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ABSTRACT Evacuating the population during crises to safe zones via optimal paths is vital. The evacuation
planning process makes twomain decisions: which shelter to reach andwhich path to take towards the chosen
shelter. These decisions correspond to shelter allocation and traffic assignment problems, respectively. Many
studies tackled these problems with a static formulation in the literature, while only a few considered a
dynamic context. We conduct a comprehensive literature review and highlight that most studies indepen-
dently solve these two problems while both are correlated with traffic conditions. To fill this gap, we propose
a new framework to couple the shelter allocation problem (SAP) and the dynamic traffic assignment (DTA)
problem and solve them. To capture traffic dynamics, we use a dynamic agent-based simulator. We assume
the system determines the evacuees’ shelters to minimize the total evacuation time. However, each evacuee’s
concern is reaching a shelter as fast as possible. Therefore, we formulate the DTA problem under stochastic
user equilibrium (SUE) principles, i.e., every evacuee aims to minimize his own perceived travel time.
We apply the proposed methodology to the network of Luxembourg City and compare its performance with
other advancedmethods that solve SAP andDTA separately. The comparison shows that solving the dynamic
shelter allocation improves the mean evacuation time and significantly decreases the network clearance time
compared to other methods with a fixed plan for SAP. The simulation results prove that considering the
network state in the SAP can provide a more effective evacuation plan. Moreover, we perform a sensitivity
analysis on optimization parameters and evaluate the computation cost of our methodology.

INDEX TERMS Network evacuation, disaster management, shelter allocation, dynamic traffic assignment.

I. INTRODUCTION
Natural disasters and catastrophes endanger the lives of peo-
ple in devastated areas. Evacuating people from those areas
to safe places or shelters is a feasible solution to decrease
or avoid enormous losses [1], [2]. Order and guidance are
crucial and decisive to running this process effectively and
safely managing the evacuation process [3]. There are two
main information pieces that each evacuee should have dur-
ing the evacuation process: (i) the destination (shelter) and
(ii) the route toward that shelter. Both information pieces are
obtained by solving shelter allocation and traffic assignment,
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respectively. Each problem can follow different principles.
We can categorize the models based on their principles into
three groups [1], [4]: the first addresses the problem of the
evacuation process considering the user equilibrium (UE).
The second models the evacuation as a system optimal (SO)
problem. The third model uses the nearest allocation (NA)
approach. These models differ mainly in their objective func-
tion. In the UE model, each traveler aims to minimize his
benefit by minimizing his own cost. In other words, this prin-
ciple assumes that the users are perfectly informed, rational
and behave selfishly. The SO principle aims to optimize the
total benefit of all evacuees. To this end, evacuees may not
be assigned to shelters or routes that maximize their own
benefits but shelters or routes that optimize the overall system
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benefit. This principle can be difficult to get people to accept,
especially in evacuation situations. To minimize the total
traveled distance, the NA approach assigns evacuees to the
closest shelter in terms of traveling distance between ori-
gins (hazardous zones) and destinations (safe nodes). Such a
model could not provide supportable results for both evacuees
and system operators [5].

Multiple indicators are applied in the literature to identify
and quantify the solution provided by these models. Here,
we mention the most common measures in developing evac-
uation models. Most studies aim to minimize the following
indicators:
• Network clearance time: It is defined as the arrival time
of the last evacuee to the shelter or safety zone [6], [7],
[8].

• Total evacuation time: It denotes the sum of the evacua-
tion time of all evacuees [5], [9], [10].

• Total traveled distance: It is the sum of all trip lengths
traveled by all evacuees during the evacuation [11], [12].

The UE or SO route choice approach is represented for-
mally as a traffic assignment problem. The problem could
be classified into two main categories: static and dynamic
models. Static traffic assignment (STA) models determine
the number of vehicles selecting each route between origins
and destinations for the demand profile. However, solving the
problem of traffic assignment in a static setting cannot capture
the changes in the number of vehicles on routes over time.
The dynamic traffic assignment (DTA) problem generalizes
the static setting to determine at each time instant the flow on
each route over the study period [13]. Although static mod-
els are used for planning purposes, they cannot accurately
describe congestion and do not model spillbacks [14]. DTA
aims to determine the relationship between routes, time, and
network characteristics. It can produce stable and meaningful
solutions, which are crucial for practical applications [15].
Traffic assignment models could also be seen as trip-based or
flow-based models. Flow-based models aim at determining
the vehicular flow on each route, while trip-based models’
objective is to specify the number of travelers (particles)
on each route, making the traffic assignment problem more
challenging to solve because of the discrete setting [16].
We conduct a comprehensive literature review on all static
and dynamic traffic assignment models used in evacuation
problems, either flow-based or trip-based.

This study investigates the state of the art of population
evacuation management to identify the gaps in providing
an effective evacuation plan. Based on the review results,
we highlight the research gap in coupling the two main
challenges of evacuation problems, i.e., shelter allocation
and traffic assignment. Thus, we design a framework that
couples both shelter allocation and traffic assignment in a
dynamic context to consider the traffic conditions. We solve
SAP following a linear formulation of the shelter alloca-
tion, considering the number of opened shelters and their
capacity. In addition, we deploy the SUMO simulator [17]
to address the simulation-based DTA problem. We calculate

multiple metrics to measure the quality of the framework
and compare the methodology with existing models in the
literature. We also establish multiple scenarios to look for
the best optimization setting through sensitivity analysis.
Finally, we apply the proposed model to the real test case of
Luxembourg City.

Regarding the objectives of the evacuation process, the
ultimate goal is to evacuate all people from hazardous zones
as fast as possible. In other words, we are looking for a min-
imal network clearance time, considering the evacuees’ util-
ities. We consider the SO objective for the shelter allocation
without considering any attraction or individual preferences
to shelter as evacuees have no information about these shel-
ters [18]. We have also chosen Stochastic User Equilibrium
(SUE) as the assignment principle to consider the hetero-
geneity in the users’ decision-making process. In addition,
UE is the special case of SUE in which users have no error
in their decision-making process, i.e., users have a perfect
knowledge of the network, which is not the case during an
emergency period. Thus, we take into account this error with
the SUE formulation. We consider two types of decisions that
could be conflicting, SO for shelter allocation and SUE for
traffic assignment. We compare the results of the proposed
method with already used methods by multiple performance
measures: mean evacuation time, network clearance time, and
average travel delay. We also propose a new measure called
average evacuation travel delay. It is noteworthy that our
method considers a generic concept of risky areas following
most of the models proposed in the literature, i.e., the model
is independent of the hazard type [19].

The rest of the paper is organized as follows. The following
section reviews the literature on network evacuation prob-
lems, focusing on shelter allocation and traffic assignment.
Then, it highlights our contributions. Section III presents
our framework and mathematical formulations. Section IV
presents the case studies, optimization scenarios, and numeri-
cal results. We discuss the results in subsection IV-C, and we
perform a sensitivity analysis on both convergence metrics
and planning and optimization intervals in subsection IV-E.
Afterward, we apply the framework to a real case scenario
(subsection IV-F) using the best setting resulting from sen-
sitivity analysis. We discuss the results, and we provide
concluding remarks in Section V.

II. LITERATURE REVIEW AND CONTRIBUTIONS
This section reviews the related works to the population
evacuation problem in static and dynamic contexts. It reviews
studies that use STA formulation for evacuation problems and
then presents all studies in the dynamic context. Table 1 illus-
trates the results of the literature review. Here, we present the
most advanced methodologies for the evacuation problem.

Many studies using STA models applied bi-level opti-
mization to address SAP and traffic assignment problems
with different objective functions [20]. The upper level for-
mulates the shelter location-allocation problem to optimize
the system’s objectives, and the lower level represents the
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traffic assignment in a static setting following the evacuee’s
interests. [21] used a p-median model to solve the problem of
shelter site selection with a traffic assignment model under
the SO principle and deployed a heuristic algorithm. [22]
proposed a model to study the effect of shelter locations
on evacuation management, taking into consideration the
interest of system operators and evacuees. At the upper level,
they defined the objective to minimize the total network
evacuation time based on shelter allocation. The lower level
represented the UE model that aims to minimize the indi-
vidual travel time of each evacuee. The authors have solved
the problem with a version of the genetic algorithm. [23]
used the same formulation and solved the problem with a
simulated annealing algorithm. [24] presented a scenario-
based model. The upper level is a two-stage model. In the
first stage, they determine the shelter location, and in the
second stage, they choose the selected shelters, considering
the hurricane conditions. They solve the STA problem at the
lower level using the Lagrangian relaxation algorithm. [25]
proposed a hybrid model based on scenarios in the central
area of Beijing. The upper level makes location-allocation
decisions such that the total evacuation distance is minimized
subject to capacity and distance constraints. The lower-level
model minimized the individual evacuation distance. They
have used a modified particle swarm optimization algorithm
with simulated annealing heuristics.

As mentioned in Section I, the main drawback of STA
models is that they cannot capture the evolving state of traffic
conditions [26]. In addition, the solution is calculated by
heuristic methods due to the complexity of the bi-level for-
mulation. Before reviewing the dynamic studies, we present
recent studies that formulate the evacuation process as a
single-level optimization problem. [5] formulated the evac-
uation problem as a single-level non-linear mixed-integer
program. They have proposed a scenario-based approach to
minimize the total evacuation time. The decision variables
considered in this study are both shelter selection and route
assignment variables. The authors propose an exact method
based on second-order conic programming to solve the prob-
lem. They applied the methodology to a realistic Istanbul
traffic network test case. In [10], they revised the formulation
and solved it with Bender’s decomposition approach. Note
that many other studies in the literature addressed only one of
the problems, either STA or SAP, for the evacuation problem
(see Table 1).

To formulate the evacuation problem dynamically, mul-
tiple time-dependent variables should be considered, and
consistent assumptions should be made. Due to this diffi-
culty, many studies formulated population evacuation solving
only one sub-problem in a dynamic context, either DTA or
dynamic shelter allocation. For instance, [7] used DYNAS-
MART simulator [27] to address the traffic conditions in
the evacuation process with a given risky zone and shelter
allocation plan. [28] coupled simulation and optimization to
create an evacuation plan. They considered multiple stages
for the iWays simulator with arc capacity penalties to simulate

vehicles in departure time intervals. The model aims to mini-
mize the total evacuation time and the sum of the arcs penal-
ties. Besides, [29] came up with a multi-period optimization
method including a status variable for the available network
capacity, called productivity. They have used the TRANSIMS
simulator to represent the evacuation process and solve the
network UE problem. However, [30] confirmed that TRAN-
SIMS had not received good exposure, and its capabilities are
unknown to many researchers in the transportation field. [31]
have used Matsim to solve simulation-based DTA consider-
ing UE conditions of the problem. Authors considered the
city of north New Jersey and only one type of hazard (Hur-
ricane). Note that all of the abovementioned research stud-
ies used given shelter allocation and performed only traffic
assignment or solved DTA and SAP separately. This study
aims to fill this research gap by combining and solving both
simulation-based DTA and SAP.

Table 1 presents the characteristics of the evacuation
planning method of 36 studies. We define seven categories to
classify the papers. Some papers formulated the problem of
shelter allocation as a facility locationmodel by deciding how
to allocate evacuees to shelters. Some other studies consid-
ered the traffic assignment problem only or with a given shel-
ter allocation plan to decide the path distribution toward the
destinations (shelters). When considering the traffic assign-
ment sub-problem, we should also decide on multiple other
factors, such as the static or dynamic setting of the problem
and the analytical or simulation-based nature of the solving.
In addition, we should decide on whether to assume the
super sink principal or not. A super sink is an artificial node
connected to all destination nodes through artificial links with
infinite capacity. The objective function definition is also
crucial in the mathematical model. Therefore, we present dif-
ferent objectives of the evacuation problem in the literature.
Finally, we show the setting of our study compared to state of
the art. As shown in Table 1, the evacuation process is tackled
as a complex problem that is composed of different sub-
problems. In each paper, the authors try to solve a sensitive
and decisive part of the evacuation process.

Unlike the existing solutions, we propose a novel model
to couple the SAP and the DTA problem in this paper.
This model offers for the first time to formulate a fully
simulation-based dynamic evacuation problem that integrates
the decision of system operators to choose the best alloca-
tion of evacuees to shelters and evacuees’ interests while
choosing their routes to these shelters. Besides, we inves-
tigate the impact of the dynamic shelter allocation on net-
work evacuation problems using agent-based simulations.
Our framework considers the dynamic location-allocation
model distinguished from most literature models that solve
the problem in a static setting. The proposed model is
multi-period and combines system operators and user needs.
We also consider the problem with a realistic network of
Luxembourg city without any assumption of super origin nor
sink. Afterwards, we propose an iterative procedure to solve
the problem for every time interval of the entire evacuation
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TABLE 1. The sample of different studies on multi-class traffic assignment in the Literature.

horizon. In the next section, we formulate both problems and
present our methodology.

III. METHODOLOGY
In this section, we first present the proposed methodological
framework for the population evacuation problem. Second,
the mathematical problem formulation embedded in the
framework is presented and discussed. Finally, two quality
metrics named the average travel delay (ATD), and average
evacuation travel delay (AETD) used to evaluate the perfor-
mance of the framework are presented.

A. ASSUMPTIONS
To facilitate the presentation of the essential ideas without
loss of generality, the following basic assumptions are made
in this paper:
• Users do not have perfect knowledge of prevailing and
future traffic conditions.

• Users have no information about the locations and
capacity of the shelters, so they do not have preferences.

• Users have experiences with the network, and so they
could choose their path by C-logit mechanism (under
SUE principle) at the beginning of the evacuation.

• Users departure times are preplanned and given.

B. OPTIMIZATION FRAMEWORK
The process of solving population evacuation planning com-
prises three main parts: the SAP problem, the DTA problem,
and the traffic simulation. Here, we propose a new scheme for
the sequence of execution of each step. We solve these steps
in a time-dependent manner. In each period, we optimize all

of these parts iteratively based on the data provided by the
dynamic simulation until all the demand is satisfied. Recall
that, according to state of the art, these steps are solved
together using static traffic assignment models as a single-
level optimization [5], [10], or bi-level programming problem
originally proposed by [58] (see, e.g., [22], [23], [25], [59]).

In the dynamic setting, [7] proposed a dynamic evacu-
ation framework with multiple time intervals wherein they
considered the evolution of the network. They do consider
the problem of risk assessment based on risk estimation;
however, they do not address the SAP, i.e., the shelters are
predetermined in their methodology. Their methodology is
equivalent to solving the DTA under SO in multiple time
intervals. Here, we also address the SAP in addition to the
DTA using a simulation-based approach. Figure 1 presents
the proposed methodology in this study.

The proposed framework consists of two loops that com-
bine all three mentioned parts. The first loop, called the
outer loop, represents the SAP under SO. The loop updates
the network information needed by the SAP at each time
interval. The second loop inside the outer loop addresses
the simulation-based DTA. The solution method starts with
initialization and solves the SAP for the first departure time
interval. The results of the SAP are used as the input of the
inner loop. The DTA calculation under SUE is started by the
all-or-nothing assignment. Then the dynamic simulation is
executed, and all users’ travel times are updated. Afterwards,
we check the convergence test for the SUE conditions (pre-
sented in the following subsection). If we do not converge,
we reassign the users to the new paths based on a DTA
optimization method and rerun the simulation.
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FIGURE 1. Flowchart of the process solving the evacuation problem.

Regarding the outer loop convergence, we stop when we
found the solution from the SAP and inner loop for all evac-
uees. Otherwise, we go to the next time interval. Afterwards,
we solve the SAP again, considering the updated network
dynamics provided by the simulation until the current depar-
ture time interval. The main advantage of this process is to
capture and consider the traffic state while we are solving
the SAP for each time interval. It means that we first solve
dynamic SAP, and then for the OD matrix resulted from the
SAP, we solve the DTA problem. The steps of the framework
are detailed as follows:

C. PROBLEM FORMULATION
Mathematically, two decision variables should be determined
for each evacuee sequentially: (i) shelter choice that deter-

mines the destination, and (ii) route choice toward that des-
tination. The first choice problem is the SAP and the second
one is the DTA problem. We aim to formulate the SAP to
minimize the total evacuation time. However, we formulate
the DTA problem to find the SUE solution. Recall that the
global objective of our framework is to evacuate the risky
nodes (origins) as fast as possible, i.e., minimizing the net-
work clearance time. In a sense, this scenario is equivalent to
a real-world scenario wherein vehicles are guided by the sys-
tem to choose their shelter (destination) as they do not have
any information about the shelter conditions and capacities.
Afterwards, they choose their path rationally and selfishly to
reach the shelter with minimum travel time.

Let us define the evacuation problem on a directed graph
representing a traffic network G = (N ,A), where N is the set
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TABLE 2. Table of notations.

of nodes, A is the set of edges (links). We define O as the set
of origin nodes that determines the risky zone to evacuate and
S as the destination nodes representing safe locations, i.e.,
shelter sites. Without loss of generality, we assume that O
and S are disjoint subsets of N (O, S ⊂ N ; O ∩ S = ∅).
We denote by wo the amount of demand of each origin o
(o ∈ O). This demand represents the number of vehicles that
should evacuate.We note xos the integer decision variable that
determines the number of evacuees allocated from origin o
to destination s in the current time interval. ys is a binary
variable for the shelter selection. ys = 1 if a shelter is selected
(xos > 0), otherwise ys = 0. tαos

∗ denotes the minimum travel
time between origin o and destination s in time interval α.
Table 2 presents this paper’s full list of important notations.
A large number of studies in evacuation planning calcu-

late travel time based on the STA using a convex travel
time function, e. g., BPR function [60]. Here, we use a
dynamic simulator to provide real-time information for the
travel time. We used that information to solve SAP and DTA
sub-problems sequentially (cf. Figure 1).

The finite period of interest is the planning horizon H
defined as the total duration considered. This total duration
is discretized into a set of small intervals of time, indexed

by α (α ∈ T = {α0, α0 + η, α0 + 2η, . . . , α0 +Mη} and
α0 +Mη = H). η is the duration of the time intervals.
At each evacuation time step α, we need to solve SAP for a
given evacuation demand profile. In other words, we separate
each two SAP problems by the index of the time interval
(α). Then we solve the simulation-based DTA based on the
results of SAP. Therefore, tαos

∗ is defined as a time-dependent
variable in this problem. At each time interval α, tαos

∗ cal-
culated by the simulator and replaced as a fixed value in
Equation 1. This assumption transforms the model into a
linear form. Thus, we can formulate it with linear integer
programming.We define cαs as the capacity of shelter s in time
interval α andP as themaximum allowable number of opened
shelters. For simplicity, we do not use the time interval index
for parameters and variables that are not updated by the
dynamic simulator, e. g., xos and wo. First, we propose to
solve SAP for each time interval α. The goal is to allocate
evacuees to shelters for the minimum total evacuation time
(TET) based on the currently observed travel times (from
risky nodes to shelters). The p-median model is the most
common approach to represent the shelter location-allocation
problem under different types of hazards [61]. The model
prioritizes efficiency and fairness over users’ preferences by
minimizing the overall evacuation time, equivalent to the SO
optimization. We formulate the SAP based on the p-median
model proposed by [62]. In the following formulation, the α
is fixed to the current time interval when we are at Step 3 of
the framework (cf. Figure 1).

min
∑
o∈O

∑
s∈S

tαos
∗xos (1)

s.t.
∑
s∈S

xos = wo; ∀o ∈ O, (2)∑
o∈O

xos ≤ cαs ys; ∀s ∈ S, (3)∑
s∈S

ys ≤ P, (4)

xos ≤ woys; ∀o ∈ O, ∀s ∈ S, (5)

xos ≥ 0; ∀o ∈ O, ∀s ∈ S, (6)

− ys ∈ {0, 1}; ∀s ∈ S. (7)

The number P is a predetermined parameter that restricts
the number of shelter sites that can open due to budgetary and
management issues [4]. In Objective function (1), we mini-
mize the total travel time of evacuees from all origins to all
chosen shelters. Constraint (2) ensures that all the demand
from origin o is evacuated. Constraint (3) forbids assigning
evacuees to shelters exceeding the capacity of the shelter (cαs ),
taking into account the used capacity in the previous time
interval α − 1 [55]. Constraint (4) specifies a fixed number
of open shelters. Constraint (5) forbids assigning evacuees to
non-opened shelters. Constraints (6) and (7) represent logical
variable restrictions. For each time interval, we are solving
the above linear formulation where we use a fixed capacity
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term that changes over time intervals. The residual shelter
capacity denotes the effect of the arrival of users on shelters.
This capacity is updated after the arrival of evacuees, and
it is used afterwards in the next time interval based on the
following formula ∀s ∈ S:

cαs = cα−1s −

∑
o∈O

xos α ≥ 1

c1s = c0s −
∑
o∈O

xos
(8)

where c0 is the initial capacity that shelters have at the
beginning of the process. The presented model is an NP-hard
problem [63]. The result of the SAP is the demand from each
origin o to each shelter s, i.e., the OD matrix needed for the
DTA model.

In the DTA model, we formulate the network equilibrium
based on agent-based simulation. While we solve the SAP
at a given time, the DTA problem has to be solved time-
dependently. For example, in time interval α, travel times and
traffic conditions are fixed based on the dynamic simulator
for the SAP. Note that each evacuee’s departure time is given
in this study.

The SUE model is deployed to represent the network equi-
librium. Because the UE principle, [64], always supposes that
all users have perfect knowledge of the network information
and consistently choose paths to minimize their travel costs.
The assumption is so rigorous for users that it cannot hold
on to a realistic scenario. The principle of SUE can further
relax the assumption and be stated that all travelers cannot
improve their perceived travel cost by unilaterally changing
paths [65]. Based on the SUE principle, the perceived travel
cost can be expressed by the actual travel cost and a random
error for each traveler as follows:

t̂αtr,π = tαtr,π + ξ
α
tr,π , ∀π ∈ πos, α ∈ T , tr ∈ Tr

α
π (9)

The C-logit SUE condition on the road network is
expressed as follows for each departure time interval (α) [65]:

Trπ = xosprπ , ∀π ∈ πos (10)

Note that xos is the number of evacuees allocated to the pair
having origin o and destination s. xos denotes the solution of
SAP. prπ corresponds to the path choice probability of the
employed route choice model.

In the simulation-based DTA, we tend to attain the SUE
state at each departure time interval so that each vehicle could
not reduce their trip travel time by changing the chosen route.
To achieve this condition, we iteratively run both phases,
optimization and simulation. The optimization determines the
route choice of vehicles, while in the simulation part, we sim-
ulate the trajectories on paths by executing a dynamic simu-
lation of vehicles taking specified routes. The model used to
assign users to the route is the C-logit mechanism [66].

The C-logit model is based on the logit model [66] with the
assumption that all route alternatives travel times are iden-
tically and independently distributed Gumbel variates [13].

C-logit presents a probability prπ for selecting path π . The
formula is shown below:

prπ =
exp [θ · (tπ − CFπ )]∑

h∈πos
exp [θ · (th − CFh)]

∀π ∈ πos (11)

where θ denotes dispersion parameter of the travel time
perception among vehicles. tπ represents the travel time on
path π . The set πos,α is the path set for the OD pair. CFπ is
the ‘‘commonality factor’’ of the route π that determines the
degree of overlap between the current path and all alterna-
tive routes. This commonality factor is calculated using the
following formula:

CFπ = β0 ln
∑
h∈πos

[
IDhπ

t0.5h · t
0.5
π

]γ
(12)

where IDhπ represents an identical part between path h and
path π . The respective unit can be travel time or other
measures. th and tπ denote the travel time of Path h and π
respectively. β0 and γ are parameters of the model. With the
path probability and a network loading model, the general
DTA calculation consists of the following steps:

• Step 1: Calculate the shortest paths for each OD pair.
• Step 2: Load vehicles onto the network for a defined
time interval based on the path probabilities calculated
based on the chosen route choice model.

• Step 3: Recalculate the shortest paths considering the
updated link travel times.

• Step 4: Go to step 2.

In this section, we presented our methodology to solve the
evacuation problem. As mentioned before, simultaneously
finding the optimal solution for both problems (SAP and
DTA) is hard to achieve, so indicators are required to measure
the distance between the found solutions and the optimum.

D. SOLUTION QUALITY INDICATORS
In this section, we define the metrics that we use to evaluate
the optimality of our solution and monitor the network per-
formance. The first metric we use to compare the quality of
solutions is the network clearance time. We define the clear-
ance time as the arrival time of the last evacuee to his shelter.
This metric gives us information about the total duration of
the evacuation process. Note that the best solution method
provides the minimum clearance time. The second metric
we use is the mean evacuation time, defined as the average
travel time of all evacuees. The third metric we consider is
the mean waiting time calculated for each vehicle, defined
as the amount of time the vehicle speed was less or equal to
0.1 m/s. The fourth metric we consider is the network speed,
which is the mean speed of the network on all simulation time
steps, to quantify the network usage [67].

To evaluate the quality of the DTA solution, we define the
average travel delay (ATD), which is the mean amount of
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delay compared to the best evacuee of each OD pair [16].

ATD =

∑
α∈T

∑
o∈O

∑
s∈S

∑
π∈παos

∑
tr∈Trαπ

tαtr,π − t
∗
os∑

o∈O
wo

(13)

where t∗os denotes the global minimum experienced travel
time from origin o and destination s; t∗os = min{tαos

∗
},∀α ∈ T ;

wo denotes the total demand that depart from origin o in hole
time horizon. We have calculated this measure to compare
the effectiveness of the SUE assignment. In other words, the
minimum value of this measure shows that all users of theOD
pair have almost the same travel time.

We also calculate a practical indicator called the aver-
age evacuation travel delay (AETD), representing the mean
amount of delay over the best evacuee of each origin. This
indicator is meaningful in the context of evacuation problems
because the ultimate goal of each evacuee is to reach any
shelter as soon as possible.

AETD =

∑
α∈T

∑
o∈O

∑
s∈S

∑
π∈παos

∑
tr∈Trαπ

tαtr,π − t
∗
o∑

o∈O
wo

(14)

where t∗o denotes the minimum travel time of the evacuation
trip from origin o. Note that both ATD and AETD are not
time-dependent, and at the pure SUE state, ATD and AETD
are equal to zero; however, with the trip-based setting and
network dynamics, it is not trivial to find the pure SUE
solution.

IV. NUMERICAL EXPERIMENTS AND RESULTS
The previous section presented our framework to solve the
agent-based population evacuation problem with dynamic
shelter allocation. In this section, we apply the methodology
to a real network to validate our solution method.

A. CASE STUDY
We implement our framework for the scenario [68], rep-
resenting the city of Luxembourg (cf. Figure 2). We base
the demand profile on synthetic data of the evacuation sce-
nario. To include the simulator in the optimization process,
we implement the rolling horizon approach [69]. To solve
the simulation-based DTA problem, we use the SUMO sim-
ulator with its C-logit optimization function [17]. We set
the simulation time-step to 1 second. In addition, to tackle
the shelter location-allocation problem, we employ ILOG
CPLEX version 12.9. We performed all simulations on a
personal computer with 1.7 GHz and 16 GB of RAM.

Figure 2 presents the network of Luxembourg with the size
of 155.95 km2 and the traffic network graph considered by
SUMO for dynamic simulation. We examine a hypothetical
threat in the center zone affecting people of the region colored
in red (cf. Figure 2b). While the origin nodes are in the
same area, we do not assume a super origin (source) node.
We consider multiple origin nodes as evacuation sources in
the risky zone, as described in Figure 2c. Vehicles carrying

FIGURE 2. Evacuation network map.

people should be evacuated to the shelters, colored in green
in Figure 2b, located at the network’s periphery. In this evac-
uation context and without a loss of generality, the S-shape
response curve model is employed based on [70] with its
parameter α = −0.005 and β = 15 for the departure time
of each evacuee. We have set each departure time interval (λ)
to 5 minutes for the simulation. The demand at each node is
200 vehicles at each period. We consider four origin nodes
selected and four shelters, each with the capacity of holding
1500 evacuees. Therefore, the total demand is 600 vehicles
per origin for the planning horizon H .

B. SIMULATION-BASED OPTIMIZATION SCENARIOS
In this study, we consider the following scenarios to inves-
tigate the impact of the dynamic SAP on the evacuation
planning problem. The scenarios are detailed below:

• Dynamic shelter allocation: This scenario includes our
proposed framework (illustrated in Figure 1). It sequen-
tially solves the shelter allocation and the traffic assign-
ment coupled in a loop at multiple time intervals.

• Fixed shelter allocation: This scenario represents one
of the advanced existing approaches to address the evac-
uation problem in the literature via DTA (proposed
by [7]). In each departure time interval, the DTA prob-
lem is solved without modifying the choice of shelters.
Note that several studies choose the shelters based on
euclidean distance or network distance, which is not
realistic compared to this setting as they do not consider
the network’s characteristics, e.g., road capacities.

C. NUMERICAL RESULTS
This section presents the results for the two scenarios men-
tioned above—both scenarios run with the same evacuation
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TABLE 3. Performance metrics.

demand profile, source nodes, and shelter set. We measure
multiple performance indicators to evaluate the efficiency of
the solution method in each scenario. We use the metrics
defined in the subsection III-D. Table 3 presents the indicators
values for the two scenarios. The results show a significant
improvement in the quality of the final solution obtained
by our model compared to the fixed shelter allocation sce-
nario. For instance, we reduced the network clearance time
by 15 minutes (31%). It means that the dynamic allocation
of evacuees to shelters, considering the network congestion,
improves the evacuation process. The high congestion level
around shelters during the evacuation could explain this dif-
ference. With the fixed shelter plan in all time intervals,
we observe a higher congestion level in paths leading to these
shelters. However, solving the dynamic allocation problem
ensures that we assign evacuees to the shelters based on the
time-dependent shortest path and not the closest shelters by
distance or free-flow travel time.

Moreover, the reduction ofmean evacuation time in Table 3
confirms that the dynamic allocation improves the evacuation
planning solution. In addition, it also provides better AETD
for evacuees. The improvement amount is even higher for
ATD, 39%, which shows that the DTA solution of our method
is closer to the SUE solution.

Figure 3 illustrates the results graphically, comparing
the two scenarios in terms of active users in the network
(Figure 3a) and network mean speed variation (Figure 3b).
Figure 3a presents the evolution of the number of vehicles

evacuating in the network. The network is initially empty;
thus, we have the same solution for the SAP for both scenarios
for the first time interval. Then the two curves are sepa-
rated because we have different shelter allocation approaches.
In addition, the curve representing our method arrives at the
final state of zero running vehicle before the second curve,
proving that the network clearance time is decreased com-
pared to the other method.

Figure 3b presents the evolution of the mean speed in
the evacuation process. The network’s maximum speed is
equivalent to the mean free-flow speed (75.6 km/h). At the
beginning of the evacuation, the speed curve is the same
because the two scenarios had the same solution in the first
time interval. After that, the speed increases considering
dynamic shelter allocation and stays higher than fixed shelter
allocation until the end. It means that the dynamic shelter allo-
cation scenario uses the network’s capacity better than fixed

FIGURE 3. Performance measures variation.

shelter allocation and finishes the evacuation process faster.
The network speed for the dynamic allocation scenario (blue
curve in Figure 3b) varies a lot at the end of the evacuation
process. The multiple queues formed at the entrance of the
shelters but rapidly cleared explain this variation.

We illustrate in Figure 4 the variation of ATD and AETD
measures and the number of arrived vehicles over time inter-
vals to capture the differences between the two scenarios.
Most studies use ATD to characterize the found solution of
DTA under SUE principles. ATD could be seen as the mean
distance between the travel time of users and the minimum
travel time of that OD pair. Figure 4a illustrates the evolution
of this measure over time intervals. The difference in ATD
between the scenarios becomesmore significant in the second
time period, indicating that having flexible shelter allocation
offers evacuees the possibility to reduce their travel time by
changing their choice of destination.

Figure 4a presents AETD variation over time intervals.
Recall that the main difference compared to ATD is that the
user evacuation delay is calculated w.r.t minimum evacua-
tion time of all users from the same origin. In other words,
we compute the average difference between the travel time of
each user and the shortest travel time having the same origin
node. Similar to Figure 4a, AETD has the same shape as ATD.
This proves that our method is better than the second method,
even for the destination-free measure.

Figure 4c compares the number of evacuees that arrived at
shelters at each time interval. Our method evacuates vehicles
faster than the second scenario by using the remaining capac-
ity of the network. That is why, in dynamic shelter allocation,
more evacuees finish their travel in the second interval.

Moreover, we measure the computation time for each opti-
mization scenario (see Table 4). The results show no signif-
icant difference between the two scenarios, so the dynamic
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FIGURE 4. Delay and number of arrival measures variation.

shelter allocation optimizer does not require a long calcula-
tion time. Note that the shelter location-allocation is a simple
linear formulation solved with the branch and bound tech-
nique. In Table 4, the computation time of the shelter alloca-
tion is defined only for the first scenario because the second
scenario does not consider it. Note that a small difference
in the DTA calculation is due to the probabilistic nature of
the C-logit model. The computation time needed for DTA
calculation in the second stage is lower because the SAP
generates a less computationally expensive allocation for the
DTA simulation.

As shown in Table 4, the major part of the computation
time is the DTA calculation. Therefore, it is worth performing
a sensitivity analysis on DTA iterations because the number
of iterations directly impacts the computation time.

TABLE 4. Computation time of the solution methods.

TABLE 5. The impact of the number of DTA iterations on the final solution.

D. CONVERGENCE ANALYSIS
This section analyzes the effect of the convergence test
threshold, i.e., the impact of changing the maximum number
of iterations in the DTA calculation on the final solution.
We conduct our comparison based on performance mea-
sures used in subsection IV-C. Table 5 presents the results.
As expected, the ATD is minimized in addition to the AETD
and the mean evacuation time. However, the network clear-
ance time oscillates in the value of measures for many iter-
ations (20 or 30). We expected this oscillation because the
optimizer aims to achieve the SUE, not the SO. Therefore, our
algorithm minimizes the individual travel time, which may
affect the whole system’s performance. Table 5 shows that by
increasing the number of iterations to search for the optimal
solution for the SUE, we decrease the network production
factors. From these results, we can conclude that if we fix the
number of iterations to 20, we could have a good evacuation
plan for this test case from both points of view: users and the
system.

SUMO uses a measure of convergence to test whether the
simulation is in a state of equilibrium or not. In Appendix V,
we report a sensitivity analysis performed on this measure.
The results prove the consistency of the final solutions pro-
vided by the SUMO DTA calculator.

E. SENSITIVITY ANALYSIS ON THE ROLLING HORIZON
APPROACH
In our methodology, we use a rolling horizon approach for
DTA solving. The idea behind this approach is to use cur-
rently available information and near-term forecasts with
some degree of reliability to solve the assignment prob-
lem [69]. We consider simulation time intervals responsi-
ble for acquiring the near-term forecast of traffic evolution
and optimization time intervals for optimizing the current
assignment problem. This section evaluates the influence
of the simulation duration and the optimization time inter-
vals on our optimization framework. First, we capture the
impact of simulation time intervals on the effectiveness of the
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FIGURE 5. Active users for multiple simulation time intervals.

population evacuation process while we fix the optimization
time interval. Second, we illustrate the influence of optimiza-
tion time interval variation on the efficiency of the process.
Third, we highlight the most reasonable values for the dura-
tion of time intervals for the rolling horizon configuration.

We rerun the optimization process using simulation time
intervals ranging from 10 minutes to 30 minutes. We set the
maximum iteration threshold to 20 for calculating the DTA
solution at each time interval in addition to the fixed 5 min-
utes interval for optimization in all scenarios. To identify
the differences found between each experiment, we plot the
figure presenting the dynamics of the evolution of active users
(running vehicles) over time (cf. Figure 5).

Having a long simulation period (e.g., 30 minutes time
intervals) is inefficient in terms of needed computational
resources when considering people under evacuation condi-
tions. On the other hand, short simulation time is not benefi-
cial either since it does not give the vehicles of the current
stage enough information about future events to optimize
their trips. Therefore, finding the appropriate duration for the
simulation time interval is crucial. Figure 5 illustrates the
impact of simulation time interval on the evacuation duration
and network usage. It presents three curves for three different
values of the simulation time interval 30 (blue), 20 (orange),
and 10 (green). Figure 5 specifies that there is a remarkable
effect, especially on clearance time measure. There is an
increase in network clearance ofmore than 5minutes between
the blue and the orange curve. This figure also demonstrates
that it is not beneficial for evacuation to take long simulation
time intervals. The network clearance time, our global objec-
tive, is higher when simulating 30 minutes than 20 minutes.
In Figure 5, in the range between 1200 sec and 1700 sec,
the scenario with 20 min (orange curve) benefits from the
network’s capacity compared to other scenarios, and it leads
to better results in terms of clearance time.

For the second part of the analysis, we conduct multiple
simulations, varying the optimization time interval and fixing
20 minutes for simulation and 5 minutes for departure time.
Figure 6 depicts the effect of the optimization time interval
variation on the number of active users in the network and
the impact on the clearance time measure. The figure points
out that fixing the optimization interval to 5 minutes provides

FIGURE 6. Active users for multiple optimization time intervals.

the minimum clearance time compared to the other curves.
Indeed, having a short optimization time, such as 2.5minutes,
needs more computation resources. It also prioritizes users
from the first and second departure time interval to optimize
their utilities. On the other hand, the users in the third time
interval cannot achieve a comparable value for their objec-
tives compared to the other users. Because after the two first
intervals, the evacuees experience a long ending queue (after
1500 sec).

In addition, the long optimization interval (10 minutes)
leads to having a longer clearance time than 5 minutes
interval. We expected this effect because if users are not
assigned well due to the network dynamics in the previ-
ous time interval, we must wait for another 10 minutes to
revise the optimization solution. Figure 6 highlights this point
between 300 sec and 800 sec, where the two other curves are
above the orange curve. We conclude that the best simulation
time interval for this test case is 20 minutes and the best
optimization interval is 5 minutes.

F. REAL CASE STUDY
The proposed framework is applied to a more extensive
demand profile to address a realistic population of Lux-
embourg city. We conducted the simulation with the best
parameters of the optimization framework specified in the
previous subsections. We consider 60,000 vehicles, which
represent 70% of the actual population of Luxembourg City
(125, 000 inhabitants [71]). Note that a vehicle carries a
maximum of three individuals to evacuate [72].

Increasing the evacuation demand level significantly
affects the simulation duration. We consider the fixed shelter
allocation methodology to benchmark our solution method in
the real test case. Table 6 shows that solving shelter allocation
dynamically improves the efficiency of evacuation planning.
Table 6 illustrates a reduction of more than 9 hours in net-
work clearance time, and the mean evacuation time decreases
by 49% between the two methods of solving the problem.
In addition, mean waiting time and mean speed are two
measures that allow us to monitor the speed of the evacuation
process. Lower values of these measures mean that solving
SAP in each time interval provides a better solution. The com-
parison between the final solutions shows that around 15% of
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TABLE 6. Real case performance metrics.

the evacuees (more than 10, 000) have different destinations.
It means our framework switches the evacuees’ destination to
the other rapidly reachable shelter (less congestion in paths
leading to new shelters). Thus, the shelter allocation allows
us to revise the current shelter allocation plan for a new one
that considers the evolving state of the network.

V. CONCLUSION
Catastrophes threaten the entire population of the devastated
areas and put them in high-risk situations. Evacuating people
from risky zones to safe areas is one of the urgent tasks that
should be done to avoid life losses caused by these disasters.
Each evacuee must determine the destination (shelter) and
evacuation path from hazardous areas as quickly as possi-
ble. This paper focuses on solving the population evacuation
problem to determine these two pieces of information.

We performed a literature review and analyzed the different
approaches and models used in the research field to address
the shelter choice and the route choice of evacuees. The first
choice problem is usually represented as a facility location
problem. The second choice model is formally known as traf-
fic assignment, and it has two types of models: STA and DTA
models. Many studies have considered the static formulation
of the population evacuation problem, including a shelter
allocation model, while few studies about the evacuation
problem in the dynamic context for traffic routing and shelter
allocation. This study proposed a new planning framework to
solve the dynamic population evacuation problem, including
both SAP and simulation-based DTA.

To solve the evacuation problem dynamically, we have
considered multiple departure time intervals by allocating
shelters under the SO principle and assigning routes in the
SUE manner. To couple the two problems, we consider the
network dynamics in solving the SAP. We determine actual
vehicle evacuation time using a trip-based dynamic simulator
that provides the travel information every timestep. We apply
our methodology to the network of Luxembourg City and
compare it with a model using a fixed shelter allocation plan.
The results show that the proposed model outperforms the
model with the fixed shelter plan bymore than 31% reduction
in network clearance time. We conclude that using dynamic
allocation improves the evacuation process because it pro-
vides the optimal evacuation plan considering the dynamics
of the network. Besides, the analysis of the computation
time shows that solving the SAP in each time interval needs
tiny computational resources, while it significantly reduces

TABLE 7. Convergence iterations.

the duration of the evacuation process. The second main
finding of this study is that we can benefit from the capacity
of the traffic network by using dynamic shelter allocation
(Figure 3).

Moreover, we have conducted a sensitivity analysis on
optimization parameters used in the framework, such as the
maximum number of iterations, the simulation time interval,
and the optimization time interval. Afterwards, we applied
the best setting resulting from the sensitivity analysis to a real
case of Luxembourg City considering realistic demand. The
results show that the proposed framework can address a real
test case with feasible computation time.

Several research directions will guide our future proposals.
First, we aim to evaluate our framework performance in
different real network evacuation scenarios. Second, we plan
to extend the current framework to include safety instructions
and objectives based on different types of hazards. Finally,
we consider addressing multiple hazard zones by mimicking
the hazard evolution.

APPENDIX
IMPACT OF THE MAXIMUM DEVIATION ON RESULT
SUMO uses a measure that integrates the mean travel time
of all previous simulations. It also uses the coefficient of
deviation of average travel times for termination and tests if
the value of this measure is below a chosen threshold. Here,
we present the formulas for calculating this measure:

a =

∑
o∈O

∑
s∈S

∑
p∈πos

ttr,π∑
o∈O

∑
s∈S

n(πos)
(15)

CV =
σ (a)
E(a)

=

√
1
Nr

∑
i≤Nr

(ai −
∑
i≤Nr

ai
Nr )

2

∑
i≤Nr

ai
Nr

(16)

Note thatNr is the number of iterations considered.We test
this measure on three values: 0.1, 0.04, and 0.004 to under-
stand the computation time needed to achieve each of these
measures and compare found results.

Table 7 shows the time difference between the tree solu-
tion calculated. Having better results in terms of deviation
requires surelymore iteration calculation andmore consumed
resources. We have set 50 iterations as the maximum number
of iterations to find the result, and we attain this limit while
having the maximum deviation of 0.004. In addition, Table 7
demonstrates no linear relation between the amount of com-
putation time needed for solution finding and the deviation
measure. Results shown by Table 7 are only for the last time
interval of the evacuation process.
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