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Université Côte d’Azur, CNRS, I3S, INRIA, Sophia Antipolis, France

lucas.picasarri-arrieta@inria.fr

Abstract

Let D = (V,A) be a digraph. We define ∆max(D) as the maximum of {max(d+(v), d−(v)) | v ∈ V } and

∆min(D) as the maximum of {min(d+(v), d−(v)) | v ∈ V }. It is known that the dichromatic number of D

is at most ∆min(D) + 1. In this work, we prove that every digraph D which has dichromatic number exactly

∆min(D)+1 must contain the directed join of
←→
Kr and

←→
Ks for some r, s such that r+ s = ∆min(D)+1, except

if ∆min(D) = 2 in which case D must contain a digon. In particular, every oriented graph ~G with ∆min( ~G) ≥ 2
has dichromatic number at most ∆min( ~G).

Let ~G be an oriented graph of order n such that ∆min( ~G) ≤ 1. Given two 2-dicolourings of ~G, we show that

we can transform one into the other in at most n steps, by recolouring one vertex at each step while maintaining

a dicolouring at any step. Furthermore, we prove that, for every oriented graph ~G on n vertices, the distance

between two k-dicolourings is at most 2∆min( ~G)n when k ≥ ∆min( ~G) + 1.

We then extend a theorem of Feghali, Johnson and Paulusma to digraphs. We prove that, for every digraph D

with ∆max(D) = ∆ ≥ 3 and every k ≥ ∆+1, the k-dicolouring graph of D consists of isolated vertices and at

most one further component that has diameter at most c∆n2, where c∆ = O(∆2) is a constant depending only

on ∆.

1 Introduction

1.1 Graph (re)colouring

Given a graph G = (V,E), a k-colouring of G is a function c : V −→ {1, . . . , k} such that, for every edge xy ∈ E,

we have c(x) 6= c(y). So for every i ∈ {1, . . . , k}, c−1(i) induces an independent set on G. The chromatic number

of G, denoted by χ(G), is the smallest k such that G admits a k-colouring. The maximum degree of G, denoted

by ∆(G), is the degree of the vertex with the greatest number of edges incident to it. A simple greedy procedure

shows that, for any graph G, χ(G) ≤ ∆(G) + 1. The celebrated theorem of Brooks [7] characterizes the graphs

for which equality holds.

Theorem 1 (Brooks, [7]). A connected graph G satisfies χ(G) = ∆(G) + 1 if and only if G is an odd cycle or a

complete graph.

For any k ≥ χ(G), the k-colouring graph of G, denoted by Ck(G), is the graph whose vertices are the k-

colourings of G and in which two k-colourings are adjacent if they differ by the colour of exactly one vertex. A

path between two given colourings in Ck(G) corresponds to a recolouring sequence, that is a sequence of pairs

composed of a vertex of G, which is going to receive a new colour, and a new colour for this vertex. If Ck(G)
is connected, we say that G is k-mixing. A k-colouring of G is k-frozen if it is an isolated vertex in Ck(G). The

graph G is k-freezable if it admits a k-frozen colouring. In the last fifteen years, since the papers of Cereceda,

van den Heuvel and Johnson [9, 8], graph recolouring has been studied by many researchers in graph theory. We

refer the reader to the PhD thesis of Bartier [2] for a complete overview on graph recolouring and to the surveys of

van Heuvel [13] and Nishimura [15] for reconfiguration problems in general. Feghali, Johnson and Paulusma [10]

proved the following analogue of Brooks’ Theorem for graphs recolouring.

*Research supported by research grant DIGRAPHS ANR-19-CE48-0013 and by the French government, through the EUR DS4H Invest-

ments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-17-EURE-0004.
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Theorem 2 ([10]). Let G = (V,E) be a connected graph with ∆(G) = ∆ ≥ 3, k ≥ ∆ + 1, and α, β two

k-colourings of G. Then at least one of the following holds:

• α is k-frozen, or

• β is k-frozen, or

• there is a recolouring sequence of length at most c∆|V |2 between α and β, where c∆ = O(∆) is a constant

depending on ∆.

Considering graphs of bounded maximum degree, Theorem 2 has been very recently improved by Bousquet,

Feuilloley, Heinrich and Rabie, who proved the following.

Theorem 3 ([5]). Let G = (V,E) be a connected graph with ∆(G) = ∆ ≥ 3, k ≥ ∆ + 1, and α, β two

k-colourings of G. Then at least one of the following holds:

• α is k-frozen, or

• β is k-frozen, or

• there is a recolouring sequence of length at most O(∆c∆|V |) between α and β, where c is a constant.

1.2 Digraph (re)dicolouring

In this paper, we are looking for extensions of the previous results on graphs colouring and recolouring to digraphs.

Let D be a digraph. A digon is a pair of arcs in opposite directions between the same vertices. A simple arc

is an arc which is not in a digon. For any two vertices x, y ∈ V (D), the digon {xy, yx} is denoted by [x, y]. The

digon graph of D is the undirected graph with vertex set V (D) in which uv is an edge if and only if [u, v] is a

digon of D. An oriented graph is a digraph with no digon. The bidirected graph associated to a graph G, denoted

by
←→
G , is the digraph obtained from G, by replacing every edge by a digon. The underlying graph of D, denoted

by UG(D), is the undirected graph G with vertex set V (D) in which uv is an edge if and only if uv or vu is an

arc of D.

Let v be a vertex of a digraph D. The out-degree (resp. in-degree) of v, denoted by d+(v) (resp. d−(v)), is the

number of arcs leaving (resp. entering) v. We define the maximum degree of v as dmax(v) = max{d+(v), d−(v)},
and the minimum degree of v as dmin(v) = min{d+(v), d−(v)}. We can then define the corresponding maximum

degrees of D: ∆max(D) = maxv∈V (D)(dmax(v)) and ∆min(D) = maxv∈V (D)(dmin(v)). A digraph D is ∆-

diregular if, for every vertex v ∈ V (D), d−(v) = d+(v) = ∆.

In 1982, Neumann-Lara [14] introduced the notions of dicolouring and dichromatic number, which generalize

the ones of colouring and chromatic number. A k-dicolouring of D is a function c : V (D) → {1, . . . , k} such

that c−1(i) induces an acyclic subdigraph in D for each i ∈ {1, . . . , k}. The dichromatic number of D, denoted

by ~χ(D), is the smallest k such that D admits a k-dicolouring. There is a one-to-one correspondence between

the k-colourings of a graph G and the k-dicolourings of the associated bidirected graph
←→
G , and in particular

χ(G) = ~χ(
←→
G ). Hence every result on graph colourings can be seen as a result on dicolourings of bidirected

graphs, and it is natural to study whether the result can be extended to all digraphs.

The directed version of Brooks’ Theorem was first proved by Harutyunyan and Mohar in [11] (see also [1]).

Aboulker and Aubian gave four new proofs of the following theorem in [1].

Theorem 4 (DIRECTED BROOKS’ THEOREM). Let D be a connected digraph. Then ~χ(D) ≤ ∆max(D) + 1 and

equality holds if and only if one of the following occurs:

• D is a directed cycle, or

• D is a bidirected odd cycle, or

• D is a bidirected complete graph (of order at least 4).
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It is easy to prove, by a simple greedy procedure, that every digraph D can be dicoloured with ∆min(D) +
1 colours. Hence, one can wonder if Brooks’ Theorem can be extended to digraphs using ∆min(D) instead

of ∆max(D). Unfortunately, Aboulker and Aubian [1] proved that, given a digraph D, deciding whether D is

∆min(D)-dicolourable is NP-complete. Thus, unless P=NP, we cannot expect an easy characterization of digraphs

satisfying ~χ(D) = ∆min(D) + 1.

Let the maximum geometric mean of a digraph D be ∆̃(D) = max{
√

d+(v)d−(v) | v ∈ V (D)}. By

definition we have ∆min(D) ≤ ∆̃(D) ≤ ∆max(D). Restricted to oriented graphs, Harutyunyan and Mohar [12]

have strengthened Theorem 4 by proving the following.

Theorem 5 (Harutyunyan and Mohar [12]). There is an absolute constant ∆1 such that every oriented graph ~G
with ∆̃(~G) ≥ ∆1 has ~χ(~G) ≤ (1 − e−13)∆̃(~G).

In Section 2, we give another strengthening of Theorem 4 on a large class of digraphs which contains oriented

graphs. The directed join of H1 and H2, denoted by H1 ⇒ H2, is the digraph obtained from disjoint copies of H1

and H2 by adding all arcs from the copy of H1 to the copy of H2 (H1 or H2 may be empty).

Theorem 6. Let D be a digraph. If D is not ∆min(D)-dicolourable, then one of the following holds:

• ∆min(D) ≤ 1, or

• ∆min(D) = 2 and D contains
←→
K2, or

• ∆min(D) ≥ 3 and D contains
←→
Kr ⇒

←→
Ks, for some r, s ≥ 0 such that r + s = ∆min(D) + 1.

In particular, the following is a direct consequence of Theorem 6.

Corollary 7. Let D be a digraph. If ~χ(D) = ∆min(D) + 1, then D contains the complete bidirected graph on
⌈

∆min+1
2

⌉

vertices as a subdigraph.

Corollary 7 is best possible: if we restrict D to not contain the complete bidirected graph on
⌈

∆min+1
2

⌉

+ 1,

then we show that deciding whether ~χ(D) ≤ ∆min(D) remains NP-complete (Theorem 12). Moreover, since an

oriented graph does not contain any digon, Corollary 7 implies the following:

Corollary 8. Let ~G be an oriented graph. If ∆min(~G) ≥ 2, then ~χ(~G) ≤ ∆min(~G).

For any k ≥ ~χ(D), the k-dicolouring graph of D, denoted by Dk(D), is the graph whose vertices are the

k-dicolourings of D and in which two k-dicolourings are adjacent if they differ by the colour of exactly one vertex.

Observe that Ck(G) = Dk(
←→
G ) for any bidirected graph

←→
G . A redicolouring sequence between two dicolourings is

a path between these dicolourings inDk(D). The digraphD is k-mixing ifDk(D) is connected. A k-dicolouring of

D is k-frozen if it is an isolated vertex in Dk(D). The digraph D is k-freezable if it admits a k-frozen dicolouring.

A vertex v is blocked to its colour in a dicolouring α if, for every colour c 6= α(v), recolouring v to c in α creates

a monochromatic directed cycle.

Digraph redicolouring was first introduced in [6], where the authors generalized different results on graph re-

colouring to digraphs, and proved some specific results on oriented graphs redicolouring. In particular, they studied

the k-dicolouring graph of digraphs with bounded degeneracy or bounded maximum average degree, and they show

that finding a redicolouring sequence between two given k-dicolourings of a digraph is PSPACE-complete. Deal-

ing with the maximum degree of a digraph, they proved that, given an orientation of a subcubic graph ~G on n
vertices, its 2-dicolouring graphD2(~G) is connected and has diameter at most 2n and they asked if this bound can

be improved. We answer this question in Section 3 by proving the following theorem.

Theorem 9. Let ~G be an oriented graph of order n such that ∆min(~G) ≤ 1. Then D2(~G) is connected and has

diameter exactly n.

In particular, if ~G is an orientation of a subcubic graph, then ∆min(~G) ≤ 1 (because d+(v) + d−(v) ≤ 3 for

every vertex v), and so D2(~G) has diameter exactly n. Furthermore, we prove the following as a consequence of

Corollary 8 and Theorem 9.
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Corollary 10. Let ~G be oriented graph of order n with ∆min(~G) = ∆ ≥ 1, and let k ≥ ∆+ 1. Then Dk(~G) is

connected and has diameter at most 2∆n.

Corollary 10 does not hold for digraphs in general: indeed,
←→
Pn, the bidirected path on n vertices, satisfies

∆min(
←→
Pn) = 2 and D3(

←→
Pn) = C3(Pn) has diameter Ω(n2), as proved in [4].

Finally in Section 4, we extend Theorem 2 to digraphs.

Theorem 11. Let D = (V,A) be a connected digraph with ∆max(D) = ∆ ≥ 3, k ≥ ∆ + 1, and α, β two

k-dicolourings of D. Then at least one of the following holds:

• α is k-frozen, or

• β is k-frozen, or

• there is a redicolouring sequence of length at most c∆|V |
2 between α and β, where c∆ = O(∆2) is a

constant depending only on ∆.

Furthermore, we prove that a digraph D is k-freezable only if D is bidirected and its underlying graph is

k-freezable. Thus, an obstruction in Theorem 11 is exactly the bidirected graph of an obstruction in Theorem 2.

2 Strengthening of Directed Brooks’ Theorem for oriented graphs

A digraph D is k-dicritical if ~χ(D) = k and for every vertex v ∈ V (D), ~χ(D − v) < k. Observe that every

digraph with dichromatic number at least k contains a k-dicritical subdigraph.

Let F2 be {
←→
K2}, and for each ∆ ≥ 3, we define F∆ = {

←→
Kr ⇒

←→
Ks | r, s ≥ 0 and r + s = ∆+ 1}. A digraph

D is F∆-free if it does not contain F as a subdigraph, for any F ∈ F∆. Theorem 6 can then be reformulated as

follows:

Theorem 6. Let D be a digraph with ∆min(D) = ∆ ≥ 2. If D is F∆-free, then ~χ(D) ≤ ∆.

Proof. Let D be a digraph such that ∆min(D) = ∆ ≥ 2 and ~χ(D) = ∆ + 1. We will show that D contains some

F ∈ F∆ as a subdigraph.

Let (X,Y ) be a partition of V (D) such that for each x ∈ X , d+(x) ≤ ∆, and for each y ∈ Y , d−(y) ≤ ∆.

We define the digraph D̃ as follows:

• V (D̃) = V (D),

• A(D̃) = A(D〈X〉) ∪ A(D〈Y 〉) ∪ {xy, yx | xy ∈ A(D), x ∈ X, y ∈ Y }.

Claim 6.1: ~χ(D̃) ≥ ∆+ 1.

Proof of claim. Assume for a contradiction that there exists a ∆-dicolouring c of D̃. Then D, coloured with c,
must contain a monochromatic directed cycle C. Now C is not contained in X nor Y , for otherwise C would be a

monochromatic directed cycle of D〈X〉 or D〈Y 〉 and so a monochromatic directed cycle of D̃. Thus C contains

an arc xy from X to Y . But then, [x, y] is a monochromatic digon in D̃, a contradiction. ♦

Since ~χ(D̃) ≥ ∆+ 1, there is a (∆+ 1)-dicritical subdigraph H of D̃. By dicriticality of H , for every vertex

v ∈ V (H), d+H(v) ≥ ∆ and d−H(v) ≥ ∆, for otherwise a ∆-dicolouring of H − v could be extended to H by

choosing for v a colour which is not appearing in its out-neighbourhood or in its in-neighbourhood. We define XH

as X ∩ V (H) and YH as Y ∩ V (H). Note that both H〈XH〉 and H〈YH〉 are subdigraphs of D.

Claim 6.2: H is ∆-diregular.

Proof of claim. Let ℓ be the number of digons between XH and YH in H . Observe that, by definition of X and

H , for each vertex x ∈ XH , d+H(x) = ∆. Note also that, in H , ℓ is exactly the number of arcs leaving XH and
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exactly the number of arcs entering XH . We get:

∆|XH | =
∑

x∈XH

d+H(x)

= ℓ+ |A(H〈XH〉)|

=
∑

x∈XH

d−H(x)

which implies, since H is dicritical, d+H(x) = d−H(x) = ∆ for every vertex x ∈ XH . Using a symmetric argument,

we prove that ∆|YH | =
∑

y∈YH
d+H(y), implying d+H(y) = d−H(y) = ∆ for every vertex y ∈ YH . ♦

Since H is ∆-diregular, then in particular ∆max(H) = ∆. Hence, because ~χ(H) = ∆ + 1, by Theorem 4,

either ∆ = 2 and H is a bidirected odd cycle, or ∆ ≥ 3 and H is the bidirected complete graph on ∆+1 vertices.

• If ∆ = 2 and H is a bidirected odd cycle, then at least one digon of H belongs to H〈XH〉 or H〈YH〉, for oth-

erwise H would be bipartite (with bipartition (XH , YH)). Since both H〈XH〉 and H〈YH〉 are subdigraphs

of D, this shows, as desired, that D contains a copy of
←→
K2.

• If k ≥ 3 and H is the bidirected complete graph on ∆+ 1 vertices, let AH be all the arcs from YH to XH .

Then D〈V (H)〉 \AH is a subdigraph of D which belongs to F∆.

Now we will justify that Corollary 7 is best possible. To do so, we prove that given a digraph D which does

not contain the bidirected complete graph on
⌈

∆min(D)+1
2

⌉

+ 1 vertices, deciding if it is ∆min(D)-dicolourable is

NP-complete. We shall use a reduction from k-DICOLOURABILITY which is defined as follows:

k-DICOLOURABILITY

Input: A digraph D
Question: Is D k-dicolourable ?

k-DICOLOURABILITY is NP-complete for every fixed k ≥ 2 [3]. It remains NP-complete when we restrict to

digraphs D with ∆min(D) = k [1].

Theorem 12. For all k ≥ 2, k-DICOLOURABILITY remains NP-complete when restricted to digraphsD satisfying

∆min(D) = k and not containing the bidirected complete graph on
⌈

k+1
2

⌉

+ 1 vertices.

Proof. Let D = (V,A) be an instance of k-DICOLOURABILITY for some fixed k ≥ 2. Then we build D′ =
(V ′, A′) as follows:

• For each vertex x ∈ V , we associate a copy of S−
x ⇒ S+

x where S−
x is the bidirected complete graph on

⌊

k+1
2

⌋

vertices, and S+
x is the bidirected complete graph on

⌈

k+1
2

⌉

vertices.

• For each arc xy ∈ A, we associate all possible arcs x+y− in A′, such that x+ ∈ S+
x and y− ∈ S−

y .

First observe that ∆min(D
′) = k. Let v be a vertex of D′, if v belongs to some S+

x , then d−(v) = k, otherwise

it belongs to some S−
x and then d+(v) = k. Then observe that D′ does not contain the bidirected complete graph

on
⌈

k+1
2

⌉

+ 1 vertices since every digon in D′ is contained in some S+
x or S−

x . Thus we only have to prove that

~χ(D) ≤ k if and only if ~χ(D′) ≤ k to get the result.

• Let us first prove that ~χ(D) ≤ k implies ~χ(D′) ≤ k.

Assume that ~χ(D) ≤ k. Let φ : V −→ {1, . . . , k} be a k-dicolouring of D. Let φ′ be the k-dicolouring of

D′ defined as follows: for each vertex x ∈ V , choose arbitrarily x− ∈ S−
x , x+ ∈ S+

x , and set φ′(x−) =
φ′(x+) = φ(x). Then choose a distinct colour for every other vertex v in S−

x ∪ S+
x , and set φ′(v) to

this colour. We get that φ′ must be a k-dicolouring of D′: for each x ∈ V , every vertex but x− in S−
x

must be a sink in its colour class, and every vertex but x+ in S+
x must be a source in its colour class.

Thus if D′, coloured with φ′, contains a monochromatic directed cycle C′, then C′ must be of the form

x−
1 x

+
1 x

−
2 x

+
2 · · ·x

−
ℓ x

+
ℓ x

−
1 . But then C = x1x2 · · ·xℓx1 is a monochromatic directed cycle in D coloured

with φ: a contradiction.
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• Reciprocally, let us prove that ~χ(D′) ≤ k implies ~χ(D) ≤ k.

Assume that ~χ(D′) ≤ k. Let φ′ : V ′ −→ {1, . . . , k} be a k-dicolouring of D′. Let φ be the k-dicolouring

of D defined as follows. For each vertex x ∈ V , we know that |S+
x ∪ S−

x | = k + 1, thus there must be

two vertices x+ and x− in S+
x ∪ S−

x such that φ′(x+) = φ′(x−). Moreover, since both S+
x and S−

x are

bidirected, one of these two vertices belongs to S+
x and the other one belongs to S−

x . We assume without

loss of generality x+ ∈ S+
x and x− ∈ S−

x . Then we set φ(x) = φ′(x+). We get that φ must be a k-

dicolouring of D. If D, coloured with φ, contains a monochromatic directed cycle C = x1x2 · · ·xℓx1, then

C′ = x−
1 x

+
1 x

−
2 x

+
2 · · ·x

−
ℓ x

+
ℓ x

−
1 is a monochromatic directed cycle in D′ coloured with φ′, a contradiction.

3 Redicolouring oriented graphs

In this section, we restrict to oriented graphs. We first prove Theorem 9, let us restate it.

Theorem 9. Let ~G be an oriented graph of order n such that ∆min(~G) ≤ 1. Then D2(~G) is connected and has

diameter exactly n.

Observe that, if D2(~G) is connected, then its diameter must be at least n: for any 2-dicolouring α, we can

define its mirror ᾱ where, for every vertex v ∈ V (~G), α(v) 6= ᾱ(v); then every redicolouring sequence between α
and ᾱ has length at least n.

Lemma 13. Let C be a directed cycle of length at least 3. Then D2(C) is connected and has diameter exactly n.

Proof. Let α and β be any two 2-dicolourings of C. Let x = diff(α, β) = |{v ∈ V (C) | α(v) 6= β(v)}|. By

induction on x ≥ 0, let us show that there exists a path of length at most x from α to β inD2(C). This clearly holds

for x = 0 (i.e., α = β). Assume x > 0 and the result holds for x− 1. Let v ∈ V (C) be such that α(v) 6= β(v).
If v can be recoloured in β(v), then we recolour it and reach a new 2-dicolouringα′ such that diff(α′, β) = x−1

and the result holds by induction. Else if v cannot be recoloured, then recolouring v must create a monochromatic

directed cycle, which must be C. Then there must be a vertex v′, different from v, such that β(v) = α(v′) 6= β(v′),
and v′ can be recoloured. We recolour it and reach a new 2-dicolouring α′ such that diff(α′, β) = x − 1 and the

result holds by induction.

We are now ready to prove Theorem 9.

Proof of Theorem 9. Let α and β be any two 2-dicolourings of ~G. We will show that there exists a redicolouring

sequence of length at most n between α and β. We may assume that ~G is strongly connected, otherwise we

consider each strongly connected component independently. This implies in particular that ~G does not contain any

sink nor source. Let (X,Y ) be a partition of V (~G) such that, for every x ∈ X , d+(x) = 1, and for every y ∈ Y ,

d−(y) = 1.

Assume first that ~G〈X〉 contains a directed cycle C. Since every vertex in X has exactly one out-neighbour,

there is no arc leaving C. Thus, since ~G is strongly connected, ~G must be exactly C, and the result holds by

Lemma 13. Using a symmetric argument, we get the result when ~G〈Y 〉 contains a directed cycle.

Assume now that both ~G〈X〉 and ~G〈Y 〉 are acyclic. Thus, since every vertex in X has exactly one out-

neighbour, ~G〈X〉 is the union of disjoint and independent in-trees, that are oriented trees in which all arcs are

directed towards the root. We denote by Xr the set of roots of these in-trees. Symmetrically, ~G〈Y 〉 is the union of

disjoint and independent out-trees (oriented trees in which all arcs are directed away from the root), and we denote

by Yr the set of roots of these out-trees. Set Xℓ = X \Xr and Yℓ = Y \ Yr. Observe that the arcs from X to Y
form a perfect matching directed from Xr to Yr. We denote by Mr this perfect matching. Observe also that there

can be any arc from Y to X . Now we define X1
r and Y 1

r two subsets of Xr and Yr respectively, depending on the

two 2-dicolourings α and β, as follows:

X1
r = {x | xy ∈Mr, α(x) = β(y) 6= α(y) = β(x)}

Y 1
r = {y | xy ∈Mr, α(x) = β(y) 6= α(y) = β(x)}
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Set X2
r = Xr \X1

r and Y 2
r = Yr \ Y 1

r . We denote by M1
r (respectively M2

r ) the perfect matching from X1
r to Y 1

r

(respectively from X2
r to Y 2

r ). Figure 1 shows a partitioning of V (~G) into X1
r , X

2
r , Xℓ, Y

1
r , Y

2
r , Yℓ.

X1
r

X2
r

Xℓ

Y 1
r

Y 2
r

Yℓ

~G dicoloured with α

X1
r

X2
r

Xℓ

Y 1
r

Y 2
r

Yℓ

~G dicoloured with β

Figure 1: The partitioning of V (~G) into X1
r , X

2
r , Xℓ, Y

1
r , Y

2
r , Yℓ.

Claim 9.1: There exists a redicolouring sequence of length sα from α to some 2-dicolouringα′ and a redicolouring

sequence of length sβ from β to some 2-dicolouring β′ such that each of the following holds:

(i) For any arc xy ∈Mr, α′(x) 6= α′(y) and β′(x) 6= β′(y),

(ii) For any arc xy ∈M2
r , α′(x) = β′(x) (and so α′(y) = β′(y) by (i)), and

(iii) sα + sβ ≤ |X2
r |+ |Y

2
r |.

Proof of claim. We consider the arcs xy of M2
r one after another and do the following recolourings depending on

the colours of x and y in both α and β to get α′ and β′.

• If α(x) = α(y) = β(x) = β(y), then we recolour x in both α and β;

• Else if α(x) = α(y) 6= β(x) = β(y), then we recolour x in α and we recolour y in β;

• Else if α(x) = β(x) 6= α(y) = β(y), then we do nothing;

• Else if α(x) 6= α(y) = β(x) = β(y), then we recolour x in β;

• Finally if α(y) 6= α(x) = β(x) = β(y), then we recolour y in β.

Each of these recolourings is valid because, when a vertex in X2
r (respectively Y 2

r ) is recoloured, it gets a colour

different from its only out-neighbour (respectively in-neighbour). Let α′ and β′ be the the two resulting 2-

dicolourings. By construction, α′ and β′ agree on X2
r ∪ Y 2

r . For each arc xy ∈ M2
r , either α(x) = α′(x) or

α(y) = α′(y), and the same holds for β and β′. This implies that sα + sβ ≤ 2|M2
r | = |X

2
r |+ |Y

2
r |. ♦

Claim 9.2: There exists a redicolouring sequence from α′ to some 2-dicolouring α̃ of length s′α and a redicolouring

sequence from β′ to some 2-dicolouring β̃ of length s′β such that each of the following holds:

(i) α̃ and β̃ agree on V (~G) \ (X1
r ∪ Y 1

r ),

(ii) α′ and α̃ agree on Xr ∪ Yr,

(iii) β′ and β̃ agree on Xr ∪ Yr,
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(iv) Xℓ ∪ Yℓ is monochromatic in α̃ (and in β̃ by (i)), and

(v) s′α + s′β ≤ |Xℓ|+ |Yℓ|.

Proof of claim. Observe that in both 2-dicolourings α′ and β′, we are free to recolour any vertex of Xℓ ∪ Yℓ since

there is no monochromatic arc from X to Y and both ~G〈X〉 and ~G〈Y 〉 are acyclic. Let n1 (respectively n2) be the

number of vertices in Xℓ ∪ Yℓ that are coloured 1 (respectively 2) in both α′ and β′. Without loss of generality,

assume that n1 ≤ n2. Then we set each vertex of Xℓ ∪ Yℓ to colour 2 in both α′ and β′. Let α̃ and β̃ the resulting

2-dicolouring. Then s′α + s′β is exactly |Xℓ|+ |Yℓ|+ n1 − n2 ≤ |Xℓ|+ |Yℓ|. ♦

Claim 9.3: There is a redicolouring sequence between α̃ and β̃ of length |X1
r |+ |Y

1
r |.

Proof of claim. By construction of α̃ and β̃, we only have to exchange the colours of x and y for each arc xy ∈M1
r .

Without loss of generality, we may assume that the colour of all vertices in Xℓ ∪ Yℓ by α̃ and β̃ is 1.

We first prove that, by construction, we can recolour any vertex of X1
r ∪Y

1
r from 1 to 2. Assume not, then there

is such a vertex x ∈ X1
r ∪Y

1
r such that recolouring x from 1 to 2 creates a monochromatic directed cycle C. Since

both ~G〈X〉 and ~G〈Y 〉 are acyclic, C must contain an arc of Mr. Since Mr does not contain any monochromatic

arc in α̃, then this arc must be incident to x. Now observe that colour 2, in α̃, induces an independent set on both
~G〈X〉 and ~G〈Y 〉. This implies that C must contain at least 2 arcs in Mr. This is a contradiction since recolouring

x creates exactly one monochromatic arc in Mr.

Then, for each arc xy ∈ M1
r , we can first recolour the vertex coloured 1 and then the vertex coloured 2.

Note that we maintain the invariant that colour 2 induces an independent set on both ~G〈X〉 and ~G〈Y 〉. We get a

redicolouring sequence from α̃ to β̃ in exactly 2|M1
r | = |X

1
r |+ |Y

1
r | steps. ♦

Combining the three claims, we finally proved that there exists a redicolouring sequence between α and β of length

at most n.

In the following, when α is a dicolouring of a digraph D, and H is a subdigraph of D, we denote by α|H the

restriction of α to H . We will prove Corollary 10, let us restate it.

Corollary 10. Let ~G be an oriented graph of order n with ∆min(~G) = ∆ ≥ 1, and let k ≥ ∆+ 1. Then Dk(~G)
is connected and has diameter at most 2∆n.

Proof. We will show the result by induction on ∆.

Assume first that ∆ = 1, let k ≥ 2. Let α be any k-dicolouring of ~G and γ be any 2-dicolouring of ~G. To

ensure that Dk(~G) is connected and has diameter at most 2n, it is sufficient to prove that there is a redicolouring

sequence between α and γ of length at most n. Let H be the digraph induced by the set of vertices coloured 1 or

2 in α, and let J be V (~G) \ V (H). By Theorem 9, since ∆min(H) ≤ ∆min(~G) ≤ 1, we know that there exists

a redicolouring sequence, in H , from α|H to γ|H of length at most |V (H)|. This redicolouring sequence extends

in ~G because it only uses colours 1 and 2. Let α′ be the obtained dicolouring of ~G. Since α′(v) = γ(v) for every

v ∈ H , we can recolour each vertex in J to its colour in γ. This shows that there is a redicolouring sequence

between α and γ of length at most |V (H)|+ |J | = |V (~G)|. This ends the case ∆ = 1.

Assume now that ∆ ≥ 2 and let k ≥ ∆ + 1. Let α and β be two k-dicolourings of ~G. By Corollary 8, we

know that ~χ(~G) ≤ ∆ ≤ k − 1. We first show that there is a redicolouring sequence of length at most 2n from

α to some (k − 1)-dicolouring γ of ~G. From α, whenever it is possible we recolour each vertex coloured 1, 2 or

k with a colour of {3, . . . , k − 1} (when k = 3 we do nothing). Let α̃ be the obtained dicolouring, and let M be

the set of vertices coloured in {3, . . . , k − 1} by α̃ (when k = 3, M is empty). We get that H = ~G−M satisfies

∆min(H) ≤ 2, since every vertex in H has at least one in-neighbour and one out-neighbour coloured c for every

c ∈ {3, . . . , k − 1}. By Corollary 8, there exists a 2-dicolouring γ|H of H . From α̃|H , whenever it is possible,

we recolour a vertex coloured 1 or 2 to colour k. Let α̂ be the resulting dicolouring, and Ĥ be the subdigraph of

H induced by the vertices coloured 1 or 2 in α̂. We get that ∆min(Ĥ) ≤ 1 since every vertex in Ĥ has, in ~G, at

least one in-neighbour and one out-neighbour coloured c for every c ∈ {3, . . . , k}. In at most |V (Ĥ)| steps, using

Theorem 9, we can recolour the vertices of V (Ĥ) to their colour in γ|H (using only colours 1 and 2). Then we can
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recolour each vertex coloured k to its colour in γ|H . This results in a redicolouring sequence of length at most 2n

from α to some (k − 1)-dicolouring γ of ~G , since colour k is not used in the resulting dicolouring (recall that M
is coloured with {3, . . . , k − 1}).

Now, from β, whenever it is possible we recolour each vertex to colour k. Let β̃ be the obtained k-dicolouring,

and let N be the set of vertices coloured k in β̃. We get that J = ~G − N satisfies ∆min(J) ≤ ∆ − 1. Thus,

by induction, there exists a redicolouring sequence from β̃|J to γ|J , in at most 2(∆ − 1)|V (J)| steps (using only

colours {1, . . . , k − 1}). Since N is coloured k in β̃, this extends to a redicolouring sequence in ~G. Now, since γ
does not use colour k, we can recolour each vertex in N to its colour in γ. We finally get a redicolouring sequence

from β to γ of length at most 2(∆− 1)n. Concatenating the redicolouring sequence from α to γ and the one from

γ to β, we get a redicolouring sequence from α to β in at most 2∆n steps.

4 An analogue of Brook’s theorem for digraph redicolouring

Let us restate Theorem 11.

Theorem 11. Let D be a connected digraph with ∆max(D) = ∆ ≥ 3, k ≥ ∆+ 1, and α, β two k-dicolourings

of D. Then at least one of the following holds:

• α is k-frozen, or

• β is k-frozen, or

• there is a redicolouring sequence of length at most c∆|V |2 between α and β, where c∆ = O(∆2) is a

constant depending only on ∆.

An L-assignment of a digraph D is a function which associates to every vertex a list of colours. An L-

dicolouring of D is a dicolouring α where, for every vertex v of D, α(v) ∈ L(v). An L-redicolouring sequence is

a redicolouring sequence γ1, . . . , γr, such that for every i ∈ {1, . . . , r}, γi is an L-dicolouring of D.

Lemma 14. Let D = (V,A) be a digraph and L be a list-assignment of D such that, for every vertex v ∈ V ,

|L(v)| ≥ dmax(v) + 1. Let α be an L-dicolouring of D. If u ∈ V is blocked in α, then for each colour c ∈ L(u)
different from α(u), u has exactly one out-neighbour u+

c and one in-neighbour u−
c coloured c. Moreover, if

u+
c 6= u−

c , there must be a monochromatic directed path from u+
c to u−

c . In particular, u is not incident to a

monochromatic arc.

Proof. Since u is blocked to its colour in α, for each colour c ∈ L(u) different from α(u), recolouring u to c must

create a monochromatic directed cycle C. Let v be the out-neighbour of u in C and w be the in-neighbour of u in

C. Then α(v) = α(w) = c, and there is a monochromatic directed path (in C) from v to w.

This implies that, for each colour c ∈ L(u) different from α(u), u has at least one out-neighbour and at least

one in-neighbour coloured c. Since |L(u)| ≥ dmax(u) + 1, then |L(u)| = dmax(u) + 1, and u must have exactly

one out-neighbour and exactly one in-neighbour coloured c. In particular, u cannot be incident to a monochromatic

arc.

Lemma 15. Let D = (V,A) be a digraph such that for every vertex v ∈ V , N+(v) \ N−(v) 6= ∅ and N−(v) \
N+(v) 6= ∅. Let L be a list assignment of D, such that for every vertex v ∈ V , |L(v)| ≥ dmax(v) + 1.

Then for any pair of L-dicolourings α, β of D, there is an L-redicolouring sequence of length at most (|V |+
3)|V |.

Proof. Let x = diff(α, β) = |{v ∈ V | α(v) 6= β(v)}|. We will show by induction on x that there is an L-

redicolouring sequence from α to β of length at most (|V |+ 3)x. The result clearly holds for x = 0 (i.e. α = β).

Let v ∈ V be such that α(v) 6= β(v). We denote α(v) by c and β(v) by c′. If v can be recoloured to c′, then we

recolour it and we get the result by induction.

Assume now that v cannot be recoloured to c′. Whenever v is contained in a directed cycle C of length at least

3, such that every vertex of C but v is coloured c′, we do the following: we choose w a vertex of C different from
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v, such that β(w) 6= c′. We know that such a w exists, for otherwise C would be a monochromatic directed cycle

in β. Now, since w is incident to a monochromatic arc in C, and because |L(w)| ≥ dmax(w) + 1, by Lemma 14,

we know that w can be recoloured to some colour different from c′. Thus we recolour w to this colour. Observe

that it does not increase x.

After repeating this process, maybe v cannot be recoloured to c′ because it is adjacent by a digon to some

vertices coloured c′. We know that these vertices are not coloured c′ in β. Thus, whenever such a vertex can be

recoloured, we recolour it. After this, let η be the obtained dicolouring. If v can be recoloured to c′ in η, we are

done. Otherwise, there must be some vertices, blocked to colour c′ in η, adjacent to v by a digon. Let S be the set

of such vertices. Observe that, by Lemma 14, for every vertex s ∈ S, c belongs to L(s), for otherwise s would not

be blocked in η. We distinguish two cases, depending on the size of S.

• If |S| ≥ 2, then by Lemma 14, v can be recoloured to a colour c′′, different from both c and c′, because v is

adjacent by a digon with two neighbours coloured c′. Hence we can successively recolour v to c′′, and every

vertex of S to c . This does not create any monochromatic directed cycle because for each s ∈ S, since s is

blocked in η, by Lemma 14 v must be the only neighbour of s coloured c in η.

We can finally recolour v to c′.

• If |S| = 1, let w be the only vertex in S. If v can be recoloured to any colour (different from c′ since w is

coloured c′), then we first recolour v, allowing us to recolour w to c, because v is the single neighbour of w
coloured c in η by Lemma 14. We finally can recolour v to c′.

Assume then that v is blocked to colour c in η. Let us fix w+ ∈ N+(w) \N−(w). Since w is blocked to c′

in η, by Lemma 14, there exists exactly one vertex w− ∈ N−(w) \N+(w) such that η(w+) = η(w−) = c′′

and there must be a monochromatic directed path from w+ to w−.

Since v is blocked to colour c in η, either vw− /∈ A or w+v /∈ A, otherwise, by Lemma 14, there must be

a monochromatic directed path from w− to w+, which is blocking v to its colour. But since there is also a

monochromatic directed path from w+ to w− (blocking w) there would be a monochromatic directed cycle,

a contradiction (see Figure 2).

w

v

w+w−

Figure 2: The vertices v, w,w+ and w−.

We distinguish the two possible cases:

– if vw− /∈ A, then we start by recolouringw− with a colour that does not appear in its in-neighbourhood.

This is possible because w− has a monochromatic entering arc, and because |L(w−)| ≥ dmax(w
−)+1.

We first recolour w with c′′, since c′′ does not appear in its in-neighbourhood anymore (w− was the

only one by Lemma 14). Next we recolour v with c′: this is possible because v does not have any

out-neighbour coloured c′ since w was the only one by Lemma 14 and w− is not an out-neighbour of

v. We can finally recolour w to colour c and w− to c′′. After all these operations, we exchanged the

colours of v and w.

– if w+v /∈ A, then we use a symmetric argument.

Observe that we found an L-redicolouring sequence from α to a α′, in at most |V |+3 steps, such that diff(α′, β) <
diff(α, β). Thus by induction, we get an L-redicolouring sequence of length at most (|V | + 3)x between α and

β.
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We are now able to prove Theorem 11. The idea of the proof is to divide the digraph D into two parts. One of

them is bidirected and we will use Theorem 2 as a black box on it. In the other part, we know that each vertex is

incident to at least two simple arcs, one leaving and one entering, and we will use Lemma 15 on it.

Proof of Theorem 11. Let D = (V,A) be a connected digraph with ∆max(D) = ∆, k ≥ ∆+ 1. Let α and β be

two k-dicolourings of D. Assume that neither α nor β is k-frozen.

We first make a simple observation. For any simple arc xy ∈ A, we may assume that N+(y) \ N−(y) 6= ∅
and N−(x) \ N+(x) 6= ∅. If this is not the case, then every directed cycle containing xy must contain a digon,

implying that the k-dicolouring graph of D is also the k-dicolouring graph of D \ {xy}. Then we may look for a

redicolouring sequence in D \ {xy}.
Let X = {v ∈ V | N+(v) = N−(v)} and Y = V \ X . Observe that D〈X〉 is bidirected, and thus the

dicolourings of D〈X〉 are exactly the colourings of UG(D〈X〉). We first show that α|D〈X〉 and β|D〈X〉 are not

frozen k-colourings of D〈X〉. If Y is empty, then D〈X〉 = D and α|D〈X〉 and β|D〈X〉 are not k-frozen by

assumption. Otherwise, since D is connected, there exists x ∈ X such that, in D〈X〉, d+(x) = d−(x) ≤ ∆ − 1,

implying that x is not blocked in any dicolouring of D〈X〉. Thus, by Theorem 2, there is a redicolouring sequence

γ′
1, . . . , γ

′
r in D〈X〉 from α|D〈X〉 to β|D〈X〉, where r ≤ c∆|X |2, and c∆ = O(∆) is a constant depending on ∆.

We will show that, for each i ∈ {1, . . . , r − 1}, if γi is a k-dicolouring of D which agrees with γ′
i on X , then

there exist a k-dicolouring γi+1 of D that agrees with γ′
i+1 on X and a redicolouring sequence from γi to γi+1 of

length at most ∆+ 2.

Observe that α agrees with γ′
1 on X . Now assume that there is such a γi, which agrees with γ′

i on X , and

let vi ∈ X be the vertex for which γ′
i(vi) 6= γ′

i+1(vi). We denote by c (respectively c′) the colour of vi in γ′
i

(respectively γ′
i+1). If recolouring vi to c′ in γi is valid then we have the desired γi+1. Otherwise, we know that

vi is adjacent with a digon (since vi is only adjacent to digons) to some vertices (at most ∆) coloured c′ in Y .

Whenever such a vertex can be recoloured to a colour different from c′, we recolour it. Let ηi be the reached

k-dicolouring after these operations. If vi can be recoloured to c′ in ηi we are done. If not, then the neighbours of

vi coloured c′ in Y are blocked to colour c′ in ηi. We denote by S the set of these neighbours. We distinguish two

cases:

• If |S| ≥ 2, then by Lemma 14, vi can be recoloured to a colour c′′, different from both c and c′, because vi
has two neighbours with the same colour. Then we successively recolour vi to c′′, and every vertex of S to

c. This does not create any monochromatic directed cycle because, by Lemma 14, for each s ∈ S, vi is the

only neighbour of s coloured c in ηi. We can finally recolour vi to c′ to reach the desired γi+1.

• If |S| = 1, let y be the only vertex in S. Since y belongs to Y and is blocked to its colour in ηi, by Lemma 14,

we know that y has an out-neighbour y+ ∈ N+(y)\N−(y) and an in-neighbour y− ∈ N−(y)\N+(y) such

that there is a monochromatic directed path from y+ to y−. Observe that both y+ and y− are recolourable

in ηi by Lemma 14, because there are incident to a monochromatic arc.

– If vi is not adjacent to y+, then we recolour y+ to any possible colour, and we recolour y to ηi(y
+).

We can finally recolour vi to c′ to reach the desired γi+1.

– If vi is not adjacent to y−, then we recolour y− to any possible colour, and we recolour y to ηi(y
−).

We can finally recolour vi to c′ to reach the desired γi+1.

– Finally if vi is adjacent to both y+ and y−, since ηi(y
+) = ηi(y

−), then vi can be recoloured to a

colour c′′ different from c and c′. This allows us to recolour y to c, and we finally can recolour vi to c′

to reach the desired γi+1.

We have shown that there is a redicolouring sequence of length at most (∆ + 2)c∆n
2 from α to some α′ that

agrees with β on X . Now we define the list-assignment: for each y ∈ Y ,

L(y) = {1, . . . , k} \ {β(x) | x ∈ N(y) ∩X}.

Observe that, for every y ∈ Y ,

|L(y)| ≥ k − |N+(y) ∩X | ≥ ∆+ 1− (∆− d+Y (y)) ≥ d+Y (y) + 1.
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Symmetrically, we get |L(y)| ≥ d−Y (y) + 1. This implies, in D〈Y 〉, |L(y)| ≥ dmax(y) + 1. Note also that

both α′
|D〈Y 〉 and β|D〈Y 〉 are L-dicolourings of D〈Y 〉. Note finally that, for each y ∈ Y , N+(y) \ N−(y) 6= ∅

and N+(y) \ N−(y) 6= ∅ by choice of X and Y and by the initial observation. By Lemma 15, there is an L-

redicolouring sequence in D〈Y 〉 between α′
|D〈Y 〉 and β|D〈Y 〉, with length at most (|Y | + 3)|Y |. By choice of L,

this extends directly to a redicolouring sequence from α′ to β on D of the same length.

The concatenation of the redicolouring sequence from α to α′ and the one from α′ to β leads to a redicolouring

sequence from α to β of length at most c′∆|V |
2, where c′∆ = O(∆2) is a constant depending on ∆.

Remark 16. If α is a k-frozen dicolouring of a digraph D, with k ≥ ∆max(D) + 1, then D must be bidirected.

If D is not bidirected, then we choose v a vertex incident to a simple arc. If v cannot be recoloured in α, by

Lemma 14, since v is incident to a simple arc, there exists a colour c for which v has an out-neighbour w and an

in-neighbour u both coloured c, such that u 6= w and there is a monochromatic directed path from w to u. But

then, every vertex on this path is incident to a monochromatic arc, and it can be recoloured by Lemma 14. Thus, α
is not k-frozen. This shows that an obstruction of Theorem 11 is exactly the bidirected graph of an obstruction of

Theorem 2.

5 Further research

In this paper, we established some analogues of Brooks’ Theorem for the dichromatic number of oriented graphs

and for digraph redicolouring. Many open questions arise, we detail a few of them.

Restricted to oriented graphs, Mcdiarmid and Mohar (see [12]) conjectured that the Directed Brooks’ Theorem

can be improved to the following.

Conjecture 17 (Mcdiarmid and Mohar). Every oriented graph ~G has ~χ(~G) = O
(

∆max

log(∆max)

)

.

Concerning digraph redicolouring, we believe that Corollary 10 and Theorem 11 can be improved. We pose

the following conjecture.

Conjecture 18. There is an absolute constant c such that for every integer k and every oriented graph ~G on n
vertices, such that k ≥ ∆min(~G) + 1, the diameter of Dk(~G) is bounded by cn.

Conjecture 19. There is an absolute constant d such that for every integer k and every digraph D on n vertices,

with k ≥ ∆max(D) + 1 ≥ 4, the diameter of Dk(D) is bounded by dn2.

It would also be nice to extend Theorem 3 to directed graphs, that is to show that the diameter of Dk(D) is

bounded by f(∆max(D))n for some computable function f whenever k ≥ ∆max(D) + 1 ≥ 4. To prove it,

it would be sufficient to show the analogue of Lemma 15 with an L-redicolouring sequence of length at most

f(∆max(D))|V |, and then follow the proof of Theorem 11 (using Theorem 3 instead of Theorem 2).

Given an orientation ~G of a planar graph, a celebrated conjecture from Neumann-Lara [14] states that the

dichromatic number of ~G is at most 2. It is known that it must be 4-mixing because planar graphs are 5-

degenerate [6]. It is also known that there exists 2-freezable orientations of planar graphs [6]. Thus the following

problem, stated in [6], remains open:

Question 20. Is every oriented planar graph 3-mixing ?
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