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Abstract: Chitosan is a deacetylated polysaccharide from chitin, the natural biopolymer primarily
found in shells of marine crustaceans and fungi cell walls. Upon deacetylation, the protonation of free
amino groups of the d-glucosamine residues of chitosan turns it into a polycation, which can easily
interact with DNA, proteins, lipids, or negatively charged synthetic polymers. This positive-charged
characteristic of chitosan not only increases its solubility, biodegradability, and biocompatibility,
but also directly contributes to the muco-adhesion, hemostasis, and antimicrobial properties of
chitosan. Combined with its low-cost and economic nature, chitosan has been extensively studied
and widely used in biopharmaceutical and biomedical applications for several decades. In this
review, we summarize the current chitosan-based applications for bone and dental engineering.
Combining chitosan-based scaffolds with other nature or synthetic polymers and biomaterials induces
their mechanical properties and bioactivities, as well as promoting osteogenesis. Incorporating the
bioactive molecules into these biocomposite scaffolds accelerates new bone regeneration and enhances
neovascularization in vivo.

Keywords: chitosan; bone engineering; regeneration; scaffold; periodontitis; dental pulp

1. Introduction

The first bioerodable artificial polymer-cell scaffold was implanted into animals 30 years ago [1].
Since then, tissue engineering has become an interdisciplinary field that applies the principles of
engineering and life sciences toward the development of biological substitutes that restore, maintain,
or improve tissue structure and function [2]. Several biomaterials have been used for the fabrication
of the scaffolds, including natural materials derived from animals or plants (collagen, starch, gelatin,
alginate, cellulose, fibrin, hyaluronan, and chitosan) and synthetic materials, such as bioactive ceramics
and a wide range of synthetic polymers. However, the excellent bio-based 3-dimentional (3D) polymer
scaffolds should not only be non-toxic, biocompatible, and biodegradable, but also be competent
in promoting cell adhesion and retaining the metabolic functions of attached cells [3], as the 3D
polymer scaffolds used in tissue engineering should mimic and provide an actual in vivo surrounding
microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues
or organs [4]. The immunomodulatory biological effects of chitosan-based scaffold have also been
described. In this regard, chitosan becomes one of the most commonly studied polymers in the scientific
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research, not only for biopharmaceutical and biomedical applications, but also for food science and
technology [5].

2. Results

2.1. Chitosan

Chitosan (CS) is a linear, semi-crystalline polysaccharide composed of β-(1→4)-2-acetamido
-2-deoxy-b-d-glucan (n-acetyl d-glucosamine) and β-(1→4)-2-amino-2-deoxyb-d-glucan (d-glucosamine)
units [6,7]. Its molecular weight ranges from 10 to over 1000 kDa. Chitosan is not extensively present
in the environment, however, it can be easily produced via the alkaline n-deacetylation process of the
natural biopolymer commonly found in the shells of marine crustaceans and in fungi cells walls—the
chitin [8,9] (Figure 1). The deacetylation degree (DD) of chitosan, which gives an indication of the
number of amino groups along the chains, is calculated as the ratio of d-glucosamine to the sum of
d-glucosamine and n-acetyl d-glucosamine [7,10,11].

Figure 1. Structures for chitin, the noncharged form of chitosan, and protonated positive-charged chitosan.

Chitin is a white, hard, inelastic, nitrogeneous polysaccharide. It is hydrophobic and is not
soluble in water and most organic solvents, except for hexafluroisopropanol, hexafluroacetone, and
chloroalcohols [12]. This poor solubility of chitin is an extreme limit for its practical applications.
However, the free amino groups of the d-glucosamine residues of chitosan, which could be protonated,
provide a better solubility for chitosan by forming a non-Newtonian, shear-thinning fluid in most
diluted acidic solutions at a pH below 6.5 (pKa value ~6.3) [7,13] (Figure 1). With protonated amino
groups, chitosan becomes a polycation and could subsequently form ionic complexes with a wide
variety of natural or synthetic anionic species, for example, DNA, proteins, lipids, or negatively charged
synthetic polymers such as poly(acrylic acid) [7,14,15].

Chitosan can be biodegraded into non-toxic residues by lysozyme or chitinase, which hydrolyses
glucosamine-glucosamine, glucosamine-n-acetyl-glucosamine, and n-acetyl -glucosamine-n-acetyl
-glucosamine linkages [16–18]. The rate and extent of chitosan’s biodegradability in living organisms
are highly related to the molecular mass of the polymer and its deacetylation degree (DD) [19,20].
The chitosan DD can also influence its biocompatibility. A higher DD increases the number of
positive charges which increases the interaction between chitosan and cells, leading to an improved
biocompatibility [21]. In addition, chitosan is a low-cost and economic natural biopolymer [22]. The
price of chitin (3.6–6.0 US$/kg)/chitosan (30–500 US$/kg) are hundreds or thousands of times higher than
the price of shell wastes (0.05–0.15 US$/kg) [23], while the production costs were around 1.70 US$/kg
for chitin and 3.50 US$/kg for chitosan 40 years ago [24].

2.2. Medical and Pharmaceutical Properties of Chitosan

As a natural multifunctional polysaccharide, chitosan has been widely studied for biomedical,
surgical, and tissue engineering and pharmaceutical application, thanks to its biocompatibility,
biodegradability, and muco-adhesiveness. Chitosan is reported to be increasingly used in the United
States as an over-the-counter cholesterol-lowering agent. Positively-charged deacetylated chitosan
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could bind negatively charged molecules, such as fatty acids, lipids, and bile acids, in the intestinal tract,
excreting these molecules from the body [25]. Chitosan is thus considered as a promising candidate
for obesity and hypercholesterolemia treatment [26]. Chitosan could be also used for wastewater
treatment and beverage clarification because of its good chelating or binding capacity of protonable
amino groups for various species, such as metal ions [27,28]. However, the most important medical
and pharmaceutical applications of chitosan are drug delivery, wound dressings, and biocomposite
scaffolds for tissue engineering.

2.2.1. Drug Delivery

The positively charged protonable amino group of the d-glucosamine residues of chitosan can
interact with the negatively charged sialic acid residues of the glycoprotein which composes the mucus.
Thus, the muco-adhesion is directly related to the DD of chitosan, with higher chitosan DD resulting in
increased positive charges which enhance its muco-adhesive properties [29]. It has also been reported
that chitosan can interact with the negative part of the cell membrane, enhancing the penetration of an
active agent through the epithelium layer that contains tight junctions [30,31]. Consequently, owing to
the muco-adhesion and enhanced penetration properties, chitosan is a suitable excipient to prepare
oral, nasal, ocular, vaginal, and subcutaneous delivery forms and be used as a vaccine adjuvant or
co-adjuvant to enhance the bioavailability and immunogenicity of antigens [32–34].

2.2.2. Wound Dressings

Wound healing is a particular biological phenomenon, which progresses through a series of
inter-reliant and corresponding stages to regenerate the integrity of damaged tissue and replacement
of lost tissue [35]. The hemostatic and antimicrobial properties of chitosan enable its application in
wound dressings [35–37].

Again, as a natural positive-charged polysaccharide, protonable amino groups on the chitosan
backbone electrostatically interact with the various negatively charged proteins and glycolipids on the
surface of red blood cells (RBC). This interaction increases blood viscosity, activates platelet adhesion
and aggregation, and enhances the transportation of platelets to the vascular wall for physiological
hemostasis. Blood clots are formed by intensive aggregation of RBC around the wound site to quickly
stop bleeding [38–41]. Thus, the number of positive charged amino groups on chitosan directly plays
an important role in its hemostatic property.

The antimicrobial activity of chitosan has been demonstrated against different microorganisms
both in vivo and in vitro, such as bacteria (either Gram-positive or Gram-negative), yeast, fungi,
and algae, which makes chitosan a good candidate as an antimicrobial agent in solution, film, and
composite [35,42–46]. This antimicrobial property of chitosan has been related to the presence of its
cationic nature. However, this antimicrobial activity could also depend on other intrinsic factors (for
example, the type of chitosan or the degree of chitosan polymerization and deacetylation) and extrinsic
factors (such as the live host, the microorganisms, and the environmental conditions). Until now, the
antimicrobial activity of chitosan has not yet been fully understood.

2.3. Chitosan-Based Scaffold Preparation

The most common method to generate chitosan scaffolds is by freezing and lyophilizing chitosan
solution. The spaces occupied by ice crystals formed in frozen chitosan solution are emptied during
the sublimation, leading to the formation of pores. However, a precise control of temperature is
required to form good pore structures [47,48]. Another method to form porous scaffolds is called
salt leaching [49,50]. Salt crystals such as NaCl are used as porogens and put into a mold, and
chitosan is then poured over the salt, penetrating into all the small spaces left between the salt crystals.
The mold is then heated to melt the chitosan powder in an oven for a sufficient time. The chilled
chitosan/NaCl mixture is then separated from the mold and the salt is washed away by water or alcohol,
generating open pores in the chitosan scaffolds. In addition, fibrous chitosan scaffolds are formed by
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electrospinning. An applied electric field causes the elongation of the chitosan drop and leads to the
formation of long fibers ranging from the submicron level to several nanometers in diameter [51,52].

Besides the dried chitosan-based scaffold preparation discussed above, chitosan-based scaffolds
could also be prepared as hydrogels [53]. A hydrogel is a network of the same or different types
of cross-linked polymer chains with good water absorption capacity. Chemically cross-linked
hydrogels are formed by covalent linking of chitosan macromers, in which the bond formation
is irreversible. Covalent cross-linking can also be formed between polymers and a cross-linker [54],
or via photopolymerization [55]. Another way to prepare chitosan-based hydrogel is by physical
cross-linking through ionic interactions. Polyelectrolyte complex networks are formed via ionic
interactions between positively charged chitosan and anions or other negatively charged polymers.
Although chemically cross-linked chitosan-based hydrogels show better stability and resistance to
environmental variables, physically cross-linked hydrogels are more biocompatible because of the lack
of chemical cross-linkers.

2.4. Chitosan-Based Scaffolds for Bone Regeneration

Bone is a hard and highly functionalized connective tissue constituting the skeletal framework
of the human body. It supports fleshy structures, protects vital organs, and is involved in various
physiological functions such as the maintenance of phosphocalcic homeostasis [56,57]. After an injury,
if the impairment is mild and the defect size is small, bone tissue has certain self-healing potential
through osteogenic differentiation of bone marrow mesenchymal stem cells, bone neoformation, and
neo-angiogenesis at the lesion site. For large-size bone defects, bone grafts are usually needed [58,59],
however, these clinical procedures have many disadvantages [60].

In the context of bone engineering, the physiological inertness and low toxic effects of
chitosan-based scaffolds have been demonstrated by numerous in vitro and in vivo studies (Table 1). In
addition, no allergic and inflammatory reactions upon chitosan-based material implantation, injection,
or topical application in the human body have been proven [61–63]; however, the use of chitosan as
scaffold is limited by having reduced bioactivities and mechanical properties. This disadvantage has
been overcome by mixing the chitosan scaffolds with other synthetic or natural polymers [poly(vinyl
alcohol), poly-ε-caprolactone, alginate, collagen, silk fibroin, etc.], biomaterials (hydroxyapatite,
β-tricalcium phosphate, SiO2, etc.), or bioactive pharmacological molecules (bone morphogenetic
protein 2 (BMP-2), vascular endothelial growth factor (VEGF), bisphosphonate, etc.).

Indeed, blending chitosan with most of the aforementioned polymer and/or biomaterials efficiently
reinforces its mechanical properties and improves its bioactivities, such as increased protein absorption
and increased biomineralization (Table 1). However, many of the published biocomposite scaffolds
could not decrease the biodegradation rate of chitosan, which affects their long-term in vivo persistence
(Table 1). Water retention ability is another parameter important for tissue engineering scaffolds, as
the increased water retention ability of scaffold implanted in vivo could lead to the loosening and
dislocation of the implant. As summarized in Table 1, most of the biocomposite scaffolds reported
controls and decreased their water retention ability.

Most importantly, both in vitro and in vivo experiments demonstrated that all these chitosan-based
biocomposite scaffolds are not toxic, and have very good properties of biocompatibility,
osteoconductivity, and osteogenesis, promoting good cell proliferation and cell adhesion, causing
an increase in new bone regeneration. Regarding more specific clinical applications of chitosan in
alveolar bone and jawbone regeneration, several preclinical reports showed promising results, even for
accelerating dental implant osseointegration and reconstructing critical size defects [64–67].

Over the last decade, the functionality of these chitosan-based biocomposite scaffolds have been
enhanced by incorporating bioactive molecules into drug delivery systems. Therefore, bioactive
molecules could be locally delivered with an adequate dose for a desired period, avoiding the drug
release to non-target sites. Bone morphogenetic proteins (BMPs) are a group of growth factors originally
discovered by their ability to induce bone and cartilage formation [68]. Transforming growth factor beta
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1 (TGF-β1) is a polypeptide member of the transforming growth factor beta superfamily of cytokines,
controlling cell growth, cell proliferation, and cell differentiation in many cell types. Studies have
shown that chitosan-based biocomposite associated with either BMP2, BMP-7 or TGF-β1 efficiently
induced osteogenesis and promoted a large amount new bone formation compared with control or
sham groups (see Table 1). Vascular endothelial growth factor (VEGF) is a signal protein stimulating the
formation of blood vessels. Incorporating VEGF into chitosan-based biocomposite scaffolds induces
angiogenesis and enhances neovascularization in bone healing (see Table 1).

2.5. Chitosan-Based Application for Dental Engineering: The Case of Periodontal Regeneration

Periodontitis is a chronic inflammatory disease induced by bacterial infection, affecting
tooth-supporting tissues and leading to significant destruction of the periodontium (i.e., gingiva,
alveolar bone, periodontal ligament, cement). Such a disease is common in the global population
(>50% in the U.S. population) and is the main cause of tooth loss [69]. It is characterized by the
development of the periodontal pocket and, in severe cases, of infrabony defects. Treatment of such
lesions represent a challenge for the clinician [70,71]. Indeed, periodontal treatment aims to reduce
the inflammation and to control the infection by chemical (antibiotics, antiseptics) and mechanical
treatments (scaling and root planing). However, such a treatment strategy is associated mainly to
wound repair, characterized by a long junctional epithelium. In most severe cases (probing pocket
depth (PPD) > 5 mm), non-surgical treatment alone could be insufficient in emphasizing the need
of adjuvant therapy [72,73]. Therefore, the use of local delivery of active drugs or compounds has
been suggested to target inflammation and infection, and in promoting tissue regeneration [74–77].
During the last decade, a specific interest was made towards the chitosan-based delivery system [78].
Several chitosan-based devices have been designed and evaluated in specific contexts, including in
micro/nanoparticles, fibers, membrane, and gels [79–81]. Chitosan gels exhibit interesting physical
properties that could be modulated by the concentration of chitosan. Indeed, it was shown that such
chitosan-based gels (1–4%) have an interesting viscosity to be injected within periodontal pockets.
Most importantly, they can be used as a reliable vehicle to release active drugs at the disease site.
While a sustained release could be considered ideal, it is important to note that the kinetic of release
is a parameter that is also influenced by the percentage of chitosan [82]. Drugs, such as statins [83],
doxycycline [84], or other antibiotics/antiseptics such as tetracyclines, have been incorporated in such
devices [85–87].

Interestingly, adjuvant use of such drug-loaded scaffolds improved periodontal healing,
emphasizing the interest in their use [78]. For instance, Chang et al. evaluated in vivo, in an
experimental periodontitis murine model, the use of a chitosan-based hydrogel loaded with naringin,
a natural compound with anti-inflammatory properties. They demonstrated the interesting properties
of chitosan hydrogel, as its injection at the lesion site was associated with a burst release of the active
compound during the acute phase of the inflammation, inducing an anti-inflammatory effect within
periodontal tissues [88]. Such results might be explained by the controlled local delivery at the lesion
site and the 3D characteristics of the chitosan scaffold.

Interestingly, it was also demonstrated that chitosan can potentialize the antibacterial effect of
chlorhexidine [89], showing the intrinsic property of chitosan.
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Table 1. In vitro and in vivo studies of chitosan-based biocomposite scaffolds in bone engineering. VEGF = vascular endothelial growth factor, TGF-β1 = transforming
growth factor beta 1.

Chitosan-Based Biocomposite Scaffolds

Polymers and/or Biomaterials Bioactive
Molecule Models Observations as Compared to the Properties of Chitosan

Polymer Scaffolds Alone Reference

BMP-2
In vitro No cytotoxicity and increased osteogenesis [90]
In vivo No cytotoxicity, increased biomineralization, and increased

osteogenesis
Recombinant

human BMP-2 In vivo Enhanced bone regeneration [91]

In vitro Increased biomineralization and increased osteogenesis [92]
In vivo Improved and earlier bone regeneration [93]
In vitro No cytotoxicity, increased biomineralization [94]
In vivo Generation of a substantial amount of bone in rat cranium

Hydroxyapatite In vivo New bone tissue formation in rat [95]

Nano hydroxyapatite In vivo Regeneration of segmental bone defects with cortical bone in
rabbit [96]

Nano hydroxyapatite/Nano ZrO2/Nano CaZrO3 In vitro No cytotoxicity, decreased water retention and increased
mechanical properties [97]

Calcium sulfate In vivo Early bony consolidation [98]

SiO2 + ZrO2 In vitro
No cytotoxicity at low concentration, decreased water retention,

increased protein adsorption, biomineralization, and
biodegradation

[99]

Bioactive glass + carbon nanotube In vitro No cytotoxicity, increased water retention, biodegradation, and
mechanical properties [100]

β-tricalcium phosphate In vitro No cytotoxicity at low concentration, decreased biodegradation,
and increased mechanical properties [101]

In vivo Increased new bone formation [102]
γ-polyglutamic acid In vivo Increased new bone formation [103]

Chondroitine sulfate + apatite BMP-2 In vivo Enhanced bone regeneration [104]

Bioactive glass In vitro Decreased water retention, increased biomineralization,
biodegradation, and mechanical properties [105]

Bioactive glass + poly lactic-co-glycolic acid (PLGA)
nanoparticles In vitro Decreased water retention, and increased mechanical properties [106]

Carbon nanotube In vitro No cytotoxicity, increased biomineralization [107]

Keratin nanoparticles In vitro No cytotoxicity, increased protein adsorption and
biodegradation [108]

Glycerophosphate In vivo Enhanced bone regeneration [109]

Glycerophosphate + graphene oxide In vitro No cytotoxicity, increased water retention, protein adsorption,
biomineralization, biodegradation, and osteogenesis [110]
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Table 1. Cont.

Chitosan-Based Biocomposite Scaffolds

Polymers and/or Biomaterials Bioactive
Molecule Models Observations as Compared to the Properties of Chitosan

Polymer Scaffolds Alone Reference

poly-ε-caprolactone BMP-2
In vitro No cytotoxicity [111]
In vivo Regeneration of both the subchondral bone and the cartilage in

large animal model

Chitin + Nano ZrO2 In vitro No cytotoxicity, decreased water retention and biodegradation,
increased biomineralization and osteogenesis [112]

Collagen

In vivo Enhanced bone regeneration [113]

BMP-2
In vitro No cytotoxicity, increased biomineralization and osteogenesis [114]
In vivo No cytotoxicity, increased biomineralization and osteogenesis

BMP-7 In vivo Accelerated regeneration of alveolar bone tissue [115]
PLGA/Polyethylene glycol

(PEG) VEGF
In vitro Induced angiogenesis [116]
In vivo Induced angiogenesis and vascularization in rat

PLGA rhBMP-2
In vitro Controlled growth factor release rate [117]
In vivo Enhanced bone formation and fast bone regeneration in dog

Chondroitine sulfate +
hydroxyapatite In vitro Secretion of higher level of receptor activator of nuclear factor

kappa-B ligand (RANKL) to mediate osteoclastogenesis [118]

Advanced platelet rich fibrin
(A-PRF) In vitro No cytotoxicity, increased biomineralization and mechanical

properties, decreased biodegradation [119]

Alginate

Nano SiO2 In vitro
No cytotoxicity, decreased water retention and mechanical
properties, increased protein adsorption, biomineralization,

biodegradation, and osteogenesis
[120]

Nano-sized hydroxyapatite In vitro No cytotoxicity, increased biomineralization, osteogenesis, and
mechanical properties [121]

Hydroxyapatite In vitro No cytotoxicity [122]
In vivo Strong positive effect on bone formation in mice

BMP-2
In vitro No cytotoxicity [123]
In vivo Great osteogenesis and reconstruction of critical size bone

defects

Silk fibroin
Nano ZrO2 In vitro No cytotoxicity, increased water retention, biomineralization,

biodegradation, and mechanical properties [124]

Hydroxyapatite In vitro Increased biomineralization and osteogenesis [125]

TGF-β1 In vivo Biocompatibility and extensive osteoconductivity and
osteogenesis [126]
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Table 1. Cont.

Chitosan-Based Biocomposite Scaffolds

Polymers and/or Biomaterials Bioactive
Molecule Models Observations as Compared to the Properties of Chitosan

Polymer Scaffolds Alone Reference

Collagen +
Poly(L-Lactide)

Nanohydroxyapatite BMP-2
In vitro Controlled growth factor release rate and more favorable

cytocompatibility [127]
In vivo Accelerated regeneration of cancellous bone defect in rabbit

Carboxyme-thylcellulose mesoporous wollastonite In vitro
No cytotoxicity, decreased water retention and biodegradation,

increased protein adsorption, biomineralization, and
osteogenesis

[128]

Gelatin

In vivo Increased amount of new bone formation [129]
Hydroxyapatite

–montmorillonite In vitro Decreased biodegradation, increased biomineralization and
mechanical properties [130]

Nano SiO2 In vitro
No cytotoxicity, decreased water retention, increased protein

adsorption, biomineralization, biodegradation, and mechanical
properties

[131]

β-tricalcium phosphate In vitro No cytotoxicity, increased water retention, biomineralization,
osteogenesis, and mechanical properties [132]

Hydroxyapatite+
titania In vitro No cytotoxicity, increased biomineralization and mechanical

properties, decreased biodegradation [133]

Hydroxyapatite In vitro No cytotoxicity, increased osteogenesis and mechanical
properties [134]

Fucoidan β-tricalcium phosphate In vitro No cytotoxicity, increased protein adsorption,
biomineralization, osteogenesis, and mechanical properties [135]

poly(propylene carbonate) In vitro No cytotoxicity, increased mechanical properties [136]
Poly-3-hydro

xybutyrate-co3-hydroxyvalerate
(PHBV)

Hydroxyapatite In vitro No cytotoxicity, increased biomineralization, osteogenesis, and
mechanical properties [137]

Polyvinyl pyrrolidone Bioactive glass In vitro No cytotoxicity, decreased biodegradation [138]

Polypyrrole-alginate In vitro No cytotoxicity, increased biomineralization, decreased water
retention, protein adsorption, and biodegradation [139]

Polyvinyl
alcohol or collagen Bioactive glass In vitro No cytotoxicity, increased biomineralization and mechanical

properties, decreased water retention and biodegradation [140]

Polyvinyl
alcohol

In vitro No cytotoxicity, increased water retention, osteogenesis, and
mechanical properties [141]

In vivo Good cartilage healing in rabbit

Polylactide + Alginate VEGF
In vitro Good VEGF release rate, enhanced neovascularization in bone

healing and maintenance of bioactivity [142]
In vivo
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2.6. Chitosan-Based Scaffold in Dental-Pulp Regeneration

The endodontic space located in the heart of the tooth contains pulp, which is crucial for its
vitality. This soft connective tissue contains collagen fibers, dental stem cells, vascularization, and
innervation surrounded by dentin. This pulp-dentin complex is very reactive and, after significant
aggression, the painful inflammatory reaction of the pulp–dentin complex is often hard to dissipate
and leads to pulp necrosis. The conventional endodontic treatment is drastic, as all tissues are removed
whatever their regenerative potentials. Recently, regenerative strategies targeting regeneration of pulp
connective-tissue, dentin, radicular edification, vascularization, and innervation were developed [143].
Scaffolds represent the key element of the endodontic treatment. They are essential for delivering
active molecules and for carrying competent cells within the endodontic compartment. They must
have an adequate viscosity, allowing their injection in the whole root canal system, and porosity, which
is crucial for cell colonization.

Recently, chitosan-based scaffolds have been developed for this purpose [144]. They are favorable,
not only for pulp regeneration, but also for dentin formation because of their capacities to induce
mineralization. Indeed, chitosan scaffolds containing β-tricalcium phosphate promoted a high
expression of mineralization markers, such as osteopontin and alkaline phosphatase, and dentin
formation by human periodontal ligament cells (HPLCs) [145]. In addition, several recent reports
demonstrated that chitosan-based scaffolds promoted the proliferation, migration, and odontoblastic
differentiation of dental pulp stem cells and mesenchymal stem cells both in vitro and in vivo [146–149]
(Table 2). The use of chitosan as a vector for antimicrobials has also been tested with interesting
outcomes [150].

Table 2. Chitosan-based scaffold in dental-pulp regeneration.

Chitosan-Based Biocomposite Scaffolds

Polymers and/or
Biomaterials Bioactive Molecule Model Observations Reference

β-tricalcium
phosphate In vitro

• Upregulated expressions of alkaline phosphatase
(ALP) and osteopontin (OPN) [145]

Collagen BMP-7 In vivo
• Release of BMP-7 gene
• Dental pulp stem cells (DPSC) differentiation into

odontoblast-like cells in vitro and in vivo
[146]

Calcium-aluminate 1α,25-dihydroxyvitamin
D3 (1α,25VD) In vitro

• Increased odontoblastic phenotype expression
• Cell migration [147]

Fibrin In vitro

• Potent antibacterial effect
• Similar dental pulp-mesenchymal stem cells

(DP-MSC) viability, fibroblast-like morphology,
proliferation rate

• Type I/III collagen production capacity.

[148]

Silver-doped
bioactive glass In vitro

• The proliferation of dental pulp cells (DPC) is
not affected

• Decrease of inflammation
• Odontogenic differentiation of DPCs
• Inhibition of Streptococcus mutans and Lactobacillus

casei growth

[149]

3. Conclusions

As a positive-charged, low-cost natural polymer with good biodegradability and biocompatibility,
as well as having non-toxic, muco-adhesive, hemostatic, and antimicrobial properties, chitosan is
a good candidate for biomedical and biopharmaceutical research. Consequently, chitosan-based
scaffolds have been widely studied and applied in tissue engineering for the last two decades. Indeed,
blending chitosan with other natural or synthetic polymers and/or biomaterials could efficiently control
the porosity and water retention of these biocomposite scaffolds, reduce their biodegradation rate,
enhance their bioactivity and biocompatibility, and increase their mechanical properties. Importantly,
as demonstrated in both in vitro and in vivo studies, most of these biocomposite scaffolds have no
cytotoxicity and promote the attachment and proliferation of cells for tissue repair. In addition, the
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combination of bioactive molecules with these chitosan-based biocomposite scaffolds could not only
promote the proliferation and differentiation of stem cells and accelerate the tissue regeneration, but
also induce angiogenesis and vascularization in different animal models, which could consequently be
used in human clinical trials.
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