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Integral representation formula for linear non-autonomous

difference-delay equations

L. Baratchart, S. Fueyo 1 , J.-B. Pomet

Inria, Université Côte d’Azur, Teams FACTAS and MCTAO,
2004, route des Lucioles, 06902 Sophia Antipolis, France.

Abstract

This note states and proves an integral representation formula for the continuous solutions of a
linear non-autonomous difference delay system in terms of the Lebesgue-Stieltjes integral depending
on the initial data of the system. It gives a precise and correct statement of various formulations
in the literature, and extends it to the time-varying case.
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1. Statement of the result and comments

Let us consider a linear non-autonomous difference-delay system of the form:

y(t) =
N∑
j=1

Dj(t)y(t− τj), t > s, y(s+ θ) = φ(θ) for − τN ≤ θ ≤ 0, (1.1)

where d, N are positive integers and the delays τ1 < · · · < τN are strictly positive real numbers,
while D1(t), . . . , DN(t) are complex2 d × d matrices depending continuously on time t, the real
number s ∈ R is the initial time and the function φ : [−τN , 0]→ Cd the initial data.

A solution is a map y : [s − τN ,+∞) → Cd that satisfies (1.1). Clearly, in order to get a
continuous solution, the initial data which is but the restriction of y to the interval [−τN , 0] must
satisfy a compatibility condition, namely φ should belong to the set Cs defined by

Cs := {φ ∈ C0([−τN , 0],Cd) : φ(0) =
N∑
j=1

Dj(s)φ(−τj)}; (1.2)

here and below, C0(E,F ) indicates continuous maps from E into F .
Conversely, given φ in Cs, an easy recursion shows that System (1.1) has a unique solution y

with initial data φ, and that this solution is continuous. It is customary (see e.e [1]) to express, for
various linear “functional” dynamical systems, such a general solution through a representation
integral formula involving the initial condition φ ∈ Cs and the so-called fundamental solution of

1Corresponding author.
2We treat the case where coefficients (in the matrices Dj as well as in the solutions) are taken in C; the one

where they are taken in R works exactly in the same way.
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the system. Here, the fundamental solution can be viewed as a particular non-continuous matrix-
valued solution of System (1.1), it is the unique X : R2 → Cd×d satisfying

X(t, s) =


0 for t < s,

Id +
N∑
j=1

Dj(t)X(t− τj, s) for t ≥ s.
(1.3)

Arguing inductively, it is easy to check that X uniquely exists and is continuous at each (t, s) such
that t− s /∈ F , where F is the positive lattice in [0,+∞) generated by the numbers τ`:

F :=

{
N∑
`=1

n` τ` , (n1, . . . , nN) ∈ NN

}
. (1.4)

Clearly, X has a bounded jump across each line t− s = f for f ∈ F ; in fact, a moment’s thinking
will convince the reader that

X(t, s) = −
∑

f∈ [0,t−s]∩F

Cf(t) , s ≤ t , (1.5)

where each Cf(.) is continuous R→ Cd×d (additional smoothness assumptions for the maps Dj(.)
would transfer to each Cf). One can see that Cf(t) is a finite sum of products of Dj(t− f′), where
f′ ranges over the elements of F whose defining integers n` in (1.4) do not exceed those defining
f, the empty product being the identity matrix. A precise expression for Cf can be obtained by
reasoning as in [2, Sec. 3.2] or [3, Sec. 4.5], but we will not need it.

The announced representation formula is now given by the following theorem.

Theorem 1 (representation formula). For s ∈ R and φ in Cs the solution y ∈ C0([s −
τN ,+∞),Cd) to (1.1) is

y(t) = −
N∑
j=1

∫ (s+τj)
−

s−
dαX(t, α)Dj(α)φ(α− τj − s), t ≥ s , (1.6)

where X was defined in (1.3).

The integrals
∫ (s+τj)

−

s−
in Equation (1.6) have to be understood as Lebesgue-Stieltjes integrals on

the intervals [s, s + τj). These integrals are well defined because, for fixed t, the function X(t, ·)
is locally of bounded variation. The notions of Lebesgue-Stieltjes integral and functions with
bounded variations are recalled in Section 2.

Representation formulae like (1.6) are instrumental in many instances to deal with linear func-
tional dynamical systems. It is, for instance, often the starting point to provide sufficient and nec-
essary criteria for exponential stability, working in the frequency domain with the use of Laplace
transform: in [4], or [1] or the forthcoming [5] by the authors, exponential stability is explored this
way for difference-delay system, or various functional differential equations, either time invariant
or time varying. These results, in turn, are relevant in studying the stability of 1-D hyperbolic
PDE’s, see e.g. [6, Theorem 3.5 and Theorem 3.8] and [7].

The rest of this note is organised as follows. After the remark below, a stand-alone proof of
Theorem 1 is given in Section 3, while Section 2 contains the prerequisites and preliminaries results.
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In particular, Section 2.1 gathers some needed notions on functions with bounded variations and
the Lebesgue-Stieltjes integral, that the reader might be unfamiliar with. Section 2.2 develops the
theory of Volterra integral equations of second kind with B∞ and it states existence and uniqueness
of solutions for this type of equation via the resolvent of a Stieltjes-Volterra kernel. The proofs of
the fundamental results on Volterra integral equations are given in Appendix A.

Motivation for the present note

The representation formula stated in Theorem 1 above is valid for continuous solutions of the
time-varying difference-delay System (1.1) with continuous coefficients.

We are giving a careful statement of this formula, together with a detailed proof, although
similar formulae appear in the literature for various classes of linear dynamical systems that are
not radically different from (1.1). We believe that this useful for two reasons. On the one hand
the time-varying case is not treated in the literature, and stating the formula for the time-varying
case requires some adjustments. On the other hand, and more importantly, even in the case of
linear autonomous difference-delay equations, the representation formulas that can be found in the
literature (see e.g. [4] or [8], or also [1] for more general Volterra equations) seem to have issues in
their very statement, probably due to some misprints in the indices and integral bounds3, and it
was also impossible to find a correct detailed proof of them: for instance, the proof given in [1] in
the case of general Volterra integral equations has some important gaps that require to be filled,
see the first paragraph of Section 2.2 and Footnote 4. The present note is at the same time an
attempt to overcome some inaccuracies in the literature and an extension to the non-autonomous
case.

2. Summary on functions with bounded variations, the Lebesgue-Stieltjes integral
and Volterra integral equations with B∞ kernel

Recall that the real and complex fields are denoted by R and C. For d a strictly positive integer,
we write ‖ · ‖ for Euclidean norm on Cd and |||·||| for the norm of a matrix M ∈ Cd×d:

|||M ||| = sup
‖x‖=1

‖Mx‖.

We put Id for the d× d identity matrix.

2.1. Functions with bounded variations and the Lebesgue-Stieltjes integral

For I a real interval and f : I → R a function, the total variation of f on I is defined as

WI(f) := sup
x0<x1<···<xN
xi∈I,N∈N

N∑
i=1

|f(xi)− f(xi−1)| <∞. (2.1)

The space BV (I) of functions with bounded variation on I consists of those f such thatWI(f) <∞,
endowed with the norm ‖f‖BV (I) = WI(f) + |f(d)| where d ∈ I is arbitrary but fixed. Different

3For instance, the formula in [4, Lemma 3.4], stated for time-invariant systems of the same type as (1.1) (with
possibly an infinite number of delays) does not agree with (1.6), and a test on systems with two delays will convince
the reader that it is faulty because the integration is not done in the right interval; however we can mention that
for one delay, our formula agrees with the one in [4].
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d give rise to equivalent norms for which BV (I) is a Banach space, and ‖.‖BV (I) is stronger than
the uniform norm. We let BVr(I) and BVl(I) be the closed subspaces of BV (I) comprised of right
and left continuous functions, respectively. We write BVloc(R) for the space of functions whose
restriction to any bounded interval I ⊂ R lies in BV (I). Observe that

WI(fg) ≤ WI(f) sup
x∈I
|g(x)|+WI(g) sup

x∈I
|f(x)|. (2.2)

Each f ∈ BV (I) has a limit f(x−) (resp. f(x+)) from the left (resp. right) at every x ∈ I where
the limit applies [9, sec. 1.4]. Hence, one can associate to f a finite signed Borel measure νf on
I such that νf ((a, b)) = f(b−) − f(a+), and if I is bounded on the right (resp. left) and contains
its endpoint b (resp. a), then νf ({b}) = f(b)− f(b−) (resp. f(a+)− f(a)) [9, ch. 7, pp. 185–189].
Note that different f may generate the same νf : for example if f and f1 coincide except at isolated
interior points of I, then νf = νf1 . For g : I → R a measurable function, summable against νf , the
Lebesgue-Stieltjes integral

∫
gdf is defined as

∫
gdνf , whence the differential element df identifies

with dνf [9, ch. 7, pp. 190–191]. This type of integral is useful for it is suggestive of integration by
parts, but caution must be used when integrating a function with respect to df over a subinterval
J ⊂ I because ν(f|J ) needs not coincide with the restriction (νf )|J of νf to J . More precisely, if
the lower bound a (resp. the upper bound b) of J belongs to J and lies interior to I, then the two
measures may differ by the weight they put on {a} (resp. {b}), and they agree only when f is left
(resp. right) continuous at a (resp. b). By

∫
J
gdf , we always mean that we integrate g against ν(f|J )

and not against (νf )|J . We often —e.g. in the main formula (1.6)— trade the notation
∫
J
gdf for

one of the form
∫ b±
a±
gdf , where the interval of integration J is encoded in the bounds put on the

integral sign: a lower bound a− (resp. a+) means that J contains (resp. does not contain) its lower
bound a, while an upper bound b+ (resp. b−) means that J contains (resp. does not contain) its
upper bound b. Then, the previous word of caution applies to additive rules: for example, when

splitting
∫ b±
a±
gdf into

∫ c±
a±
gdf +

∫ b±
c±
gdf where c ∈ (a, b), we must use c+ (resp. c−) if f is right

(resp. left) continuous at c.
To a finite, signed or complex Borel measure µ on I, one can associate its total variation

measure |µ|, defined on a Borel set B ⊂ I by |µ|(B) = supP
∑

E∈P |µ(E)| where P ranges over all
partitions of B into Borel sets, see [10, sec. 6.1]; its total mass |µ|(I) is called the total variation
of µ, denoted as ‖µ‖. Thus, the total variation is defined both for functions of bounded variation
and for measures, with different meanings. When f ∈ BV (I) is monotonic then WI(f) = ‖νf‖,
but in general it only holds that ‖νf‖ ≤ 2WI(f); this follows from the Jordan decomposition of
f as a difference of two increasing functions, each of which has variation at most WI(f) on I [9,
Thm. 1.4.1]. In any case, it holds that |

∫
gdf | ≤

∫
|g|d|νf | ≤ 2WI(f) supI |g|.

The previous notations and definitions also apply to vector and matrix-valued functions BV -
functions, replacing absolute values in (2.1) by Euclidean and matricial norms, respectively.

2.2. Volterra integral equations with kernels of type B∞

Volterra equations for functions of a single variable have been studied extensively, see e.g. [11, 12].
However, the specific assumption that the kernel has bounded variation seems treated somewhat
tangentially. On the one hand, it is subsumed in the measure-valued case presented in [12, Ch.
10], but no convenient criterion is given there for the existence of a resolvent kernel. On the other
hand, [1, Ch. 9, Sec. 1] sketches the main arguments needed to handle kernels of bounded variation,
but the exposition has issues4.

4 For example, the equation satisfied by ρ̃(t, s) at top of page 258 is not right.
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We define a Stieltjes-Volterra kernel of type B∞ on [a, b] × [a, b] as a measurable function
κ : [a, b] × [a, b] → Rd×d, with κ(t, τ) = 0 for τ ≥ t, such that the partial maps κ(t, .) lie in
BVl([a, b]) and ‖κ(t, .)‖BV ([a,b]) is uniformly bounded with respect to t ∈ [a, b]. In addition, we
require that limτ→t−W[τ,t)(κ(t, .)) = 0 uniformly with respect to t; i.e., to every ε > 0, there exists
η > 0 such that W[τ,t)(κ(t, .)) < ε as soon as 0 < t − τ < η. Note that W[τ,t)(κ(t, .)) → 0 for
fixed t as τ → t− whenever κ(t, .) has bounded variation on [a, b], by the very definition (2.1); so,
the assumption really is that the convergence is uniform with respect to t. Hereafter, we drop the
qualifier “of type B∞” and simply speak of Stieltjes-Volterra kernels on [a, b]. We endow the space
K[a,b] of such kernels with the norm ‖κ‖[a,b] := supt∈[a,b] ‖κ(t, .)‖BV ([a,b]). If κk is a Cauchy sequence

in K[a,b], then κk converges uniformly on [a, b]× [a, b] to a Rd×d-valued function κ because

|||κk(t, τ)− κl(t, τ)||| = |||(κk(t, τ)− κl(t, τ))− (κk(t, t)− κl(t, t))||| ≤ ‖κk(t, .)− κl(t, .)‖BV ([a,b]).

Clearly, κ is measurable and left continuous for fixed t with κ(t, τ) = 0 for τ ≥ t. Also, if m is so
large that ‖κk − κl‖[a,b] < ε for k, l ≥ m and η > 0 so small that W[τ,t)(κm) < ε when t − τ < η,
we get that W[τ,t)(κl) ≤ W[τ,t)(κm) +W[τ,t)(κm − κl) < 2ε, and letting l→∞ we get from [9, thm.
1.3.5] that W[τ,t)(κ) ≤ 2ε. Furthermore, the same reference implies that ‖κ‖[a,b] ≤ supk ‖κk‖[a,b] so
that κ ∈ K[a,b]. Finally, writing that W[a,b](κk(t, .)−κl(t, .)) < ε and passing to the limit as l→∞,
we see that limk ‖κk − κ‖[a,b] = 0, whence K[a,b] is a Banach space. Note that a Stieltjes-Volterra
kernel κ is necessarily bounded with sup[a,b]×[a,b] |||κ(t, τ)||| ≤ ‖κ‖[a,b].

A resolvent for the Stieltjes-Volterra kernel κ on [a, b]× [a, b] is a Stieltjes-Volterra kernel ρ on
[a, b]× [a, b] satisfying

ρ(t, β) = −κ(t, β) +

∫ t−

β−
dκ(t, τ)ρ(τ, β), a ≤ t, β ≤ b. (2.3)

The following two lemmata are the technical core of this paper. The first one states that any
Stieltjes-Volterra kernel has a unique resolvent. The second one states existence and uniqueness
of solutions of Stieltjes-Volterra equations, together with its formula in terms of the resolvent.

Lemma 2. If κ is a Stieltjes-Volterra kernel on [a, b]× [a, b], a resolvent for κ uniquely exists.

Lemma 3. Let κ be a Stieltjes-Volterra kernel on [a, b] × [a, b] and ρ its resolvent. For each
Rd-valued function g ∈ BVr([a, b]), the unique bounded measurable solution to the equation

y(t) =

∫ t−

a−
dκ(t, τ)y(τ) + g(t), a ≤ t ≤ b, (2.4)

is given by

y(t) = g(t)−
∫ t−

a−
dρ(t, α)g(α), a ≤ t ≤ b. (2.5)

The proofs of Lemma 2 and Lemma 3 are given in Appendix A. To achieve the proof of
Theorem 1, we will frame the difference delay equations into a Stieltjes-Volterra integral equation
with a B∞ kernel.
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3. Proof of Theorem 1

Observe from (1.3) that α 7→ X(t, α) lies in BVloc(R) for all t. In particular, α 7→ X(t, α) has
bounded variation on [s, s+ τj] for each j, and for t ≥ s+ τN we have that

dαX(t, α) =
N∑
j=1

Dj(t) dαX(t− τj, α) on [s, s+ τN ]. (3.1)

Then, substituting (3.1) in (1.6) formally yields (1.1), provided that t ≥ s + τN . Hence, by
uniqueness of a solution y to (1.1) satisfying y(s + θ) = φ(θ) for θ ∈ [−τN , 0], it is enough to
check (1.6) for s ≤ t < s + τN . For this, we adopt the point of view of reference [1], which is to
construe delay systems as Stieltjes-Volterra equations upon representing delays by measures. More
precisely, we can rewrite (1.1) as a Lebesgue-Stieltjes integral:

y(t) =

∫ 0−

−τ−N
dµ(t, θ)y(t+ θ), t ≥ s, (3.2)

with

µ(t, θ) =
N∑
j=1

Dj(t)H(θ + τj), (3.3)

where y(τ) is understood to be φ(τ − s) when s− τN ≤ τ ≤ s and H(τ) is the Heaviside function
which is zero for τ ≤ 0 and 1 for τ > 0, so that the associated measure on an interval of the form
[0, a] or [0, a) is a Dirac delta at 0. Note that H(0) = 0, which is not the usual convention, but if
we defined H so that H(0) = 1 then expanding (3.2) using (3.3) would not give us back (1.1) for
the term DN(t)y(t − τN) would be missing. Observe also, since τj > 0 for all j, that the minus
sign in the upper bound of the integral in (3.2) is immaterial and could be traded for a plus. For
s ≤ t ≤ s+ τN , singling out the initial data in (3.2) yields

y(t) =

∫ 0−

(s−t)−
dµ(t, θ)y(t+ θ) + f(t) with f(t) :=

∫ (s−t)−

−τ−N
dµ(t, θ)φ(t+ θ − s), (3.4)

where we took into account, when separating the integrals, that θ 7→ µ(t, θ) is left continuous,
while the integral over the empty interval is understood to be zero. It will be convenient to study
(3.4) for t ∈ [s, s+τN ], even though in the end the values of y(t) only matter to us for t ∈ [s, s+τN).
Define

k(t, τ) :=

{
µ(t, τ − t)−

∑N
j=1Dj(t) for τ ∈ [s, t],

0 for τ > t,
t, τ ∈ [s, s+ τN ]. (3.5)

Note that k(t, τ) = 0 when t − τ < τ1, and dτk(t, τ) = dτµ(t, τ − t) on [s, s + τN ] for fixed t.
Hence, (3.4) becomes

y(t) =

∫ t−

s−
dk(t, τ)y(τ) + f(t), s ≤ t ≤ s+ τN . (3.6)

Now, (3.6) is the Stieltjes-Volterra equation we shall work with.
It suffices to prove (1.6) for t ∈ [s, s+ τN) under the additional assumption that φ and the Dj,

which are continuous by hypothesis, also have bounded and locally bounded variation, on [−τN , 0]
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and R respectively. Indeed, functions of bounded variation are dense in Cs , for instance because
C1-functions are, and if φk converges uniformly to φ in Cs while Dj,k converges uniformly to Dj

in [s, s + τN ] as k → ∞, then the solution to (1.1) with initial condition φk and coefficients Dj,k

converges uniformly on [s, s + τN ] to the solution with initial condition φ and coefficients Dj, as
is obvious by inspection. Hence, we shall assume without loss of generality that φ has bounded
variation and the Dj have locally bounded variation. Then, since it follows from (3.3) and (3.4)
that

f(t) =
∑

τ`∈(t−s,τN ]

D`(t)φ(t− s− τ`), (3.7)

it is clear from (3.7) and (2.2) that f ∈ BVr([s, s+ τN ]).
As H is left continuous and the Dj are bounded, on [s, s + τN ], it is easy to check that k(t, τ)

defined in (3.5) is a Stieltjes-Volterra kernel on [s, s + τN ] × [s, s + τN ]. Thanks to Lemma 2, let
ρ denote the resolvent of the Stieltjes-Volterra kernel k on [s, s+ τN ]× [s, s+ τN ] defined in (3.5).
As f defined in (3.4) lies in BVr([s, s+ τN ]), the solution y to (3.6) is given, in view of Lemma 3,
by

y(t) = f(t)−
∫ t−

s−
dρ(t, α)f(α), s ≤ t ≤ s+ τN . (3.8)

Since ρ(t, α) = 0 when α ≥ t, the integral
∫ t−
s−

can be replaced by
∫ (s+τN )+

s−
in (3.8). Thus,

setting δt the Dirac delta distribution at t and X̃(t, α) := IdH(t − α) + ρ(t, α) with H(τ) the
“standard” Heaviside function which is 0 for τ < 0 and 1 for τ ≥ 0, we deduce from (3.7), since
dαH(t− α) = −δt on [s, s+ τN ] for s ≤ t < s+ τN , that

y(t) =−
∫ (s+τN )+

s−
dX̃(t, α)f(α) =−

∫ (s+τN )+

s−
dX̃(t, α)

 ∑
τ`∈(α−s,τN ]

D`(α)φ(α− s− τ`)

, s ≤ t < s+ τN .

Rearranging, we get that

y(t) = −
N∑
j=1

∫ (s+τj)
−

s−
dX̃(t, α)Dj(α)φ(α− s− τj), s ≤ t < s+ τN ,

which is what we want (namely: formula (1.6) for s ≤ t < s+ τN) if only we can show that X̃(t, α)
coincides with X(t, α) when α ∈ [s, s + τj) for each j and every t ∈ [s, s + τN); here, X(t, α) is
defined by (1.3) where we set s = α.

For this, we first observe that X(t, α) = X̃(t, α) = 0 when α > t and that X(t, t) = X̃(t, t) = Id.
Hence, we need only consider the case α ∈ [s, t) with s < t < s+ τN . For s ≤ α < t, we get that

−k(t, α) = k(t, t−)− k(t, α) =

∫ t−

α−
dk(t, τ).

Thus, (2.3) (where κ = k) in concert with the definition of X̃(t, α) imply that

X̃(t, α) = IdH(t− α)− k(t, α) +

∫ t−

α−
dk(t, τ)ρ(τ, α) = Id +

∫ t−

α−
dk(t, τ)

(
Id + ρ(τ, α)

)
= Id +

∫ t−

α−
dk(t, τ)X̃(τ, α).
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Now, on [α, t), we compute from (3.3) and (3.5) that dτk(t, τ) =
∑

t−τj≥αDj(t)δt−τj and hence,

since X̃(t− τj, α) = 0 when α > t− τj, the previous equation becomes:

X̃(t, α) = Id +
N∑
j=1

Dj(t)X̃(t− τj, α) for s ≤ α < t and s ≤ t < s+ τN . (3.9)

Comparing (3.9) and (1.3), we see that X̃(t, α) and X(t, α) coincide on [s, s + τN) × [s, s + τN),
thereby ending the proof.
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Appendix A.

This appendix is devoted to the proofs of Lemma 2 and Lemma 3.

Appendix A.1. Proof Lemma 2

Pick r > 0 to be adjusted later, and for Ψ ∈ K[a,b] let us define

Fr(Ψ)(t, β) :=

∫ t−

β−
e−r(t−τ)dκ(t, τ)Ψ(τ, β), a ≤ β, t ≤ b.

Then, Fr(Ψ)(t, β) = 0 for β ≥ t, and for a ≤ β1 < β2 < t we have that

Fr(Ψ)(t, β2)−Fr(Ψ)(t, β1) =

∫ t−

β−2

e−r(t−τ)dκ(t, τ) (Ψ(τ, β2)−Ψ(τ, β1))−
∫ β−2

β−1

e−r(t−τ)dκ(t, τ)Ψ(τ, β1),

where we used that κ(t, .) is left continuous to assign the lower (resp. upper) bound β−2 to the first
(resp. second) integral in the above right hand side. Now, the first integral goes to 0 as β1 → β2 by
dominated convergence, since Ψ(t, .) is left-continuous; the second integral also goes to 0, because
|νκ(t,.)|([β1, β2))→ 0 when β1 → β2, by standard properties of finite measures. Altogether, we see
that Fr(Ψ)(t, .) is left-continuous. Moreover, for [c, d] ⊂ [a, t) and c = β0 < β1 < · · · < βN = d,

N∑
i=1

|||Fr(Ψ)(t, βi)− Fr(Ψ)(t, βi−1)|||

≤
N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ t−

β−i

e−r(t−τ) dκ(t, τ) (Ψ(τ, βi)−Ψ(τ, βi−1))

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣+

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∫ β−i

β−i−1

e−r(t−τ)dκ(t, τ)Ψ(τ, βi−1)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

≤
N∑
i=1

∫ t−

β−i

e−r(t−τ) d|νκ(t,.)| |||(Ψ(τ, βi)−Ψ(τ, βi−1))|||+
N∑
i=1

∫ β−i

β−i−1

e−r(t−τ) d|νκ(t,.)| |||Ψ(τ, βi−1)|||

≤
∫ t−

d−
d|νκ(t,.)|

N∑
i=1

|||(Ψ(τ, βi)−Ψ(τ, βi−1))|||

+ e−r(t−d)
∫ d−

c−
d|νκ(t,.)|

N∑
i=1

|||(Ψ(τ, βi)−Ψ(τ, βi−1))|||+ sup
[a,t]×[a,t]

|||Ψ|||
∫ d−

c−
e−r(t−τ)d|νκ(t,.)|

≤ 2W[d,t)(κ(t, .)) sup
τ∈[d,t)

W[c,d](Ψ(τ, .))

+ 2 e−r(t−d)W[c,d)(κ(t, .)) sup
τ∈[c,d)

W[c,d](Ψ(τ, .)) + 2 e−r(t−d) sup
[a,t]×[a,t]

|||Ψ||| W[c,d)(κ(t, .)).

When d = t, the same inequality holds but then W[d,t)(κ(t, .)) is zero. Setting c = a and d = t, we
get from the above majorization that W[a,t](Fr(Ψ)(t, .)) ≤ 4‖κ‖[a,b]‖Ψ‖[a,b], and since Fr(Ψ)(t, τ) =
0 for τ ≥ t we deduce that W[a,b](Fr(Ψ)(t, .)) = W[a,t](Fr(Ψ)(t, .)) is bounded, uniformly with
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respect to t. Next, if we fix ε > 0 and pick η > 0 so small that W[τ,t)(κ(t, .)) ≤ ε as soon as
t− τ ≤ η (this is possible because κ ∈ K[a,b]), the same estimate yields

W[c,t)(Fr(Ψ)(t, .)) ≤ 4W[c,t)(κ(t, .))‖Ψ‖[a,b] ≤ 4 ε ‖Ψ‖[a,b], t− c ≤ η. (A.1)

Altogether, we just showed that Fr(Ψ) ∈ K[a,b]. Moreover, if we take r so large that e−rη < ε, then
either t− a ≤ η and then (A.1) with c = a gives us W[a,t)(Fr(Ψ)(t, .) ≤ 4ε‖Ψ‖[a,b], or else t− η > a
in which case (A.1) with c = t − η, together with our initial estimate when c = a and d = t − η,
team up to produce:

W[a,t)(Fr(Ψ))(t, .) = W[a,t−η](Fr(Ψ)(t, .)) +W[t−η,t)(Fr(Ψ)(t, .))

≤ 2ε sup
τ∈[t−η,t)

W[a,t−η](Ψ(τ, .)) + 2εW[a,t−η)(κ(t, .)) sup
τ∈[a,t−τ)

W[a,t−η](Ψ(τ, .))

+ 2ε sup
[a,t]×[a,t]

|||Ψ|||W[a,t−η)(κ(t, .)) + 4ε‖Ψ‖[a,b]

≤ 2 ε ‖Ψ‖[a,b]
(
3 + 2‖κ‖[a,b]

)
. (A.2)

Consequently, as W[a,t)(Fr(Ψ)(t, .)) = W[a,t](Fr(Ψ)(t, .)) by the left continuity of Fr(Ψ)(t, .), we can
ensure upon choosing r sufficiently large that the operator Fr : K[a,b] → K[a,b] has arbitrary small
norm. Hereafter, we fix r so that |||Fr||| < λ < 1.

Now, let ρ̃0 = 0 and define inductively:

ρ̃k+1(t, β) = −e−rtκ(t, β) + Fr(ρ̃k)(t, β).

Clearly (t, β) 7→ e−rtκ(t, β) lies in K[a,b], so that ρ̃k ∈ K[a,b] for all k. Moreover, we get from what
precedes that ‖ρ̃k+1 − ρ̃k‖[a,b] ≤ λ‖ρ̃k − ρ̃k−1‖[a,b]. Thus, by the shrinking lemma, ρ̃k converges in
K[a,b] to the unique ρ̃ ∈ K[a,b] such that

ρ̃(t, β) = −e−rtκ(t, β) + Fr(ρ̃)(t, β)

= −e−rtκ(t, β) +

∫ t−

β−
e−r(t−τ)dκ(t, τ)ρ̃(τ, β), a ≤ t, β ≤ b.

(A.3)

Putting ρ(t, β) := ertρ̃(t, β), one can see that ρ lies in K[a,b] if and only if ρ̃ does, and that (A.3) is
equivalent to (2.3). This achieves the proof. �

Appendix A.2. Proof Lemma 3

The fact that κ possesses a unique resolvent ρ comes from Lemma 2. Define y through (2.5)
so that y(a) = g(a), by inspection. Since g ∈ BVr([a, b]) and ρ(t, ·), k(t, .) lie in BVl([a, b]),
integrating by parts [9, thm. 7.5.9]5 while using (2.3) along with Fubini’s theorem and the relations

5This reference deals with open intervals only, and we stick to this case at the cost of a slightly lengthier
computation
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κ(t, α) = ρ(t, α) = 0 for α ≥ t, we get that∫ t−
a−
dκ(t, α)y(α) = (κ(t, a+)− κ(t, a))y(a) +

∫ t−
a+
dκ(t, α)y(α)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α)−

∫ t−
a+
dκ(t, α)

∫ α−
a−

dρ(α, β)g(β)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α)−

∫ t−
a+
dκ(t, α)

∫ α−
a+

dρ(α, β)g(β)

−
∫ t−
a+
dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α) +

∫ t−
a+
dκ(t, α)

∫ α−
a+

ρ(α, β)dg(β)

−
∫ t−
a+
dκ(t, α) [ρ(α, β)g(β)]β=α

−

β=a+ −
∫ t−
a+
dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α) +

∫ t−
a+

(∫ t−
β−
dκ(t, α)ρ(α, β)

)
dg(β)

+
∫ t−
a+
dκ(t, α)ρ(α, a+)g(a)−

∫ t−
a+
dκ(t, α)(ρ(α, a+)− ρ(α, a))g(a)

= (κ(t, a+)− κ(t, a))g(a) +
∫ t−
a+
dκ(t, α)g(α)

+
∫ t−
a+

(
ρ(t, β) + κ(t, β)

)
dg(β) +

∫ t−
a+
dκ(t, α)ρ(α, a)g(a)

= (κ(t, a+)− κ(t, a))g(a) + [κ(t, α)g(α)]α=t
−

α=a+ +
∫ t−
a+
ρ(t, β)dg(β) +

∫ t−
a+
dκ(t, α)ρ(α, a)g(a)

= −κ(t, a)g(a) + [ρ(t, β)g(β)]β=t
−

β=a+ −
∫ t−
a+
dρ(t, β)g(β) +

∫ t−
a−
dκ(t, α)ρ(α, a)g(a)

= −κ(t, a)g(a)− ρ(t, a+)g(a)−
∫ t−
a+
dρ(t, β)g(β) +

(
κ(t, a) + ρ(t, a)

)
g(a)

= −
∫ t−
a−
dρ(t, β)g(β) = y(t)− g(t).

Thus, y is a solution to (2.4). Clearly, it is measurable, and it is also bounded since ‖ρ(t, .)‖BV ([a,b])

is bounded independently of t and g is bounded. If ỹ is another solution to (2.4) then ỹ(a) =
y(a) = g(a) by inspection, so that z := y− ỹ is a bounded measurable solution to the homogeneous
equation:

z(t) =

∫ t−

a+
dκ(t, τ)z(τ), a ≤ t ≤ b.

Pick r > 0 to be adjusted momentarily, and set z̃(t) := e−rtz(t) so that

z̃(t) =

∫ t−

a+
e−r(t−τ)dκ(t, τ)z̃(τ). (A.4)

Let η > 0 be so small that W[τ,t)(κ(t, .)) ≤ 1/4 as soon as t − τ ≤ η; this is possible because
κ ∈ K[a,b]. Then, it follows from (A.4) that for t− η > a:

|z̃(t)| ≤

∣∣∣∣∣
∫ (t−η)+

a+
e−r(t−τ)

+

dκ(t, τ)z̃(τ)

∣∣∣∣∣+

∣∣∣∣∣
∫ t−

(t−η)+
e−r(t−τ)

−
dκ(t, τ)z̃(τ)

∣∣∣∣∣
≤ 2e−rηW(a,t−η](κ(t, ·)) sup

(a,t−η]
|z̃|+ 1

2
sup

(t−η,t)
|z̃| ≤ sup

(a,t)

|z̃|
(
2e−rη‖κ‖[a,b] +

1

2

)
,

while for t − η ≤ a we simply get |z̃(t)| ≤ sup(a,t) |z̃|/2. Hence, choosing r large enough, we may
assume that |z̃(t)| ≤ λ sup(a,t) |z̃| for some λ < 1 and all t ∈ [a, b]. Thus, if we choose λ′ ∈ (λ, 1)
and t0 ∈ (a, b], we can find t1 ∈ (a, t0) such that |z̃(t1)| ≥ (1/λ′)|z̃(t0)|, and proceeding inductively
we construct a sequence (tn) in (a, t0] with |z̃(tn)| ≥ (1/λ′)n|z̃(t0)|. If we had |z̃(t0)| > 0, this
would contradict the boundedness of z̃, therefore z̃ ≡ 0 on (a, b], whence z ≡ 0 so that y = ỹ. �
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