
MF, ZF and MMSE filters for automotive
OFDM radar

B. BENMEZIANE1,2, J.-Y. BAUDAIS1, S. MÉRIC1 AND K. CINGLANT2

The delay estimation for OFDM automotive radars can be achieved through the use different filters. This paper compares
two of these filters, namely the matched filter (MF) and the zero forcing filter (ZF) through two metrics which are the peak
to sidelobe ratio (PSLR) and the integrated sidelobe ratio (ISLR) estimated on their range profiles. The analysis is then
extended to the minimum mean squared error filter (MMSE).
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I. INTRODUCTION

When it comes to automotive radars, one of the main issues
is the increasing number of vehicles equipped with these
radars threatening to saturate the band [5]. Many wave-
forms have been explored as substitutes to the current
one such as Orthogonal Frequency Division Multiplex-
ing (OFDM). OFDM is a multiplexing technique that uses
orthogonal sub-carriers to transmit data [2]. This technique
can be exploited for radar detection. Many filters can be
exploited to estimate the delay induced by the distance of
the target. Among these filters, our paper focuses on the
matched filter (MF) and the zero forcing filter (ZF). The
OFDM/MF radar estimates the delay through an autocor-
relation function [3] and the OFDM/ZF radar estimates it
through the impulse response of the channel [4].

The metrics used to compare these two filters are the
peak to sidelobe ratio (PSLR) and the integrated sidelobe
ratio (ISLR). These metrics are both crucial in automotive
applications [5]. A high sidelobe might result in a false
alarm, causing the vehicle to brake for no reason. Mean-
while, a high general level of sidelobes would raise the
threshold above peaks linked to low power echos (farther
targets). This would result in an equally dangerous effect.
The two filters have been compared in [6] using the same
metrics. This paper extends the analysis on the minimum
mean squared error filter (MMSE) as a range estimation
technique, and provides new and more accurate analytical
derivations.

The article is organized as follows. Section II introduces
the received echo and describes the range profiles for both
OFDM/MF and OFDM/ZF. It also expresses the PSLR and
ISLR for both filters and draws a link between the filters
through these metrics. Section III extends the analysis to
MMSE as a range estimation technique. Finally, section IV
presents simulations to validate the findings.
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II. RECEIVED SIGNAL WITH
CONVENTIONAL FILTERS

The OFDM radar exploits orthogonal subcarriers to trans-
mit data. It uses the inverse Fourier transform. An OFDM
symbol is expressed as [8]

∀t ∈ [0, T ], x(t) =
1√
N

N−1∑
n=0

ane
ȷ2πfnt, (1)

where fn is the nth subcarrier among a total sum of N sub-
carriers carrying an which is the nth complex data symbol.
The duration of the OFDM symbol is T with fn = n

T . The
cyclic prefix (CP) is added at the begining of the symbol to
ensure the orthogonality of the subcarriers on the receiving
end. The symbole from (1) becomes

∀t ∈ [0, T + Tg], x(t) =
1√
N

N−1∑
n=0

ane
ȷ2πfn(t−Tg), (2)

where Tg is the duration of the CP. The OFDM radar trans-
mits a chain of OFDM symbols and the general expression
of the signal is

∀t ∈ R, x(t) =
1√
N

+∞∑
k=−∞

N−1∑
n=0

ak,ne
ȷ2πfn(t−k(T+Tg)−Tg).

(3)
The transmitted signal is

s(t) = x(t)eȷ2πfct, (4)

where fc is the carrier frequency and ak,l is the complex
data symbol of the nth subcarrier and the kth OFDM sym-
bol. The bandwidth used by the radar is B = N

T . The signal
is assumed to be narrowband which means that B ≪ fc.

A target reflects the signal and the echo is received by
the radar. The radial speed of the target is v and its range is
R(t) = R0 + vt where R0 is the initial range. The delay of
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the echo is thus

τ(t) =
2(R0 + vt)

c
= τ0 +

2v

c
t, (5)

where c is the speed of light and τ0 is the delay of the echo
due to the range of the target at the beginning of the dura-
tion of the symbol. We assume that v

c ≪ 1. The received
and mixed echo is

y(t) = Aeȷφs(t− τ(t))e−ȷ2πfct

= Aeȷφx(t− τ(t))e−ȷ2πfcτ(t) + w(t), (6)

with w(t) a white Gaussian noise, and Aeȷφ the com-
plex amplitude that takes into account the antenna gains,
the RF chain, the path loss and the radar cross-section
of the target. For the sake of simplicity, this ampli-
tude is assumed to be Aeȷφ = 1. In this scenario, it is
assumed that the variation of τ(t) through the interval
t ∈ [k(T + Tg) + Tg, (k + 1)(T + Tg)] is negligible. The
delay of the kth OFDM symbol is thus τk = τ(k(T +
Tg) + Tg).

In what follows, we make the assumption that Tg

is properly sized which means ∀k, 0 ≤ τk < Tg ≤ T .
The payload of the kth echo is within the interval
[k(T + Tg) + Tg, (k + 1)(T + Tg)]. Let t′ be the time
within this interval, where t = k(T + Tg) + Tg + t′. The
kth echo becomes

yk(t
′) =

1√
N

N−1∑
n=0

ak,ne
ȷ2πfn(t

′−τk)e−ȷ2πfcτk + wk(t
′).

(7)
The received echo is sampled with a sampling period of

Ts =
T
N . The sampled echo is

y[k,m] =
1√
N

N−1∑
n=0

ak,ne
ȷ2π n

T (mT
N −τk)e−ȷ2πfcτk

+ w[k,m]. (8)

Let ϕk = −2πfcτk. The echo is OFDM demodulated
through a Fourier transform and is expressed in the fre-
quency domain as

Y [k, l] =
1√
N

N−1∑
m=0

y[k,m]e−ȷ2πml
N

= ak,le
ȷϕe−ȷ2π

τkl

T +W [k, l]. (9)

The Fourier transform of the Gaussian white noise w[k,m]
is W [k, l]. The samples of both forms are independent and
identically distributed random variables and their variance
is σ2

w.
The demodulated base band echo Y [k, l] is analysed to

estimate the range of the target. Different filters can be used
to this end, among which the matched filter (MF) and the
zero forcing filter (ZF).

A) Matched filter
The matched filter estimates the spectral density of the echo
by multiplying it by ak,l, the conjugate of the complex
symbol ak,l. An inverse Fourier transform results in a cor-
relation function with a peak at the delay of the target. The
kth range profile is [3]

χ[i] =
eȷϕ√
N

N−1∑
l=0

Y [k, l]ak,le
ȷ2π li

N

=
eȷϕ√
N

N−1∑
l=0

|ak,l|2e
ȷ 2π

N

(
i−Nτk

T

)
l

+
eȷϕ√
N

N−1∑
l=0

W [k, l]ak,le
ȷ2π li

N . (10)

Assuming that the delay τk is such that ik = τkN
T is integer,

the peak is then

χ[ik] =
eȷϕ√
N

N−1∑
l=0

|ak,l|2

+
1√
N

N−1∑
l=0

W [k, l]ak,le
ȷϕeȷ2π

li
N . (11)

Note that in the off-grid scenario (where ik is not an
integer), a spectrum leakage controlling window such as
Chebyshev is needed for (11) to be valid, taking into
account the Chebyshev window characteristics.

Knowing that E [W [k, l]] = 0, the magnitude of the first
moment of the range profile is, for all i

|E [χ[i]] | = 1√
N

∣∣∣∣∣
N−1∑
l=0

|ak,l|2e
ȷ 2π

N

(
i−Nτk

T

)
l

∣∣∣∣∣ . (12)

The magnitude of the first moment of the main lobe is

|E [χ[ik]] | =
1√
N

N−1∑
l=0

|ak,l|2

=
√
Nσ2

a, (13)

with σ2
a the variance of ak,l. It is assumed that N is large

enough to verify lim
N→+∞

N−1∑
l=0

|ak,l|2 = Nσ2
a. However, this

first approximation is not tight enough, as shown in [6]. We
then need to use the second order.

Since the data samples ak,l and the noise samples
W [k, l] are mutually independant, the second moment of
the range profile is

E
[
|χ[i]|2

]
= |E [χ[i]]|2 + σ2

aσ
2
w. (14)

Thus, the average intensity of the range profile for a
matched filter OFDM radar is

E
[
|χ[i]|2

]
=

1

N

∣∣∣∣∣
N−1∑
l=0

|ak,l|2e
ȷ 2π

N

(
i−Nτk

T

)
l

∣∣∣∣∣
2

+ σ2
aσ

2
w

(15)
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and the second order of the main lobe is

E
[
|χ[ik]|2

]
=

1

N

∣∣∣∣∣
N−1∑
l=0

|ak,l|2
∣∣∣∣∣
2

+ σ2
aσ

2
w

=
1

N

N−1∑
l=0

|ak,l|4 +
1

N

N−1∑
l=0

N−1∑
l′=0
l′ ̸=l

|ak,l|2|ak,l′ |2

+ σ2
aσ

2
w

= µ4
a + (N − 1)σ4

a + σ2
aσ

2
w, (16)

assuming N is large enough such that µ4
a = E[|ak,l|4].

B) Zero forcing
The zero forcing filter (ZF) estimates the transfer function
of the channel through an elementwise division [4]. An
inverse Fourier transform gives the impulse response with
a peak at the delay of the target. The kth range profile is

χ[i] =
eȷϕ√
N

N−1∑
l=0

Y [k, l]

ak,l
eȷ2π

li
N

=
eȷϕ√
N

N−1∑
l=0

e
ȷ 2π

N

(
i−Nτk

T

)
l

+
eȷϕ√
N

N−1∑
l=0

W [k, l]

ak,l
eȷ2π

li
N . (17)

The magnitude of the first moment of the range profile
is

|E [χ[i]] | = 1√
N

∣∣∣∣∣
N−1∑
l=0

e
ȷ 2π

N

(
i−Nτk

T

)
l

∣∣∣∣∣ = √
N1(i = ik),

(18)

where 1(i = ik) is the indicator function that equals 1
when i = ik and equals zero otherwise. Again for more
accuracy, we need to use the second order. The second
moment of the range profile is

E
[
|χ[i]|2

]
= |E [χ[i]] |2 + 1√

N

N−1∑
l=0

σ2
w

|ak,l|2

= |E [χ[i]] |2 + σ2
1/aσ

2
w, (19)

where σ2
1/a is the average of 1

|ak,l|2 . Finally, the average
intensity of the range profile for a zero forcing filter OFDM
radar is

E
[
|χ[i]|2

]
=

1

N

∣∣∣∣∣
N−1∑
l=0

e
ȷ 2π

N

(
i−Nτk

T

)
l

∣∣∣∣∣
2

+ σ2
1/aσ

2
w (20)

and the second moment of the main lobe is

E
[
|χ[ik]|2

]
= N + σ2

1/aσ
2
w. (21)

Now that the range profiles for OFDM/MF and
OFDM/ZF have been decribed through their average inten-
sity in (15) and (20), and the average intensity of their main

lobe in (16) and (21), they can be compared via their PSLR
and ISLR.

C) Peak to sidelobe ratio and integrated
sidelobe ratio
The two metrics chosen for the comparison are PSLR and
ISLR. The PSLR the ratio of the power of the main lobe to
the power of the highest sidelobe. A bad PSLR means that
there is a sidelobe so high that is could pass the threshold
and trigger a false alarm. The ISLR, on the other hand, is
the ratio of the integrated main lobe to the integrated side-
lobes. A bad ISLR means that the main lobe could be below
the threshold causing a miss detection.

Let γ be such as

γ2 = E

[
|χ[ik]|2

θ ({|χ[i]|2}i̸=ik)

]
, (22)

with θ({xi}) = max
i

xi for PSLR and θ({xi}) =
∑
i

xi for

ISLR. Using the Jensen’s inequality, the expectation of a
ratio is approximate by the ratio of the expectations. The
expression (22) becomes

γ2 =
E
[
|χ[ik]|2

]
E [θ ({|χ[i]|2}i ̸=ik)]

. (23)

Since the sampling rate is the nominal frequency, the main
lobe is one sample wide. To evaluate γ2 it remains to cal-
culate the sum in (15) and (20). To this end, let z[i] =

eȷ2π(
i
N − τk

T ). The ratio for the MF filter is

γ2
MF =

µ4
a + (N − 1)σ4

a + σ2
wσ

2
a

θ

{ 1
N

∣∣∣∣N−1∑
l=0

|ak,l|2z[i]l
∣∣∣∣2 + σ2

wσ
2
a

}
i ̸=ik

 (24)

and the ratio for a ZF filter is

γ2
ZF =

N + σ2
wσ

2
1/a

θ

{ 1
N

∣∣∣∣N−1∑
l=0

z[i]l
∣∣∣∣2 + σ2

wσ
2
1/a

}
i ̸=ik

 . (25)

Since |z[i]| = 1 for all i and by approximating the sum
in (24) by its average with respect to ak,l, it comes

Ea

∣∣∣∣∣
N−1∑
l=0

|ak,l|2z[i]l
∣∣∣∣∣
2


= Nµ4
a +

N−1∑
l=0

σ2
az[i]

l

N−1∑
l′=0
l′ ̸=l

σ2
az[i]

−l′


= Nµ4

a + σ4
a

N−1∑
l=0

(
N−1∑
l′=0

z[i]l−l′ − 1

)

= N(µ4
a − σ4

a) + σ4
a

∣∣∣∣∣
N−1∑
l=0

z[i]l

∣∣∣∣∣
2

(26)



4 B . BENMEZIANE ET AL .

and

γ2
MF =

µ4
a + (N − 1)σ4

a + σ2
wσ

2
a

θ

{σ4
a

N

∣∣∣∣N−1∑
l=0

z[i]l
∣∣∣∣2+ µ4

a − σ4
a + σ2

wσ
2
a

}
i ̸=ik

 .

(27)
From this point and on, the θ function is approximated by
its linear development, θ(x) = ηx. Using (20) and (27), the
relationship between the ZF and the MF is obtained

γ2
MF =

1 +
Nσ4

a

µ4
a − σ4

a + σ2
wσ

2
a

1 +
N

σ2
wσ

2
1/a

γ2
ZF, (28)

for both the PSLR and the ISLR.
In low noise environments where σ2

w → 0, γ2
MF < γ2

ZF
and, more specifically, this happens when

σ2
w <

µ4
a − σ4

a

σ2
1/a − σ2

a

. (29)

This can be written as

SNR =
σ2
a

σ2
w

>

σ2
1/a

σ2
a

− 1

µ4
a

σ4
a
− 1

. (30)

It is proposed that, in these low noise environments or
high SNR regimes, ZF provides higher PSLR and ISLR
compared to MF.

III. EXTENSION TO MMSE FILTER

The MMSE filter used here is the one applied to multi-
carrier spread spectrum systems [7, § 2.1.5.1]. This filter
minimizes the mean squared error between the transmitted
symbols and the received ones. Applied to the range profile,
it leads to

χ[i] =
eȷϕ√
N

N−1∑
l=0

Y [k, l]
ak,l

|ak,l|2 + σ2
w

eȷ2π
li
N

=
eȷϕ√
N

N−1∑
l=0

|ak,l|2

|ak,l|2 + σ2
w

e
ȷ 2π

N

(
i−Nτk

T

)
l

+
eȷϕ√
N

N−1∑
l=0

W [k, l]
ak,l

|ak,l|2 + σ2
w

eȷ2π
li
N . (31)

The same derivations as the ones used for the MF filter in
II.A) are now followed. The second order moment of (31)

Table 1. Metric parameters in (35).

MF MMSE

α δ2 E
[

|ak,l|2
|ak,l|2+σ2

w

]
β E[|ak,l|4] E

[
|ak,l|4

(|ak,l|2+σ2
w)2

]
δ E[|ak,l|2] E

[
|ak,l|2

(|ak,l|2+σ2
w)2

]

follows the same logic as (14) and it is

E[|χ[i])|2] = |E[χ[i]]|2 + σ2
wσ

2
c , (32)

with σ2
c = E

[
|ak,l|2

(|ak,l|2+σ2
w)2

]
, and

|E[χ[i]]|2 =
1

N

∣∣∣∣∣
N−1∑
l=0

|ak,l|2

|ak,l|2 + σ2
w

z[i]l

∣∣∣∣∣
2

. (33)

All that is left is to replace |ak,l|2 in (26) by |ak,l|2
|ak,l|2+σ2

w
, and

finally

γ2
MMSE =

1 +
Nσ4

b

µ4
b − σ4

b + σ2
wσ

2
c

1 +
N

σ2
wσ

2
1/a

γ2
ZF, (34)

where σ2
b = E

[
|ak,l|2

|ak,l|2+σ2
w

]
and µ4

b = E

[(
|ak,l|2

|ak,l|2+σ2
w

)2]
.

This relationship applies for both PSLR and ISLR. Con-
trary to the MF and ZF parameters, µ4

a or σ2
1/a, the MMSE

parameters µ4
b , σ2

b and σ2
c depend on the noise level, which

make it more difficult to predict trends in medium to high
noise environments. When σ2

w = 0, the MMSE parameters
are σ2

b = µ4
b = 1 and σ2

c = σ2
1/a. Thus, the MMSE equals

the ZF in low noise environment.
Both expressions (28) and (34) are summarised in only

one expression

γ2 =

1 +
Nα

β − α+ σ2
wδ

1 +
N

σ2
wσ

2
1/a

γ2
ZF, (35)

with α, β and δ given in table 1 for each MF and MMSE
metrics.

IV. RESULTS AND DISCUSSION

Simulations are performed to validate the expressions given
by (28) and (34). Complex 16-QAM data symboles are car-
ried on N = 1024 orthogonal subcarriers spanning a band
of B = 375 MHz. The subcarrier spacing is 360 kHz and
the OFDM symbol duration is T = 2.73 µs. The center fre-
quency is fc = 77 GHz. The duration of the cyclic prefix
is the eighth of the duration of a symbol, Tg = 0.34 µs.
This duration is enough for the sampling window of the
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Table 2. OFDM radar parameters.

Parameter Notation Value

Number of sub-carriers N 1024
Cyclic prefix Tg 0.34 µs
Bandwidth B 375 MHz

Order of QAM modulation 16-QAM

Signal to noise power ratio SNR =
σ2
a

σ2
w

20 dB

Carrier frequency fc 77 GHz
Target distance R 12 m

0 100 200 300 400 500

Range (m)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

|
[i
]|
 (

d
B

)

MF

ZF

Fig. 1. Normalized and superimposed MF and ZF range profiles.

receiver end to include a whole symbol for target ranges
under 50 m. The target range is R = 12 m which causes
an integer delay. This allows us to go without the use of a
Chebyshev window. The OFDM radar parameters for the
simulation are summarized in table 2.

Range profiles are estimated through MF, ZF and
MMSE using (10), (17) and (31), respectively. Then (22)
is used to estimate the simulated γPSLR and γISLR for each
filter. The MF and MMSE performances obtained by sim-
ulation are compared to the MF and MMSE performances
obtained with (28) and (34), respectively, and using the ZF
performances obtained by simulation.

The normalized range profiles are shown superimposed
in figure 1. The figure shows that, for SNR = 20 dB, MF
exhibits higher sidelobes. Note that since MMSE is close
to ZF in high SNR environments, it is not plotted here for
clarity sake. These results confirm the proposition that in
low noise environments, ZF and MMSE have higher PSLR
and ISLR compared to MF. Next, the γPSLR and γISLR are
estimated for different SNR levels and the results are com-
pared to the proposed expressions. The SNR is the ratio of
the symbol power σ2

a to the noise power σ2
w.

The plots show three main trends. In the high end of
SNR, where SNR > 10 dB, (28) is proven to be accurate,
since ZF shows a higher level of PSLR and ISLR, while
MF plateaus. MMSE exhibits a behavior similar to that
of a ZF filter as well as its performances. The expression
(35) also proves true. For lower SNR between −20 and
10 dB, the noise is too high for (28) to apply. There, MF
displays a slightly higher level or PSLR and ISLR. MMSE
behaves more like an MF and (35) proves less accurate than

-50 -30 -10 10 30 50

SNR (dB)

0

5

10

15

20

25

30

35

P
S

L
R

 (
d
B

)

ZF

MF (simulation)

MF (analytical)

MMSE (simulation)

MMSE (analytical)

Fig. 2. PSLR versus input SNR.
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L
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 (
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MF (analytical)

MMSE (simulation)

MMSE (analytical)

Fig. 3. ISLR versus input SNR.

in higher SNR environments. When the SNR < −30 dB,
the noise level is too high for detection.

The main reason that could explain this difference in
low-noise environments is the sidelobes due to the corre-
lation function. Even when the noise level is low, these
sidelobes remain unchanged, forcing the PSLR and ISLR
in OFDM/MF radar to plateau. Whereas, the noise floor of
an impulse response depends on the noise only.

A few assumptions or approximations are used to obtain
the analytical performances: the asymptotic regime with
large N , the Jensen’s inequality for the PSLR and ISLR
ratios in (23), the average in (26) and the linear devel-
opment of θ. All these approximations are tight enough
to get simple and efficient analytical expressions, as the
simulation results show. Figure 4 shows the PSLR ver-
sus the number of subcarriers N in both a low noise
environment (SNR = 30 dB) and a high noise environ-
ment (SNR = −10 dB). It shows that the expressions are
accurate regardless of N .

However, when τ(t) ̸= τk through the payload time of
the kth echo, i.e. the variation of τ(t) during this time inter-
val can not be neglected, the Doppler shift mismatches the
filter by distorting the received signal. The stop-and-go
approximation in (8) is not more valid and new deriva-
tions are needed. As shown in figure 5, MF is more
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Fig. 4. PSLR versus N , SNR ∈ {−10, 30} dB.
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Fig. 5. PSLR versus Doppler shift, SNR = 30 dB.

robust to this mismatch than ZF: the performance of MF
decreases slowly with the Doppler shift in contrast with
ZF and MMSE ones. Due to this difference in behaviour,
the analytical expression (28) is not valid in high SNR
environments and significant Doppler. Note that a rela-
tive Doppler shift νT = 0.1 corresponds to a radial speed
around 260 km/h, with ν = 2vfc

c . Contrary to MF, the ana-
lytical MMSE performance matches the simulation one,
and (34) remains valid for all Doppler shift conditions. In
lower SNR regimes (see figure 6) the analytical derivations
are valid for ZF and MMSE for all Doppler shifts.

V. CONCLUSION

In this paper, the OFDM radar filters used to estimate the
range of the target are compared through the PSLR and
ISLR of their range profiles. These filters are MF, ZF and
MMSE. First MF and ZF are compared in different levels
of noise. The performance of MF is derived from that of the
ZF through an expression that is applicable to both PSLR
and ISLR and that only depends on the modulation param-
eters. It is also found that, in low noise environments and
with the assumption that the number of subcarriers is large
enough, ZF performs better than MF. The analysis is then
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 (
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Fig. 6. PSLR versus Doppler shift, SNR = 10 dB.

extended to the MMSE filter. The MMSE filter behaves like
a ZF in low noise environments and like an MF in high
noise environments. The performance of MMSE is derived
from that of the ZF through an expression that is applica-
ble to both PSLR and ISLR and that only depends on the
modulation parameters. The expression on MF and MMSE
through ZF are verified by simulations.
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