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This note states and proves an integral representation formula of the "variation-of-constant" type for continuous solutions of linear non-autonomous difference delay systems, in terms of a Lebesgue-Stieltjes integral involving a fundamental solution and the initial data of the system. It gives a precise and (hopefuly) correct version of several formulations appearing in the literature, while extending them to the time-varying case.

Statement of the result and comments

Let us consider a linear non-autonomous difference-delay system of the form:

y(t) = N j=1
D j (t)y(t -τ j ), t > s, y(s + θ) = φ(θ) for -τ N ≤ θ ≤ 0, (1.1) where d, N are positive integers and the delays τ 1 < • • • < τ N are strictly positive real numbers, while D 1 (t), . . . , D N (t) are complex 2 d × d matrices depending continuously on time t, the real number s ∈ R is the initial time and the function φ : [-τ N , 0] → C d the initial data.

A solution is a map y : [s -τ N , +∞) → C d that satisfies (1.1). Clearly, in order to get a continuous solution, the initial data which is but the restriction of y to the interval [-τ N , 0] must satisfy a compatibility condition, namely φ should belong to the set C s defined by

C s := {φ ∈ C 0 ([-τ N , 0], C d ) : φ(0) = N j=1 D j (s)φ(-τ j )}, (1.2) 
where C 0 (E, F ) indicates the set of continuous maps from E into F . Conversely, given φ in C s , an easy recursion shows that System (1.1) has a unique solution y with initial data φ, and that this solution is continuous. The goal of this note is to give a precise statement, as well as a detailed proof, of the integral formula, often called representation formula (see e.g. [START_REF] Hale | Introduction to functional-differential equations[END_REF]), expressing the solution to System (1.1) in terms of the initial condition φ ∈ C s and the so-called fundamental solution, that can be viewed as a particular (non-continuous) matrix-valued solution of (1.1). By definition, the fundamental solution is the map X : R 2 → C d×d satisfying X(t, s) =    0 for t < s, I d + N j=1 D j (t)X(t -τ j , s) for t ≥ s, (1.3) where I d denotes the d×d identity matrix. Arguing inductively, it is easy to check that X uniquely exists and is continuous at each (t, s) such that t-s / ∈ F, where F is the positive lattice in [0, +∞) generated by the numbers τ :

F := N =1 n τ , (n 1 , . . . , n N ) ∈ N N .
(1.4)

Clearly, X has a bounded jump across each line t -s = f for f ∈ F; in fact, a moment's thinking will convince the reader that X has the form

X(t, s) = - f∈ [0,t-s] ∩ F C f (t) , s ≤ t , (1.5) 
where each

C f (.) is continuous 3 R → C d×d .
The announced representation formula is now given by the following theorem, whose proof can be found in Section 3.

Theorem 1 (representation formula). For s ∈ R and φ in C s the solution y ∈ C 0 ([s-τ N , +∞), C d ) to (1.1) is given by y(t) = - N j=1 (s+τ j ) - s - d α X(t, α)D j (α)φ(α -τ j -s), t ≥ s , (1.6) 
where X was defined in (1.3).

The integrals

(s+τ j ) - s -
in Equation (1.6) are understood as Lebesgue-Stieltjes integrals on the intervals [s, s + τ j ). They are well defined because, for fixed t, the function X(t, •) is locally of bounded variation. Basic facts regarding Lebesgue-Stieltjes integral and functions of bounded variation are recalled in Section 2.1, for the ease of the reader.

Comments and motivations

Representation formulas like (1.6) are fundamental to deal with linear functional dynamical systems. In particular, they offer a base to devise for stability criteria via a frequency domain approach, using Laplace transforms: in [START_REF] Henry | Linear autonomous neutral functional differential equations[END_REF], [START_REF] Hale | Introduction to functional-differential equations[END_REF] or the recent manuscript [START_REF] Baratchart | Exponential stability of linear periodic difference-delay equations[END_REF] by the authors, exponential stability is investigated this way for difference-delay system and various functional differential equations, either time-invariant or time-varying.

The results, in turn, are relevant to the stability of 1-D hyperbolic PDE's; see e.g. [6, Theorem 3.5 and Theorem 3.8] and [START_REF] Baratchart | Exponential stability of periodic difference delay systems and 1-D hyperbolic PDEs of conservation laws[END_REF].

Though formulas of this type appear at several places in the literature for various classes of linear dynamical systems, we did state (1.6) carefully and we shall give a detailed proof thereof. Our motivation is here twofold: on the one hand, the time-varying case has apparently not been treated, and on the other hand, even for linear autonomous difference-delay equations, several representation formulas stated in the literature (like [START_REF] Henry | Linear autonomous neutral functional differential equations[END_REF], [START_REF] Hale | Theory of functional differential equations[END_REF] or [START_REF] Hale | Introduction to functional-differential equations[END_REF] that deals with more general Volterra equations) seem to have issues 4 , along with their proofs; see Section 2.2 and Footnote 5. Hence, when seeking to establish (1.6) for systems having periodic coefficients, the authors could not even come up with a satisfactory reference in the time-invariant case. The raison d'être for the present note is thus to present a result that addresses the non-autonomous case, and at the same time can be referenced. Our method of proof is in line with the approach in [START_REF] Hale | Introduction to functional-differential equations[END_REF], trading (1.3) for a Volterra equation and proving the existence of a resolvent for the latter. In this connection, Lemmata 2 and 3 below are fundamental steps of the proof that may be of independent interest.

Summary on functions with bounded variations, Lebesgue-Stieltjes integral and

Volterra integral equations with B ∞ kernel

In this section, we recall definitions and basic facts regarding functions of bounded variation and Lebesgue-Stieltjes integrals, that the reader might want to consult before proceeding with Lemma 2, Lemma 3 and the proof of Theorem 1.

The real and complex fields are denoted by R and C. For d a strictly positive integer, we write • for the Euclidean norm on C d and |||•||| for the norm of a matrix M ∈ C d×d :

|||M ||| = sup x =1 M x .

Functions with bounded variations and the Lebesgue-Stieltjes integral

For I a real interval and f : I → R a function, the total variation of f on I is defined as

W I (f ) := sup x 0 <x 1 <•••<x N x i ∈I,N ∈N N i=1 |f (x i ) -f (x i-1 )| < ∞. (2.1) 
The space BV (I) of functions with bounded variation on I consists of those f such that W I (f ) < ∞, endowed with the norm f BV (I) = W I (f ) + |f (y 0 )| where y 0 ∈ I is arbitrary but fixed. Different y 0 give rise to equivalent norms for which BV (I) is a Banach space, and . BV (I) is stronger than the uniform norm. We let BV r (I) and BV l (I) be the closed subspaces of BV (I) comprised of right and left continuous functions, respectively. We write BV loc (R) for the space of functions whose restriction to any bounded interval I ⊂ R lies in BV (I). Observe that

W I (f g) ≤ W I (f ) sup x∈I |g(x)| + W I (g) sup x∈I |f (x)|. (2.2)
Each f ∈ BV (I) has a limit f (x -) (resp. f (x + )) from the left (resp. right) at every x ∈ I where the limit applies [9, sec. 1.4]. Hence, one can associate to f a finite signed Borel measure ν f on

I such that ν f ((a, b)) = f (b -) -f (a + )
, and if I is bounded on the right (resp. left) and contains its endpoint b (resp. a), then

ν f ({b}) = f (b) -f (b -) (resp. f (a + ) -f (a)) [9, ch. 7, pp. 185-189].
Note that different f may generate the same ν f : for example if f and f 1 coincide except at isolated interior points of I, then ν f = ν f 1 . For g : I → R a measurable function summable against ν f , the Lebesgue-Stieltjes integral gdf is defined as gdν f , whence the differential element df identifies with dν f [9, ch. 7, pp. 190-191]. This type of integral is useful for it is suggestive of integration by parts, but caution must be used when integrating a function against df over a subinterval J ⊂ I because the measure ν (f |J ) associated to the restricted function f |J needs not coincide with the restriction (ν f ) |J of the measure ν f to J. More precisely, if the lower bound a (resp. the upper bound b) of J belongs to J and lies interior to I, then the two measures may differ by the weight they put on {a} (resp. {b}), and they agree only when f is left (resp. right) continuous at a (resp. b). By J gdf , we always mean that we integrate g against ν (f |J ) and not against (ν f ) |J . As in the main formula (1.6), we often trade the notation J gdf for one of the form b ± a ± gdf , where the interval of integration J is encoded in the bounds we put on the integral sign: a lower bound a -(resp. a + ) means that J contains (resp. does not contain) its lower bound a, while an upper bound b + (resp. b -) means that J contains (resp. does not contain) its upper bound b. Then, the previous word of caution applies to additive rules: for example, when splitting

b ± a ± gdf into c ± a ± gdf + b ± c ± gdf where c ∈ (a, b), we must use c + (resp. c -) if f is right (resp. left) continuous at c.
To a finite, signed or complex Borel measure µ on I, one can associate its total variation measure |µ|, defined on a Borel set B ⊂ I by |µ|(B) = sup P E∈P |µ(E)| where P ranges over all partitions of B into Borel sets, see [10, sec. 6.1]; its total mass |µ|(I) is called the total variation of µ, denoted as µ . Thus, the total variation is defined both for functions of bounded variation and for measures, with different meanings. When f ∈ BV (I) is monotonic then W I (f ) = ν f , but in general it only holds that ν f ≤ 2W I (f ); this follows from the Jordan decomposition of f as a difference of two increasing functions, each of which has variation at most W I (f ) on I [9, Thm. 1.4.1]. In any case, it holds that

| gdf | ≤ |g|d|ν f | ≤ 2W I (f ) sup I |g|.
The previous notations and definitions also apply to vector and matrix-valued functions BVfunctions, replacing absolute values in (2.1) by Euclidean and matricial norms, respectively.

Volterra integral equations with kernels of type B ∞

Volterra equations for functions of a single variable have been studied extensively, see e.g. [START_REF] Brunner | Volterra integral equations: an introduction to theory and applications[END_REF][START_REF] Gripenberg | Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications[END_REF]. However, the specific assumption that the kernel has bounded variation seems to have been treated somewhat tangentially. On the one hand, it is subsumed in the measure-valued case presented in [12, Ch. 10], but no convenient criterion is given there for the existence of a resolvent kernel. On the other hand, [1, Ch. 9, Sec. 1] sketches the main arguments needed to handle kernels of bounded variation, but the exposition has issues 5 .

We define a Stieltjes-Volterra kernel of type

B ∞ on [a, b] × [a, b] as a measurable function κ : [a, b] × [a, b] → R d×d , with κ(t, τ ) = 0 for τ ≥ t, such that the partial maps κ(t, .) lie in BV l ([a, b]) and κ(t, .) BV ([a,b]) is uniformly bounded with respect to t ∈ [a, b].
In addition, we require that lim τ →t -W [τ,t) (κ(t, .)) = 0 uniformly with respect to t; i.e., to every ε > 0, there exists η > 0 such that W [τ,t) (κ(t, .)) < ε as soon as 0 < t -τ < η. Note that W [τ,t) (κ(t, .)) → 0 for fixed t as τ → t -since κ(t, .) has bounded variation on [a, b], by the very definition (2.1); so, the assumption really is that the convergence is uniform with respect to t. We endow the space K [a,b] of such kernels with the norm κ

[a,b] := sup t∈[a,b] κ(t, .) BV ([a,b]) . If κ k is a Cauchy sequence in K [a,b] , then κ k converges uniformly on [a, b] × [a, b] to a R d×d -valued function κ because |||κ k (t, τ ) -κ l (t, τ )||| = |||(κ k (t, τ ) -κ l (t, τ )) -(κ k (t, t) -κ l (t, t))||| ≤ κ k (t, .) -κ l (t, .) BV ([a,b]) . Moreover, if m is so large that κ k -κ l [a,b] < ε for k, l ≥ m and η > 0 so small that W [τ,t) (κ m ) < ε when t -τ < η, we get that W [τ,t) (κ l ) ≤ W [τ,t) (κ m ) + W [τ,t) (κ m -κ l ) < 2ε, and letting l → ∞ we get from [9, thm. 1.3.5] that W [τ,t) (κ) ≤ 2ε. The same reference implies that κ [a,b] ≤ sup k κ k [a,b] , so that κ ∈ K [a,b] . Finally, writing that W [a,b] (κ k (t, .)-κ l (t, .
)) < ε for each t when k, l ≥ m and passing to the limit as l → ∞, we see that lim

k κ k -κ [a,b] = 0 whence K [a,b] is a Banach space. Note that a Stieltjes-Volterra kernel κ of type B ∞ is necessarily bounded with sup [a,b]×[a,b] |||κ(t, τ )||| ≤ κ [a,b] . A resolvent for the Stieltjes-Volterra kernel κ on [a, b] × [a, b] is a Stieltjes-Volterra kernel ρ on [a, b] × [a, b] satisfying ρ(t, β) = -κ(t, β) + t - β - dκ(t, τ )ρ(τ, β), a ≤ t, β ≤ b. (2.3) 
We stress that dκ(t, τ ) under the integral sign is here the differential with respect to τ of a matrixvalued measure, and that dκ(t, τ )ρ(τ, β) is a matrix product resulting in a matrix whose entries are sums of ordinary Lebesgue-Stieltjes integrands. Because matrices do not commute, a (generally) different result would be obtained upon writing

t - β -ρ(τ, β)dκ(t, τ
). In all cases, the repeated variable under the integral sign (τ in the present case) is a dummy one.

The following two lemmata, proved in Section 3, are the technical core of this paper. 

y(t) = t - a - dκ(t, τ )y(τ ) + g(t), a ≤ t ≤ b, (2.4) 
is given by

y(t) = g(t) - t - a - dρ(t, α)g(α), a ≤ t ≤ b. (2.5)
The importance of Lemmata 2 and 3 stems from the fact that to prove our main result at the end of Section 3, we will frame the difference delay equation (1.1) into a Stieltjes-Volterra integral equation with B ∞ kernel.

Proofs

The proofs of Lemmata 2 and 3 are given before the one of Theorem 1, which relies on them.

Proof of Lemma 2. Pick r > 0 to be adjusted later, and for Ψ ∈ K [a,b] let us define

F r (Ψ)(t, β) := t - β - e -r(t-τ ) dκ(t, τ )Ψ(τ, β), a ≤ β, t ≤ b.
Then, F r (Ψ)(t, β) = 0 for β ≥ t, and for a ≤ β 1 < β 2 < t we have that

F r (Ψ)(t, β 2 ) -F r (Ψ)(t, β 1 ) = t - β - 2 e -r(t-τ ) dκ(t, τ ) (Ψ(τ, β 2 ) -Ψ(τ, β 1 )) - β - 2 β - 1 e -r(t-τ ) dκ(t, τ )Ψ(τ, β 1 ),
where we used that κ(t, .) is left continuous to assign the lower (resp. upper) bound β - 2 to the first (resp. second) integral in the above right hand side. Now, the first integral goes to 0 as β 1 → β 2 by dominated convergence, as Ψ(t, .) is left-continuous; the second integral also goes to 0, because

|ν κ(t,.) |([β 1 , β 2 )) → 0 when β 1 → β 2 , since ∩ β 1 ∈[a,β 2 ) [β 1 , β 2 ) = ∅. Altogether, we see that F r (Ψ)(t, .) is left-continuous. Moreover, for [c, d] ⊂ [a, t) and c = β 0 < β 1 < • • • < β N = d, one has: N i=1 |||F r (Ψ)(t, β i ) -F r (Ψ)(t, β i-1 )||| ≤ N i=1 t - β - i e -r(t-τ ) dκ(t, τ ) (Ψ(τ, β i ) -Ψ(τ, β i-1 )) + N i=1 β - i β - i-1 e -r(t-τ ) dκ(t, τ )Ψ(τ, β i-1 ) ≤ N i=1 t - β - i e -r(t-τ ) d|ν κ(t,.) | |||(Ψ(τ, β i ) -Ψ(τ, β i-1 ))||| + N i=1 β - i β - i-1 e -r(t-τ ) d|ν κ(t,.) | |||Ψ(τ, β i-1 )||| ≤ t - d - d|ν κ(t,.) | N i=1 |||(Ψ(τ, β i ) -Ψ(τ, β i-1 ))||| + e -r(t-d) d - c - d|ν κ(t,.) | N i=1 |||(Ψ(τ, β i ) -Ψ(τ, β i-1 ))||| + sup [a,t]×[a,t] |||Ψ||| d - c - e -r(t-τ ) d|ν κ(t,.) | ≤ 2 W [d,t) (κ(t, .)) sup τ ∈[d,t) W [c,d] (Ψ(τ, .)) + 2 e -r(t-d) W [c,d) (κ(t, .)) sup τ ∈[c,d) W [c,d] (Ψ(τ, .)) + 2 e -r(t-d) sup [a,t]×[a,t] |||Ψ||| W [c,d) (κ(t, .)).
When d = t, the same inequality holds but then W [d,t) (κ(t, .)) is zero. Setting c = a and d = t, we get from the above majorization that W

[a,t] (F r (Ψ)(t, .)) ≤ 4 κ [a,b] Ψ [a,b] , and since F r (Ψ)(t, τ ) = 0 for τ ≥ t we deduce that W [a,b] (F r (Ψ)(t, .)) = W [a,t] (F r (Ψ)(t, .
)) is bounded, uniformly with respect to t. Next, if we fix ε > 0 and pick η > 0 so small that W [τ,t) (κ(t, .)) ≤ ε as soon as t -τ ≤ η (this is possible because κ ∈ K [a,b] ), the same estimate yields

W [c,t) (F r (Ψ)(t, .)) ≤ 4W [c,t) (κ(t, .)) Ψ [a,b] ≤ 4 ε Ψ [a,b] , t -c ≤ η. (3.1)
Altogether, we just showed that F r (Ψ) ∈ K [a,b] . Moreover, if we take r so large that e -rη < ε, then either t -a ≤ η and then (3.1) with c = a gives us W [a,t) (F r (Ψ)(t, .) ≤ 4ε Ψ [a,b] , or else t -η > a in which case (3.1) with c = t -η, together with our initial estimate when c = a and d = t -η, team up to produce:

W [a,t) (F r (Ψ))(t, .) = W [a,t-η] (F r (Ψ)(t, .)) + W [t-η,t) (F r (Ψ)(t, .)) ≤ 2ε sup τ ∈[t-η,t) W [a,t-η] (Ψ(τ, .)) + 2εW [a,t-η) (κ(t, .)) sup τ ∈[a,t-τ ) W [a,t-η] (Ψ(τ, .)) + 2ε sup [a,t]×[a,t] |||Ψ|||W [a,t-η) (κ(t, .)) + 4ε Ψ [a,b] ≤ 2 ε Ψ [a,b] 3 + 2 κ [a,b] . (3.2)
Consequently, as

W [a,t) (F r (Ψ)(t, .)) = W [a,t] (F r (Ψ)(t, .
)) by the left continuity of F r (Ψ)(t, .), we can ensure upon choosing r sufficiently large that the operator

F r : K [a,b] → K [a,b]
has arbitrary small norm. Hereafter, we fix r so that |||F r ||| < λ < 1. Now, let ρ 0 = 0 and define inductively:

ρ k+1 (t, β) = -e -rt κ(t, β) + F r ( ρ k )(t, β). Clearly (t, β) → e -rt κ(t, β) lies in K [a,b] , so that ρ k ∈ K [a,b] for all k. Moreover, we get from what precedes that ρ k+1 -ρ k [a,b] ≤ λ ρ k -ρ k-1 [a,b]
. Thus, by the shrinking lemma, ρ k converges in

K [a,b] to the unique ρ ∈ K [a,b] such that ρ(t, β) = -e -rt κ(t, β) + F r ( ρ)(t, β) = -e -rt κ(t, β) + t - β - e -r(t-τ ) dκ(t, τ ) ρ(τ, β), a ≤ t, β ≤ b. (3.3) 
Putting ρ(t, β) := e rt ρ(t, β), one can see that ρ lies in K [a,b] if and only if ρ does, and that (3.3) is equivalent to (2.3). This achieves the proof.

Proof Lemma 3. By Lemma 2 we know that κ has a unique resolvent, say ρ. Define y through (2.5) so that y(a) = g(a), by inspection. Since g ∈ BV r ([a, b]) and ρ(t, •), k(t, .) lie in BV l ([a, b]), an integration by parts [9, thm. 7.5.9] 6 using (2.3) along with Fubini's theorem and the relations κ(t, α) = ρ(t, α) = 0 for α ≥ t gives us:

t - a -dκ(t, α)y(α) = (κ(t, a + ) -κ(t, a))y(a) + t - a + dκ(t, α)y(α) = (κ(t, a + ) -κ(t, a))g(a) + t - a + dκ(t, α)g(α) - t - a + dκ(t, α) α - a -dρ(α, β)g(β) = (κ(t, a + ) -κ(t, a))g(a) + t - a + dκ(t, α)g(α) - t - a + dκ(t, α) α - a + dρ(α, β)g(β) - t - a + dκ(t, α)(ρ(α, a + ) -ρ(α, a))g(a) = (κ(t, a + ) -κ(t, a))g(a) + t - a + dκ(t, α)g(α) + t - a + dκ(t, α) α - a + ρ(α, β)dg(β) - t - a + dκ(t, α) [ρ(α, β)g(β)] β=α - β=a + - t - a + dκ(t, α)(ρ(α, a + ) -ρ(α, a))g(a) = (κ(t, a + ) -κ(t, a))g(a) + t - a + dκ(t, α)g(α) + t - a + t - β -dκ(t, α)ρ(α, β) dg(β) + t - a + dκ(t, α)ρ(α, a + )g(a) - t - a + dκ(t, α)(ρ(α, a + ) -ρ(α, a))g(a) = (κ(t, a + ) -κ(t, a))g(a) + t - a + dκ(t, α)g(α) + t - a + ρ(t, β) + κ(t, β) dg(β) + t - a + dκ(t, α)ρ(α, a)g(a) = (κ(t, a + ) -κ(t, a))g(a) + [κ(t, α)g(α)] α=t - α=a + + t - a + ρ(t, β)dg(β) + t - a + dκ(t, α)ρ(α, a)g(a) = -κ(t, a)g(a) + [ρ(t, β)g(β)] β=t - β=a + - t - a + dρ(t, β)g(β) + t - a -dκ(t, α)ρ(α, a)g(a) = -κ(t, a)g(a) -ρ(t, a + )g(a) - t - a + dρ(t, β)g(β) + κ(t, a) + ρ(t, a) g(a) = - t - a -dρ(t, β)g(β) = y(t) -g(t).
Thus, y is a solution to (2.4). Clearly, it is measurable, and it is also bounded since ρ(t, .) BV ([a,b]) is bounded independently of t and g is bounded. If y is another solution to (2.4) then y(a) = y(a) = g(a) by inspection, so that z := y -y is a bounded measurable solution to the homogeneous equation:

z(t) = t - a + dκ(t, τ )z(τ ), a ≤ t ≤ b.
Pick r > 0 to be adjusted momentarily, and set z(t) := e -rt z(t) so that

z(t) = t - a +
e -r(t-τ ) dκ(t, τ ) z(τ ). (3.4) Let η > 0 be so small that W [τ,t) (κ(t, .)) ≤ 1/4 as soon as t -τ ≤ η; this is possible because κ ∈ K [a,b] . Then, it follows from (3.4) that for t -η > a: 

| z(t)| ≤ (t-η) + a + e -r(t-τ ) + dκ(t, τ ) z(τ ) + t - (t-η) + e -r(t-τ ) -dκ(t, τ ) z(τ ) ≤ 2e -rη W (a,t-η] (κ(t, •)) sup (a,t-η] | z| + 1 2 sup (t-η,t) | z| ≤ sup (a,t) | z| 2e -rη κ [a,b] + 1 
+ θ) = φ(θ) for θ ∈ [-τ N ,
0], it is enough to check (1.6) when s ≤ t < s + τ N . For this, we adopt the point of view of reference [START_REF] Hale | Introduction to functional-differential equations[END_REF], which is to construe delay systems as Stieltjes-Volterra equations upon representing delays by measures. More precisely, we can rewrite (1.1) as a Lebesgue-Stieltjes integral:

y(t) = 0 - -τ - N dµ(t, θ)y(t + θ), t ≥ s, (3.6) 
with

µ(t, θ) = N j=1 D j (t)H(θ + τ j ), (3.7) 
where y(τ ) is understood to be φ(τ -s) when s -τ N ≤ τ ≤ s and H(τ ) is the Heaviside function which is zero for τ ≤ 0 and 1 for τ > 0, so that the associated measure on an interval of the form [0, a] or [0, a) is a Dirac delta at 0. Note that H(0) = 0, which is not the usual convention, but if we defined H so that H(0) = 1 then expanding (3.6) using (3.7) would not give us back (1.1) for the term D N (t)y(t -τ N ) would be missing. Observe also, since τ j > 0 for all j, that the minus sign in the upper bound of the integral in (3.6) is immaterial and could be traded for a plus. For s ≤ t ≤ s + τ N , singling out the initial data in (3.6) yields

y(t) = 0 - (s-t) - dµ(t, θ)y(t + θ) + f (t) with f (t) := (s-t) - -τ - N dµ(t, θ)φ(t + θ -s), (3.8) 
where we took into account, when separating the integrals, that θ → µ(t, θ) is left continuous, while the integral over the empty interval is understood to be zero. It will be convenient to study (3.8) for t ∈ [s, s+τ N ], even though in the end the values of y(t) only matter to us for t ∈ [s, s+τ N ). Define

k(t, τ ) := µ(t, τ -t) -N j=1 D j (t) for τ ∈ [s, t], 0 for τ > t, t, τ ∈ [s, s + τ N ]. (3.9) 
Note that k(t, τ ) = 0 when t -τ < τ 1 , and Since ρ(t, α) = 0 when α ≥ t, the integral t - s -can be replaced by

d τ k(t, τ ) = d τ µ(t, τ -t) on [s, s + τ N ] for fixed t. Hence, (3.8) becomes y(t) = t - s - dk(t, τ )y(τ ) + f (t), s ≤ t ≤ s + τ N . ( 3 
(s+τ N ) + s -
in (3.12). Thus, putting δ t for the Dirac delta distribution at t and X(t, α) := H(t-α)I d +ρ(t, α) with H(τ ) the "standard" Heaviside function which is 0 for τ < 0 and 1 for τ ≥ 0, we deduce from (3.11) and (3.12), since d α H(t -α) = -δ t on [s, s + τ N ] for s ≤ t < s + τ N , that which is what we want (namely: formula (1.6) for s ≤ t < s + τ N ) if only we can show that X(t, α) coincides with X(t, α) when α ∈ [s, s + τ j ) for each j and every t ∈ [s, s + τ N ); here, X(t, α) is defined by (1.3) where we set s = α.

y(t) = - (s+τ N ) + s - d X(t, α)f (α) = - (s+τ N ) +
For this, we first observe that X(t, α) = X(t, α) = 0 when α > t and that X(t, t) = X(t, t) = I d . Hence, we need only consider the case α ∈ [s, t) with s < t < s + τ N . For s ≤ α < t, we get that 

-k(t, α) = k(t, t -) -k(t, α) = t - α - dk(t, τ ).

Lemma 2 .Lemma 3 .

 23 If κ is a Stieltjes-Volterra kernel of type B ∞ on [a, b] × [a, b], a resolvent for κ uniquely exists. Let κ be a Stieltjes-Volterra kernel of type B ∞ on [a, b] × [a, b] and ρ its resolvent. For each R d -valued function g ∈ BV r ([a, b]), the unique bounded measurable solution to the equation

. 10 )

 10 Now,(3.10) is the Stieltjes-Volterra equation we shall work with.It suffices to prove(1.6) for t ∈ [s, s + τ N ) under the additional assumption that φ and the D j , which are continuous by hypothesis, also have bounded and locally bounded variation, on [-τ N , 0] and R respectively. Indeed, functions of bounded variation are dense in C s (say, because C 1 -functions are), and if {φ k } converges uniformly to φ in C s while {D j,k } converges uniformly to D j in [s, s + τ N ] as k → ∞, then the solution to (1.1) with initial condition φ k and coefficients D j,k converges uniformly on [s, s + τ N ] to the solution with initial condition φ and coefficients D j , as is obvious by inspection. Hence, we shall assume without loss of generality that φ has bounded variation and the D j have locally bounded variation. Then, since (3.7) and (3.8) imply thatf (t) = τ ∈(t-s,τ N ] D (t)φ(t -s -τ ), (3.11) it is clear from (3.11) and (2.2) that f ∈ BV r ([s, s + τ N ]). As H is left continuous and the D j are bounded on [s, s + τ N ], it is easy to check that k(t, τ ) defined in (3.9) is a Stieltjes-Volterra kernel of type B ∞ on [s, s + τ N ] × [s, s + τ N ]. Let ρ denote the resolvent of this Stieltjes-Volterra kernel; it exists thanks to Lemma 2. As f defined in (3.8) lies in BV r ([s, s + τ N ]), the solution y to (3.10) is given, in view of Lemma 3, by y(t) = f (t) -t - s - dρ(t, α)f (α), s ≤ t ≤ s + τ N . (3.12)

  α-s,τ N ] D (α)φ(α -s -τ )   , s ≤ t < s + τ N .Rearranging, we get thaty(t) = -N j=1 (s+τ j ) -

  t, α)D j (α)φ(α -s -τ j ), s ≤ t < s + τ N ,

Thus, ( 2 . 3 )

 23 (where κ = k) in concert with the definition of X(t, α) imply thatX(t, α) = I d H(t -α) -k(t, α) + t - α - dk(t, τ )ρ(τ, α) = I d + t - α - dk(t, τ ) I d + ρ(τ, α) = I d + t - α - dk(t, τ ) X(τ, α).

  2 , while for t -η ≤ a we simply get | z(t)| ≤ sup (a,t) | z|/2. Hence, choosing r large enough, we may assume that | z(t)| ≤ λ sup (a,t) | z| for some λ < 1 and all t ∈ [a, b]. Thus, if we choose λ ∈ (λ, 1) and t 0 ∈ (a, b], we can find t 1 ∈ (a, t 0) such that | z(t 1 )| ≥ (1/λ )| z(t 0 )|, and proceeding inductively we construct a sequence (t n ) in (a, t 0 ] with | z(t n )| ≥ (1/λ ) n | z(t 0 )|. If we had | z(t 0 )| > 0,this would contradict the boundedness of z, therefore z ≡ 0 on (a, b], whence z ≡ 0 so that y = y.Note, since α → X(t, α) is left continuous (by (1.3) again) while [s, s+τ j ) is open on the right, that d α X(t, α) and d α X(t -τ j , α) in (3.5) coincide with (the differential of) the restrictions to [s, s + τ j ) of the (matrix-valued) measures ν X(t,•) |[s,s+τ N ) and ν X(t-τ j ,•) |[s,s+τ N ) , provided that t ≥ s + τ N . Now, substituting (3.5) in (1.6) formally yields (1.1) for t ≥ s + τ N . Hence, by uniqueness of a solution y to (1.1) satisfying y(s

	(3.5)

Proof of Theorem 1. It follows from (1.3) that α → X(t, α) lies in BV loc (R) for all t and satisfies

d α X(t, α) = N j=1 D j (t) d α X(t -τ j , α)

on [s, s + τ j ), 1 ≤ j ≤ N.

Additional smoothness assumptions on the maps D j (.) would transfer to the C f . One can also see that C f (t) is a finite sum of products of D j (t -f ), where f ranges over the elements of F whose defining integers n in (1.4) do not exceed those defining f, the empty product being the identity matrix. A precise expression for C f can be obtained by reasoning as in [2, Sec. 3.2] or[START_REF] Baratchart | Sufficient stability conditions for time-varying networks of telegrapher's equations or difference-delay equations[END_REF] Sec. 

[START_REF] Henry | Linear autonomous neutral functional differential equations[END_REF].5], but we will not need it.

For instance, the formula in[4, Lemma 3.4], stated for time-invariant systems of the same type as (1.1) (possibly with infinitely many delays) does not agree with(1.6). A check on systems with two delays will convince the reader that it is faulty because, probably due to misprinted indices, the integration is not carried out on the right interval. Still, our formula agrees with the one in[START_REF] Henry | Linear autonomous neutral functional differential equations[END_REF] in the case of a single delay (N = 1)

For example, the equation satisfied by ρ(t, s) at top of page 258 is not right.

Reference[START_REF] Lojasiewicz | An introduction to the theory of real functions[END_REF] restricts to integration by parts over open intervals only, and we do the same at the cost of a slightly lengthier computation.

Now, on [α, t), we compute from (3.7) and (3.9) that d τ k(t, τ ) = t-τ j ≥α D j (t)δ t-τ j and hence, since X(t -τ j , α) = 0 when α > t -τ j , the previous equation becomes:

for s ≤ α < t and s ≤ t < s + τ N .

(3.13) Comparing (3.13) and (1.3), we see that X(t, α) and X(t, α) coincide on [s, s + τ N ) × [s, s + τ N ), thereby ending the proof.