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Schelling paradox in a system of cities

Vincent Boitier∗ Emmanuel Auvray†

Abstract

In this theoretical article, we develop a unified framework that encapsulates: i)-
a system of heterogeneous cities, ii)- heterogeneous workers, iii)- the presence of ag-
glomeration economies and congestion forces, and iv)- heterogeneous city composition
preferences. We provide a full analytical characterization of the decentralized and cen-
tralized economies. Contrary to conventional wisdom, we show that social mixing can
constitute a unique and stable equilibrium. We also disentangle the different economic
factors that shape within- and across-city social/income dispersion. We also find that
individuals’ preferences be overturned at an aggregate scale, which is consistent with
Schelling paradoxical findings. We then offer a rationale for these counterintuitive
results. Last, we demonstrate that the decentralized economy is not optimal but can
be restored by local subsidies.
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1 Introduction

How does the assignment of heterogeneous agents across heterogeneous cities operate?
Can social mixing constitute a unique and stable spatial equilibrium? Can individuals’
preferences be overturned at an aggregate scale? If so, how to rationalize these paradoxical
results à la Schelling? What economic factors drive within- and across-city inequalities?
Are large towns more unequal than small ones? How to explain the incomplete sorting
between attractiveness of sites, firms, and workers? Is a spatial equilibrium optimal?1 If
not, how to restore efficiency?

We attempt to address these questions in a comprehensive and unified framework.
Toward that goal, we build a system of cities with the following key ingredients. The
number of cities is finite, and cities are heterogeneous according to a level of amenities. In
each city there is a monocentric city with a continuum of locations. Absentee landlords
own houses that are supplied by a competitive market. Firms are exogenously located
in the city center, do not consume any space, and reward employees for their work. The
system is also populated by an infinite number of workers distributed across two populations
(rich vs. poor, black vs. white, etc.). Workers are heterogeneous in terms of income and
transportation costs. They also have heterogeneous preferences regarding city composition,
as in Miyao (1978, 1979). This means that workers are engaged with (possibly complex)
intra- and inter-group externalities.

In such a setting land is not allocated by the bid rent theory, and in the labor market
wages are exogenously determined. A spatial equilibrium is a vector of spatial distributions
that verifies a variational inequality. This characterization allows us to derive reasonable
conditions for uniqueness and (static) stability of a spatial equilibrium (see Boitier (2020)).
The within- and across-city income that causes a social dispersion is summarized by a single
statistics corresponding to a dissimilarity index.

From this new setting we derive valuable results. First, we derive closed-form solutions
for the endogenous variables. The spatial distributions of workers and the dissimilarity
index are analytical in the decentralized and centralized economies. Having closed-form
solutions is crucial and advantageous. This enables conducting a detailed and robust com-
parative statistical analysis. This also allows a transparent identification of the driving
forces of the workers’ location. Due to its tractability, the model can also be a guide for
empirical studies by helping to derive testable predictions that link the obtained dissimi-
larity index to measurable variables.

Second, we demonstrate that, contrary to conventional wisdom, social mixing (i.e. in-
complete sorting) can be a unique and stable spatial equilibrium. Moreover, we advocate

1This general question encompasses the following subsequent questions: Are cities too big or too small?
Are cities too segregated? Is the system of cities too segregated?
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that this configuration prevails under a large set of plausible parameter restrictions. This
means that the situation frequently emerges as an outcome that reconciles the spatial
theory with empirical evidence.

Third, we unveil the determinants of within- and across-city inequalities. We also
underline that social mixing is a consequence of three distinguishable components. The
first component is a demographic component. It posits that social mixing is improved when
a population of workers grows faster than the other. The second factor captures the degree
of differences between cities in terms of attractiveness. This component predicts that a
system of cities composed with similar (different) amenable cities exhibits low (high) social
mixing. The third factor is the combination of income inequalities, transportation costs,
and city composition preferences. It clearly shows that there is a relationship between
segregation by income and segregation by preferences. In particular, depending on the
intra- and inter- group externalities, city composition preferences can mitigate (magnify)
income segregation.

Fourth, we find that macroeconomic patterns can deviate from microeconomic prefer-
ences. Notably, a society in which there is a desire for a mixed environment generates
less social mixing than a society in which there is a preference for a segregated environ-
ment. In so doing, we obtain results in line with Schelling (1971, 1978). We then offer a
rationale for these counterintuitive findings. We identify city composition preference acts
as agglomeration economies and congestion effects in the urban model. In summary, the
paradoxical results à la Schelling are intuitively explained by the standard forces present
in urban economics.

Fifth, we show that the decentralized economy never achieves an optimal allocation.
This is because workers disregard some local externalities compared to what the social
planner internalizes. In addition, we investigate two different aspects of inefficiency. On
the one hand, we ask whether cities are underpopulated or overpopulated. We highlight
that this depends on the nature of the city composition preferences. When these preferences
are symmetric, large towns are oversized and small cities are undersized. If the suitable
degree of asymmetry is introduced, the converse situation prevails. Large towns are too
small and small cities are too big. This counterintuitive result concurs with Albouy et al.
(2019). On the other hand, we determine whether social mixing is too high or too low in
the system of cities. Again, the answer relies on the feature of city composition preferences.

Last, we stress that economists have a remedy to restore optimality. To eliminate inef-
ficiency, local subsidies are sufficient. These are standard instruments in public economics.
We show that local actors can introduce local subsidies. If local subsidies are implemented
by competitive local land developers, inefficiency vanishes. This concurs with the results
of Henderson and Becker (2000) and Albouy et al. (2019). Local subsidies can also be
managed by a central government.
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This article contributes to urban economics from different perspectives. It improves
the design of spatial models. This is the first attempt to take into account heterogeneous
sites, heterogeneous workers, and city composition preferences. Behrens and Robert-Nicoud
(2015b) and Albouy et al. (2019) consider a system of cities with heterogeneous sites and
a continuum of heterogeneous workers. But there are no neighborhood composition pref-
erences. In addition, to derive results they need to assume that land rent is independent
of the workers’ composition of the city. These drawbacks do not exist in our framework.
Land rent depends on the composition of the city. In Schelling models of segregation (see
Zhang (2004a), Zhang (2004b), Pancs and Vriend (2007), O’Sullivan (2009), Zhang (2011),
Grauwin et al. (2012) and Boustan (2013)), social preferences are operative but economic
factors are absent. Labor market is neutralized. Transportation costs are not integrated.
Land is not allocated according to the bid rent theory.

The present article states that a mixed configuration can be unique and stable. This
finding is at odds with the literature. In the Schelling model of segregation it has been
well advocated that segregation is the only stable equilibrium. In the case of systems of
cities (see Abdel-Rahman and Anas (2004)), Seegert (2011), Behrens and Robert-Nicoud
(2015a) and Albouy et al. (2019)), the literature predicts a strict sorting of workers, and
there is no social mixing. However, this finding also accords with empirical evidence. It is
very uncommon to observe a fully segregated system of cities in the data.

The article also offers paradoxical results à la Schelling. Notably, attractive (adverse)
social preferences can generate less (more) social mixing. In fact, the framework provides
a reason for these findings. It highlights standard agglomeration and congestion forces as
credible rationales. This contrasts with the literature. In the standard Schelling model,
social relationships are too bulky, precluding the possibility of obtaining closed-form results.
The model is like a black box, and no robust comparative statistical analysis may be
available. Consequently, it is difficult to establish what drives paradoxical findings in these
standard models. More globally, the fact that our setting can be analytically solved is
important. This permits a transparent identification of the driving forces of the workers’
location. This allows disentangling the respective roles of demographic, spatial (natural
amenities/disamenities), and economic factors. This also enables guiding empirical studies.

The article joins the debate of policy regulation. Particularly, at which level must an
optimal policy be implemented? In standard systems of cities, efficiency is restored at
the city-scale with the concurrence of local land developers. Such a policy is possible in
our framework. Optimality can also be achieved by local subsidies that are managed by a
non-local government.

To conclude, the article complements some results found in the literature. As in Boitier
and Auvray (2020), there is a relationship between segregation by income and segregation
by preference, and social preferences can mitigate income segregation. In line with Albouy
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et al. (2019), large cities can be undersized, whereas small cities can be overpopulated.
The article is organized as follows. Section 2 presents the new framework. Section 3

provides the conclusions.

2 System of cities with city composition preferences

In what follows we develop a system of cities in which heterogeneous workers have pref-
erences over city composition. In Section 2.1, we describe the setup. In Section 2.2, we
characterize the spatial equilibrium within cities. In Sections 2.3-2.7, we analyze the spa-
tial equilibrium of the system of cities. In Sections 2.8 and 2.9, we tackle the question of
optimality.

2.1 Environment

2.1.1 Geography

We follow Boitier (2020) for the geography. The economy consists in a system of C cities.
Cities are distributed on the interval Y = [0,M(C + 1)] with M > 0 in such a way that
the city c’s location from 0 is Mc ∈ Y for all c ∈ C = {1, ..., C}. Each city is endowed with
a level of amenities expressed by a. a : C → [a, a] is a bounded and ordered application
with a, a ∈ R. By ordered, we mean a1 ≥ ... ≥ ac ≥ ... ≥ aC . Moreover, each city has an
internal structure in the sense that it is composed of a continuum of locations denoted by
x ∈ X with X = [0,∞). Cities are monocentric: x = 0 is the Business District (BD) where
all firms are exogenously located. Accordingly, x also represents both the distance to BD
and access to jobs.

2.1.2 Populations

The economy is populated by a mass M of heterogeneous workers distributed in two pop-
ulations (e.g. rich vs. poor, whites vs. blacks, young vs. old, males vs. females).2 In a
given population p ∈ {r, b} there are mp homogeneous workers so that mr +mb = M = 1.
Considering r (b), we mean that workers are red (blue).

2.1.3 Spatial distributions of workers

There are two notions of spatial distributions: the spatial distribution of workers across
cities and the spatial distribution of workers within cities.

2Note that our framework is very general such that segregation/integration graps different forms: in-
come, age, gender, etc. This means that segregation/integration by ethnicity is a particular case in the
present setting.
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Workers belonging to population p ∈ {r, b} are spatially distributed across cities according
to mp ∈ ∆C

p so that:

∆C
p = {mp =

(
mp,1, ...,mp,C

)
∈ RC

+ :
C∑
c=1

mp,c = mp} ∀p ∈ {r, b}

where mp,c is the mass of workers belonging to population p ∈ {r, b} and located in city
c ∈ C.

Based on the presence of mr,c red workers in city c and mb,c blue workers in city c, the
workers are spatially distributed in this city following two endogenous distributions denoted
by µr, µb so that: µr : X → R+∫

X µr(x)dx = mr,cµb : X → R+∫
X µb(x)dx = mb,c

µr(x) is the density of red employees residing in x and µb(x) is the density of blue workers
residing in x.

2.1.4 Segregation index

In this article we demonstrate that a spatial equilibrium is characterized by a situation
where workers are unevenly dispersed across cities. To gauge the magnitude of this dis-
persion, we need an appropriate measure. The literature provides different dimensions of
residential segregation: evenness, exposure, clustering, centralization, and concentration
(see Duncan and Duncan (1955), Massey and Denton (1988) and Massey et al. (1996)).
Here, we focus on evenness by computing the standard dissimilarity index (see James and
Taeuber (1985)):

ID =
1

2

C∑
c=1

∣∣∣∣mr,c

mr

− mb,c

mb

∣∣∣∣
ID measures the proportion of red workers that move in order to have an even city. If
ID = 0, then red and blue workers are evenly distributed across cities. This case is labeled
as “perfectly mixed” (see Figure 2.b). Conversely, if ID = 1, then the spatial segregation is
maximized, and red and blue workers do not share common cities. In this case, the system
of cities is said to be “segregated” (see Figure 2.a). There is a continuum of configurations
between these two polar opposite cases (i.e. mixed systems of cities, see Figure 2.c). In
particular, 0 < I1

D < I2
D < 1 means that the system of city 1 shows higher social mixing

than the system of cities 2.
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2.1.5 Workers’ characteristics

Workers are associated with the same preferences. They face the same two-tier utility
function denoted by U and expressed by:3

U (z, a,m) = U(z) + a+ ρ(m)

with U being the utility function associated to the consumption of z the amount of compos-
ite consumer goods used as numéraire. ρ is another utility function that describes workers’
city composition preferences (see Section 2.1.6 for an explicit expression). U is the lower-
tier utility function, whereas a + ρ(m) is the upper-tier utility function. As usual, U is of
the form:

U (z) = z

that is, U is simply linear.

Moreover, workers belonging to population p ∈ {r, b} are endowed with one unit of la-
bor, earn a wage ωp > 0, bear transportation costs 0 ≤ τ < 1, and pay a rent R(x) per
unit of land to absentee landlords.4 Commuting costs can have two similar interpretations.
τ can be viewed as the fraction of time that a worker spends in transports. Equivalently,
τ can correspond to the frequency of trips to the BD made by workers. Therefore, the
budget constraint of workers is the following:

z +R(x) = ωp(1− τx) ∀p ∈ {r, b}

ωp(1− τx) can be viewed as “iceberg” transportation costs (see Murata and Thisse (2005)
and Behrens and Murata (2009)). In that case, Up(x) the (instantaneous) utility of the
workers belonging to population p ∈ {r, b} and residing in location x becomes the following:

Up(x) = ωp(1− τx)−R(x) ∀p ∈ {r, b}

Note that consumption must be positive in equilibrium and so zp = Up > 0 must be satisfied
in equilibrium. Also note that, as workers are endowed with a single unit of land, land
consumption is exogenous. Consequently, there is no income effect on land consumption.
However, this is inconsequential as the income effect remains operative in the model through
transportation costs −ωrτ and −ωbτ . In addition, embedding the Cobb–Douglas function
in the framework could be cumbersome.

3In spatial economics, it is standard to use a two-tier utility function when the setting is complex
and encapsulates intertwined decisions. Behrens and Murata (2009) adopt a two-tier utility function in
a monopolistic competition urban model. Arkolakis et al. (2012) consider a two-tier utility function in a
trade model with multiple sectors.

4In the core of the text, ωp for all p ∈ {r, b} is exogenous. See our Online Appendix for a case where
wages are derived from a Cobb–Douglas production function. This allows us to study the case where the
economy has several industries. See also our Online Appendix for a discussion about the role of absentee
landlords in the framework.
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2.1.6 Workers’ city composition preferences

We now specify the form of the utility function ρ. Workers have preferences with respect
to city composition:

ρr,c(m) = −φrrmr,c − φrbmb,c

and
ρb,c(m) = −φbrmr,c − φbbmb,c

with φrr, φrb, φbr, φbb ∈ R being some parameters.

To understand this better, let us consider some concrete examples. If φkj = 0, then workers
of type k are neutral concerning the presence of workers of type j in the city. If φkj < 0

(φkj > 0 ), then workers of type k prefer (dislike) cities where workers of type j live, as any
city inhabited by workers of type j corresponds to an increase (a decrease) in the utility
function. If φrr = φrb = φbr = φbb = 0, then there are no city composition externalities.
In that case, we say that workers are color-neutral. If φrr, φbb > 0 (φrr, φbb < 0), then
the intra-group externalities are negative (positive), and we say that workers have aver-
sion/rejection (attraction). If φrb, φbr > 0 (φrb, φbr < 0), then the inter-group externalities
are negative (positive). In that case, we say that workers have mutual aversion/rejection
(mutual attraction).

Note that the preferences are fairly standards. We strictly follow the seminal articles of
Sakoda (1971), Zhang (2004a) and Grauwin et al. (2012) in assuming that workers linearly
consider the proportion of workers when choosing their location. Therefore, the number
of neighbors has a monotonic effect on workers’ utility function, which differs from the
tipping point theory (see Card et al. (2008)). The fact that neighborhood externalities are
operative at the city scale is also standard. We strictly follow the seminal articles of Miyao
(1978, 1979).

We use linear preferences for two reasons. On the one hand, the preferences have nice
properties. See Section 2.3.2 for more details. On the other hand, the preferences are
flexible as workers can be engaged with asymmetric intra- and inter-group local interac-
tions. The parameters may be positive, null, or negative, and may also differ according
to the populations. This encapsulates a wider range of possible social patterns than with
other preferences. For example, other preferences (including the original Schelling utility
function (see Schelling (1971, 1978)), asymmetric peak utility functions (see Zhang (2011)),
etc.) capture a symmetric desire for a mixed environment only. However, the use of linear
preferences has a negative side effect: city composition preferences depend on the level of
red and blue workers. One may expect that the city dependance could be captured by the
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percentage of workers. Linear preferences also preclude the framework to model “tipping
points”. Empirical studies report that a population of households may leave neighborhoods
after that another population of households overcomes a certain point (see Card et al.
(2008) and Boustan (2013)). Unfortunately, including such an ingredient makes the model
very bulky. This rules out uniqueness. This also eliminates the possibility of deriving ex-
plicit and robust results. See our Online Appendix for more details.

In addition, the preferences are empirically supported. The relevant literature has estab-
lished that individuals’ preferences regarding the composition of the city play a significant
role in determining housing choice (see, among others, Schuman et al. (1997), Krysan and
Farley (2002), Charles (2003)). For example, several studies document that the ethnic char-
acteristics of individuals and neighborhoods influence decisions on location and relocation.
Van Ham and Feijten (2008) and Van Ham and Clark (2009) also show that socio-economic
factors (e.g. income and education) play a role. In addition, several studies (see Ihlanfeldt
and Scafidi (2002) and Clark (2009)) point out that the effects are cities specific. They also
document that the geographical distribution of minorities is mixed, even assuming that
residents are free to move in and out of cities.

As outlined previously, we are relatively uncertain about the values of the parameters.
We do not impose any restriction. The parameters may be positive, null, or negative, and
may also differ from population to population. However, we reckon that the following cases
should be highlighted:5

1. φrr = φrb = φbr = φbb = 0

2. φrr = φrb = φbr = φbb = ψ with ψ > 0

3. φrr = φrb = φbr = φbb = −ψ with ψ > 0

4. φrr = φbb = −ψ and φrb = φbr = ψ and ψ > 0

5. φrr = φbb = φbr = 0 and φrb = ψ with ψ > 0

The first case corresponds to the situation without any group population preference. The
second case appears when preferences are symmetric, and when workers have both own
and mutual aversion. The third case is the inverse of the second one, that is, workers have
both own and mutual attraction. The fourth case is an asymmetric one in which workers
have own attraction but mutual rejection.6 This is the inverse of the third case. It can be

5Alternatives are present in the Online Appendix.
6It is possible to consider a case in which there is own rejection and mutual attraction. This sounds

reasonable if the two groups are males and females. Sakoda (1971) considers a similar case called Boy-Girl.
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interpreted as a case where workers have now a preference for a segregated environment.
The last case is a sub-case of the fourth one. In fact, this is the seminal case of Zhang
(2004a) where a population A is color-neutral and a population B rejects population A.
As before, workers have a desire for a segregated city.

2.1.7 Workers’ utility functions and and workers’ choices

To sum up, plugging the expressions of Up and ρp,c into the two-tier utility functions gives:

Ur,c(x,mr,mb) = ωr(1− τx)−R(x) + ac − φrrmr,c − φrbmb,c

and
Ub,c(x,mr,mb) = ωb(1− τx)−R(x) + ac − φbrmr,c − φbbmb,c

where Ur and Ub are the new notations of the utility functions of workers.

Under this environment, workers play the following two-step location game:

1. They choose in which city to live.

2. They choose where to reside in their selected city.

Usually, the game is solved by backward induction. In Stage 2, workers face the following
optimization problems:

max
x∈X

{
ωr(1− τx)−R(x)

}
and

max
x∈X

{
ωb(1− τx)−R(x)

}
The results in Stage 2 are determined in Section 2.2. In Stage 1, workers share the following
maximization programs:

max
c∈C

{
ωr(1− τx∗)−R(x∗) + ac − φrrmr,c − φrbmb,c

}
and

max
c∈C

{
ωb(1− τx∗)−R(x∗) + ac − φbrmr,c − φbbmb,c

}
where ∗ denotes the optimal solution in Stage 2. The results in Stage 1 are pinned down
in Sections 2.3-2.7.
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2.2 Equilibrium in Stage 2

In this section, we characterize the spatial equilibrium within cities. In Section 2.2.1, we
clarify the notion of a spatial equilibrium. Our analysis is based on standard bid rent
models (see Fujita (1989) and Fujita and Thisse (2003) for comprehensive frameworks). In
Section 2.2.2, we explicitly determine such a spatial equilibrium. We derive the closed-form
solutions for µ∗r, µ∗b the internal densities of workers, R∗ land rents, x̌ the equilibrium city
size and vr, vb the indirect utility functions of workers.

2.2.1 Definition

To pin down the location of households in the city, it is common to use the bid rent theory
(see Fujita (1989)). The latter consists in determining the maximum rent that a worker
(blue or red) would pay for living in a given location. The bid rent function of the red
workers residing in location x and in city c is given by:

Ψ∗r,c(x, vr,c) = ωr(1− τx)− vr,c

Similarly, the bid rent function of the blue workers residing in x and in city c is expressed
by:

Ψ∗b,c(x, vb,c) = ωb(1− τx)− vb,c

As a consequence, a spatial equilibrium in city c ∈ C is defined in the following manner:

Definition 1 For a fixed city c ∈ C, an equilibrium in Stage 2 is a 5-tuple (µ∗r,c, µ
∗
b,c) and

(vr,c, vr,c, R
∗
c(x)) so that:

R∗c(x) = max
{

Ψ∗r,c(x, vr,c),Ψ
∗
b,c(x, vb,c), 0

}
(1)

with
Ψ∗p,c(x, vp,c) = ωp(1− τx)− vp,c,∀p ∈ {r, b} (2)

Ur,c(x,mr,mb) = vr,c (3)

Ub,c(x,mr,mb) = vb,c (4)

µ∗r,c(x) + µ∗b,c(x) = 1 (5)∫
Supp(µ∗r,c)

µ∗r,c(x)dx = mr,c (6)∫
Supp(µ∗b,c)

µ∗b,c(x)dx = mb,c (7)
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These equations are simple. Equation (1) indicates that land is allocated to the highest bid
rent. Equation (2) represents the bid rent function of the workers belonging to population
p ∈ {r, b} and residing in location x. Equations (3)–(4) are the non-arbitrage conditions
which show that all agents reach the same utility level in each population of workers.
Equation (5) satisfies the land-market equilibrium, and equations (6)–(7) meet the total
population constraint in each population of workers. Last, we assume that land intensity
equals 1 and the agricultural rent is 0. These elements do not influence the nature of the
results.

2.2.2 Results

We now determine the spatial equilibrium for Stage 2. We also derive the conditions under
which such a spatial equilibrium exists. Using Definition 1, we obtain the following:

Proposition 1
Assume that ωr > ωb. Assume that the following holds:

ωr(1− τmr)− ωbτmb > 0 (8)

ωb
[
1− τ(mr +mb)

]
> 0 (9)

then red workers live near their workplace while blue workers reside on the fringes of the
city.7 The associated city size is pinned down by:

x̌c = mr,c +mb,c

Similarly, the associated land rent is given by (see Figure 1.a):

R∗c(x) =

ωrτmr,c + ωbτmb,c − ωrτx ∀x ∈ [0,mr,c]

ωbτmr,c + ωbτmb,c − ωbτx ∀x ∈ [mr,c,mr,c +mb,c]

Last, the associated indirect utility functions are:

vr,c = ωr + ac − (ωrτ + φrr)mr,c − (ωbτ + φrb)mb,c

and
vb,c = ωb + ac − (ωbτ + φbr)mr,c − (ωbτ + φbb)mb,c

Assume that ωr = ωb = ω. Assume that the following is complied:

ω(1− τ) > 0

7In the rest of the article, we assume that ωr ≥ ωb.
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then red and blue workers live in the same locations, and the spatial equilibrium boils down
to (see Figure 1.b):

R∗c(x) = ωτ(mc − x) ∀x ∈ [0,mc]

vr,c = ω + ac − (ωτ + φrr)mr,c − (ωτ + φrb)mb,c

vb,c = ω + ac − (ωτ + φbr)mr,c − (ωτ + φbb)mb,c

Sufficient conditions (8) and (9) ensure that consumption is positive in equilibrium, irre-
spective of the spatial distributions of workers. More precisely, equilibrium consumption
in city c ∈ C for workers p ∈ {r, b} is given by:

z∗p,c = ωp − ωpτx∗ −R∗c(x∗)

When ωr > ωb, Proposition 1 establishes that red workers live near their workplace, that
is, on the interval

[
0,mr,c

]
. Therefore, using R∗c , equilibrium consumption for red workers

becomes: z∗r,c = ωr(1 − τmr,c) − ωbτmb,c. As mb,c ≤ mb and mr,c ≤ mr, to ensure that
consumption is positive in equilibrium, it is sufficient to set (8). A similar reasoning
applies for z∗b,c which gives (9), and for the case ωr = ωb. Intuitively, conditions (8)-(9)
simply stipulate that wages are high enough to overcome commuting costs and land rents
whatever the city size.

As usual, R∗c is a decreasing function with respect to x (see Figures 1.a and 1.b). This is
because workers face a trade-off between accessibility and land prices, when choosing their
location. They want to live in the BD to minimize their transportation costs. However,
they also anticipate that more workers want to reside near the city center. This increases
land prices. To avoid this, some workers have an incentive to live farther away. Specifically,
R∗ must decrease with respect to x to balance the two aforementioned forces.

The internal pattern depends on R∗c , that is, on wages. When ωr > ωb, red workers live
near their workplace, while blue workers reside on the fringes of the city (see Figure 1.a).
The explanation for this is straightforward and standard. There are two conflicting forces
in monocentric city models (see Alonso (1964), Mills (1967) and Muth (1969)). These two
forces are summarized by the ratio: time transportation costs/housing consumption. If
the ratio rises with incomes, rich workers live at central places as time commuting costs
outweigh housing consumption benefits. By contrast, when the ratio falls with wages, rich
workers live in the suburbs as housing consumption effects dominate time commuting costs.
In our framework, land consumption is eliminated since workers consume a single unit of
land. The location of workers only depends on time commuting costs. As red workers
earn more than blue workers, they bear higher transportation costs. Consequently, they
are ready to pay to be marginally close to the BD, and they outbid for locations that are
close to the BD (see Figure 1.a). When incomes are identical (i.e., ωr = ωb), there is social
mixing within cities. This means that red and blue workers inhabit in the same places. As
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workers face the same transportation costs, they share the same incentives, and so locate
in the same locations.

It is worth noting that the configuration obtained in Proposition 1 is consistent with
real-world observations. Since Hohenberg and Lees (1986), scholars distinguish two different
configurations. On the one hand, there is a pattern commonly encountered in US cities.
Such a pattern is characterized by the fact that incomes rise with distance to BD. On the
other hand, there is another pattern observed in European cities where incomes fall with
distance to the city center. Our model predicts European configurations only.

Last, Proposition 1 derives the closed-form expressions for the indirect utility functions.
This is key for the spatial equilibrium in Stage 1. To have a better understanding, we in-
terpret how these utilities are affected by changes in wages and populations. For simplicity,
we focus on the indirect utility function of red workers. A similar analysis can be done for
blue workers. Eliminating the parameters φ, note the following:

vr,c = ωr(1− τx∗) + ac −R∗(x∗) = ωr + ac − ωrτmr,c − ωbτmb,c

We then operate a brief comparative statics analysis.
An increase in ωr has two effects. There is a transportation costs effect and there is

an income effect that transits through the land market. When red workers earn more,
this mechanically increases commuting costs. In turn, this lowers consumption and so the
utility function. In addition, as ωr is improved, red workers are richer. As a consequence,
they are ready to pay more for the unit of land. The bid rents of red workers in each
location increase that rises land rents. The utility function decreases as a result.

When ωr is improved, only the effect in the land market is operative. Land rents are
positively affected as blue workers become wealthier.

An increase in mr,c has two effects. There is an expansion effect and there is a competi-
tion effect. First, when more red workers inhabit city c ∈ C, the city expands and [0,mr,c]

increases. This prompts some red worker to live farther away, and so experience higher
commuting costs. Second, an increase in mr,c also means more competition in the land
market. This puts an upward pressure on land rents, and vr,c diminishes as an outcome.

Likewise, an increase in mb,c generates higher land rents that decreases the utility func-
tion of red workers.

2.3 Equilibrium in Stage 1

Hereafter, we clarify the notion of a spatial equilibrium in the system of cities. We then
provide a discussion about the forms of the indirect utility functions. Last, we offer a
review of the results in Stage 1.
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2.3.1 Definition

A spatial equilibrium in Stage 1 is defined as follows:

Definition 2 A spatial distribution (m∗r,m
∗
b) ∈ ∆C

r ×∆C
b is a spatial equilibrium in Stage

1 if:
ωr − (ωrτ + φrr)m

∗
r,c − (ωbτ + φrb)m

∗
b,c = v∗r (10)

and
ωb − (ωbτ + φbr)m

∗
r,c − (ωbτ + φbb)m

∗
b,c = v∗b (11)

with v∗r , v∗r ∈ R being some constants.

An equilibrium is a situation where each worker receives the same population-specific utility
level wherever its location. This means that red (blue) workers achieve in equilibrium the
utility level v∗r (v∗b ) such that v∗r 6= v∗b . In such a configuration, unilateral deviations of
strategies are impossible.

2.3.2 The form of the indirect utility functions

Several important comments are in order.

After Stage 2, the indirect utility functions depend on mr,c and mb,c the local densities
of workers living in c. This means that workers consider the city characteristics when
choosing their place of residence. This also indicates the presence of agglomeration and
congestion forces. Agglomeration forces are positive urban externalities and result from
the preferences. Congestion forces are negative urban externalities and are twofold. As
before, they can stem from preferences. But they are also the consequences of wages and
transportation costs. If mr,c and mb,c are high in c, then the city is large, implying high
aggregated transportation costs and land rent. As usual, agglomeration forces constitute a
source of spatial concentration. Similarly, congestion forces constitute a source of spatial
dispersion. Indeed, workers face a trade-off if φrr, φrb, φbr, φbb > 0. The trade-off is captured
by the decreasing relationships between vr,c and both c through ac, the attractiveness of
the city, and mr,c and mb,c, the number of workers. This represents the aspiration to live in
attractive cities and the desire to avoid congestion in large cities. Hence, we expect that in
equilibrium the workers’ distribution is never degenerated. This is intuitive. Workers want
to live in attractive cities. However, as the same time, they anticipate that these cities will
be larger and will generate higher transportation and land costs. This will prompt some
workers to deviate by living in less attractive cities.

Last, the fact that the indirect utility functions are linear has four strong advantages.
The first advantage is that linear dependence leads to a well-posed equilibrium. We show
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that the equilibrium exists, that it is unique and stable under reasonable conditions. The
second advantage is that the linearity of (10) and (11) has the appeal of simplicity and
generates analytical results. Having closed-form solutions is key and very convenient. This
enables conducting a detailed and robust comparative statistical analysis. This also al-
lows a transparent identification of the driving forces of the workers’ location, namely the
relationship between individual preferences and global configurations is unequivocal. The
third advantage is that the model can be a guide for empirical studies by helping to derive
testable predictions. The last advantage is that the model can include economic factors
and individual preferences. Segregation models (see, among others, Zhang (2004a), Zhang
(2004b), Pancs and Vriend (2007), O’Sullivan (2009), Zhang (2011) and Grauwin et al.
(2012)) focus on a particular aspect: the individual preferences. There are no economic
factors. The complex interactions coming from the labor market and the land market are
absent from the analysis.

2.3.3 Results in Stage 1: A summary

In Sections 2.4-2.7, we provide a thorough characterization of the decentralized economy.
In a nutshell,

i)- we determine some sufficient conditions for uniqueness and stability in Section 2.4.

ii)- we establish the existence of a mixed system of cities in Section 2.5.

iii)- we give some explicit solutions for the spatial distributions of workers in Section 2.6.
Notably, we derive counterintuitive results where the preferences of workers at the individ-
ual level can be overturned at the city scale.

iv)- we derive a closed-form solution for ID the dissimilarity index in Section 2.7. We
identify the main drivers of social mixing. We show that the model can make testable
predictions. We also derive additional counterintuitive results. We finally point out that
preferences can mitigate income segregation.

2.4 Under which conditions is an equilibrium well posed?

An equilibrium of the form (10)–(11) is said to be well posed if it exists, is unique and
stable. However, existence is a second-order problem. Hereafter, we focus on uniqueness
and stability which are more challenging. The notion of uniqueness does not need to be
specified. By contrast, the notion of stability is more complex and needs some clarifica-
tions. In the present article, we adopt a static definition of stability. In particular, we
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define stability as follows:

Definition 3
A spatial equilibrium (m∗r,m

∗
b) ∈ ∆C

r ×∆C
b is stable if:

C∑
c=1

vr(c,m
′
r,c,m

′
b,c)
(
m∗r,c −m′r,c

)
+

C∑
c=1

vb(c,m
′
r,c,m

′
b,c)
(
m∗b,c −m′b,c

)
> 0

∀(m′r,m′b) ∈ ∆C
r ×∆C

b with (m∗r,m
∗
b) 6= (m′r,m

′
b).

A spatial equilibrium is stable (more precisely globally evolutionarily stable) if the equilib-
rium is strictly robust to an ε-perturbation. If the inequality is not strict (i.e. ≥ instead
of >), then the equilibrium is said to be globally neutrally stable. This notion of stability
dates back to Maynard Smith and Price (1973). Then, it has been popularized by Sandholm
(2001) and Hofbauer and Sandholm (2009). Using Definition 3, we obtain the following:8

Proposition 2
If the following conditions are met:

−(ωrτ + ωbτ + φrr + φbb) < 0 (12)

(ωrτ + φrr)(ωbτ + φbb) > (ωbτ + φrb)(ωbτ + φbr) (13)

then a spatial equilibrium is unique and stable.

The conditions we underline in Proposition 2 are sufficient but not necessary conditions. If
they are not satisfied, it does not mean that the system of cities does not admit a unique
and stable spatial equilibrium. Other conditions stating uniqueness and stability may be
available.

The way we derive this condition is interesting in itself. To prove Proposition 2 we adopt
a fairly indirect strategy. This strategy comprises the following steps. The first step is
to rewrite the spatial equilibrium as a variational inequality (VI hereafter). The second
step is to demonstrate that the variational inequality admits a unique solution under a
monotony assumption about the vector of the utility functions v = (vr, vb). The third
step is to remark that the assumption of monotony is equivalent to a negative definiteness
condition on an interaction matrix denoted by Φ. The last step is to determine the suitable
parameter restriction to comply with this negative definiteness condition, which is workable

8In Proposition 1, we make the distinction between the case ωr > ωb and the case ωr = ωb. For
Propositions 2–7, we do not need to make this distinction. To find the case in which workers have similar
incomes, it is sufficient to set ωr = ωb = ω and ω̃ = 0 in the different propositions.
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as the matrix is 2× 2. The strategy we follow is that of Boitier (2020). In this companion
article, he demonstrate that systems of cities are in fact population games and sometimes
potential games.

Uniqueness is desirable as it eliminates the “equilibrium selection problem”. In stan-
dard models of systems of cities (see Abdel-Rahman and Anas (2004), Seegert (2011),
Behrens and Robert-Nicoud (2015a) and Albouy et al. (2019)), uniqueness is never an
outcome. Rather, there is a continuum of equilibria that can be Pareto-ranked (see Hen-
derson (1974)). Similarly, uniqueness is rarely a feature of Schelling models of segregation
(see, within a large literature, Zhang (2004a), Zhang (2004b), Pancs and Vriend (2007),
O’Sullivan (2009) and Zhang (2011)). As reviewed by Boustan (2013), the main character-
istic of tipping models is multiple equilibria. For example, Grauwin et al. (2012) consider
different utility functions and show that the spatial configuration is likely to be non-unique.

Here, uniqueness and stability emerge due to the combination of two ingredients. The
first ingredient is the use of a finite number of types. In standard systems of cities, hetero-
geneity is modeled by a continuum, which creates multiplicity. As suggested by Proposition
2, uniqueness depends on the intra- and inter-group interactions. When there is a contin-
uum of heterogeneity, these interactions are too numerous and deeply intertwined, and
uniqueness fails as a result.9 With populations of workers, these drawbacks disappear.
Intra- and inter-group interactions are less complex such that it is possible to determine
the clear cut-offs for uniqueness and stability. The second ingredient is the linearity of city
composition preferences. To see this, we need to have a look in Proof 2. As previously men-
tioned, uniqueness and stability stem from the property of an interaction matrix denoted
by Φ. The latter is defined as follows:

Φ(mr,mb) =

(
∂vr
∂mr

∂vr
∂mb

∂vb
∂mr

∂vb
∂mb

)
=

(
−(ωrτ + φrr) −(ωbτ + φrb)

−(ωbτ + φbr) −(ωbτ + φbb)

)

where ∂vp
∂mp

captures the marginal effect of an increase in mp,c on vp for all p ∈ P . In sum, Φ

is a sort of Jacobian matrix built with the indirect utility functions. When city composition
preferences are linear, the marginal effects are independent of workers’ densities, and rely
on exogenous parameters. Therefore, preferences have a monotonic effect in the model.
This permits to eliminate multiplicity and instability by placing suitable assumptions on
the set preferences. If we assume non-linear dependency in (10) and (11), monotonicity

9The use of a continuum has another shortcoming: wages and land rents must be independent of
the workers’ composition of the city (see Behrens and Robert-Nicoud (2015a) for a discussion). In our
framework, wages and land rents can depend on the composition of the city. Again this is because we
manipulate finite populations of workers.
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vanishes. The marginal effects now depend on the densities of workers that are endogenous
variables. Therefore, the condition on Φ is rarely verified, and multiplicity emerges most
of the time (see our Online Appendix for additional examples).

Our sufficient conditions for uniqueness and stability have the appeal of tractability. They
are based on the transportation costs of workers and the degree of neighborhood exter-
nalities. This simplicity has many advantages. Notably, it permits a transparent analysis
of the driving forces that generate uniqueness and stability. To show this, let us consider
several examples.

When there are no city externalities φrr = φrb = φbr = φbb = 0. In that case, the economy
encapsulates congestion forces captured by −ωrτ and −ωbτ . The conditions for uniqueness
collapse to:

−(ωrτ + ωbτ) < 0

and
(ωr − ωb)τωbτ > 0

The first condition is verified as ωr, ωb > 0. The second condition is also satisfied because
ωr > ωb. As a result, the basic system of cities is well posed as it necessarily leads to a
unique and stable equilibrium.

When city preferences are symmetric and negative φrr = φrb = φbr = φbb = ψ with
ψ > 0, the system of cities also encompasses congestion forces summarized by −ωrτ , −ωbτ
and ψ. The conditions are as follows:

−(ωrτ + ωbτ + 2ψ) < 0

and
(ωr − ωb)τ(ωbτ + ψ) > 0

As before, the first and second parts are fulfilled as ωr > ωb > 0 and ψ > 0. Uniqueness and
stability hold when intra- and inter-group externalities are negative and similar. In other
words, uniqueness and stability appear when congestion forces −ωrτ and −ωbτ dominate
agglomeration economies −ψ.

The converse situation φrr = φrb = φbr = φbb = −ψ with ψ > 0 gives:

−(ωrτ + ωbτ − 2ψ) < 0

and
(ωr − ωb)τ(ωbτ − ψ) > 0
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The first equation is satisfied if 2ψ < ωrτ +ωbτ . The second equation holds if ψ < ωbτ . As
ωb ≤ ωr, if the second equation is satisfied then the first one is also complied. Thus, when
interactions are positive and equivalent, the intra- and inter-group externalities must not
be too large to ensure uniqueness and stability. That is, ψ must be bounded by ωbτ .

When workers have a preference for a segregated environment so that φrr = φbb = −ψ
and φrb = φbr = ψ and ψ > 0, the conditions can be rewritten as follows:

−(ωrτ + ωbτ − 2ψ) < 0

and
(ω̃τ − 3ψ)ωbτ − ωrτψ > 0

To obtain uniqueness and stability, the externalities must be bounded such that 2ψ <

ωrτ + ωbτ and ψ < ω̃τωbτ
ωrτ+3ωb

.

In summary, this suggests that uniqueness and stability prevail when there are:

1. similar congestion forces

2. congestion forces dominate agglomeration economies

Conversely, multiplicity seems to appear when they are:

1. strong asymmetric negative intra- and inter-group externalities

2. agglomeration forces outweigh congestion effects

2.5 Mixed system of cities

With equilibria (10)–(11), different spatial configurations are possible. Notably, the system
of cities can be said to be:

1. “segregated” in the sense that red and blue workers are (totally) separated into differ-
ent cities (see Figure 2.a). In that case, the dissimilarity index is necessarily ID = 1

and the segregation level in the system of cities is maximized.

2. “perfectly mixed” in the sense that red and blue workers share the same cities and
in the same proportion (see Figure 2.b). In that case, the dissimilarity index is
necessarily ID = 0, and the segregation level in the system of cities is minimized.

3. “mixed” in the sense that red and blue workers share the same cities but in different
proportions (see Figure 2.c). In that case, the dissimilarity index verifies ID ∈]0, 1[.
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The model can support the existence of all three situations, namely segregated, mixed, and
perfectly mixed situations. In this article we focus on mixed (and perfectly mixed) situa-
tions only. This is because it is uncommon to observe fully segregated systems of cities in
the data. By contrast, empirical evidence documents non-extreme segregation, suggesting
a mixed system of cities (see Ihlanfeldt and Scafidi (2002) and Clark (2009)). For instance,
Combes et al. (2012) and Eeckhout et al. (2014) document an incomplete sorting of skilled
workers across cities.

Using Proposition 1, we find the following.

Proposition 3
If the following conditions are verified:

(φbb − φrb) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)
> −mr

C
(14)

(ω̃τ + φrr − φbr) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)
> −mb

C
(15)

with ω̃ = ωr −ωb and a = 1
C

∑C
c=1 ac, then the system of cities is mixed. In addition, if the

following holds:
(φbb − φrb)mb = (ω̃τ + φrr − φbr)mr (16)

then the city is perfectly mixed.

Conditions (14)-(15) are sufficient to ensure that the system of cities is mixed. To attempt
to have a rationale, we explain our strategy. Using equations (10)-(11), we determine the
closed-form solutions for m∗r,c, m∗b,c and m∗c . Then, we look for the parameter restrictions
such that Supp(m∗r) = Supp(m∗b) = C. We finally find (14) and (15). Intuitively, these con-
ditions indicate that agglomeration and dispersions forces must not be too large to ensure
social mixing. When agglomerations forces are strong, workers inhabit in few cities. In
the extreme case that agglomerations economies are very strong, a spatial equilibrium can
be characterized by mr,1 = mr and mb,1 = mb and mp,c′ = 0 ∀p ∈ {r, b} and c′ 6= 1. By
contrast, when dispersions forces are large, workers have an incentive to live in two distinct
spans located at the edges of the system of cities. Between these polar situations, there are
many cases where agglomeration and dispersion forces are small enough to generate social
mixing.

The spatial patterns prevail under different probabilities. A perfectly mixed system of
cities constitutes an equilibrium if the knife-edge condition (16) is verified, meaning that
this configuration rarely appears. Alternatively, a large set of plausible parameter restric-
tions can be easily found for the emergence of mixed systems of cities (see (14)–(15)). This
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means that mixed systems of cities frequently emerge as an outcome, which is realistic when
confronting the model to the features of the data (see Combes et al. (2012) and Eeckhout
et al. (2014)).

A counterintuitive result is that condition (16) is not fulfilled when workers have a pref-
erence for an integrated environment (i.e. φrr = φbb = φrb = φbr = ψ with ψ < 0).
Conversely, the condition can hold when φrb > 0 and φbr > 0. Put differently, a perfectly
mixed system of cities can be achieved when workers have mutual rejections. This consti-
tutes a paradoxical result à la Schelling.

Another important result prevails when workers have same incomes (e.g. ωr = ωb). In that
case, a mixed system of cities can emerge. In particular, if (φbb − φrb)mb = (φrr − φbr)mr

then the system of cities becomes perfectly mixed. From Proposition 1, it also appears
that red and blue workers have the same locations within cities. Thus, when red and blue
workers share similar wages, there is both social mixing across and within cities. To our
best knowledge, this is the first framework that is able to make this prediction.

Coupled with Proposition 2, Proposition 3 posits the existence of a unique and stable
mixed configuration. This constitutes per se a contribution as it is at odds with the ur-
ban literature. The Schelling model of segregation proposes that segregation is the only
stable equilibrium. Mixed cities rarely occur in these frameworks and are rarely a stable
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equilibrium. Haw and Hogan (2020) demonstrate that stable mixed configurations are only
possible under restrictive assumptions. Namely, the minority must be small and the tol-
erance threshold must be large. Similarly, in standard systems of cities, there is no social
mixing in the sense that there is a strict partition of type across cities (see among others
Mori and Turrini (2005) and Okubo et al. (2010)). This is because these models exhibit
positive assortative matching (see Sattinger (1993)) due to the supermodularity in type
and city size. The present framework is able to generate a unique, stable and incomplete
sorting. Such a result is the consequence of the inclusion of asymmetric agglomeration and
dispersion forces. As previously stated, workers can be engaged with asymmetric intra- and
inter-group local interactions. This asymmetry introduces the suitable degree of freedom
such that workers inhabit the cities of the system.

2.6 What does a spatial equilibrium look like?

Using Proof 3, we provide a full exposition of the spatial equilibrium in the system of
cities. We derive the closed-form solutions for the densities of workers. We then study
peculiar cases to stress the links between the microeconomic motives of workers and the
macroeconomic configurations. Notably, we highlight counterintuitive results in which the
desire of workers at the individual level can be overturned at the city level.

Obtaining closed-form solutions formr,c,mb,c andmc is key. In effect, standard Schelling
models of segregation derive results from numerical simulations. The rare analytical re-
sults concern the parameter restrictions under which solutions are segregated and stable.10

As a consequence, these model seem to be black boxes where robust comparative statics
analysis are not available. Here, our framework can overcome these issues. Technically,
this is due to the linearity of the indirect utility preferences and the fact that the number
of populations of workers is finite.

Proposition 4
A mixed system of cities is characterized by the following spatial distributions:

m∗r,c =
mr

C
+

(φbb − φrb) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

m∗b,c =
mb

C
+

(ω̃τ + φrr − φbr) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

m∗c =
1

C
+

(ω̃τ + φrr + φbb − φrb − φbr) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

10“Despite the important insight revealed in Schelling’s simulation of the checkerboard model, for many
years social scientists were unable to rigorously analyze the model, primarily because of the lack of suitable
mathematical tools” in Zhang (2011).
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where m∗c = m∗r,c +m∗b,c is the city size of city c ∈ C.

Three comments are in order.
First, the spatial distributions are linear, implying that m∗r,c, m∗b,c and m∗c can either

increase, decrease, or be constant with respect to attractiveness.
Second, Proposition 4 can predict situations that are consistent with real-world ob-

servations. Empirical studies report that the size of cities is positively correlated with
inequality. Combes et al. (2012) and Eeckhout et al. (2014) document that large cities are
more unequal locations than small cities. Similarly, Glaeser et al. (2009) underline that
differences in terms of skill account for one-third of the variation in Gini coefficients. These
features appear in the model if the following holds:

(ω̃τ + φrr + φbb − φrb − φbr)
(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

> 0

and
mr,c

mr,c +mb,c

=

mr

C
+ (φbb−φrb)(ac−a)

(ωrτ+φrr)(ωbτ+φbb)−(ωbτ+φrb)(ωbτ+φbr)

1
C

+ (ω̃τ+φrr+φbb−φrb−φbr)(ac−a)
(ωrτ+φrr)(ωbτ+φbb)−(ωbτ+φrb)(ωbτ+φbr)

decreases with c

The first condition states that the residential density gradient of workers is negative, which
means that most (less) attractive cities are large (small) cities. The second condition implies
that most (less) attractive cities are more (less) unequal places.

Third, even if the distributions are analytical, they remain fairly complex. The re-
lationships between income inequalities captured by ω̃, transportation costs, and social
preferences are intertwined. To have a better understanding of the behaviors of m∗r,c, m∗b,c
and m∗c , we consider particular examples.

2.6.1 No city composition preferences

When workers have no city composition preferences (i.e. φrr = φbb = φrb = φbr = 0), the
spatial distribution is reduced to:

m∗r,c =
mr

C
, m∗b,c =

mb

C
+
ac − a
ωbτ

, m∗c =
1

C
+
ac − a
ωbτ

Red workers are evenly distributed across cities (see Figure 3). By contrast, the density
gradient of blue workers is negative, meaning that they reside in attractive cities in a larger
proportion. To have a rationale for that, remind that the indirect utility function of red
workers collapses to:

vr,c = ωr + ac − ωrτmr,c − ωbτmb,c

Red workers face a trade-off. On the one hand, they have desires to inhabit in most
attractive cities. These incentives are summarized by ωr + ac. On the other hand, they
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want to live in cities where global population is low as any increase in mr,c (and mb,c)
corresponds to higher commuting costs and land prices (see Section 2.2.2). As red workers
earn more than blue workers, this prompts red workers to disperse more across the system
of cities than blue workers. The fact that red workers are evenly distributed across cities is
a specificity of the model which has no particular interpretation. This may be considered
as another paradoxical result. Similarly, blue workers face a standard trade-off between
accessibility and aggregate transportation costs. They want to live in a1, the most attractive
city. However, they also anticipate that more blue workers will reside this city. The city
becomes larger, and this increases transportation costs. To avoid this, some blue workers
have the incentive to live farther away. In particular, because an equilibrium is a state in
which each blue worker shares the same equilibrium payoff regardless of the city, m∗b,c must
decrease with respect to c to cancel out the two aforementioned forces. Last, note that city
size m∗c is positively correlated with attractiveness. We observe the largest cities on the
most attractive sites and the smallest cities on the least amenable sites. This state of the
world is straightforward and in line with empirical evidence.

2.6.2 Own and mutual rejections

Assume that workers have symmetric own and mutual rejections so that φrr = φbb = φrb =

φbr = ψ with ψ > 0. This yields the following:

m∗r,c =
mr

C
, m∗b,c =

mb

C
+

ac − a
ωbτ + ψ

, m∗c =
1

C
+

ac − a
ωbτ + ψ

As before, the distribution of red workers is constant across cities. The spatial distribution
of blue workers also decreases with respect to attractiveness. But the density gradient is
now lower, and blue workers are more dispersed in the system of cities. In the extreme
case that ψ is very high, the spatial distribution becomes even flatter. These results are
intuitive as own and mutual rejections act like congestion/dispersion forces.

Another interesting configuration appears when own and mutual rejections are asymmet-
ric: φrr = φrb = ψ and φbb = φbr = ϕ with ψ, ϕ > 0. In that case, the endogenous spatial
distribution collapses to:

m∗r,c =
mr

C
+

(ϕ− ψ)(ac − a)

ω̃τ(ωbτ − ϕ)
, m∗b,c =

mb

C
+

[
ω̃τ − (ϕ− ψ)

]
(ac − a)

ω̃τ(ωbτ − ϕ)
, m∗c =

1

C
+

ac − a
ωbτ − ϕ

The link between city size and attractiveness is still positive. But now the density gradients
of the spatial distributions of red and blue workers can be either positive or negative. The
resulting configuration depends on the relative asymmetry in preferences captured by ϕ−φ
and the magnitude of income inequalities and transportation costs expressed by ω̃τ .
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2.6.3 Own and mutual attractions

Consider that workers have symmetric own and mutual attractions (i.e., φrr = φbb = φrb =

φbr = −ψ with ψ > 0). This leads to:

m∗r,c =
mr

C
, m∗b,c =

mb

C
+

ac − a
ωbτ − ψ

, m∗c =
1

C
+

ac − a
ωbτ − ψ

This is the converse of the case where workers have own and mutual rejections. The spatial
distribution of blue workers is steeper. This is because own and mutual attractions act like
agglomeration/concentration forces.

2.6.4 Own attractions and mutual aversions

If workers prefer a segregated environment such that φrr = φbb = −ψ and φrb = φbr = ψ

and ψ > 0, then:

m∗r,c =
mr

C
− 2ψ(ac − a)

(ω̃τ − 3ψ)ωbτ − ωrτψ
, m∗b,c =

mb

C
+

(ω̃τ − 2ψ)(ac − a)

(ω̃τ − 3ψ)ωbτ − ωrτψ

m∗c =
1

C
+

(ω̃τ − 4ψ)(ac − a)

(ω̃τ − 3ψ)ωbτ − ωrτψ
Under uniqueness (ω̃τ−3ψ)ωbτ−ωrτψ > 0, the density gradient of blue workers is negative,
but the density gradient of red workers is positive. This is intuitive as workers have a desire
for a segregated city composition.

2.6.5 No income inequality

When workers have identical incomes, the distributions strongly depend on city composition
preferences. For symmetric preferences φrr = φbb = φ and φrb = φbr = ψ, we obtain:

m∗r,c =
mr

C
− (φ− ψ)(ac − a)

(ω̃τ + φ2) + φ2 − ψ2
m∗b,c =

mb

C
− (φ− ψ)(ac − a)

(ω̃τ + φ2) + φ2 − ψ2

m∗c =
1

C
− 2(φ− ψ)(ac − a)

(ω̃τ + φ2) + φ2 − ψ2

Red and blue workers share the same spatial density gradient, and the system of cities
becomes perfectly mixed if mr = mb. The density gradient of workers should be negative
when φ − ψ > 0. This is intuitive. φ > 0 captures own dispersion and ψ > 0 measures
cross dispersion. When the “own” effect outweighs the “cross” one, this naturally pushes
toward more dispersion.
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2.7 Looking into the black box: What drives social mixing in a
system of cities?

In what follows, we derive the expression for ID the dissimilarity index. We then attempt
to identify the main drivers of social mixing.

Proposition 5
The (endogenous) dissimilarity index is described by:

ID = ΩM × Γω,φ ×ΨC

where
ΩM =

1

2mrmb

Γω,φ =

∣∣∣∣ (φbb − φrb)mb − (ω̃τ + φrr − φbr)mr

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

∣∣∣∣
ΨC =

C∑
c=1

|ac − a|

with a = 1
C

∑c
c=1 ac.

The linearity of (10) and (11) is crucial for Proposition 5. This allows obtaining closed-form
solutions for the spatial distributions mr,c and mb,c and so for the dissimilarity index ID.
This also enables conducting a transparent and robust comparative statics analysis. Note
that the model is able to generate a continuum of dissimilarity indexes. Therefore, the
model is flexible enough to replicate empirical evidence. Having a closed-form solution is
also important for empirical studies. Our framework can be a guide for empirical studies.
In particular, the model offers the following testable prediction:

lnID = αlnΩM + βlnΓω,φ + γlnΨC + ε (17)

that links the dissimilarity index to measurable variables. In particular, when workers have
no city composition preferences, equation (17) collapses to:

lnID = ζ + αlnmb + βlnωb + γlnτ + θlnΨC + ε (18)

where the model predicts the following: ζ = −ln2, β = γ = −1 and θ = 1. ωb, mb and
τ can be built using data on wages, populations and commuting costs. ωb can correspond
to the average wages of workers over a certain period. The same applies for mb. τ can be
approximated by the average fraction of time that a worker spends in transports. Even
if measuring the quality of sites is a hard task, ΨC can be approximated with observable
data. In particular, ac = Πi∈Iai,c can be constructed by all the desirable and observable
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characteristics ai,c of the city c. ai,c can encapsulate mean temperature, the percentage
of water surface, etc (see the US Department of Agricultural county-level amenity data).
It is also possible to include in ai,c a proxy suggested by Ahlfeldt (2013) and Saiz et al.
(2018). The latter takes the number of outside geocode pictures taken by residents at a
given location.11 In that case, equation (18) can be estimated using standard methods.12

The endogenous dissimilarity index is unambiguous. It is built up with three compo-
nents. The first component ΩM captures the demography of the system of cities. ΩM

summarizes both the size of the system and the inequality in terms of population size.
The second term Γω,φ is the by-product of the intra- and inter-group externalities. This
is keeping in mind that these interactions encapsulate income inequalities, transportation
costs, and neighborhood preferences. The last component ΨC measures the degree of city
differences in terms of amenities. The fact that the dissimilarity index directly depends on
ΨC is consistent with empirical evidence. For instance, Ellison and Glaeser (1999) indicate
that differences in locational fundamentals account for one-fifth of the observed spatial
distribution of households.

The interpretation of the first and third terms is clear. An increase in the size of the
population p ∈ {r, b} decreases the value of the dissimilarity index, that it, an increase in
demography causes more social mixing in the model. Similarly, social mixing is directly tied
to the attractiveness of cities. In particular, a system of cities that shows low heterogeneity
(i.e. ΨC low) generates high social mixing, other things being equal. In other words, the
combination of income inequalities, transportation costs, and neighborhood preference will
increase when cities exhibit large differences in terms of amenity.

The second part of ID is much more complex and so needs more careful attention.13 We
begin by underlying a general comment. We then offer more specific insights considering
peculiar sub-cases. Other sub-cases are possible and leads to the same qualitative results
(see our Online Appendix).

11Obviously, there does not exist a set of ai,. that takes into account the full spectrum of amenities of
cities.

12The measurement Γω,φ is more challenging. Technically, φ captures the effect on the utility function
of an increase in the level of red/blue workers. An approximation of φ could be obtained by declarative
data (see Davis and Smith (1993) and Charles (2003)).

13A corollary of Proposition 3 is present in Proposition 5. A perfectly mixed system of cities implies
ID = 0. This prevails when condition (16) is complied.
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2.7.1 Segregation by income vs. segregation by preferences

The interaction between income inequalities and city composition shapes social mixing.
In particular, there is a relationship between segregation by income and segregation by
color preferences. It is also worth noting that Boitier and Auvray (2020) also find such a
relationship. The main difference with Boitier and Auvray (2020) is that they obtain this
mechanism within the city, not in a system of cities. When city composition preferences
are neutralized, the level of social mixing is driven by income inequalities such that:

Γω,φ =
ω̃mr

ωrωb − ωbτωb

Therefore, city composition preferences magnify segregation by income when:

ω̃mr

ωrωb − ωbτωb
<

∣∣∣∣ (φbb − φrb)mb − (ω̃τ + φrr − φbr)mr

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

∣∣∣∣
Conversely, the preferences mitigate segregation by income if and only if:

ω̃mr

ωrωb − ωbτωb
>

∣∣∣∣ (φbb − φrb)mb − (ω̃τ + φrr − φbr)mr

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

∣∣∣∣
The above condition is satisfied when there are own and mutual rejections. In consequence,
color preferences can mitigate income segregation, which has empirical support (see Rosen-
thal and Ross (2015)).

2.7.2 Some specific cases

As a starting point, assume that workers are color-neutral φrr = φrb = φbr = φbb = 0. If
so, the dissimilarity index becomes the following:

ID =
1

2mb

× 1

ωbτ
×ΨC (19)

This version of the dissimilarity index constitutes our reference point.

Then assume that workers have symmetric and negative city preferences φrr = φrb =

φbr = φbb = ψ with ψ > 0. The dissimilarity index boils down to:

ID =
1

2mb

× 1

ωbτ + ψ
×ΨC

The above index is lower than (19). This result is paradoxical as it states that a situation
in which there is no city composition preferences generates less social mixing (i.e. more
segregation) than a situation where workers experience mutual rejection. Another counter-
intuitive result lies in the effect of ψ. An increase in ψ unambiguously leads to more social
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mixing, and, at the limit, ID ≈ 0 when ψ is large. An increase in mutual rejection improves
social mixing, and the system can converge toward a perfectly mixed configuration. Again,
this finding is paradoxical as individuals’ preferences seem to be overturned at an aggregate
scale.

Equivalent results are present when workers have symmetric own and mutual attractions
φrr = φrb = φbr = φbb = ψ with ψ < 0:

ID =
1

2mb

× 1

|ωbτ − ψ|
×ΨC

The dissimilarity index is larger than (19). In the same manner, an increase in ψ improves
the value of ID. An increase in the desire for a mixed social environment leads to more
segregation. This is equivalent to the Schelling paradox, since macroeconomic patterns
strongly deviate from microeconomic preferences.

These counterintuitive effects can be rationalized as follows. When ψ > 0, then the city
composition preferences act as congestion forces. This prompts workers to disperse across
cities. The distribution of blue workers becomes flatter. In turn, the dissimilarity index
decreases. By contrast, if ψ < 0, the converse situation exists. Social preferences act as
agglomeration economies. This prompts (blue) workers to flock to the most attractive city.
The spatial distribution of blue workers becomes steeper. As a result, the dissimilarity
index increases.

Finally, when workers have a symmetric preference for a segregated environment such
that φrr = φbb = −ψ and φrb = φbr = ψ and ψ > 0, then:

ID =
1

2mrmb

×
∣∣∣∣ 2ψmb + (ω̃τ − 2ψ)mr

(ω̃τ − 3ψ)ωbτ − ωrτψ

∣∣∣∣×ΨC

Under multiplicity, the previous comments remain valid. However, under uniqueness and
stability (i.e. (ω̃τ − 3ψ)ωbτ − ωrτψ > 0 and so ω̃τ − 2ψ > 0), the paradoxical effects
disappear. It can be readily verified that ID is larger than the one in (19), and an increase
in color preferences at the microeconomic level now generates less social mixing in the
system of cities. Boitier and Auvray (2020) find a similar result. They underline that an
increase in racial preferences at the microeconomic level generates more social mixing in the
city. Note that the strategy adopted in Boitier and Auvray (2020) is different from ours.
They study the spatial equilibrium within the city only (there is no system of cities) and in
the particular case of Zhang (2004a). Moreover, they obtain a spatial equilibrium that is
not unique and that is not stable. Here, we go a step forward. We suggest that the result
obtained in Boitier and Auvray (2020) is tied to the regime of uniqueness. When there is
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multiplicity, an increase in racial preferences at the microeconomic level can generate more
social mixing. By contrast, when uniqueness holds, the counterintuitive effect is canceled
out.

2.8 Optimality

Hereafter, we build the problem for the social planner. We then show that the decentralized
economy cannot sustain the social allocation. However, in Section 2.9, we offer two remedies
to restore optimality. We also show that cities can be oversized or undersized. We last
underline that social mixing can be too high or too low.

2.8.1 The social planner criterion

The social planner is utilitarian. He determines a spatial distribution for red workers and
a spatial distribution for blue workers that maximize the total welfare:

max
mr∈∆C

r ,mb∈∆C
b

S(mr,mb)

with

S(mr,mb) =
C∑
c=1

vr,cmr,c +
C∑
c=1

vb,cmb,c

that is

S(mr,mb) =
C∑
c=1

(ωr + ac)mr,c + (ωb + ac)mb,c − (ωrτ + φrr)m
2
r,c − (ωbτ + φbb)m

2
b,c...

...− (2ωbτ + φrb + φbr)mr,cmb,c (20)

using (10) and (11). The criteria for the social planner are simply the indirect utility func-
tions deduced from Stage 2.

Proposition 6
If the following conditions are verified:

(2φbb − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2
> −mr

C

(2ω̃τ + 2φrr − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2
> −mb

C

then the social planner predicts a mixed system of cities pinned down by:

m̃r,c =
mr

C
+

(2φbb − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2
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m̃b,c =
mb

C
+

(2ω̃τ + 2φrr − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

m̃c =
1

C
+

2 (ω̃τ + φrr + φbb − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

ĨD =
1

2mrmb

× Γ̃ω,φ ×
C∑
c=1

|ac − a|

with
Γ̃ω,φ =

∣∣∣∣(2φbb − φrb − φbr)mb − (2ω̃τ + 2φrr − φrb − φbr)mr

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

∣∣∣∣
The investigation of the results of Proposition 6 is done in the following subsections.

2.8.2 What are the roots of inefficiency?

A decentralized economy never achieves an optimal location. To disentangle the different
causes leading to non-optimality, we note that the first-order conditions of the social planner
program are expressed by:

ωr + ac − 2(ωrτ + φrr)m̃r,c − (2ωbτ + φrb + φbr)m̃b,c = ṽr (21)

ωb + ac − (2ωbτ + φrb + φbr)m̃r,c − 2(ωbτ + φbb)m̃b,c = ṽb (22)

with ṽr, ṽb ∈ R. The condition have standard interpretations. The conditions state that
the optimal/social distributions of workers is that where the marginal benefits arising from
wages and preferences offset the increased commuting costs and the increased land rents
due to an added individual. In line with Arnott (1979), the conditions also imply that
the marginal benefits and the marginal costs are equal across cities. In addition, a glance
at (10)-(11) and (21)-(22) suggests that the origins of inefficiency are twofold. The first
(market) failure arises through the intra-group externalities. Workers do not properly
internalize their effects on the utilities of others. The “private” behaviors −(ωrτ + φrr)

and −(ωbτ + φbb) do not coincide with the “social” behaviors −2(ωrτ + φrr) and −2(ωbτ +

φbb). The second (market) failure arises from the inter-group externalities. Workers take
into account −(ωbτ + φrb) and −(ωbτ + φbr), while the social planner pays attention to
−(2ωbτ + φrb + φbr). In a nutshell, the decentralized economy cannot sustain the social
allocation because of the preference of externalities, which constitutes a standard origin for
inefficiency (see Fujita (1989)).
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2.8.3 Are cities oversized or undersized?

In urban economics, a consensus is that cities are perceived as overpopulated for two
reasons.14 First, cities are considered as too large by scholars. Many models conclude that
city size is excessive to what is socially desirable. “Despite their economic importance,
cities are often perceived as being too large [...] Urban economics textbooks often present
the view that cities are oversized as fact.”, in Albouy et al. (2019). Second, cities are
also perceived as too sprawl by people. Empirical studies suggest that urban expansion
implies high commuting costs, more pollution and more destruction of open spaces (see
Glaeser and Kahn (2004)). That is why, many policies have been implemented in order to
restrict spatial expansion, such as taxes, urban growth boundaries or zoning programs (see
Brueckner (2000) for a review about the stakes in the urban sprawl debate).

Recently, this common view has been challenged by Albouy et al. (2019). These authors
develop a system of cities with heterogeneous sites, homogeneous agents, fiscal externality,
and where there are both agglomeration and congestion forces. In their model the indirect
utility function is peaked, so much so that congestion economies dominate agglomeration
economies beyond some city size. They show that, if the fiscal externality is larger than the
urban externality, larger cities are undersized, whereas smaller cities are oversized. Seegert
(2011) also points out the effect of land regulations on city size according to different
amenities (production and quality of life amenities).

Similar results hold in our framework (see Figures 4.1 and 4.2). What is appealing is
that we do not need fiscal externalities to generate these features. This naturally occurs in
our framework. When workers are color-neutral, we obtain:15

m̃c =
1

C
+
ac − a
2ωbτ

, m̃c > m∗c ⇔ ac − a < 0

The city is underpopulated (overpopulated) when ac − a < 0: the level of amenities of
the city is lower (larger) than the mean of attractiveness in the system of cities. As
a1 ≥ ... ≥ ac ≥ ... ≥ aC , in equilibrium, cities with a high level of attractiveness are
oversized, whereas cities with a low level of attractiveness are undersized. Such a result
remains valid when workers have symmetric own and mutual rejections:

m̃c =
1

C
+

ac − a
2(ωbτ + ψ)

, m̃c > m∗c ⇔ ac − a < 0

when workers have symmetric own and mutual attractions:16

m̃c =
1

C
+

ac − a
2(ωbτ − ψ)

, m̃c > m∗c ⇔ ac − a < 0

14Note that mc = mr,c +mb,c indicates the number of inhabitants in city c ∈ C, and also measures city
expansion as city size is x̌ = mc.

15m̃c > m∗c means that city c is undersized. m̃c < m∗c means that city c is oversized.
16Here we suppose the uniqueness of a spatial equilibrium, i.e. ωbτ > ψ is verified.
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when workers have symmetric own attractions and mutual rejections:17

m̃c =
1

C
+

(ω̃τ − 4ψ)(ac − a)

(ω̃τ − 3ψ)ωbτ − ωrτψ
, m̃c > m∗c ⇔ ac − a < 0

By contrast, if φrr = φrb = ψ and φbb = φbr = ϕ with ψ, ϕ > 0 and if the following is
satisfied:

1

4ω̃τ(ωbτ − ϕ) + ψϕ− (ψ + ϕ)2
>

1

2ω̃τ(ωbτ − ϕ)

then
m̃c > m∗c ⇔ ac − a > 0

Large cities are undersized, and small cities are oversized. Thus, to replicate the result of
Albouy et al. (2019) in our framework, some degree of asymmetry between preferences is
required.

2.8.4 Is social mixing too high or too low?

It is well acknowledged that segregation/integration can create a public economic policy
issue. The famous Tiebout (1956)’s model concludes that households locate according to
their public goods preferences. Many studies report that segregation and mixing shape
school choice and school spending (see Nechyba (2003)). More globally, many countries,
including the Netherlands and Germany, have implemented policies to promote multicul-
turalism. Here, we add another result in the literature. We show that the social planner
sets a system of cities that exhibits more (less) social mixing compared to what prevails in
the decentralized economy. As before, the form of the dissimilarity index is rather complex.
To obtain some insights, we consider various peculiar examples. When workers have no
city composition preferences, we find:

Γ̃ω,φ =
mr

2ωbτ
< Γ∗ω,φ =

mr

ωbτ

The centralized economy achieves more social mixing than the decentralized economy.
Again, the reason lies with the strength of congestion costs. In fact, congestion forces
are stronger in the centralized economy. This prompts the social planner to implement
more dispersed spatial distributions, causing more social mixing. This finding is robust to
the inclusion of symmetric own and mutual rejections:

Γ̃ω,φ =
mr

2(ωbτ + ψ)
< Γ∗ω,φ =

mr

ωbτ + ψ

to the inclusion of symmetric own and mutual attractions:

Γ̃ω,φ =
mr

2|ωbτ − ψ|
< Γ∗ω,φ =

mr

|ωbτ − ψ|
17Again, we suppose uniqueness of a spatial equilibrium, i.e. (ω̃τ − 3ψ)ωbτ − ωrτψ > 0 is verified.
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or to the inclusion of symmetric own attractions and mutual rejections:

Γ̃ω,φ =
1

2
×
∣∣∣∣ 2ψmb + (ω̃τ − 2ψ)mr

(ω̃τ − 3ψ)ωbτ − ωrτψ

∣∣∣∣ < Γ∗ω,φ =

∣∣∣∣ 2ψmb + (ω̃τ − 2ψ)mr

(ω̃τ − 3ψ)ωbτ − ωrτψ

∣∣∣∣
Conversely, if φrr = φrb = ψ and φbb = φbr = ϕ with ψ, ϕ > 0, then the following can be
verified:

Γ∗ω,φ =

∣∣∣∣∣(ϕ− ψ)mb −
[
ω̃τ − (ϕ− ψ)

]
mr

ω̃τ(ωbτ − ϕ)

∣∣∣∣∣ < Γ̃ω,φ =

∣∣∣∣∣(ϕ− ψ)mb −
[
2ω̃τ − (ϕ− ψ)

]
mr

4ω̃τ(ωbτ − ϕ) + ψϕ− (ψ + ϕ)2

∣∣∣∣∣
As before, to have an optimal allocation generating less social mixing, one needs to intro-
duce the suitable degree of asymmetry between preferences.

2.9 Restoration of optimality

The natural question to ask is whether the economist has a ready policy to restore the
efficiency of the decentralized economy. In a system of cities, Henderson (1974), Henderson
and Becker (2000), and Albouy et al. (2019) examine the effect of subsidies managed by
competitive local land developers (See Section 2.9.1). In urban economics, it is common to
explore the influence of subsidies introduced by a (central) government (See Section 2.9.2).

2.9.1 A possible instrument

A standard remedy in a system of cities is to introduce subsidies implemented by local land
developers. Henderson (1974) and Henderson and Becker (2000)) assess the virtue of such
an instrument with homogeneous workers and homogeneous cities. Albouy et al. (2019)
shows that this result remains valid when cities are heterogeneous. Therefore, we test if
such subsidies can restore the optimality in our framework. To do that, we assume that the
system of cities is now populated by C local land developers that act as competitive agents
(i.e. there is no collusion/cooperation). These local land developers receive land rent and
can attract workers by setting subsidies. We assume that local land developers behave in
a perfectly information framework such that they can discriminate workers based on their
type. Consequently, they offer two different subsidies: sr,c ∈ R for red workers and sb,c ∈ R
for blue workers. Under his new setup, the program of the local land developer that owns
city c ∈ C is the following:

max
mr,c,mb,c

{
ALRc − sr,cmr,c − sb,cmb,c

}
under the following constraints:

ωr − (ωrτ + φrr)mr,c − (ωbτ + φrb)mb,c + sr,c = vr
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and
ωb − (ωbτ + φbr)mr,c − (ωbτ + φbb)mb,c + sb,c = vb

ALRc denotes aggregate land rents in city c ∈ C such that ALRc = ALRr,c + ALRb,c.
ALRr,c is the land rent paid by red workers in city c. It is given by:

ALRr,c =

∫ mr,c

0

R∗c(x)dx =
ωrτm

2
r,c

2
+ ωbτmr,cmb,c

Similarly, ALRb,c is the land rent paid by blue workers in city c such that:

ALRb,c =

∫ mr,c+mb,c

mr,c

R∗c(x)dx =
ωbτm

2
b,c

2

By substitution, the criterion collapses to:

ωrmr,c+ωbmb,c+acmc−
ωrτm

2
r,c + ωbτm

2
b,c

2
−φrrm2

r,c−φbbm2
b,c−(ωbτ+φrb+φbr)mr,cmb,c (23)

In addition, as rents are now directly distributed to local land developers, land rents can
be viewed as transfers between economic actors. This marginally modifies the problem
of the social planner. Land rents are now excluded, and only commuting costs remain
operative. To see that, ATCc denotes the value for aggregate transportation costs in city
c ∈ C. ATCc is the sum of ATCr,c and ATCb,r the aggregate transportation costs for red
and blue workers. ATCc are determined as follows:

ATCr,c =

∫ mr,c

0

ωrτxdx =
ωrτm

2
r,c

2

and ATCb,c are given by:

ATCb,c =

∫ mr,c+mb,c

mr,c

ωbτxdx =
ωbτ

(
m2
b,c + 2mr,cmb,c

)
2

Under this new environment, the criterion of the social planner becomes:
C∑
c=1

{
ωrmr,c + ωbmb,c + acmc − ATCc − φrrm2

r,c − φbbm2
b,c − (φrb + φbr)mr,cmb,c

}
that is
C∑
c=1

{
(ωrmr,c + ωbmb,c + acmc −

ωrτm
2
r,c + ωbτm

2
b,c

2
− φrrm2

r,c − φbbm2
b,c − (ωbτ + φrb + φbr)mr,cmb,c

}
The criterion (23) is equivalent from that of the social planner. This implies that subsidies
introduced by perfectly competitive land developers is sufficient to correct the inefficiency
in the system of cities.18

18If land rents are not considered as transfers, this results does not remain valid. The criterion (23) is
different from that of the social planner (see equation (20)). In that case, subsidies introduced by perfectly
competitive land developers is not sufficient to correct the inefficiency in the system of cities.
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2.9.2 Another possible instrument

In urban economics, another standard remedy is to consider local subsidies implemented
by a government. As for local land developers, the government has perfect information and
can discriminate against workers according to their type. Consequently, the government
sets two subsidies s̃r,c ∈ R and s̃b,c ∈ R in each city c ∈ C. These subsidies are financed by
a lump-sum tax that is applicable to all workers. The tax is denoted by s̃ ∈ R and defined
as follows:

s =
1

M

C∑
c=1

{
s̃r,c + s̃b,c

}
Under this new environment, the indirect utility functions boils down to the following

vr,c = ωr − (ωrτ + φrr)m
∗
r,c − (ωbτ + φrb)m

∗
b,c + s̃r,c − s̃

and
vb,c = ωb − (ωbτ + φbr)m

∗
r,c − (ωbτ + φbb)m

∗
b,c + s̃r,c − s̃

Using Proposition 6, we obtain the following.

Proposition 7
If the following is fulfilled:

s̃r,c = −(ωrτ + φrr)mr,c − (ωbτ + φbr)mb,c s̃b,c = −(ωbτ + φrb)mr,c − (ωbτ + φbb)mb,c

then the decentralized economy achieves efficient allocation.

The use of local subsidies implemented by a government is sufficient to eliminate inef-
ficiencies. The values of the subsidies are intuitive. They correspond to what workers
disregard (see (10)–(11) and (21)–(22)).

3 Conclusions

We build a unified framework for a system of heterogeneous cities with heterogeneous
workers. We offer a full analytical characterization of the decentralized and centralized
economies. Closed-form solutions help to derive testable predictions that link the standard
dissimilarity index to measurable variables. Contrary to conventional wisdom, we show
that social mixing can constitute a unique and stable equilibrium. We also emphasize
that such a configuration appears under a wide set of parameters. Consequently, social
mixing frequently emerges as an outcome in our new framework, which is in accordance
with the data. We disentangle the different economic factors that shape within- and across-
city social/income dispersion. We underline the different effects of demographic factors,
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amenities, income inequalities, transportation costs, and social preference. We also find
that individuals’ preferences be overturned at an aggregate scale, which is consistent with
Schelling paradoxical findings. We then offer a rationale for these counterintuitive results.
Last, we demonstrate that the decentralized economy is not optimal. Depending on the
nature of social preferences, large (small) cities are oversized (undersized), and the level
of social mixing can be too high or too low. However, it is possible to restore efficiency
through local subsidies managed by a central government or by local land developers.
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A Proofs

Proof 1
Consider a city c ∈ C. Assume that ωr > ωb. If so, red workers bear higher transportation
costs than blue workers. This yields:∣∣∣∣∂Ψr,c(x, vr,c)

∂x

∣∣∣∣ > ∣∣∣∣∂Ψb,c(x, vb,c)

∂x

∣∣∣∣
which implies that red workers live near their workplace while blue workers reside on the
fringes of the city such that:

µ∗r,c(x) =

1 ∀x ∈ [0, x̃c]

0 ∀x ∈ [x̃c, x̌c]

and

µ∗b,c(x) =

0 ∀x ∈ [0, x̃c]

1 ∀x ∈ [x̃c, x̌c]

On the fringes of the city, the following must hold:

Ψb,c(x̌c, vb,c) = 0⇔ vb,c = ωb − ωbτ x̌c

Then, computing
∫ x̌c

0
µ∗b,c(x)dx = mb,c gives x̌c = mr,c +mb,c, and implies the following:

vb,c = ωb − ωbτmr,c − ωbτmb,c

that is
vb,c = ωb + ac − (ωbτ + φbr)mr,c − (ωbτ + φbb)mb,c

by abuse of notation. In addition, x̃c verifies the following:

Ψr,c(x̃c, vr,c) = Ψb,c(x̃c, vb,c)⇔ ṽc = ω̃ − ω̃τ x̃c

with ṽ = vr − vb and ω̃ = ωr − ωb. Then,
∫ x̌c

0
µ∗r,c(x)dx = mr,c gives x̃c = mr,c, and yields

the following:
ṽc = ω̃ − ω̃τmr,c

As a consequence, we obtain:

vr,c = ωr − ωrτmr,c − ωbτmb,c

that is
vr,c = ωr + ac − (ωrτ + φrr)mr,c − (ωbτ + φrb)mb,c
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by abuse of notation. Using the previous results, the following is verified:

R∗c(x) =

ωrτmr,c + ωbτmb,c − ωrτx ∀x ∈ [0,mr,c]

ωbτmr,c + ωbτmb,c − ωbτx ∀x ∈ [mr,c,mr,c +mb,c]

and consumption functions are given by:

zr,c = ωr − ωrτmr,c − ωbτmb,c

zb,c = ωb − ωbτmr,c − ωbτmb,c

Last, we assume that the following holds:

ωr(1− τmr)− ωbτmb > 0

ωb(1− τmb)− ωbτmr > 0

to ensure positive consumption.
Assume that ωr = ωb = ω. Adapting the previous part gives:

vr,c = ω + ac − (ωτ + φrr)mr,c − (ωτ + φrb)mb,c

vb,c = ω + ac − (ωτ + φbr)mr,c − (ωτ + φbb)mb,c

R∗c(x) = ωτ(mc − x) ∀x ∈ [0,mc]

and
zc = ω(1− τmc) > 0⇒ ω(1− τ) > 0

as mc ≤M = 1. �

Proof 2: Uniqueness
The proof for uniqueness is operated according to different steps.

• Step 0: Some reformulations
Define the following:

vr(c,mr,c,mb,c) = ωr + ac − (ωrτ + φrr)mr,c − (ωbτ + φrb)mb,c

and
vb(c,mr,c,mb,c) = ωb + ac − (ωbτ + φbr)mr,c − (ωbτ + φbb)mb,c
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• Step 1: Rewriting the spatial equilibrium as a VI
Note that if m∗r ∈ ∆C

r is a spatial equilibrium then it satisfies:

Supp(m∗r) ⊂ arg max
c∈C

vr(c,m
∗
r,c,m

∗
b,c)

where Supp(m∗r) = {c ∈ C : m∗r,c > 0} is the support of m∗r. Equivalently, m∗r satisfies the
following VI:

C∑
c=1

vr(c,m
∗
r,c,m

∗
b,c)
(
m∗r,c −m′r,c

)
≥ 0 ∀m′r ∈ ∆C

r

Similarly, if m∗b ∈ ∆C
b is a spatial equilibrium then it satisfies

Supp(m∗b) ⊂ arg max
c∈C

vb(c,m
∗
r,c,m

∗
b,c)

where Supp(m∗b) = {c ∈ C : m∗b,c > 0} is the support of m∗b . That is, m∗b verifies the
following VI:

C∑
c=1

vb(c,m
∗
r,c,m

∗
b,c)
[
m∗b,c −m′b,c

]
≥ 0 ∀m′b ∈ ∆C

b

Summing the VI yields:

C∑
c=1

vr(c,m
∗
r,c,m

∗
b,c)
(
m∗r,c −m′r,c

)
+

C∑
c=1

vb(c,m
∗
r,c,m

∗
b,c)
(
m∗b,c −m′b,c

)
≥ 0

∀m′r ∈ ∆C
r and m′b ∈ ∆C

b .

Step 2: Definition of the monotonicity
v = (vr, vb) is said to be strictly monotone if:

C∑
c=1

[
vr(c,m

∗
r,c,m

∗
b,c)− vr(c,m′r,c,m′b,c)

] (
m∗r,c −m′r,c

)
...

...+
C∑
c=1

[
vb(c,m

∗
r,c,m

∗
b,c)− vb(c,m′r,c,m′b,c)

] (
m∗b,c −m′b,c

)
< 0

∀(m∗r,m∗b), (m′r,m′b) ∈ ∆C
r ×∆C

b with (m∗r,m
∗
r) 6= (m′r,m

′
r).

Step 3: Monotonicity as a sufficient condition for uniqueness
Let (m∗r,m

∗
b), (m

′
r,m

′
b) ∈ ∆C

r × ∆C
b two spatial equilibria with (m∗r,m

∗
b) 6= (m′r,m

′
b). By

definition, we have:

C∑
c=1

vr(c,m
∗
r,c,m

∗
b,c)
(
m∗r,c −m′r,c

)
+

C∑
c=1

vb(c,m
∗
r,c,m

∗
b,c)
(
m∗b,c −m′b,c

)
≥ 0
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and
C∑
c=1

vr(c,m
′
r,c,m

′
b,c)
(
m′r,c −m∗r,c

)
+

C∑
c=1

vb(c,m
′
r,c,m

′
b,c)
(
m′b,c −m∗b,c

)
≥ 0

Using the two VI gives:

C∑
c=1

[
vr(c,m

∗
r,c,m

∗
b,c)− vr(c,m′r,c,m′b,c)

] (
m∗r,c −m′r,c

)
...

...+
C∑
c=1

[
vb(c,m

∗
r,c,m

∗
b,c)− vb(c,m′r,c,m′b,c)

] (
m∗b,c −m′b,c

)
≥ 0

Assume that v is strictly monotone such that:

C∑
c=1

[
vr(c,m

∗
r,c,m

∗
b,c)− vr(c,m′r,c,m′b,c)

] (
m∗r,c −m′r,c

)
...

...+
C∑
c=1

[
vb(c,m

∗
r,c,m

∗
b,c)− vb(c,m′r,c,m′b,c)

] (
m∗b,c −m′b,c

)
< 0

This implies (m∗r,m
∗
b) = (m′r,m

′
b), that is, a spatial equilibrium (m∗r,m

∗
b) ∈ ∆C

r × ∆C
b is

unique.

Step 4: Some sufficient conditions for that v to be strictly monotone
Define the following matrices:

Φ(mr,mb) =

(
∂vr
∂mr

∂vr
∂mb

∂vb
∂mr

∂vb
∂mb

)
=

(
−(ωrτ + φrr) −(ωbτ + φrb)

−(ωbτ + φbr) −(ωbτ + φbb)

)

and

Φ(mr,mb) + Φ(mr,mb)
T =

(
−2(ωrτ + φrr) −(2ωbτ + φrb + φbr)

−(2ωbτ + φrb + φbr) −2(ωbτ + φbb)

)
As vr and vb are differentiable and using the Euler-Lagrange theorem, if the following holds:

Φ(mr,mb) + Φ(mr,mb)
T is definite negative

then v is strictly monotone. Therefore, if the following conditions are verified:

−2(ωrτ + ωbτ + φrr + φbb) < 0, 4(ωrτ + φrr)(ωbτ + φbb) > (2ωbτ + φrb + φbr)
2

then Φ(mr,mb)+Φ(mr,mb)
T is negative definite, and a spatial equilibrium is unique. Equiv-

alently, if the following conditions are verified:

−(ωrτ + φrr) < 0, (ωrτ + φrr)(ωbτ + φbb) > (ωbτ + φrb)(ωbτ + φbr)
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then Φ(mr,mb) + Φ(mr,mb)
T is negative definite, and a spatial equilibrium is unique. �

Proof 2: Stability
A spatial equilibrium (m∗r,m

∗
b) ∈ ∆C

r ×∆C
b is stable if:

C∑
c=1

vr(c,m
′
r,c,m

′
b,c)
(
m∗r,c −m′r,c

)
+

C∑
c=1

vb(c,m
′
r,c,m

′
b,c)
(
m∗b,c −m′b,c

)
> 0

∀(m′r,m′b) ∈ ∆C
r ×∆C

b with (m∗r,m
∗
b) 6= (m′r,m

′
b). Since (m∗r,m

∗
b) is a spatial equilibrium,

it satisfies:

C∑
c=1

vr(c,m
∗
r,c,m

∗
b,c)
(
m∗r,c −m′r,c

)
+

C∑
c=1

vb(c,m
∗
r,c,m

∗
b,c)
(
m∗b,c −m′b,c

)
≥ 0

∀m′r ∈ ∆C
r and m′b ∈ ∆C

b . In addition, assume that v is strictly monotone such that:

C∑
c=1

[
vr(c,m

∗
r,c,m

∗
b,c)− vr(c,m′r,c,m′b,c)

] (
m∗r,c −m′r,c

)
...

...+
C∑
c=1

[
vb(c,m

∗
r,c,m

∗
b,c)− vb(c,m′r,c,m′b,c)

] (
m∗b,c −m′b,c

)
< 0

Adding these relationships leads to:

C∑
c=1

vr(c,m
′
r,c,m

′
b,c)
(
m∗r,c −m′r,c

)
+

C∑
c=1

vb(c,m
′
r,c,m

′
b,c)
(
m∗b,c −m′b,c

)
> 0

which implies that (m∗r,m
∗
b) is stable. Then use “Proof 2: Uniqueness” to complete the

proof. �

Proof 3
Consider the following system:

vr,c = ωr + ac − ϕrrmr,c − ϕrbmb,c

vb,c = ωb + ac − ϕbrmw,c − ϕbbmb,c

with ϕrr = ωrτ + φrr, ϕbb = ωbτ + φbb, ϕrb = ωbτ + φrb and ϕbr = ωbτ + φbr. Assume that
mr,c > 0 and mb,c > 0 ∀c ∈ C. Summing vb,c over c ∈ C and noting that vb,c = v∗b in
equilibrium gives:

v∗b =
ωbC +

∑C
c=1 ac − ϕbrmr − ϕbbmb

C
Doing the same for vr,c yields:

v∗r =
ωrC +

∑C
c=1 ac − ϕrrmr − ϕrbmb

C
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After simple algebra, the following is verified in equilibrium:

m∗b,c =
ωb + ac − v∗b

ϕbb
− ϕbr
ϕbb

m∗r,c

Similarly for m∗r,c:

m∗r,c =
ωr − ac − v∗r

ϕrr
− ϕbr
ϕrr

m∗b,c

In addition, plugging m∗r,c into the expression of m∗b,c leads to:

m∗b,c =
(ωb + ac − v∗b )ϕrr − (ωr + ac − v∗r)ϕbr

ϕrrϕbb − ϕrbϕbr
Likewise, plugging m∗b,c into the expression of m∗r,c leads to:

m∗r,c =
(ωr + ac − v∗r)ϕbb − (ωb + ac − v∗b )ϕrb

ϕrrϕbb − ϕrbϕbr
Using the values of v∗b and v∗r gives:

ωb + ac − v∗b =
Cac −

∑C
c=1 ac + ϕbrmr + ϕbbmb

C

and

ωr + ac − v∗r =
Cac −

∑C
c=1 ac + ϕrrmr + ϕrbmb

C
Introducing these relationships into m∗b,c leads to:

m∗b,c =
mb

C
+

(ϕrr − ϕbr)
(
Cac −

∑C
c=1 ac

)
(ϕrrϕbb − ϕrbϕbr)C

Likewise for m∗r,c:

m∗r,c =
mr

C
+

(ϕbb − ϕrb)
(
Cac −

∑C
c=1 ac

)
(ϕrrϕbb − ϕrbϕbr)C

These two equations collapse to the following:

m∗b,c =
mb

C
+

(ω̃τ + φrr − φbr) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

m∗r,c =
mr

C
+

(φbb − φrb) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

and
m∗c =

1

C
+

(ω̃τ + φrr + φbb − φrb − φbr) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

as ϕrr = ωrτ+φrr, ϕbb = ωbτ+φbb, ϕrb = ωbτ+φrb and ϕbr = ωrτ+φbr and a = 1
C

∑C
c=1 ac.

To conclude, a mixed system of cities exists if that is m∗r,c > 0 and m∗b,c > 0 ∀c ∈ C, if
and only if:

(ω̃τ + φrr − φbr) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)
> −mb

C
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(φbb − φrb) (ac − a)

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)
> −mr

C

∀c ∈ C. �

Proof 4
Trivial using Proof 3. �

Proof 5
The dissimilarity index is the following:

ID =
1

2

C∑
c=1

∣∣∣∣∣m∗r,cmr

−
m∗b,c
mb

∣∣∣∣∣
Plugging the expressions m∗r,c and m∗b,c (obtained from Proof 3) into ID gives:

ID =
1

2mrmbC
× Γω,φ ×

C∑
c=1

|ac − a|

with Γ being defined as follows:

Γω,φ =

∣∣∣∣(ϕbb − ϕrb)mb − (ϕrr − ϕbr)mr

ϕrrϕbb − ϕrbϕbr

∣∣∣∣
This element collapses to:

Γω,φ =

∣∣∣∣ (φbb − φrb)mb − (ω̃τ + φrr − φbr)mr

(ωrτ + φrr)(ωbτ + φbb)− (ωbτ + φrb)(ωbτ + φbr)

∣∣∣∣
as ϕrr = ωrτ + φrr, ϕbb = ωbτ + φbb, ϕrb = ωbτ + φrb and ϕbr = ωbτ + φbr. �

Proof 6
The Lagrangian for the social planner problem is:

L(m, ξ) = S(mr,mb)+ζr

mr −
C∑
c=1

mr,c

+
C∑
c=1

µr,cmr,c+ζb

mb −
C∑
c=1

mb,c

+
C∑
c=1

µb,cmb,c

∀m = (mr,mb) ∈ ∆C
r × ∆C

b and ξ = (ζr, ζb, µr, µb) ∈ R2+2C. The Kuhn and Tucker first
order conditions (KT-FOC hereafter) are:

ωr + ac − 2(ωrτ + φrr)m̃r,c − (2ωbτ + φrb + φbr)m̃b,c = ζr − µr,c

ωb + ac − (2ωbτ + φrb + φbr)m̃r,c − 2(ωbτ + φbb)m̃b,c = ζb − µb,c

µr,cm̃r,c = 0, µb,cm̃b,c = 0
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µr,c ≥ 0, µb,c ≥ 0

C∑
c=1

m̃r,c = mr,
C∑
c=1

m̃b,c = mb

∀c ∈ C. Then, compute the Hessian matrix denoted by Φ̃ such that:

Φ̃(mr,mb) =

(
−2(ωrτ + φrr) −(2ωbτ + φrb + φbr)

−(2ωbτ + φrb + φbr) −2(ωbτ + φbb)

)

Note that Φ̃(mr,mb) = Φ(mr,mb)+Φ(mr,mb)
T . Therefore, following Proof 2, Φ̃ is negative

definite if:

−(ωrτ + ωbτ + φrr + φbb) < 0 and (ωrτ + φrr)(ωbτ + φbb) > (ωbτ + φrb)(ωbτ + φbr)

or

−2(ωrτ + ωbτ + φrr + φbb) < 0 and 4(ωrτ + φrr)(ωbτ + φbb) > (2ωbτ + φrb + φbr)
2

Last, assume that m̃r,c > 0 and m̃b,c > 0∀c ∈ C. The KT-FOC collapse to:

ωr + ac − 2(ωrτ + φrr)m̃r,c − (2ωbτ + φrb + φbr)m̃b,c = ζr

ωb + ac − (2ωbτ + φrb + φbr)m̃r,c − 2(ωbτ + φbb)m̃b,c = ζb

C∑
c=1

m̃r,c = mr,
C∑
c=1

m̃b,c = mb

Using Proof 3 and by identification, we find:

m̃r,c =
mr

C
+

(2φbb − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

m̃b,c =
mb

C
+

(2ω̃τ + 2φrr − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

m̃c =
1

C
+

2 (ω̃τ + φrr + φbb − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

ĨD =
1

2mrmbC
× Γ̃ω,φ ×

C∑
c=1

|ac − a|

with
Γ̃ω,φ =

∣∣∣∣(2φbb − φrb − φbr)mb − (2ω̃τ + 2φrr − φrb − φbr)mr

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2

∣∣∣∣
and a mixed system of cities exists if and only if:

(2φbb − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2
> −mr

C
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(2ω̃τ + 2φrr − φrb − φbr) (ac − a)

4(ωrτ + φrr)(ωbτ + φbb)− (2ωbτ + φrb + φbr)2
> −mb

C

∀c ∈ C. �

Proof 7
The KT-FOC for the social planner problem are given by:

ωr + ac − 2(ωrτ + φrr)mr,c − (2ωbτ + φrb + φbr)mb,c = ṽr

and
ωb + ac − (2ωbτ + φrb + φbr)mr,c − 2(ωbτ + φbb)mb,c = ṽb

The indirect utility functions are described by:

ωr − (ωrτ + φrr)mr,c − (ωbτ + φrb)mb,c + s̃r,c = v∗r + s̃

and
ωb − (ωbτ + φbr)mr,c − (ωbτ + φbb)mb,c + s̃b,c = v∗b + s̃

Therefore, if the following holds:

s̃r,c = −(ωrτ + φrr)mr,c − (ωbτ + φbr)mb,c s̃b,c = −(ωbτ + φrb)mr,c − (ωbτ + φbb)mb,c

then
ωr + ac − 2(ωrτ + φrr)mr,c − (2ωbτ + φrb + φbr)mb,c = v∗r + s̃

ωb + ac − (2ωbτ + φrb + φbr)mr,c − 2(ωbτ + φbb)mb,c = v∗b + s̃

and optimality is restored. Last, we need to check that consumption functions are positive
in equilibrium. To do that, note that:

s̃ = −(ωrτ + ωbτ + φrr + φrb)mr + (2ωbτ + φbb + φbr)mb

M

zr,c = ωr−(2ωrτ+φrr)mr,c−(2ωbτ+φbr)mb,c+
(ωrτ + ωbτ + φrr + φrb)mr + (2ωbτ + φbb + φbr)mb

M
and

zb,c = ωb−(2ωbτ+φrb)mr,c−(2ωbτ+φbb)mb,c+
(ωrτ + ωbτ + φrr + φrb)mr + (2ωbτ + φbb + φbr)mb

M

Sufficient conditions for that zr,c > 0 and zb,c > 0 ∀c ∈ C are the following:

ωr +
(ωrτ + ωbτ + φrr + φrb)mr + (2ωbτ + φbb + φbr)mb

M
> (2ωrτ +φrr)mr + (2ωbτ +φbr)mb

and

ωb +
(ωrτ + ωbτ + φrr + φrb)mr + (2ωbτ + φbb + φbr)mb

M
> (2ωbτ +φrb)mr + (2ωbτ +φbb)mb

�
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