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Integral representation formula for linear non-autonomous

difference-delay equations

L. Baratchart, S. Fueyo 1 , J.-B. Pomet

Université Côte d’Azur, Inria, Teams FACTAS and MCTAO,
2004, route des Lucioles, 06902 Sophia Antipolis, France.

Abstract

This note states and proves an integral representation formula of the “variation-of-constant” type
for continuous solutions of linear non-autonomous difference delay systems, in terms of a Lebesgue-
Stieltjes integral involving a fundamental solution and the initial data of the system. It gives a
precise and (hopefuly) correct version of several formulations appearing in the literature, while
extending them to the time-varying case.

Keywords: linear systems, difference delay systems, integral representation, Volterra equations.

1. Statement of the result and comments

Let us consider a linear non-autonomous difference-delay system of the form:

y(t) =
N∑
j=1

Dj(t)y(t− τj), t > s, y(s+ θ) = φ(θ) for − τN ≤ θ ≤ 0, (1.1)

where d, N are positive integers and the delays τ1 < · · · < τN are strictly positive real numbers,
while D1(t), . . . , DN(t) are complex2 d × d matrices depending continuously on time t, the real
number s ∈ R is the initial time and the function φ : [−τN , 0]→ Cd the initial data.

A solution is a map y : [s − τN ,+∞) → Cd that satisfies (1.1). Clearly, in order to get a
continuous solution, the initial data which is but the restriction of y to the interval [−τN , 0] must
satisfy a compatibility condition, namely φ should belong to the set Cs defined by

Cs := {φ ∈ C0([−τN , 0],Cd) : φ(0) =
N∑
j=1

Dj(s)φ(−τj)}, (1.2)

where C0(E,F ) indicates the set of continuous maps from E into F . Conversely, given φ in Cs, an
easy recursion shows that System (1.1) has a unique solution y with initial data φ, and that this
solution is continuous.

The goal of this note is to give a precise statement, as well as a detailed proof, of the integral
formula, often called representation formula (see e.g. [1]), expressing the solution to System (1.1)
in terms of the initial condition φ ∈ Cs and the so-called fundamental solution, that can be viewed

1Corresponding author.
2We treat here the case of complex coefficients (in the matrices Dj as well as in the solutions); real coefficients

can be handled in exactly the same way.
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as a particular (non-continuous) matrix-valued solution of (1.1). By definition, the fundamental
solution is the map X : R2 → Cd×d satisfying

X(t, s) =


0 for t < s,

Id +
N∑
j=1

Dj(t)X(t− τj, s) for t ≥ s,
(1.3)

where Id denotes the d×d identity matrix. Arguing inductively, it is easy to check that X uniquely
exists and is continuous at each (t, s) such that t−s /∈ F , where F is the positive lattice in [0,+∞)
generated by the numbers τ`:

F :=

{
N∑
`=1

n` τ` , (n1, . . . , nN) ∈ NN

}
. (1.4)

Clearly, X has a bounded jump across each line t− s = f for f ∈ F ; in fact, a moment’s thinking
will convince the reader that X has the form

X(t, s) = −
∑

f∈ [0,t−s]∩F

Cf(t) , s ≤ t , (1.5)

where each Cf(.) is continuous3 R→ Cd×d.
The announced representation formula is now given by the following theorem, whose proof can

be found in Section 3.

Theorem 1 (representation formula). For s ∈ R and φ in Cs the solution y ∈ C0([s−τN ,+∞),Cd)
to (1.1) is given by

y(t) = −
N∑
j=1

∫ (s+τj)
−

s−
dαX(t, α)Dj(α)φ(α− τj − s), t ≥ s , (1.6)

where X was defined in (1.3).

The integrals
∫ (s+τj)

−

s−
in Equation (1.6) are understood as Lebesgue-Stieltjes integrals on the

intervals [s, s + τj). They are well defined because, for fixed t, the function X(t, ·) is locally of
bounded variation. Basic facts regarding Lebesgue-Stieltjes integral and functions of bounded
variation are recalled in Section 2.1, for the ease of the reader.

Comments and motivations

Representation formulas like (1.6) are fundamental to deal with linear functional dynamical
systems. In particular, they offer a base to devise for stability criteria via a frequency domain ap-
proach, using Laplace transforms: in [4], [1] or the recent manuscript [5] by the authors, exponen-
tial stability is investigated this way for difference-delay system and various functional differential
equations, either time-invariant or time-varying.

3Additional smoothness assumptions on the maps Dj(.) would transfer to the Cf. One can also see that Cf(t)
is a finite sum of products of Dj(t− f′), where f′ ranges over the elements of F whose defining integers n` in (1.4)
do not exceed those defining f, the empty product being the identity matrix. A precise expression for Cf can be
obtained by reasoning as in [2, Sec. 3.2] or [3, Sec. 4.5], but we will not need it.

2



The results, in turn, are relevant to the stability of 1-D hyperbolic PDE’s; see e.g. [6, Theorem
3.5 and Theorem 3.8] and [7].

Though formulas of this type appear at several places in the literature for various classes of
linear dynamical systems, we did state (1.6) carefully and we shall give a detailed proof thereof.
Our motivation is here twofold: on the one hand, the time-varying case has apparently not been
treated, and on the other hand, even for linear autonomous difference-delay equations, several
representation formulas stated in the literature (like [4], [8] or [1] that deals with more general
Volterra equations) seem to have issues4, along with their proofs; see Section 2.2 and Footnote 5.
Hence, when seeking to establish (1.6) for systems having periodic coefficients, the authors could
not even come up with a satisfactory reference in the time-invariant case. The raison d’être for
the present note is thus to present a result that addresses the non-autonomous case, and at the
same time can be referenced. Our method of proof is in line with the approach in [1], trading (1.3)
for a Volterra equation and proving the existence of a resolvent for the latter. In this connection,
Lemmata 2 and 3 below are fundamental steps of the proof that may be of independent interest.

2. Summary on functions with bounded variations, Lebesgue-Stieltjes integral and
Volterra integral equations with B∞ kernel

In this section, we recall definitions and basic facts regarding functions of bounded variation
and Lebesgue-Stieltjes integrals, that the reader might want to consult before proceeding with
Lemma 2, Lemma 3 and the proof of Theorem 1.

The real and complex fields are denoted by R and C. For d a strictly positive integer, we write
‖ · ‖ for the Euclidean norm on Cd and |||·||| for the norm of a matrix M ∈ Cd×d:

|||M ||| = sup
‖x‖=1

‖Mx‖.

2.1. Functions with bounded variations and the Lebesgue-Stieltjes integral

For I a real interval and f : I → R a function, the total variation of f on I is defined as

WI(f) := sup
x0<x1<···<xN
xi∈I,N∈N

N∑
i=1

|f(xi)− f(xi−1)| <∞. (2.1)

The space BV (I) of functions with bounded variation on I consists of those f such thatWI(f) <∞,
endowed with the norm ‖f‖BV (I) = WI(f) + |f(y0)| where y0 ∈ I is arbitrary but fixed. Different
y0 give rise to equivalent norms for which BV (I) is a Banach space, and ‖.‖BV (I) is stronger than
the uniform norm. We let BVr(I) and BVl(I) be the closed subspaces of BV (I) comprised of right
and left continuous functions, respectively. We write BVloc(R) for the space of functions whose
restriction to any bounded interval I ⊂ R lies in BV (I). Observe that

WI(fg) ≤ WI(f) sup
x∈I
|g(x)|+WI(g) sup

x∈I
|f(x)|. (2.2)

4For instance, the formula in [4, Lemma 3.4], stated for time-invariant systems of the same type as (1.1) (possibly
with infinitely many delays) does not agree with (1.6). A check on systems with two delays will convince the reader
that it is faulty because, probably due to misprinted indices, the integration is not carried out on the right interval.
Still, our formula agrees with the one in [4] in the case of a single delay (N = 1)
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Each f ∈ BV (I) has a limit f(x−) (resp. f(x+)) from the left (resp. right) at every x ∈ I where
the limit applies [9, sec. 1.4]. Hence, one can associate to f a finite signed Borel measure νf on
I such that νf ((a, b)) = f(b−) − f(a+), and if I is bounded on the right (resp. left) and contains
its endpoint b (resp. a), then νf ({b}) = f(b)− f(b−) (resp. f(a+)− f(a)) [9, ch. 7, pp. 185–189].
Note that different f may generate the same νf : for example if f and f1 coincide except at isolated
interior points of I, then νf = νf1 . For g : I → R a measurable function summable against νf , the
Lebesgue-Stieltjes integral

∫
gdf is defined as

∫
gdνf , whence the differential element df identifies

with dνf [9, ch. 7, pp. 190–191]. This type of integral is useful for it is suggestive of integration by
parts, but caution must be used when integrating a function against df over a subinterval J ⊂ I
because the measure ν(f|J ) associated to the restricted function f|J needs not coincide with the
restriction (νf )|J of the measure νf to J . More precisely, if the lower bound a (resp. the upper
bound b) of J belongs to J and lies interior to I, then the two measures may differ by the weight
they put on {a} (resp. {b}), and they agree only when f is left (resp. right) continuous at a
(resp. b). By

∫
J
gdf , we always mean that we integrate g against ν(f|J ) and not against (νf )|J . As

in the main formula (1.6), we often trade the notation
∫
J
gdf for one of the form

∫ b±
a±
gdf , where

the interval of integration J is encoded in the bounds we put on the integral sign: a lower bound
a− (resp. a+) means that J contains (resp. does not contain) its lower bound a, while an upper
bound b+ (resp. b−) means that J contains (resp. does not contain) its upper bound b. Then,

the previous word of caution applies to additive rules: for example, when splitting
∫ b±
a±
gdf into∫ c±

a±
gdf +

∫ b±
c±
gdf where c ∈ (a, b), we must use c+ (resp. c−) if f is right (resp. left) continuous

at c.
To a finite, signed or complex Borel measure µ on I, one can associate its total variation

measure |µ|, defined on a Borel set B ⊂ I by |µ|(B) = supP
∑

E∈P |µ(E)| where P ranges over all
partitions of B into Borel sets, see [10, sec. 6.1]; its total mass |µ|(I) is called the total variation
of µ, denoted as ‖µ‖. Thus, the total variation is defined both for functions of bounded variation
and for measures, with different meanings. When f ∈ BV (I) is monotonic then WI(f) = ‖νf‖,
but in general it only holds that ‖νf‖ ≤ 2WI(f); this follows from the Jordan decomposition of
f as a difference of two increasing functions, each of which has variation at most WI(f) on I [9,
Thm. 1.4.1]. In any case, it holds that |

∫
gdf | ≤

∫
|g|d|νf | ≤ 2WI(f) supI |g|.

The previous notations and definitions also apply to vector and matrix-valued functions BV -
functions, replacing absolute values in (2.1) by Euclidean and matricial norms, respectively.

2.2. Volterra integral equations with kernels of type B∞

Volterra equations for functions of a single variable have been studied extensively, see e.g. [11, 12].
However, the specific assumption that the kernel has bounded variation seems to have been treated
somewhat tangentially. On the one hand, it is subsumed in the measure-valued case presented in
[12, Ch. 10], but no convenient criterion is given there for the existence of a resolvent kernel. On
the other hand, [1, Ch. 9, Sec. 1] sketches the main arguments needed to handle kernels of bounded
variation, but the exposition has issues5.

We define a Stieltjes-Volterra kernel of type B∞ on [a, b] × [a, b] as a measurable function
κ : [a, b] × [a, b] → Rd×d, with κ(t, τ) = 0 for τ ≥ t, such that the partial maps κ(t, .) lie in
BVl([a, b]) and ‖κ(t, .)‖BV ([a,b]) is uniformly bounded with respect to t ∈ [a, b]. In addition, we
require that limτ→t−W[τ,t)(κ(t, .)) = 0 uniformly with respect to t; i.e., to every ε > 0, there exists
η > 0 such that W[τ,t)(κ(t, .)) < ε as soon as 0 < t − τ < η. Note that W[τ,t)(κ(t, .)) → 0 for

5 For example, the equation satisfied by ρ̃(t, s) at top of page 258 is not right.
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fixed t as τ → t− since κ(t, .) has bounded variation on [a, b], by the very definition (2.1); so, the
assumption really is that the convergence is uniform with respect to t. We endow the space K[a,b]

of such kernels with the norm ‖κ‖[a,b] := supt∈[a,b] ‖κ(t, .)‖BV ([a,b]). If κk is a Cauchy sequence in

K[a,b], then κk converges uniformly on [a, b]× [a, b] to a Rd×d-valued function κ because

|||κk(t, τ)− κl(t, τ)||| = |||(κk(t, τ)− κl(t, τ))− (κk(t, t)− κl(t, t))||| ≤ ‖κk(t, .)− κl(t, .)‖BV ([a,b]).

Moreover, if m is so large that ‖κk−κl‖[a,b] < ε for k, l ≥ m and η > 0 so small that W[τ,t)(κm) < ε
when t−τ < η, we get that W[τ,t)(κl) ≤ W[τ,t)(κm)+W[τ,t)(κm−κl) < 2ε, and letting l→∞ we get
from [9, thm. 1.3.5] that W[τ,t)(κ) ≤ 2ε. The same reference implies that ‖κ‖[a,b] ≤ supk ‖κk‖[a,b], so
that κ ∈ K[a,b]. Finally, writing thatW[a,b](κk(t, .)−κl(t, .)) < ε for each t when k, l ≥ m and passing
to the limit as l→∞, we see that limk ‖κk−κ‖[a,b] = 0 whence K[a,b] is a Banach space. Note that
a Stieltjes-Volterra kernel κ of type B∞ is necessarily bounded with sup[a,b]×[a,b] |||κ(t, τ)||| ≤ ‖κ‖[a,b].

A resolvent for the Stieltjes-Volterra kernel κ on [a, b]× [a, b] is a Stieltjes-Volterra kernel ρ on
[a, b]× [a, b] satisfying

ρ(t, β) = −κ(t, β) +

∫ t−

β−
dκ(t, τ)ρ(τ, β), a ≤ t, β ≤ b. (2.3)

We stress that dκ(t, τ) under the integral sign is here the differential with respect to τ of a matrix-
valued measure, and that dκ(t, τ)ρ(τ, β) is a matrix product resulting in a matrix whose entries are
sums of ordinary Lebesgue-Stieltjes integrands. Because matrices do not commute, a (generally)

different result would be obtained upon writing
∫ t−
β−
ρ(τ, β)dκ(t, τ). In all cases, the repeated

variable under the integral sign (τ in the present case) is a dummy one.
The following two lemmata, proved in Section 3, are the technical core of this paper.

Lemma 2. If κ is a Stieltjes-Volterra kernel of type B∞ on [a, b]× [a, b], a resolvent for κ uniquely
exists.

Lemma 3. Let κ be a Stieltjes-Volterra kernel of type B∞ on [a, b]× [a, b] and ρ its resolvent. For
each Rd-valued function g ∈ BVr([a, b]), the unique bounded measurable solution to the equation

y(t) =

∫ t−

a−
dκ(t, τ)y(τ) + g(t), a ≤ t ≤ b, (2.4)

is given by

y(t) = g(t)−
∫ t−

a−
dρ(t, α)g(α), a ≤ t ≤ b. (2.5)

The importance of Lemmata 2 and 3 stems from the fact that to prove our main result at the
end of Section 3, we will frame the difference delay equation (1.1) into a Stieltjes-Volterra integral
equation with B∞ kernel.

3. Proofs

The proofs of Lemmata 2 and 3 are given before the one of Theorem 1, which relies on them.
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Proof of Lemma 2. Pick r > 0 to be adjusted later, and for Ψ ∈ K[a,b] let us define

Fr(Ψ)(t, β) :=

∫ t−

β−
e−r(t−τ)dκ(t, τ)Ψ(τ, β), a ≤ β, t ≤ b.

Then, Fr(Ψ)(t, β) = 0 for β ≥ t, and for a ≤ β1 < β2 < t we have that

Fr(Ψ)(t, β2)−Fr(Ψ)(t, β1) =

∫ t−

β−2

e−r(t−τ)dκ(t, τ) (Ψ(τ, β2)−Ψ(τ, β1))−
∫ β−2

β−1

e−r(t−τ)dκ(t, τ)Ψ(τ, β1),

where we used that κ(t, .) is left continuous to assign the lower (resp. upper) bound β−2 to the first
(resp. second) integral in the above right hand side. Now, the first integral goes to 0 as β1 → β2
by dominated convergence, as Ψ(t, .) is left-continuous; the second integral also goes to 0, because
|νκ(t,.)|([β1, β2))→ 0 when β1 → β2, since ∩β1∈[a,β2)[β1, β2) = ∅. Altogether, we see that Fr(Ψ)(t, .)
is left-continuous. Moreover, for [c, d] ⊂ [a, t) and c = β0 < β1 < · · · < βN = d, one has:

N∑
i=1

|||Fr(Ψ)(t, βi)− Fr(Ψ)(t, βi−1)|||

≤
N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ t−

β−i

e−r(t−τ) dκ(t, τ) (Ψ(τ, βi)−Ψ(τ, βi−1))

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣+

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β−i

β−i−1

e−r(t−τ)dκ(t, τ)Ψ(τ, βi−1)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
N∑
i=1

∫ t−

β−i

e−r(t−τ) d|νκ(t,.)| |||(Ψ(τ, βi)−Ψ(τ, βi−1))|||+
N∑
i=1

∫ β−i

β−i−1

e−r(t−τ) d|νκ(t,.)| |||Ψ(τ, βi−1)|||

≤
∫ t−

d−
d|νκ(t,.)|

N∑
i=1

|||(Ψ(τ, βi)−Ψ(τ, βi−1))|||

+ e−r(t−d)
∫ d−

c−
d|νκ(t,.)|

N∑
i=1

|||(Ψ(τ, βi)−Ψ(τ, βi−1))|||+ sup
[a,t]×[a,t]

|||Ψ|||
∫ d−

c−
e−r(t−τ)d|νκ(t,.)|

≤ 2W[d,t)(κ(t, .)) sup
τ∈[d,t)

W[c,d](Ψ(τ, .))

+ 2 e−r(t−d)W[c,d)(κ(t, .)) sup
τ∈[c,d)

W[c,d](Ψ(τ, .)) + 2 e−r(t−d) sup
[a,t]×[a,t]

|||Ψ||| W[c,d)(κ(t, .)).

When d = t, the same inequality holds but then W[d,t)(κ(t, .)) is zero. Setting c = a and d = t, we
get from the above majorization that W[a,t](Fr(Ψ)(t, .)) ≤ 4‖κ‖[a,b]‖Ψ‖[a,b], and since Fr(Ψ)(t, τ) =
0 for τ ≥ t we deduce that W[a,b](Fr(Ψ)(t, .)) = W[a,t](Fr(Ψ)(t, .)) is bounded, uniformly with
respect to t. Next, if we fix ε > 0 and pick η > 0 so small that W[τ,t)(κ(t, .)) ≤ ε as soon as
t− τ ≤ η (this is possible because κ ∈ K[a,b]), the same estimate yields

W[c,t)(Fr(Ψ)(t, .)) ≤ 4W[c,t)(κ(t, .))‖Ψ‖[a,b] ≤ 4 ε ‖Ψ‖[a,b], t− c ≤ η. (3.1)

Altogether, we just showed that Fr(Ψ) ∈ K[a,b]. Moreover, if we take r so large that e−rη < ε, then
either t− a ≤ η and then (3.1) with c = a gives us W[a,t)(Fr(Ψ)(t, .) ≤ 4ε‖Ψ‖[a,b], or else t− η > a
in which case (3.1) with c = t − η, together with our initial estimate when c = a and d = t − η,
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team up to produce:

W[a,t)(Fr(Ψ))(t, .) = W[a,t−η](Fr(Ψ)(t, .)) +W[t−η,t)(Fr(Ψ)(t, .))

≤ 2ε sup
τ∈[t−η,t)

W[a,t−η](Ψ(τ, .)) + 2εW[a,t−η)(κ(t, .)) sup
τ∈[a,t−τ)

W[a,t−η](Ψ(τ, .))

+ 2ε sup
[a,t]×[a,t]

|||Ψ|||W[a,t−η)(κ(t, .)) + 4ε‖Ψ‖[a,b]

≤ 2 ε ‖Ψ‖[a,b]
(
3 + 2‖κ‖[a,b]

)
. (3.2)

Consequently, as W[a,t)(Fr(Ψ)(t, .)) = W[a,t](Fr(Ψ)(t, .)) by the left continuity of Fr(Ψ)(t, .), we can
ensure upon choosing r sufficiently large that the operator Fr : K[a,b] → K[a,b] has arbitrary small
norm. Hereafter, we fix r so that |||Fr||| < λ < 1.

Now, let ρ̃0 = 0 and define inductively:

ρ̃k+1(t, β) = −e−rtκ(t, β) + Fr(ρ̃k)(t, β).

Clearly (t, β) 7→ e−rtκ(t, β) lies in K[a,b], so that ρ̃k ∈ K[a,b] for all k. Moreover, we get from what
precedes that ‖ρ̃k+1 − ρ̃k‖[a,b] ≤ λ‖ρ̃k − ρ̃k−1‖[a,b]. Thus, by the shrinking lemma, ρ̃k converges in
K[a,b] to the unique ρ̃ ∈ K[a,b] such that

ρ̃(t, β) = −e−rtκ(t, β) + Fr(ρ̃)(t, β)

= −e−rtκ(t, β) +

∫ t−

β−
e−r(t−τ)dκ(t, τ)ρ̃(τ, β), a ≤ t, β ≤ b.

(3.3)

Putting ρ(t, β) := ertρ̃(t, β), one can see that ρ lies in K[a,b] if and only if ρ̃ does, and that (3.3) is
equivalent to (2.3). This achieves the proof.

Proof Lemma 3. By Lemma 2 we know that κ has a unique resolvent, say ρ. Define y through
(2.5) so that y(a) = g(a), by inspection. Since g ∈ BVr([a, b]) and ρ(t, ·), k(t, .) lie in BVl([a, b]),
an integration by parts [9, thm. 7.5.9]6 using (2.3) along with Fubini’s theorem and the relations

6Reference [9] restricts to integration by parts over open intervals only, and we do the same at the cost of a
slightly lengthier computation.
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κ(t, α) = ρ(t, α) = 0 for α ≥ t gives us:∫ t−
a−
dκ(t, α)y(α) = (κ(t, a+)− κ(t, a))y(a) +

∫ t−
a+
dκ(t, α)y(α)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α)−

∫ t−
a+
dκ(t, α)

∫ α−
a−

dρ(α, β)g(β)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α)−

∫ t−
a+
dκ(t, α)

∫ α−
a+

dρ(α, β)g(β)

−
∫ t−
a+
dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α) +

∫ t−
a+
dκ(t, α)

∫ α−
a+

ρ(α, β)dg(β)

−
∫ t−
a+
dκ(t, α) [ρ(α, β)g(β)]β=α

−

β=a+ −
∫ t−
a+
dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α) +

∫ t−
a+

(∫ t−
β−
dκ(t, α)ρ(α, β)

)
dg(β)

+
∫ t−
a+
dκ(t, α)ρ(α, a+)g(a)−

∫ t−
a+
dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α)

+
∫ t−
a+

(
ρ(t, β) + κ(t, β)

)
dg(β) +

∫ t−
a+
dκ(t, α)ρ(α, a)g(a)

= (κ(t, a+)− κ(t, a))g(a) + [κ(t, α)g(α)]α=t
−

α=a+ +
∫ t−
a+
ρ(t, β)dg(β) +

∫ t−
a+
dκ(t, α)ρ(α, a)g(a)

= −κ(t, a)g(a) + [ρ(t, β)g(β)]β=t
−

β=a+ −
∫ t−
a+
dρ(t, β)g(β) +

∫ t−
a−
dκ(t, α)ρ(α, a)g(a)

= −κ(t, a)g(a)− ρ(t, a+)g(a)−
∫ t−
a+
dρ(t, β)g(β) +

(
κ(t, a) + ρ(t, a)

)
g(a)

= −
∫ t−
a−
dρ(t, β)g(β) = y(t)− g(t).

Thus, y is a solution to (2.4). Clearly, it is measurable, and it is also bounded since ‖ρ(t, .)‖BV ([a,b])

is bounded independently of t and g is bounded. If ỹ is another solution to (2.4) then ỹ(a) =
y(a) = g(a) by inspection, so that z := y− ỹ is a bounded measurable solution to the homogeneous
equation:

z(t) =

∫ t−

a+
dκ(t, τ)z(τ), a ≤ t ≤ b.

Pick r > 0 to be adjusted momentarily, and set z̃(t) := e−rtz(t) so that

z̃(t) =

∫ t−

a+
e−r(t−τ)dκ(t, τ)z̃(τ). (3.4)

Let η > 0 be so small that W[τ,t)(κ(t, .)) ≤ 1/4 as soon as t − τ ≤ η; this is possible because
κ ∈ K[a,b]. Then, it follows from (3.4) that for t− η > a:

|z̃(t)| ≤

∣∣∣∣∣
∫ (t−η)+

a+
e−r(t−τ)

+

dκ(t, τ)z̃(τ)

∣∣∣∣∣+

∣∣∣∣∣
∫ t−

(t−η)+
e−r(t−τ)

−
dκ(t, τ)z̃(τ)

∣∣∣∣∣
≤ 2e−rηW(a,t−η](κ(t, ·)) sup

(a,t−η]
|z̃|+ 1

2
sup

(t−η,t)
|z̃| ≤ sup

(a,t)

|z̃|
(
2e−rη‖κ‖[a,b] +

1

2

)
,

while for t − η ≤ a we simply get |z̃(t)| ≤ sup(a,t) |z̃|/2. Hence, choosing r large enough, we may
assume that |z̃(t)| ≤ λ sup(a,t) |z̃| for some λ < 1 and all t ∈ [a, b]. Thus, if we choose λ′ ∈ (λ, 1)
and t0 ∈ (a, b], we can find t1 ∈ (a, t0) such that |z̃(t1)| ≥ (1/λ′)|z̃(t0)|, and proceeding inductively
we construct a sequence (tn) in (a, t0] with |z̃(tn)| ≥ (1/λ′)n|z̃(t0)|. If we had |z̃(t0)| > 0, this
would contradict the boundedness of z̃, therefore z̃ ≡ 0 on (a, b], whence z ≡ 0 so that y = ỹ.

Proof of Theorem 1. It follows from (1.3) that α 7→ X(t, α) lies in BVloc(R) for all t and satisfies

dαX(t, α) =
N∑
j=1

Dj(t) dαX(t− τj, α) on [s, s+ τj), 1 ≤ j ≤ N. (3.5)
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Note, since α 7→ X(t, α) is left continuous (by (1.3) again) while [s, s+τj) is open on the right, that
dαX(t, α) and dαX(t−τj, α) in (3.5) coincide with (the differential of) the restrictions to [s, s+τj)
of the (matrix-valued) measures νX(t,·)|[s,s+τN )

and νX(t−τj ,·)|[s,s+τN )
, provided that t ≥ s+ τN .

Now, substituting (3.5) in (1.6) formally yields (1.1) for t ≥ s + τN . Hence, by uniqueness of
a solution y to (1.1) satisfying y(s + θ) = φ(θ) for θ ∈ [−τN , 0], it is enough to check (1.6) when
s ≤ t < s + τN . For this, we adopt the point of view of reference [1], which is to construe delay
systems as Stieltjes-Volterra equations upon representing delays by measures. More precisely, we
can rewrite (1.1) as a Lebesgue-Stieltjes integral:

y(t) =

∫ 0−

−τ−N
dµ(t, θ)y(t+ θ), t ≥ s, (3.6)

with

µ(t, θ) =
N∑
j=1

Dj(t)H(θ + τj), (3.7)

where y(τ) is understood to be φ(τ − s) when s− τN ≤ τ ≤ s and H(τ) is the Heaviside function
which is zero for τ ≤ 0 and 1 for τ > 0, so that the associated measure on an interval of the form
[0, a] or [0, a) is a Dirac delta at 0. Note that H(0) = 0, which is not the usual convention, but if
we defined H so that H(0) = 1 then expanding (3.6) using (3.7) would not give us back (1.1) for
the term DN(t)y(t − τN) would be missing. Observe also, since τj > 0 for all j, that the minus
sign in the upper bound of the integral in (3.6) is immaterial and could be traded for a plus. For
s ≤ t ≤ s+ τN , singling out the initial data in (3.6) yields

y(t) =

∫ 0−

(s−t)−
dµ(t, θ)y(t+ θ) + f(t) with f(t) :=

∫ (s−t)−

−τ−N
dµ(t, θ)φ(t+ θ − s), (3.8)

where we took into account, when separating the integrals, that θ 7→ µ(t, θ) is left continuous,
while the integral over the empty interval is understood to be zero. It will be convenient to study
(3.8) for t ∈ [s, s+τN ], even though in the end the values of y(t) only matter to us for t ∈ [s, s+τN).
Define

k(t, τ) :=

{
µ(t, τ − t)−

∑N
j=1Dj(t) for τ ∈ [s, t],

0 for τ > t,
t, τ ∈ [s, s+ τN ]. (3.9)

Note that k(t, τ) = 0 when t − τ < τ1, and dτk(t, τ) = dτµ(t, τ − t) on [s, s + τN ] for fixed t.
Hence, (3.8) becomes

y(t) =

∫ t−

s−
dk(t, τ)y(τ) + f(t), s ≤ t ≤ s+ τN . (3.10)

Now, (3.10) is the Stieltjes-Volterra equation we shall work with.
It suffices to prove (1.6) for t ∈ [s, s + τN) under the additional assumption that φ and the

Dj, which are continuous by hypothesis, also have bounded and locally bounded variation, on
[−τN , 0] and R respectively. Indeed, functions of bounded variation are dense in Cs (say, because
C1-functions are), and if {φk} converges uniformly to φ in Cs while {Dj,k} converges uniformly to
Dj in [s, s + τN ] as k → ∞, then the solution to (1.1) with initial condition φk and coefficients
Dj,k converges uniformly on [s, s+ τN ] to the solution with initial condition φ and coefficients Dj,
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as is obvious by inspection. Hence, we shall assume without loss of generality that φ has bounded
variation and the Dj have locally bounded variation. Then, since (3.7) and (3.8) imply that

f(t) =
∑

τ`∈(t−s,τN ]

D`(t)φ(t− s− τ`), (3.11)

it is clear from (3.11) and (2.2) that f ∈ BVr([s, s+ τN ]).
As H is left continuous and the Dj are bounded on [s, s + τN ], it is easy to check that k(t, τ)

defined in (3.9) is a Stieltjes-Volterra kernel of type B∞ on [s, s + τN ]× [s, s + τN ]. Let ρ denote
the resolvent of this Stieltjes-Volterra kernel; it exists thanks to Lemma 2. As f defined in (3.8)
lies in BVr([s, s+ τN ]), the solution y to (3.10) is given, in view of Lemma 3, by

y(t) = f(t)−
∫ t−

s−
dρ(t, α)f(α), s ≤ t ≤ s+ τN . (3.12)

Since ρ(t, α) = 0 when α ≥ t, the integral
∫ t−
s−

can be replaced by
∫ (s+τN )+

s−
in (3.12). Thus, putting

δt for the Dirac delta distribution at t and X̃(t, α) := H(t−α)Id+ρ(t, α) with H(τ) the “standard”
Heaviside function which is 0 for τ < 0 and 1 for τ ≥ 0, we deduce from (3.11) and (3.12), since
dαH(t− α) = −δt on [s, s+ τN ] for s ≤ t < s+ τN , that

y(t) =−
∫ (s+τN )+

s−
dX̃(t, α)f(α) =−

∫ (s+τN )+

s−
dX̃(t, α)

 ∑
τ`∈(α−s,τN ]

D`(α)φ(α− s− τ`)

, s ≤ t < s+ τN .

Rearranging, we get that

y(t) = −
N∑
j=1

∫ (s+τj)
−

s−
dX̃(t, α)Dj(α)φ(α− s− τj), s ≤ t < s+ τN ,

which is what we want (namely: formula (1.6) for s ≤ t < s+ τN) if only we can show that X̃(t, α)
coincides with X(t, α) when α ∈ [s, s + τj) for each j and every t ∈ [s, s + τN); here, X(t, α) is
defined by (1.3) where we set s = α.

For this, we first observe that X(t, α) = X̃(t, α) = 0 when α > t and that X(t, t) = X̃(t, t) = Id.
Hence, we need only consider the case α ∈ [s, t) with s < t < s+ τN . For s ≤ α < t, we get that

−k(t, α) = k(t, t−)− k(t, α) =

∫ t−

α−
dk(t, τ).

Thus, (2.3) (where κ = k) in concert with the definition of X̃(t, α) imply that

X̃(t, α) = IdH(t− α)− k(t, α) +

∫ t−

α−
dk(t, τ)ρ(τ, α) = Id +

∫ t−

α−
dk(t, τ)

(
Id + ρ(τ, α)

)
= Id +

∫ t−

α−
dk(t, τ)X̃(τ, α).
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Now, on [α, t), we compute from (3.7) and (3.9) that dτk(t, τ) =
∑

t−τj≥αDj(t)δt−τj and hence,

since X̃(t− τj, α) = 0 when α > t− τj, the previous equation becomes:

X̃(t, α) = Id +
N∑
j=1

Dj(t)X̃(t− τj, α) for s ≤ α < t and s ≤ t < s+ τN . (3.13)

Comparing (3.13) and (1.3), we see that X̃(t, α) and X(t, α) coincide on [s, s + τN)× [s, s + τN),
thereby ending the proof.
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2016, subseries in Control. doi:10.1007/978-3-319-32062-5.

[7] L. Baratchart, S. Fueyo, J.-B. Pomet, Exponential stability of periodic difference delay systems and
1-D hyperbolic PDEs of conservation laws, IFAC-PapersOnLine 55 (36) (2022) 228–233, 17th IFAC
Workshop on Time Delay Systems TDS 2022. doi:10.1016/j.ifacol.2022.11.362.

[8] J. K. Hale, Theory of functional differential equations, 2nd Edition, Applied mathematical sciences
3, Springer-Verlag, 1977.

[9] S.  Lojasiewicz, An introduction to the theory of real functions, John Wiley & Sons Inc, 1988.

[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1986.

[11] H. Brunner, Volterra integral equations: an introduction to theory and applications, Cambridge
Monographs Appl. and Computational Math., Cambridge University Press, 2017. doi:10.1017/

9781316162491.

[12] G. Gripenberg, S.-O. Londen, O. Staffans, Volterra integral and functional equations, Encyclo-
pedia of Mathematics and its Applications, Cambridge University Press, 1990. doi:10.1017/

CBO9780511662805.

11

https://doi.org/10.1007/978-1-4612-4342-7
https://doi.org/10.3934/nhm.2016010
http://hal.inria.fr/hal-02385548/
http://hal.inria.fr/hal-02385548/
https://doi.org/10.1137/19M1301795
http://hal.inria.fr/hal-02385548/
https://doi.org/10.1016/0022-0396(74)90089-8
https://hal.inria.fr/hal-03500720
https://hal.inria.fr/hal-03500720
https://hal.inria.fr/hal-03500720
https://doi.org/10.1007/978-3-319-32062-5
https://doi.org/10.1016/j.ifacol.2022.11.362
https://doi.org/10.1017/9781316162491
https://doi.org/10.1017/9781316162491
https://doi.org/10.1017/CBO9780511662805
https://doi.org/10.1017/CBO9780511662805

	Statement of the result and comments
	Summary on functions with bounded variations, Lebesgue-Stieltjes integral and Volterra integral equations with B kernel
	Functions with bounded variations and the Lebesgue-Stieltjes integral
	Volterra integral equations with kernels of type B

	Proofs

