

Experimental investigation of the crack closure with applying Dynamic Acousto-Elastic Testing on a steel sample

Arthur Perrin, C Payan, Cécile Gueudré, Marie-Aude Ploix, Gilles Corneloup, Patrick Recolin

▶ To cite this version:

Arthur Perrin, C Payan, Cécile Gueudré, Marie-Aude Ploix, Gilles Corneloup, et al.. Experimental investigation of the crack closure with applying Dynamic Acousto-Elastic Testing on a steel sample. ISNA (22nd International Symposium on Nonlinear Acoustics), Jul 2022, Oxford, United Kingdom. hal-04204602

HAL Id: hal-04204602 https://hal.science/hal-04204602

Submitted on 12 Apr 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXPERIMENTAL INVESTIGATION OF THE CRACK CLOSURE WITH APPLYING DYNAMIC ACOUSTO-ELASTIC TESTING ON A STEEL SAMPLE

Arthur Perrin

4th - 8th July 2022

Cédric Payan, Cécile Gueudré, Marie-Aude Ploix, Gilles Corneloup, Patrick Recolin

arthur.perrin@etu.univ-amu.fr

© Naval Group SA property, 2022, all rights reserved.

- 1. Industrial context
- 2. Dynamic Acousto-Elastic Testing (DAET)
- 3. Bending test
- 4. DAET and bending test links

INDUSTRIAL CONTEXT

© Naval Group SA property, 2022, all rights reserved.

Cracks have been found on industrial steel components

PROBLEMATIC

Comparing destructive and non-destructive testing

Underestimation of crack depth caused by crack closure

GROUP

Closure problematic

.

SAMPLE DESCRIPTION

Sample = cracked industrial part:

- Tube portion shape
- Real fatigue cracks

3 different cracks identified in the center of the sample

CRACK MODELING

DAET: good candidate to learn more about closed cracks

© Naval Group SA property, 2022, all rights reserved.

DYNAMIC ACOUSTO-ELASTIC TESTING (DAET)

© Naval Group SA property, 2022, all rights reserved.

DAET PRINCIPLE

Corporate Sensitivity PUBLIC

Pump

DAET SETUP: PUMP

Pump:

- 3cm diameter transducer
- 8kHz
- Laser vibrometer recording the lateral face displacements

For the following results:

Pump = Lateral faces displacements

2 pump amplitudes are used: 7µm and 3µm

Pump transducer

Prob:

DAET SETUP

- 4MHz, 45°, Shear waves
- Reflection on the lower surface + corner echo

DAET Parameter:

 $\frac{A - A_{mean}}{A_{mean}}$ $A = Echo \ amplitude$ $A_{mean} = Mean \ echo \ amplitude$

Pump

Corporate Sensitivity

PUBLIC

Prob transducer

Evaluation in different positions

Prob

DAET RESULTS

7μm pump:

Repeatability measurements + various measurement positions good reproducibility

With 3µm pump : Different curve shape and much smaller variations

Different physical phenomena must be at play

Areas including all DAET curves (repeatability at 1 position)

Corporate Sensitivity PUBLIC

A parameter is needed to compare DAET curves after bending test:

Crack opening variation

Extracted DAET parameter description

Corporate Sensitivity

PUBLIC

BENDING TEST

© Naval Group SA property, 2022, all rights reserved.

Corporate Sensitivity PUBLIC

7th July 2022 13

© Naval Group SA property, 2022, all rights reserved

Corporate Sensitivity PUBLIC

14 7th July 2022

Stopper

+ Monitoring of the relative corner echo

Stopper

A = Echo amplitude $A_0 = Initial \ echo \ amplitude$

BENDING TEST SETUP

Cracks in the center of the sample

amplitude $\frac{A}{A_0}$

3-point bending test open them

Transducer

BENDING TEST RESULTS

The echo reaches a **maximal constant value** at the end of the test \rightarrow crack is totally opened

Deflection threshold δ_{th}

Contact pressure between the crack faces

Similar behaviors for each transducer position: Threshold constraint below which crack does not

open (initial constant amplitude)

DAET AND BENDING TEST LINKS

© Naval Group SA property, 2022, all rights reserved.

Corporate Sensitivity PUBLIC

7th July 2022 16

CORRELATION RESEARCH

CORRELATION RESEARCH

CLOSURE/ ECHO VARIATION RELATIONSHIP

DAET opening variations: 7μm > 3μm

A minimum pump amplitude is mandatory to observe correlations

DAET result against deflection threshold for 7μm and 3μm pump

CONCLUSION

© Naval Group SA property, 2022, all rights reserved.

Corporate Sensitivity PUBLIC

7th July 2022 20

Conventional US performance are limited on closed part of cracks

DAET seems to be sensitive to the crack closure:

- A minimum pump amplitude is mandatory to observe correlations
- Correlation to further investigate

Bending test = reliable experience to access the crack opening

EXPERIMENTAL INVESTIGATION OF THE CRACK CLOSURE PRESSURE WITH APPLYING DYNAMIC ACOUSTO-ELASTIC TESTING ON A STEEL SAMPLE

4th - 8th July 2022

LAN

Cédric Payan, Cécile Gueudré, Marie Aude Ploix, Gilles Corneloup, Patrick Recolin

arthur.perrin@etu.univ-amu.fr

© Naval Group SA property, 2022, all rights reserved.