
proposition would then have to be revisited.

Acknowledgements

This project has received funding from the "Investissement d’avenir" program of the National Agency for Research
of the French state under award number "ANR-10-LBX-22-01-SOLSTICE" and was supported by the ANR HIGH-
TUNE, grant ANR-16-CE01-0010 and ANR MCG-RAD, grant ANR-18-CE46-0012 and from the Occitanie Region
(Projet CLE-2016 ED-Star).

References

[1] D. Knuth, Literate Programming, The Computer Journal 27 (1984) 97–111.
[2] V. Eymet, F. Vincent, B. Piaud, C. Coustet, R. Fournier, S. Blanco, L. Ibarrart, J.-M. Tregan, P. Lavieille, C. Caliot, M. El-Hafi, J.-J. Bézian,

R. Bouchie, M. Galtier, M. Roger, J. Dauchet, O. Farges, C. Péniguel, I. Rupp, G. Eymet, Synthèse d’images infrarouges sans calcul préalable
du champ de température, in: SFT 2019 - 27ème Congrès Français de Thermique, Nantes, France, 2019, pp. 153–160.
URL https://hal.archives-ouvertes.fr/hal-02419604

[3] Méso-Star, Stardis (2021).
URL https://www.meso-star.com/projects/stardis/starter-pack.html

[4] Comsol multiphysics®, v. 5.6. (2020).
URL http://www.comsol.com

[5] M. Sans, O. Farges, V. Schick, C. Moyne, G. Parent, Modeling the Flash Method by using a Conducto-Radiative Monte-Carlo Method:
Application to Porous Media, in: Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19, Begellhouse,
Athens, Greece, 2019, pp. 319–326. doi:10.1615/RAD-19.390.

[6] L. Penazzi, S. Blanco, C. Caliot, C. Coustet, M. El-Hafi, R. Fournier, J. Gautrais, M. Sans, Transfer function estimation with SMC method
for combined heat transfer: insensitivity to detail refinement of complex geometries, in: CHT-21 ICHMT - International Symposium on
Advances in Computational Heat Transfer, Rio de Janeiro (online), Brazil, 2021, pp. 383–386.
URL https://hal-mines-albi.archives-ouvertes.fr/hal-03374353

[7] J. Dauchet, J.-J. Bezian, S. Blanco, C. Caliot, J. Charon, C. Coustet, M. El Hafi, V. Eymet, O. Farges, V. Forest, R. Fournier, M. Galtier,
J. Gautrais, A. Khuong, L. Pelissier, B. Piaud, M. Roger, G. Terrée, S. Weitz, Addressing nonlinearities in Monte Carlo, Scientific Reports
8 (1) (Dec. 2018). doi:10.1038/s41598-018-31574-4.

[8] P. Lapeyre, S. Blanco, C. Caliot, J. Dauchet, M. El Hafi, R. Fournier, O. Farges, M. Roger, Monte-Carlo and domain-deformation sensitivities,
in: Proceeding of Proceedings of the 9th International Symposium on Radiative Transfer, RAD-19, Begellhouse, Athens, Greece, 2019, pp.
213–220. doi:10.1615/RAD-19.260.

[9] W. L. Dunn, Inverse Monte Carlo analysis, Journal of Computational Physics 41 (1) (1981) 154–166.
[10] W. L. Dunn, J. K. Shultis, Monte Carlo methods for design and analysis of radiation detectors, Radiation Physics and Chemistry 78 (10)

(2009) 852–858. doi:10.1016/j.radphyschem.2009.04.030.
[11] M. Galtier, M. Roger, F. André, A. Delmas, A symbolic approach for the identification of radiative properties, Journal of Quantitative

Spectroscopy and Radiative Transfer 196 (2017) 130–141. doi:10.1016/j.jqsrt.2017.03.026.
[12] Y. Maanane, M. Roger, A. Delmas, M. Galtier, F. André, Symbolic Monte Carlo method applied to the identification of radiative properties of

a heterogeneous material, Journal of Quantitative Spectroscopy and Radiative Transfer 249 (2020) 107019. doi:10.1016/j.jqsrt.2020.
107019.

[13] L. Penazzi, S. Blanco, C. Caliot, C. Coustet, M. El-Hafi, R. A. Fournier, M. Galtier, L. Ibarrart, M. Roger, Toward the use of Symbolic
Monte Carlo for Conduction-Radiation Coupling in Complex Geometries, in: RAD-19 - 9th International Symposium on Radiative Transfer,
Begellhouse, Athens, Greece, 2019, p. 8 p. doi:10.1615/RAD-19.380.
URL https://hal-mines-albi.archives-ouvertes.fr/hal-02265075

27

https://hal.archives-ouvertes.fr/hal-02419604
https://hal.archives-ouvertes.fr/hal-02419604
https://hal.archives-ouvertes.fr/hal-02419604
https://www.meso-star.com/projects/stardis/starter-pack.html
https://www.meso-star.com/projects/stardis/starter-pack.html
http://www.comsol.com
http://www.comsol.com
https://doi.org/10.1615/RAD-19.390
https://hal-mines-albi.archives-ouvertes.fr/hal-03374353
https://hal-mines-albi.archives-ouvertes.fr/hal-03374353
https://hal-mines-albi.archives-ouvertes.fr/hal-03374353
https://doi.org/10.1038/s41598-018-31574-4
https://doi.org/10.1615/RAD-19.260
https://doi.org/10.1016/j.radphyschem.2009.04.030
https://doi.org/10.1016/j.jqsrt.2017.03.026
https://doi.org/10.1016/j.jqsrt.2020.107019
https://doi.org/10.1016/j.jqsrt.2020.107019
https://hal-mines-albi.archives-ouvertes.fr/hal-02265075
https://hal-mines-albi.archives-ouvertes.fr/hal-02265075
https://doi.org/10.1615/RAD-19.380
https://hal-mines-albi.archives-ouvertes.fr/hal-02265075


[14] M. Sans, S. Blanco, C. Caliot, M. El-Hafi, O. Farges, R. A. Fournier, L. Penazzi, Méthode de Monte-Carlo Symbolique pour la caractérisation
des propriétés thermiques : application à la méthode flash, in: SFT 2021 - 29 ème congrès Franças de Thermique, Belfort (online), France,
2021, pp. 293–300. doi:10.25855/SFT2021-076.
URL https://hal-mines-albi.archives-ouvertes.fr/hal-03260534

28

https://hal-mines-albi.archives-ouvertes.fr/hal-03260534
https://hal-mines-albi.archives-ouvertes.fr/hal-03260534
https://doi.org/10.25855/SFT2021-076
https://hal-mines-albi.archives-ouvertes.fr/hal-03260534


Appendix A. Source code chunks implementing merged storage

Listing 1: struct sdis_green_function and related types

s t r u c t s d i s _ g r e e n _ f u n c t i o n {
s t r u c t htab le_medium media ;
s t r u c t h t a b l e _ i n t e r f i n t e r f a c e s ;
s t r u c t d a r r a y _ g r e e n _ p a t h p a t h s ; / * L i s t o f p a t h s used t o e s t i m a t e t h e green * /

s i z e _ t n p a t h s _ v a l i d ;
s i z e _ t n p a t h s _ i n v a l i d ;

s t r u c t accum r e a l i s a t i o n _ t i m e ; / * Time per r e a l i s a t i o n * /

s t r u c t s s p _ r n g _ t y p e r n g _ t y p e ;
FILE* r n g _ s t a t e ;

r e f _ T r e f ;
s t r u c t s d i s _ s c e n e * scn ;

} ;

Listing 2: struct green_path

s t r u c t g r e e n _ p a t h {
double e l a p s e d _ t i m e ;
s t r u c t d a r r a y _ f l u x _ t e r m f l u x _ t e r m s ; / * L i s t o f f l u x t e r m s * /
s t r u c t d a r r a y _ p o w e r _ t e r m power_ te rms ; / * L i s t o f v o l u m i c power t e r m s * /
union {

s t r u c t s d i s _ r w a l k _ v e r t e x v e r t e x ;
s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t f r a g m e n t ;

} l i m i t ;
unsigned l i m i t _ i d ; / * I d e n t i f i e r o f t h e l i m i t medium / i n t e r f a c e * /
enum s d i s _ g r e e n _ p a t h _ e n d _ t y p e e n d _ t y p e ;

/ * I n d i c e s o f t h e l a s t a c c e s s e d medium / i n t e r f a c e . Used t o speed up t h e a c c e s s
* t o t h e medium / i n t e r f a c e . * /

u i n t 1 6 _ t i l a s t _ m e d i u m ;
u i n t 1 6 _ t i l a s t _ i n t e r f ;

} ;

s t r u c t power_term {
double t e rm ;
unsigned i d ; / * I d e n t i f i e r o f t h e medium * /
} ;

s t r u c t f l u x _ t e r m {
double t e rm ;
unsigned i d ; / * I d e n t i f i e r o f t h e i n t e r f a c e * /
enum s d i s _ s i d e s i d e ;
} ;

Listing 3: green functions to store path data

re s_T
g r e e n _ p a t h _ s e t _ l i m i t _ i n t e r f a c e _ f r a g m e n t

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
s t r u c t s d i s _ i n t e r f a c e * i n t e r f ,
c o n s t s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t * f r a g ,
c o n s t double e l a p s e d _ t i m e )

{
re s_T r e s = RES_OK ;
ASSERT( h a n d l e && i n t e r f && f r a g ) ;
ASSERT( hand le −>pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_TYPES_COUNT__ ) ;
r e s = e n s u r e _ i n t e r f a c e _ r e g i s t r a t i o n ( hand le −>green , i n t e r f ) ;
i f ( r e s != RES_OK) re turn r e s ;

29



hand le −>pa th −>e l a p s e d _ t i m e = e l a p s e d _ t i m e ;
hand le −>pa th −> l i m i t . f r a g m e n t = * f r a g ;
hand le −>pa th −> l i m i t _ i d = i n t e r f a c e _ g e t _ i d ( i n t e r f ) ;
hand le −>pa th −>e n d _ t y p e = SDIS_GREEN_PATH_END_AT_INTERFACE ;
re turn RES_OK ;

}

res_T
g r e e n _ p a t h _ s e t _ l i m i t _ v e r t e x

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
s t r u c t sdis_medium * mdm,
c o n s t s t r u c t s d i s _ r w a l k _ v e r t e x * v e r t ,
c o n s t double e l a p s e d _ t i m e )

{
re s_T r e s = RES_OK ;
ASSERT( h a n d l e && mdm && v e r t ) ;
ASSERT( hand le −>pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_TYPES_COUNT__ ) ;
r e s = e n s u r e _ m e d i u m _ r e g i s t r a t i o n ( hand le −>green , mdm ) ;
i f ( r e s != RES_OK) re turn r e s ;
hand le −>pa th −>e l a p s e d _ t i m e = e l a p s e d _ t i m e ;
hand le −>pa th −> l i m i t . v e r t e x = * v e r t ;
hand le −>pa th −> l i m i t _ i d = medium_get_ id (mdm ) ;
hand le −>pa th −>e n d _ t y p e = SDIS_GREEN_PATH_END_IN_VOLUME ;
re turn RES_OK ;

}

res_T
g r e e n _ p a t h _ s e t _ l i m i t _ r a d i a t i v e

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
c o n s t double e l a p s e d _ t i m e )

{
ASSERT( h a n d l e ) ;
ASSERT( hand le −>pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_TYPES_COUNT__ ) ;
hand le −>pa th −>e l a p s e d _ t i m e = e l a p s e d _ t i m e ;
hand le −>pa th −>e n d _ t y p e = SDIS_GREEN_PATH_END_RADIATIVE ;
re turn RES_OK ;

}

res_T
g r e e n _ p a t h _ a d d _ p o w e r _ t e r m

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
s t r u c t sdis_medium * mdm,
c o n s t s t r u c t s d i s _ r w a l k _ v e r t e x * vtx ,
c o n s t double v a l )

{
s t r u c t g r e e n _ p a t h * p a t h ;
s t r u c t power_term * t e r m s ;
s i z e _ t n t e rm s ;
s i z e _ t i t e r m ;
unsigned i d ;
r e s_T r e s = RES_OK ;
ASSERT( h a n d l e && mdm && v t x ) ;

/ * Unused p o s i t i o n and t i m e : t h e c u r r e n t i m p l e m e n t a t i o n o f t h e green f u n c t i o n
* assumes t h a t t h e power i s c o n s t a n t i n space and t i m e per medium . * /

( void ) v t x ;

r e s = e n s u r e _ m e d i u m _ r e g i s t r a t i o n ( hand le −>green , mdm ) ;
i f ( r e s != RES_OK) goto e r r o r ;

p a t h = hand le −>p a t h ;
t e r m s = d a r r a y _ p o w e r _ t e r m _ d a t a _ g e t (& path −>power_ te rms ) ;
n t e r ms = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;
i d = medium_get_ id (mdm ) ;
i t e r m = SIZE_MAX ;

30



/ * E a r l y f i n d * /
i f ( pa th −> i l a s t _ m e d i u m < n t e r ms && t e r m s [ pa th −> i l a s t _ m e d i u m ] . i d == i d ) {

i t e r m = pa th −> i l a s t _ m e d i u m ;
} e l s e {
/ * L i n e a r s e a r c h o f t h e s u b m i t t e d medium * /
FOR_EACH( i t e r m , 0 , n t e rm s ) i f ( t e r m s [ i t e r m ] . i d == i d ) break ;

}

/ * Add t h e power term t o t h e pa th wr t t h e s u b m i t t e d medium * /
i f ( i t e r m < n t e r ms ) {

t e r m s [ i t e r m ] . te rm += v a l ;
} e l s e {

s t r u c t power_term term = POWER_TERM_NULL__;
te rm . te rm = v a l ;
t e rm . i d = i d ;
r e s = d a r r a y _ p o w e r _ t e r m _ p u s h _ b a c k (& hand le −>pa th −>power_terms , &term ) ;
i f ( r e s != RES_OK) goto e r r o r ;

}

/ * R e g i s t e r t h e s l o t i n t o which t h e l a s t a c c e s s e d medium l i e s * /
CHK( i t e r m < UINT16_MAX ) ;
pa th −> i l a s t _ m e d i u m = ( u i n t 1 6 _ t ) i t e r m ;

e x i t :
re turn r e s ;

e r r o r :
goto e x i t ;

}

r e s_T
g r e e n _ p a t h _ a d d _ f l u x _ t e r m

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
s t r u c t s d i s _ i n t e r f a c e * i n t e r f ,
c o n s t s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t * f r a g ,
c o n s t double v a l )

{
s t r u c t g r e e n _ p a t h * p a t h ;
s t r u c t f l u x _ t e r m * t e r m s ;
s i z e _ t n t e rm s ;
s i z e _ t i t e r m ;
unsigned i d ;
r e s_T r e s = RES_OK ;
ASSERT( h a n d l e && i n t e r f && f r a g && v a l >= 0 ) ;

r e s = e n s u r e _ i n t e r f a c e _ r e g i s t r a t i o n ( hand le −>green , i n t e r f ) ;
i f ( r e s != RES_OK) goto e r r o r ;

p a t h = hand le −>p a t h ;
t e r m s = d a r r a y _ f l u x _ t e r m _ d a t a _ g e t (& path −> f l u x _ t e r m s ) ;
n t e r ms = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;
i d = i n t e r f a c e _ g e t _ i d ( i n t e r f ) ;
i t e r m = SIZE_MAX ;

/ * E a r l y f i n d * /
i f ( pa th −> i l a s t _ i n t e r f < n t e r ms

&& t e r m s [ pa th −> i l a s t _ i n t e r f ] . i d == i d
&& t e r m s [ pa th −> i l a s t _ i n t e r f ] . s i d e == f r a g −> s i d e ) {

i t e r m = pa th −> i l a s t _ i n t e r f ;
} e l s e {
/ * L i n e a r s e a r c h o f t h e s u b m i t t e d i n t e r f a c e * /
FOR_EACH( i t e r m , 0 , n t e rm s ) {

i f ( t e r m s [ i t e r m ] . i d == i d && t e r m s [ i t e r m ] . s i d e == f r a g −> s i d e ) {
break ;

}

31



}
}

/ * Add t h e f l u x term t o t h e pa th wr t t h e s u b m i t t e d i n t e r f a c e * /
i f ( i t e r m < n t e r ms ) {

t e r m s [ i t e r m ] . te rm += v a l ;
} e l s e {

s t r u c t f l u x _ t e r m term = FLUX_TERM_NULL__ ;
te rm . te rm = v a l ;
t e rm . i d = i d ;
t e rm . s i d e = f r a g −> s i d e ;
r e s = d a r r a y _ f l u x _ t e r m _ p u s h _ b a c k (& handle −>pa th −> f l u x _ t e r m s , &term ) ;
i f ( r e s != RES_OK) goto e r r o r ;

}

/ * R e g i s t e r t h e s l o t i n t o which t h e l a s t a c c e s s e d i n t e r f a c e l i e s * /
CHK( i t e r m < UINT16_MAX ) ;
pa th −> i l a s t _ i n t e r f = ( u i n t 1 6 _ t ) i t e r m ;

e x i t :
re turn r e s ;

e r r o r :
goto e x i t ;

}

Listing 4: green_function_solve_path

s t a t i c r e s_T
g r e e n _ f u n c t i o n _ s o l v e _ p a t h

( s t r u c t s d i s _ g r e e n _ f u n c t i o n * green ,
c o n s t s i z e _ t i p a t h ,
double * we ig h t )

{
c o n s t s t r u c t power_term * power_ te rms = NULL;
c o n s t s t r u c t f l u x _ t e r m * f l u x _ t e r m s = NULL;
c o n s t s t r u c t g r e e n _ p a t h * p a t h = NULL;
c o n s t s t r u c t sdis_medium * medium = NULL;
c o n s t s t r u c t s d i s _ i n t e r f a c e * i n t e r f = NULL;
s t r u c t s d i s _ s c e n e * scn = NULL;
s t r u c t s d i s _ r w a l k _ v e r t e x v t x = SDIS_RWALK_VERTEX_NULL ;
s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t f r a g = SDIS_INTERFACE_FRAGMENT_NULL ;
double power ;
double f l u x ;
double e n d _ t e m p e r a t u r e ;
s i z e _ t i , n ;
r e s_T r e s = RES_OK ;
ASSERT( g r e e n && i p a t h < d a r r a y _ g r e e n _ p a t h _ s i z e _ g e t (& green −>p a t h s ) && w ei gh t ) ;

p a t h = d a r r a y _ g r e e n _ p a t h _ c d a t a _ g e t (& green −>p a t h s ) + i p a t h ;
i f ( pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_ERROR) { / * R e j e c t e d pa th * /

r e s = RES_BAD_OP ;
goto e r r o r ;

}

/ * Compute medium power t e r m s * /
power = 0 ;
n = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;
power_ te rms = d a r r a y _ p o w e r _ t e r m _ c d a t a _ g e t (& path −>power_ te rms ) ;
FOR_EACH( i , 0 , n ) {

v t x . t ime = INF ;
medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , power_ te rms [ i ] . i d ) ;
power += power_ te rms [ i ] . t e rm * s o l i d _ g e t _ v o l u m i c _ p o w e r ( medium , &v t x ) ;

}

/ * Compute i n t e r f a c e f l u x e s * /

32



f l u x = 0 ;
n = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;
f l u x _ t e r m s = d a r r a y _ f l u x _ t e r m _ c d a t a _ g e t (& path −> f l u x _ t e r m s ) ;
FOR_EACH( i , 0 , n ) {

f r a g . t ime = INF ;
f r a g . s i d e = f l u x _ t e r m s [ i ] . s i d e ;
i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , f l u x _ t e r m s [ i ] . i d ) ;
f l u x += f l u x _ t e r m s [ i ] . t e rm * i n t e r f a c e _ s i d e _ g e t _ f l u x ( i n t e r f , &f r a g ) ;

}

/ * Compute pa th ’ s end t e m p e r a t u r e * /
sw i t ch ( pa th −>e n d _ t y p e ) {

case SDIS_GREEN_PATH_END_AT_INTERFACE :
i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , pa th −> l i m i t _ i d ) ;
f r a g = pa th −> l i m i t . f r a g m e n t ;
e n d _ t e m p e r a t u r e = i n t e r f a c e _ s i d e _ g e t _ t e m p e r a t u r e ( i n t e r f , &f r a g ) ;
break ;

case SDIS_GREEN_PATH_END_IN_VOLUME :
medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , pa th −> l i m i t _ i d ) ;
v t x = pa th −> l i m i t . v e r t e x ;
e n d _ t e m p e r a t u r e = m e d i u m _ g e t _ t e m p e r a t u r e ( medium , &v t x ) ;
break ;

case SDIS_GREEN_PATH_END_RADIATIVE :
SDIS ( g r e e n _ f u n c t i o n _ g e t _ s c e n e ( green , &scn ) ) ;
SDIS ( s c e n e _ g e t _ a m b i e n t _ r a d i a t i v e _ t e m p e r a t u r e ( scn , &e n d _ t e m p e r a t u r e ) ) ;
i f ( e n d _ t e m p e r a t u r e < 0) { / * Cannot have i t n e g a t i v e i f used * /

r e s = RES_BAD_ARG;
goto e r r o r ;

}
break ;

d e f a u l t : FATAL( " U n r e a c h a b l e � code . \ n " ) ; break ;
}

/ * Compute t h e pa th w e i g h t * /
* we ig h t = power + f l u x + e n d _ t e m p e r a t u r e ;

e x i t :
re turn r e s ;

e r r o r :
goto e x i t ;

}

Listing 5: green_function_solve

res_T
s d i s _ g r e e n _ f u n c t i o n _ s o l v e

( s t r u c t s d i s _ g r e e n _ f u n c t i o n * green ,
s t r u c t s d i s _ e s t i m a t o r ** o u t _ e s t i m a t o r )

{
s t r u c t s d i s _ e s t i m a t o r * e s t i m a t o r = NULL;
s i z e _ t n p a t h s ;
s i z e _ t i p a t h ;
s i z e _ t N = 0 ; / * # r e a l i s a t i o n s * /
double accum = 0 ;
double accum2 = 0 ;
re s_T r e s = RES_OK ;

i f ( ! g r e e n | | ! o u t _ e s t i m a t o r ) {
r e s = RES_BAD_ARG;
goto e r r o r ;

}

n p a t h s = d a r r a y _ g r e e n _ p a t h _ s i z e _ g e t (& green −>p a t h s ) ;

/ * Cr ea t e t h e e s t i m a t o r * /

33



r e s = e s t i m a t o r _ c r e a t e ( green −>scn−>dev , SDIS_ESTIMATOR_TEMPERATURE , &e s t i m a t o r ) ;
i f ( r e s != RES_OK) goto e r r o r ;

/ * S o l v e t h e green f u n c t i o n * /
FOR_EACH( i p a t h , 0 , n p a t h s ) {

double w;

r e s = g r e e n _ f u n c t i o n _ s o l v e _ p a t h ( green , i p a t h , &w ) ;
i f ( r e s == RES_BAD_OP) c o n t i nu e ;
i f ( r e s != RES_OK) goto e r r o r ;

accum += w;
accum2 += w*w;
++N;

}

/ * S e t u p t h e e s t i m a t e d t e m p e r a t u r e * /
e s t i m a t o r _ s e t u p _ r e a l i s a t i o n s _ c o u n t ( e s t i m a t o r , npa ths , N ) ;
e s t i m a t o r _ s e t u p _ t e m p e r a t u r e ( e s t i m a t o r , accum , accum2 ) ;
e s t i m a t o r _ s e t u p _ r e a l i s a t i o n _ t i m e

( e s t i m a t o r , green −> r e a l i s a t i o n _ t i m e . sum , green −> r e a l i s a t i o n _ t i m e . sum2 ) ;

e x i t :
i f ( o u t _ e s t i m a t o r ) * o u t _ e s t i m a t o r = e s t i m a t o r ;
re turn r e s ;

e r r o r :
i f ( e s t i m a t o r ) {

SDIS ( e s t i m a t o r _ r e f _ p u t ( e s t i m a t o r ) ) ;
e s t i m a t o r = NULL;

}
goto e x i t ;

}

Appendix B. Source code chunks implementing unmerged storage

Listing 6: unmerged terms structs

s t r u c t unmerged_power_term {
double t e rm ;
unsigned i d ; / * I d e n t i f i e r o f t h e medium * /
s t r u c t s d i s _ r w a l k _ v e r t e x v e r t e x ; / * l o c a t i o n o f t h e term * /

} ;

s t r u c t unmerged_ f lux_ t e rm {
double t e rm ;
unsigned i d ; / * I d e n t i f i e r o f t h e i n t e r f a c e * /
s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t f r a g m e n t ; / * l o c a t i o n o f t h e term * /

} ;

Listing 7: green functions to store unmerged path data

re s_T
g r e e n _ p a t h _ a d d _ p o w e r _ t e r m

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
s t r u c t sdis_medium * mdm,
c o n s t s t r u c t s d i s _ r w a l k _ v e r t e x * vtx ,
c o n s t double v a l )

{
s t r u c t g r e e n _ p a t h * p a t h ;
s t r u c t unmerged_power_term * t e r m s ;
s t r u c t power_term term = POWER_TERM_NULL__;
s i z e _ t n t e rm s ;
unsigned i d ;
r e s_T r e s = RES_OK ;
ASSERT( h a n d l e && mdm && v t x ) ;

34



r e s = e n s u r e _ m e d i u m _ r e g i s t r a t i o n ( hand le −>green , mdm ) ;
i f ( r e s != RES_OK) goto e r r o r ;

p a t h = hand le −>p a t h ;
t e r m s = d a r r a y _ p o w e r _ t e r m _ d a t a _ g e t (& path −>power_ te rms ) ;
n t e r ms = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;
i d = medium_get_ id (mdm ) ;

/ * s t o r e term * /
t e rm . te rm = v a l ;
t e rm . i d = i d ;
t e rm . v e r t e x = * v t x ;
r e s = d a r r a y _ p o w e r _ t e r m _ p u s h _ b a c k (& hand le −>pa th −>power_terms , &term ) ;
i f ( r e s != RES_OK) goto e r r o r ;

e x i t :
re turn r e s ;

e r r o r :
goto e x i t ;

}

r e s_T
g r e e n _ p a t h _ a d d _ f l u x _ t e r m

( s t r u c t g r e e n _ p a t h _ h a n d l e * hand le ,
s t r u c t s d i s _ i n t e r f a c e * i n t e r f ,
c o n s t s t r u c t s d i s _ i n t e r f a c e _ f r a g m e n t * f r a g ,
c o n s t double v a l )

{
s t r u c t g r e e n _ p a t h * p a t h ;
s t r u c t f l u x _ t e r m * t e r m s ;
s t r u c t unmerged_ f lux_ t e rm term = FLUX_TERM_NULL__ ;
s i z e _ t n t e rm s ;
unsigned i d ;
r e s_T r e s = RES_OK ;
ASSERT( h a n d l e && i n t e r f && f r a g && v a l >= 0 ) ;

r e s = e n s u r e _ i n t e r f a c e _ r e g i s t r a t i o n ( hand le −>green , i n t e r f ) ;
i f ( r e s != RES_OK) goto e r r o r ;

p a t h = hand le −>p a t h ;
t e r m s = d a r r a y _ f l u x _ t e r m _ d a t a _ g e t (& path −> f l u x _ t e r m s ) ;
n t e r ms = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;
i d = i n t e r f a c e _ g e t _ i d ( i n t e r f ) ;

/ * s t o r e term * /
t e rm . te rm = v a l ;
t e rm . i d = i d ;
t e rm . f r a g m e n t = * f r a g ;
r e s = d a r r a y _ f l u x _ t e r m _ p u s h _ b a c k (& handle −>pa th −> f l u x _ t e r m s , &term ) ;
i f ( r e s != RES_OK) goto e r r o r ;

e x i t :
re turn r e s ;

e r r o r :
goto e x i t ;

}

Listing 8: green_function_solve_path for unmerged terms

s t a t i c r e s_T
g r e e n _ f u n c t i o n _ s o l v e _ p a t h

( s t r u c t s d i s _ g r e e n _ f u n c t i o n * green ,
c o n s t s i z e _ t i p a t h ,
double * we ig h t )

35



{
c o n s t s t r u c t power_term * power_ te rms = NULL;
c o n s t s t r u c t f l u x _ t e r m * f l u x _ t e r m s = NULL;
c o n s t s t r u c t g r e e n _ p a t h * p a t h = NULL;
c o n s t s t r u c t sdis_medium * medium = NULL;
c o n s t s t r u c t s d i s _ i n t e r f a c e * i n t e r f = NULL;
s t r u c t s d i s _ s c e n e * scn = NULL;
double power ;
double f l u x ;
double e n d _ t e m p e r a t u r e ;
s i z e _ t i , n ;
r e s_T r e s = RES_OK ;
ASSERT( g r e e n && i p a t h < d a r r a y _ g r e e n _ p a t h _ s i z e _ g e t (& green −>p a t h s ) && w ei gh t ) ;

p a t h = d a r r a y _ g r e e n _ p a t h _ c d a t a _ g e t (& green −>p a t h s ) + i p a t h ;
i f ( pa th −>e n d _ t y p e == SDIS_GREEN_PATH_END_ERROR) { / * R e j e c t e d pa th * /

r e s = RES_BAD_OP ;
goto e r r o r ;

}

/ * Compute medium power t e r m s * /
power = 0 ;
n = d a r r a y _ p o w e r _ t e r m _ s i z e _ g e t (& path −>power_ te rms ) ;
power_ te rms = d a r r a y _ p o w e r _ t e r m _ c d a t a _ g e t (& path −>power_ te rms ) ;
FOR_EACH( i , 0 , n ) {

medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , power_ te rms [ i ] . i d ) ;
power += power_ te rms [ i ] . t e rm

* s o l i d _ g e t _ v o l u m i c _ p o w e r ( medium , &power_ te rms [ i ] . v e r t e x ) ;
}

/ * Compute i n t e r f a c e f l u x e s * /
f l u x = 0 ;
n = d a r r a y _ f l u x _ t e r m _ s i z e _ g e t (& path −> f l u x _ t e r m s ) ;
f l u x _ t e r m s = d a r r a y _ f l u x _ t e r m _ c d a t a _ g e t (& path −> f l u x _ t e r m s ) ;
FOR_EACH( i , 0 , n ) {

i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , f l u x _ t e r m s [ i ] . i d ) ;
f l u x += f l u x _ t e r m s [ i ] . t e rm

* i n t e r f a c e _ s i d e _ g e t _ f l u x ( i n t e r f , &f l u x _ t e r m s [ i ] . f r a g m e n t ) ;
}

/ * Compute pa th ’ s end t e m p e r a t u r e * /
sw i t ch ( pa th −>e n d _ t y p e ) {

case SDIS_GREEN_PATH_END_AT_INTERFACE :
i n t e r f = g r e e n _ f u n c t i o n _ f e t c h _ i n t e r f ( green , pa th −> l i m i t _ i d ) ;
e n d _ t e m p e r a t u r e =

i n t e r f a c e _ s i d e _ g e t _ t e m p e r a t u r e ( i n t e r f , &path −> l i m i t . f r a g m e n t ) ;
break ;

case SDIS_GREEN_PATH_END_IN_VOLUME :
medium = g r e e n _ f u n c t i o n _ f e t c h _ m e d i u m ( green , pa th −> l i m i t _ i d ) ;
e n d _ t e m p e r a t u r e = m e d i u m _ g e t _ t e m p e r a t u r e ( medium , &path −> l i m i t . v e r t e x ) ;
break ;

case SDIS_GREEN_PATH_END_RADIATIVE :
SDIS ( g r e e n _ f u n c t i o n _ g e t _ s c e n e ( green , &scn ) ) ;
SDIS ( s c e n e _ g e t _ a m b i e n t _ r a d i a t i v e _ t e m p e r a t u r e ( scn , &e n d _ t e m p e r a t u r e ) ) ;
i f ( e n d _ t e m p e r a t u r e < 0) { / * Cannot have i t n e g a t i v e i f used * /

r e s = RES_BAD_ARG;
goto e r r o r ;

}
break ;

d e f a u l t : FATAL( " U n r e a c h a b l e � code . \ n " ) ; break ;
}

/ * Compute t h e pa th w e i g h t * /
* we ig h t = power + f l u x + e n d _ t e m p e r a t u r e ;

36



e x i t :
re turn r e s ;

e r r o r :
goto e x i t ;

}

37



Appendix C. Figures

Figure C.8: Schemes of the two benchmark configurations. a) Geometry with open cavities; b) Different sources applied to this first benchmark for
the physical problem. - c) Geometry with enclosed cavities, d) Sources applied the second benchmark for the physical problem.

38



10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

Deterministic

Propagator

Monte-Carlo

0 20 40 60 80 100
0

20

40

60

80

100
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

1

1.1

1.2

1.3

1.4

Deterministic

Propagator

Mont Carlo

0 20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

1.5
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

0.99

0.995

1

1.005

1.01
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

0.99

0.995

1

1.005

1.01
Deterministic

Propagator

Mon e Carlo

10
-2

10
-1

10
0

10
1

10
2

0.99

0.995

1

1.005

1.01
Deterministic

Propagateur

Mont -Carlo

Figure C.9: Open-porosity geometry without radiative transfer : a) Ambient fluid temperature b) Power density c) Flux density d) Solid boundary
temperature e) Initial temperature. Volume and surface of the geometry are noted V and S and L = 4V/S (L = 1m) is retained as the characteristic
size. The probe location ~xc = (0.5, 0.5, 0.5) (at the center of the solid). The probe time estimation is t∗ = λt

ρcL2=0.89
(t = 1×106). The fluid reference

temperature T ref
BF = 505K. The reference physical parameters are

T ref
I −T ref

BF
T ref

BF
= −0.01 (reference initial temperature T ref

I = 500K),
T ref

B −T ref
BF

T ref
BF

= +0.01

(known reference boundary temperature T ref
B = 510K). The convective heat transfer coefficient h = 10 W.m−2.K−1 and the thermal conductivity

λ = 1 W.m−1.K−1 leading to Bi = hL
λ = 10.68 (h = 10 W.m−2.K−1). For propagator function, initial calculation uses a dimensionless numerical step

δ
L = 0.05 and N = 104. The reference volume power value Ψref = 20W.m−3. The reference density flux ϕref = 2000W.m−2.

39



10
-2

10
-1

10
0

10
1

10
2

1

1.1

1.2

1.3

1.4

1.5

1.6
Deterministic

Propagator

Mont Carlo

0 20 40 60 80 100
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Deterministic

Propagator

Mont -Carlo

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80
Deterministic

Propagator

Monte-Carlo

0 20 40 60 80 100
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

1

1.05

1.1

1.15

1.2

1.25

1.3 Deterministic

Propagator

Monte-Carlo

Figure C.10: Closed-porosity geometry without radiative transfer : a) Ambient fluid temperature b) Power density c) Flux density d) Solid
boundary temperature e) Initial temperature. Volume and surface of the geometry are noted V and S and L = 4V/S (L = 2.4358m) is retained
as the characteristic size. The probe location ~xc = (0.5, 0.5, 0.5) (at the center of the solid). The probe time estimation is t∗ = λt

ρcL2=0.169

(t = 1 × 107). The fluid reference temperature T ref
BF = 505K. The reference physical parameters are

T ref
I −T ref

BF
T ref

BF
= −0.01 (reference initial temperature

T ref
I = 500K),

T re f
B −T ref

BF
T ref

BF
= +0.01 (known reference boundary temperature T ref

B = 510K). The convective heat transfer coefficient is expressed as

h = 10 W.m−2.K−1, this is leading to Bi = hL
λ = 24.358 with λ = 1 W.m−1.K−1. For propagator function, initial calculation uses a dimensionless

numerical step δ
L = 0.05 and N = 104. The reference volume power value Ψref = 1W.m−3. The reference density flux ϕref = 5W.m−2.

40



10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

Deterministic

Propagator

Mont -Carlo

0 20 40 60 80 100
0

5

10

15

20

25
Deterministic

Propagator

Monte-Carlo

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

1

1.5

2

2.5

3

3.5 Deterministic

Propagator

Monte-Carlo

Figure C.11: Closed-porosity geometry without radiative transfer : a) ambient fluid temperature b) power density c) flux density d) solid boundary
temperature e) initial temperature

41



10
-2

10
-1

10
0

10
1

0.99

0.995

1

1.005

1.01

Deterministic

Propagator

Monte Carlo

0.85 0.9 0.95 1 1.05 1.1 1.15

0.96

0.98

1

1.02

1.04

1.06 Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

Deterministic

Propagator

Monte Carlo

10
-2

10
-1

10
0

0.995

1

1.005

1.01

Deterministic

Propagator

Monte Carlo

10
-2

10
-1

10
0

10
1

1

1.005

1.01

1.015

1.02
Deterministic

Propagator

Monte-Carlo

10
-2

10
0

10
2

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4 Deterministic

Propagator

Monte-Carlo

0.9 1 1.1

0.85

0.9

0.95

1

1.05

1.1

1.15
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Deterministi

Propagator

Monte-Carlo

Figure C.12: open-porosity geometry with radiative transfer : a-b) ambient fluid temperature c) power density d) flux density e) solid boundary
temperature f) initial temperature g-h) ambient radiant temperature. Volume and surface of the geometry are noted V and S and L = 4V/S
(L = 1m) is retained as the characteristic size. The probe location ~xc = (0.5, 0.5, 0.5) (at the center of the solid). The probe time estimation is

t∗ = λt
ρcL2=0.89

(t = 1 × 106). The fluid reference temperature T ref
BF = 505K. The reference physical parameters are

T ref
I −θ

ref
BR

θref
BR

= −0.01 (reference

initial temperature T ref
I = 500K and ambient radiative temperature θref

BR = 505K),
T ref

B −θ
ref
BR

θref
BR

= +0.01 (known reference boundary temperature

T ref
B = 510K). The radiative transfer coefficient is expressed as hR = 4εσT 3

ref = 29.21 with the emissivity epsilon ε = 1, the Stefan-Boltzmann
constant σ = 5.6703×10−8 J.s−1.m−2.K−4 and the reference temperature Tref = 305K. This is leading to BiR =

hRL
λ = 31.21, with λ = 1 W.m−1.K−1

and Bi = hL
λ = 10.68 (h = 10 W.m−2.K−1). For propagator function, initial calculation uses a dimensionless numerical step δ

L = 0.05 and N = 104.
The reference volume power value Ψref = 20W.m−3. The reference density flux ϕref = 2000W.m−2.

42



0.85 0.9 0.95 1 1.05 1.1 1.15

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04
Deterministic

Propagator

Monte Carlo

0.85 0.9 0.95 1 1.05 1.1 1.15

0.999

0.9995

1

1.0005

1.001

1.0015

Deterministic

Propagator

Monte Carlo

10
-2

10
0

10
2

10
0

10
1

Deterministic

Propagator

Mon e-Carlo

10
-2

10
0

10
2

1

1.1

1.2

1.3

1.4

1.5

Deterministic

Propagator

Mont -Carlo

10
-2

10
-1

10
0

10
1

10
2

1

1.05

1.1

1.15

1.2

1.25 Determinist c

Propagator

Monte-Carlo

0.85 0.9 0.95 1 1.05 1.1 1.15

0.9994

0.9996

0.9998

1

1.0002

1.0004

1.0006

1.0008
Deterministic

Propagator

Monte-Carlo

Figure C.13: closed-porosity geometry with radiative transfer : a-b) ambient fluid temperature c-d) power density e-f) flux density. Volume and
surface of the geometry are noted V and S and L = 4V/S (L = 1m) is retained as the characteristic size. The probe location ~xc = (0.5, 0.5, 0.5)
(at the center of the solid). The probe time estimation is t∗ = λt

ρcL2=2.4358
(t = 1 × 106). The fluid reference temperature T ref

BF = 505K. The

reference physical parameters are
T ref

I −θ
ref
BR

θref
BR

= −0.01 (reference initial temperature T ref
I = 500K and ambient radiative temperature θref

BR = 505K),

T ref
B −θ

ref
BR

θref
BR

= +0.01 (known reference boundary temperature T ref
B = 510K). The radiative transfer coefficient is expressed as hR = 4εσT 3

ref = 29.21

with the emissivity epsilon ε = 1, the Stefan-Boltzmann constant σ = 5.6703 × 10−8 J.s−1.m−2.K−4 and the reference temperature Tref = 305K.
This is leading to BiR =

hRL
λ = 76.017, with λ = 1 W.m−1.K−1 and Bi = hL

λ = 24.358 (h = 10 W.m−2.K−1). For propagator function, initial
calculation uses a dimensionless numerical step δ

L = 0.05 and N = 104. The reference volume power value Ψref = 1W.m−3. The reference density
flux ϕref = 5W.m−2.

43



0.85 0.9 0.95 1 1.05 1.1 1.15

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004
Deterministic

Propagator

Monte-Carlo

0.85 0.9 0.95 1 1.05 1.1 1.15

0.9

0.95

1

1.05

1.1
Deterministic

Propagator

Monte Carlo

10
-2

10
-1

10
0

10
1

1

1.2

1.4

1.6

1.8

2
Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

Deterministic

Propagator

Monte-Carlo

10
-2

10
-1

10
0

10
1

10
2

1

1.5

2

2.5

Deterministic

Prop gator

Monte Carlo

0.85 0.9 0.95 1 1.05 1.1 1.15

0.97

0.98

0.99

1

1.01

1.02

1.03
Deterministic

Propagator

Monte Carlo

Figure C.14: Closed-porosity geometry with radiative transfer : a-b) solid boundary temperature c-d) ambient radiant temperature e-f) initial
temperature

44


	Introduction
	Model for coupled heat transfer
	System description
	Radiation
	Conduction
	Convection

	Path sampling and propagation
	A path sampling Monte Carlo algorithm
	Radiative sub-paths
	Conductive sub-paths
	Convective sub-paths

	Choosing the next sub-path at a solid-solid or a solid-fluid interface
	The Monte Carlo weight

	Stardis : storing the propagation data
	Illustration of the principle in the case of two sources
	Implementation in Stardis
	Uncertainty estimation

	Implementation
	Code structure
	Data structures
	Building propagation information
	Storing path ending
	Accumulating data along a path

	Using propagation information

	Simulation examples
	Going further: Propagation information storage in case of non-uniform and time-dependent sources
	Conclusion
	Source code chunks implementing merged storage
	Source code chunks implementing unmerged storage
	Figures

