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Towards Automatic Design of Soft Pneumatic Actuators: Inner Structure
Design Using CNN Model and Bézier Curve-Based Genetic Algorithm

Loı̈c Mosser1, Laurent Barbé1, Lennart Rubbert1 and Pierre Renaud1

Abstract— In this paper, the development of a method for
the design of soft pneumatic actuators is described. The focus
is given on the interest of using a deep learning model to
explore the design space with a genetic algorithm. In particular,
we propose to perform the automatic synthesis of the inner
structure of pneumatic actuators using Bézier curves and
Gaussian Mixture Points, to have a simple representation of the
actuator genotype. This makes it possible to represent a wide
variety of structures and to take into account the presence
of the actuator pneumatic supply. It is shown a CNN model
can interestingly be used in conjunction with FEM. FEM is
being used to train initially the CNN model and for the control
of accuracy, while the CNN model reduces the computational
cost, offering a sufficient accuracy during the synthesis thanks
to transfer learning. Through two case studies, the capacity
of generating geometrically complex designs such as a double-
helix network for a twisting actuator is outlined. Its possible
extension and further use are also discussed.

I. INTRODUCTION

Thanks to their compliance, soft robots are considered in
a wide range of contexts such as medical [1] or mobile [2]
robotics, and to solve manipulation and grasping issues [3].
Pneumatic actuation of soft robots is largely investigated [4]
with the design of soft pneumatic actuators (SPAs). One
important aspect in the design of SPAs is the definition of
their inner structure, where pressure applies as considered
in [5]–[7]. A large variety of shapes and topologies of SPA
inner structures has been considered, which includes tree-like
pneumatic networks [8], and networks with variable sections
[9], [10]. In parallel, manufacturing techniques are improved,
in particular with recent advances in additive manufacturing
of soft material such as silicone [11], [12]. The design space,
i.e. the number of possible inner designs of SPA is then very
large. Design methods are needed to cope accordingly with
the synthesis of SPAs.

The elaboration of design methods for SPAs has been
intensively considered [13]. One way to differentiate works is
to consider the prior information introduced by the designer.
The optimization of a predefined shape is one approach [5],
[14]. In [6], the configuration of a given set of artificial
muscles is determined by optimization. Interestingly, other
works consider no initial knowledge on SPA design. Topol-
ogy optimization [7], [8], genetic algorithms (GA) [10],
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[15], are then considered as detailed in [10]. In the latter
work, GA is exploited with a compact representation of the
SPA using computational pattern producing networks [16].
Such encoding makes it easier to explore a large design
space, as the SPA shape is described by a limited number
of parameters, instead of a direct discrete representation of
all voxels composing the structure. However, there is no
direct physical meaning of the network. To design the SPA
inner structure, where pressure is applied to get a motion, it
seems then difficult to explicit essential conditions such as
the continuity of the pneumatic network, and the presence of
an air supply at a fixed location. To circumvent this, as a first
contribution, we propose in this paper to develop a design
method based on GA but introducing a specific encoding
for the description of the SPA inner structure. The proposed
approach is based on Bézier curves and Gaussian Mixture
Points (GMP), to build the internal structures as tree-like
networks or channels with variable sections.

Design with no prior information using a GA can be
limited by the very large design space, and the correspond-
ing computational cost of exploration using finite element
modeling (FEM) to assess SPA performance. Recent work
in the field of composite material design [17] shows that
the use of a Convolutional Neural Network (CNN) model
can be very beneficial to the exploration of large design
spaces. A GA is then implemented, with strong reduction
of computational cost thanks to the substitution of FEM
by the CNN model during most of the design exploration.
CNN models have been also recently demonstrated to be
accurate for the simulation of soft structures including large
deformation of hyper-elastic materials [18], [19], as we
can encounter with SPA. As a consequence, our second
contribution is to build a design method for SPA using a
behavioral model based on a CNN to accelerate the process.
We integrate in particular an accuracy control of the model
and a transfer learning mechanism of the CNN to ensure its
accuracy during the whole design space exploration.

Our design method is presented and assessed in the
following. Promising results are presented in terms of com-
putational cost and capability to identify SPA inner structure
without any prior information before the synthesis. The
section II presents the SPA genotype built specifically for
SPAs. The GA and the overall architecture of the design
method are presented in section III. We describe then the
implementation and assessment of the design method in
section IV including experimental results. Discussion on the
method and conclusions are drawn in section V.
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Fig. 1. Schematic representation of the design problem. A pressure p is
applied to a pneumatic chamber (dashed). In this example, n = 4 points
are being used to define the SPA output motion.

II. FROM THE DESIGN PROBLEM TO SPA GENOTYPE

A. Definition of the design problem

The SPA is considered to be a deformable structure
composed of a single material. The actuator performance is
defined as a set of desired displacements at given locations
on the SPA (fig. 1). This can be the displacement of a single
point, or multiple points to describe for instance a desired
surface shape or rotational motion. We designate Ui ∈ R3,
i ∈ [1, n] as the set of desired displacements at n points
on the external surface of the SPA (Fig. 1). They are to be
obtained for a given pressure p, applied at a fixed location.
The pressure level is usually predefined, as in [8], [16], [20].
The designer may also interactively select the pressure level,
as in [21]. In the following, the set of displacements describes
how relevant a solution is, so it can be used to define the
phenotype of the SPA, following the terminology of GA [22].

The outer shape of the SPA is defined initially, as consid-
ered in other works using GA or topology optimization [17],
[23], with for instance cylindrical [5], [24] or prismatic
shape [6] to satisfy space requirements. The design method
has to provide the inner structure of the SPA, i.e. the shape
of the pneumatic chamber (fig. 1).As outlined in section I,
we propose first to build a specific description of SPAs to
elaborate their genotypes for the GA.

B. Genotype of a SPA

The SPA genotype is intended to describe the presence of
an internal void structure which can be considered, without
loss of generality, as a network of channels with variable
section and topology. For obvious practical integration rea-
sons, we need to ensure the presence of a pressure supply,
at a predetermined fixed location.

Our proposition (fig. 2) is twofold. First, Bézier curves are
used to describe the general shape and topology of the SPA
inner structure (fig. 2-a). Nc curves denoted Γk, k ∈ [1, Nc]
are employed. The shape of the k-th curve is defined by Nk

control points Ci,k, i ∈ [1, Nk]. The coordinates of any point
Mk(t) , t ∈ [0, 1] along the curve Γk are then expressed
as [25]:

Mk(t) =

Nk∑
i=1

(
Nk

i− 1

)
ti(1− t)Nk−i+1Ci,k (1)

The definition of Bézier curves allows us to take into
account explicitly the presence of the pressure supply, as
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Fig. 2. Decomposition of the use of the proposed genotype to create
one SPA individual (representation in 2D for sake of clarity). In (a), the
inner network is created using Bézier curves. Here, N1 = 3, N2 = 3 and
N3 = 4. In (b), GMPs (blue) are equally distributed along the Bézier curve,
their activation values being indicated by the size of blue circles (only curve
#1 is represented for simplicity). In (c), the inner void structure is obtained
after thresholding of the resulting distribution.

it is simply needed to express that C1,1, the first point of
the first Bézier curve, is at the pneumatic supply location.
Furthermore, the continuity of the network can be ensured
by choosing C1,k, ∀k > 1, the initial point of a curve Γk,
as a point of another existing curve.

The second aspect of our proposition is the use of Gaus-
sian Mixture Points (GMPs), interestingly considered for soft
robot design in [15]. A GMP is a point which is the center
of a Gaussian probability density function, that describes
the probability of material presence. The idea is to sum
these probabilities at each point in space, and to define the
presence or absence of material after a simple thresholding.
It would be very difficult to obtain a continuity of the inner
void structure using only GMPs scarcely distributed in the
volume. So, we combine the use of GMP with Bézier curve
representation. A so-called activation term σi,k ∈ R+∗ is
associated to each control point Ci,k (Fig. 2-b). An activation
value mk(t), t ∈ [0, 1] can then be computed along the
Bézier curve Γk using a relationship similar to equation (1):

mk(t) =

Nk∑
i=1

(
Nk

i− 1

)
ti(1− t)Nk−i+1σi,k (2)

The curve Γk is then discretized to have Nd,k spatially
equally distributed points. The implementation of the dis-
cretization process is developed in subsection II-C. It leads
to a set of values tj,k ∈ R, j ∈ [1, Nd,k] that represents the
value of t for the j-th point Mk(tj,k) along the curve Γk

after discretization (fig. 2-b). It is defined as a GMP with an
activation term mk(tj,k) that defines its participation in the
probability density map.

The probability of the presence of the inner void structure
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Fig. 3. 2D examples of possible inner structures defined using the proposed
genotype. Color crosses represent the control points for the Bézier curve of
the same color and associated parameters σi,k are given in the figure next
to the control points. In (a), an individual defined using Nc = 3 Bézier
curves with N1 = 4, N2 = 3 and N1 = 3. In (b) Nc = 1 Bézier curve
with N1 = 8. In (c) an individual with three curves with N1 = 4, N2 = 4,
N3 = 3.

at any point A ∈ R3 in the volume (fig. 2-b) is defined by

p(A) =

Nc∑
k=1

Nd,k∑
j=1

exp

(
−∥AMk(tj,k)∥2

2 ·mk(tj,k)

)
(3)

After thresholding, the geometry of the inner structure is
obtained (fig. 2-c). As a summary, the proposed genotype of
SPA is defined by (Ci,k, σi,k), i ∈ [1, Nk], k ∈ [1, Nc], used
to compute the network of Bézier curves and the location of
GMPs.

C. Implementation and examples of genotypes

Computing equally distributed points along a Bézier curve
is commonly achieved using a numerical approximation
of the curve length [26]. We use this approach, and we
approximate the curve with segments between points of the
Bézier curve. Then, we use this approximation to extract the
set of t values tj,k that defines points on the Bézier curve
Γk with a fixed distance Ld between them, i.e. with equal
spatial resolution. Ld is common to all the designs and is a
parameter of our method.

In fig. 3, the interest of the genotype is illustrated with
3 types of situations that are of interest for SPA design. In
(a), a tree-like structure with a quasi-constant section can be
generated by using one main curve and 2 other ones being
connected to the latter. In (b), one curve with a variable
section is generated, thanks to the selection of activation
values. This can be seen as the creation of inner chambers
connected through channels. In (c), Bézier curves tend to
create loops, so we consequently generate an inner chamber
of large size inside the volume. One may remark that using
Bézier curves with only two control points, straight lines
are obtained. So it is also possible to describe rectilinear
structures by creating a network of straight lines, if for

Algorithm 1: Pseudocode of the proposed design
method

Input: target phenotype targPhen;
Output: A set of individuals with a simulated phenotype

close to targPhen;
Algorithm:
Initialization
do

/* Inner loop */
while no individual is old enough do

Selection;
Crossover and mutation;
Evaluation;

end
/* Generation control */

FEM Simulation → FEMPhen;
if ∃ 1 individual | J(targPhen,FEMPhen) < ε1 then

End: A solution has been found;
else

if J(FEMPhen,CNNPhen) > ε2 then
Transfer Learning;

end
Reset the age of individuals;

end
while no solution has been found;

instance the designer wants to restrict the description to
prismatic shapes with sharp corners.

III. DESIGN METHOD

A. Structure of the algorithm

The pseudocode of the proposed method is presented in
algorithm 1. It is based on a GA, which is the inner loop in
the pseudocode. Following the GA terminology [22], [27],
the method has to provide a list of individuals, characterized
by their genotypes, that exhibit a phenotype of interest.
The genotype was introduced in section II. The targeted
phenotype, i.e. the desired set of observable characteristics
of the SPA, is denoted targPhen and it is defined from the
displacements Ui, i ∈ [1, n]. Our design space is very large
because no prior information is included. To compensate for
the computational time of FEM, it is proposed to estimate
phenotypes using a CNN model. It is, however, expected
that a CNN model obtained after an initial learning phase
cannot remain accurate during the whole design process, as
it is trained on a small initial population, unable to represent
all the possible SPA. Therefore, a control of accuracy and
updates are integrated in the algorithm. The latter is then
the coupling between 2 processes: one dedicated to the
identification of individuals of interest, based on GA, and
another one to control and update the CNN model so it
remains relevant for phenotype assessment of individuals.
Both processes are first explained, before detailing how
crossover and mutation are managed given the proposed
genotype.

B. GA-based individual selection

To describe the GA-based selection, let us first describe
the way to select individuals, based on a behavior that can



either be simulated with FEM or determined from a CNN
learnt from simulated data.

The process corresponds to a rather standard implemen-
tation of a GA. The selection of individuals starts with the
initialization step, which consists in the creation of an initial
population of individuals whose genotypes are randomly
generated. Then, the inner loop (see algorithm 1) starts. Each
execution of the inner loop corresponds to the production of
one generation of individuals. 3 operations are achieved at
each execution of the inner loop.

First, in the selection step, pairs of individuals are se-
lected based on their performance. Individual performance
is expressed by a fitness value, which is the value of the
cost function J (algorithm 1) when comparing the individual
phenotype to the target phenotype. The choice of J is
problem-dependent, and it will be described in the following
for case studies.

Then the crossover and mutation step aims at generating
new individuals, each one designated as a ”child”. Children
are the result of the reproduction of two parent individuals,
according to crossover rules, and it has a certain probability
of mutation according to mutation rules. The crossover and
mutation rules are defined in the next section. After this
step, the total population is composed of both the parent
population and children population.

Finally, the evaluation step is performed: the phenotype
of each child is assessed, while the phenotype of parents
is already known. A selection of individuals with the best
fitness values is extracted. Their age, which represents the
survival along the different generations, is incremented. The
other individuals are removed.

Once an old enough individual has been identified, the
inner loop of the algorithm is ended. Then, we enter in
the generation control. In this phase, the closeness of the
phenotype simulated with FEM FEMPhen and the desired
phenotype targPhen is verified for each individual. The de-
sign process is successful if at least one individual phenotype
is close enough such that J(targPhen,FEMPhen) is under
a certain tolerance ε1.

C. CNN elaboration and update

The CNN aims to predict the phenotypes of individuals.
As the CNN is a behavioral model, it needs first to be trained.
This is done in the initialization phase: the phenotype of all
individuals of the initial population is simulated using FEM.
From this data, the CNN is built and used during the whole
phase corresponding to the inner loop.

The control of model accuracy is achieved every time we
enter in the generation control phase. FEM simulation of
the individuals selected at the end of the inner loop is first
performed. Only a small set of individuals, typically 15% of
the population, has then its phenotype simulated.

The simulated phenotypes are used to determine whether
a solution has been found within the best individuals in the
population. So we make sure the algorithm stops only if
FEM-based SPA phenotype is relevant. Each time we enter
in the generation control phase, but no solution is found

yet, the simulated (from FEM) and estimated (from CNN)
phenotypes, denoted respectively FEMPhen and CNNPhen,
are compared. If the difference between the two phenotypes
is significant, i.e. above a given tolerance ε2, for all tested
individuals, a CNN update is needed. This is achieved using
transfer learning which consists of training on a reduced
number of individuals and a reduced number of learning
iterations. It is conducted on individuals from the initial
population and on the simulated individuals. The details
about the CNN, its initial training and the transfer learning
step are given in section IV-b. The population is then sent
back in the inner loop and the age of all individuals is reset
to zero.

D. Crossover and mutation

Crossover between two designs is achieved using a one-
point crossover operation [28]. This crossover operator is
selected as it is defined for GMPs in [15] and presented
to have ability to preserve physical regions with useful
functionality.

In our situation, as a first step, the design space is divided
in 2 regions using a plane. The plane is defined a point,
which is the barycenter of all the control points of both parent
designs, and a randomly chosen orientation. A child design
is then obtained by using the control points of one parent
located in one region and from the second parent in the other
region. One may notice that the use of the barycenter of all
control points to define the plane helps to limit the chance of
using only all the control points of only one parent. If the two
parents are not defined by the same number of Bézier curves,
the child design may keep the largest number of curves with
a probability of 0.5 for each extra curve.

Mutation is defined with a 2-step decision. First, a child
individual has a probability of 0.5 of undergoing a muta-
tion. Second, if mutation is considered to occur, there is a
probability of 0.5 for each control point to be relocated.

IV. ASSESSMENT OF THE METHOD

A. Case studies

Two case studies are considered to assess the relevance
of the method. The two SPA to be designed share the same
external volume and boundary conditions (fig. 4). The overall
shape is prismatic, with a size chosen equal to 10 mm ×
10 mm × 30 mm. The pressure is applied on the left side,
at its center. The pressure level is set to p = 50 kPa.
The remaining part where the pressure inlet is located has
no displacement. For ease of prototyping, we use Agilus 30
material obtained with Polyjet printing process. The material
was characterized using ISO 37 standard with a Zwick/Roell
Z005 testing machine, with specimens printed in the 3
possible directions of space. By identification on a 10% strain
range, Young’s modulus are equal to 0.76 MPa, 0.71 MPa,
0.38 MPa, which shows the anisotropy introduced by the
process. In the following, an average value of 0.62 MPa,
close to a silicone, is being used as the direction of printing
is not known during the synthesis. The material is considered
to be quasi-incompressible with ν = 0.46.
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Fig. 4. Conditions for the two case studies, with one target displacement
(green) or 4 target displacements (red) with highlighted pneumatic supply
(purple) and fixed surface (dashed)

The case study #1 corresponds to a simple definition
of SPA behavior: the goal is to respect a displacement
at a single point P ′

1 (n = 1) at the center of the
right surface (fig. 4, green). The case study #2 is defined
by the search for a set of displacement at four different
points (n = 4). The phenotype is then composed of the
displacements (U1,U2,U3,U4) of vertices (P1, P2, P3, P4)
(fig. 4, red). It will be used to assess the ability of the method
to design SPA with specific motion, e.g. a twisting motion
of the actuator.

In algorithm 1, the cost function J(phen1, phen2) defines
the way two phenotypes phen1 and phen2 are compared. In
the following it is defined as

J(phen1, phen2) = ∥phen1 − phen2∥2

For case study #1, the individual phenotype is defined as
U′

1. The target phenotype is set to (0, 1.6 mm, 0.5 mm).
For case study #2, our goal is to get a twisting motion
along the Z axis, around point P ′

1. We then focus on the
displacement in the XY plane, and do not consider the Z
component of the displacements of points. Accordingly, the
individual phenotype is (U1.x,U1.y, ...U4.x,U4.y). The
target phenotype is 0.22×(1, -1, 1, 1, -1, 1, -1, -1) mm.

B. Implementation of the algorithm

The CNN is based on a ResNet architecture. It is con-
structed using a trial and error approach as used in [17] and
guided with observations of [29], [30]. It takes as an input the
3D matrix describing the presence of material within the SPA
as obtained after spatial discretization of the volume. In the
following, the voxel size is 0.4×0.4×0.4 mm3. This means
that the volume is manipulated as a (25, 25, 75) matrix which
represents a set of 46875 voxels. The CNN output is a vector
containing the phenotype, which is the 3D displacement
of the n points under consideration (fig. 1). Thus, the
output is a 3n-values vector. The CNN is constituted of a
convolution layer as input, 16 residual convolutional with
full pre-activation, as it is reported to favor generalization
performance [30], an average pooling layer as it is known
to reduce the dimension before dense layers [29], two dense
layers of 128 neurones and a dense output layer.

The initial training of the CNN uses a population of
100000 randomly generated individuals (60000 for training,
40000 as a test set to assess the CNN accuracy). The training

is achieved on 20 epochs with a learning rate of 10−4. After
the initial training, the phenotype estimation using a CNN
has a root mean square (RMS) error of 9 · 10−3 mm and a
coefficient of determination R2 = 0.996 for case study #1,
and a RMS error of 8 · 10−3 mm and a R2 = 0.998 for
case study #2. These values can be considered as satisfactory,
and they will be used as a reference to comment on the
contribution of transfer learning as introduced in the method.

The implementation of the algorithm is achieved using
Python on a PC (Intel i9-10900KF, 64 GB of RAM, NVIDIA
RTX-3090 graphic card). The CNN is implemented using
Tensorflow. FEM simulations are performed considering
large displacements and large deformations, using COMSOL
in batch mode through Matlab and Python. Computation
times are reported after using parallelization on 4 cores for
the simulation of the initial population used for learning.

The selection process selects the 200 best individuals
as parents and randomly generate 500 couples from them.
Thus, the crossover and mutation step creates 500 new
individuals that are then evaluated. While the size of those
populations increases the computing time of selection and
crossover/mutation steps, it is expected to have a positive
impact on the number of generations needed to find a
solution. The values have been selected arbitrarily based on
the successful search for solutions for case studies.

When the method engages the generation control stage
(algorithm 1), 30 individuals are simulated using FEM. When
necessary, the transfer learning step is applied with a reduced
learning rate of 10−5 on 10 epochs and with 1500 individuals
of the initial population and 50 times the population of 30
simulated individuals. In this way, the individuals of the
initial and new populations have the same weight in the
training population, so it favors diversification of the updated
training population.

The limit age associated to the inner loop is set to 5
generations. This parameter has an impact on the number
of simulations done along the generations. Thus it must
be high enough to limit the use of FEM simulations and
small enough to identify correctly the generations where the
transfer learning step must be applied. The threshold values
ϵ1 and ϵ2 are chosen equal to 0.1 mm. The parameter Ld is
set equal to the size of a voxel to have the discretization of
Bézier curves at every voxel.

C. Results

The assessment of the method is focused first on the
interest of the transfer learning in the generation control
phase, before focusing on computational cost and finally the
possibility to generate specific behavior of SPA.

1) Transfer learning contribution: The fig. 5 represents
for the case study #1 the phenotype values of the initial
population (in black), the target phenotype (in red) and,
as a red dashed line, the tolerance zone associated to the
parameter ϵ1. One can see the target phenotype is not present
in the initial domain of phenotypes and the convergence
towards the target phenotype. In fig. 6, the evolution of
the fitness value during the synthesis is plotted. Blue box
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plots correspond to fitness values obtained using CNN with
transfer learning, as implemented in the algorithm. Green
box plots are generated using FEM. To assess the impact of
transfer learning, the algorithm is also run using the CNN
without transfer learning. Red box plots represent the values
obtained in this situation. The same representation is given
for case study #2 (fig. 6 bottom).

The contribution to the design process of the CNN and
the associated generation control phase appear in both case
studies. For case study #1, transfer learning occurs after
20 generations (orange vertical line). With transfer, there is
convergence and a solution is found: the final fitness value
obtained from CNN with transfer learning and from FEM
during verification is below the dotted black line, defined by
ϵ1. Without transfer, the target fitness value is not obtained.
For case study #2, the target phenotype is in the same way
not part of the initial domain, as illustrated in the attached
video. There are 2 activations of transfer learning.

For case study #1 (resp. #2), at the last generation,
the mean relative error between J(targPhen,FEMPhen)
and J(targPhen,CNNPhen) is equal to 46% (resp. 21%)
(fig. 6, gaps blue/green), while it is equal to 97% (resp.
152%) without transfer learning (fig. 6, gaps red/green). This
confirms quantitatively the interest of this learning phase as
the design space is too large to have a single and accurate
CNN model.

2) Computation time: The use of a CNN requires FEM
simulation during an initial generation of population, an
initial CNN model training, and transfer learning to maintain
its accuracy. Corresponding computation times are reported
in table I for the two case studies.

To assess the interest of using a CNN, we estimate the
computation time that would be needed using the inner
loop in the algorithm 1 with only FEM simulations. The
number of individuals to be simulated is chosen equal to the
number of individuals examined using the CNN. The mean
time for a single FEM simulation is 63 seconds. Thus, an
implementation of the genetic algorithm would have required
220.9 (553.9 for #2) hours for case study #1, i.e. 1.8 (4.3)
times the duration of the proposed design algorithm. The use
of CNN appears clearly of interest even though it requires
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Fig. 6. Representation of the fitness value along the generations based on
their simulated phenotype (green), their estimated phenotype with the CNN
updated using transfer learning (blue) and their estimated phenotype with
the CNN without update (red) (case #1 upper figure, and case #2 lower
figure). Transfer learning steps are highlighted in orange.

Steps of the algorithm
Computation time Proportion in the

for each step (h) overall computation
time for each step

case #1 case #2 case #1 case #2
Initial population 96 96 79.3 % 74.8 %

simulation
CNN initial 20 20 16.5 % 15.6 %

training
CNN Evaluation 0.05 0.23 4e-4 % 0.1 %

Selection 0.86 2.69 0.7 % 2.1 %
Crossover/Mutation

FEM Simulation 2.64 6.61 2.2 % 5.1 %
Transfer learning 0.43 0.90 0.3 % 0.7 %
Other operations 1.01 1.94 0.8 % 1.5 %

Total Time 120.99 128.37 100 % 100 %

TABLE I
DISTRIBUTION OF THE COMPUTATIONAL TIME FOR THE DIFFERENT

STEPS OF THE METHOD FOR CASE STUDY #1 AND #2

an initial learning phase.
3) Description of solutions: The obtained design for case

study #1 is represented in fig. 7-a and b. One can note the
cavity is created by combination of 6 Bézier curves with
respectively n1 = 5, n2 = 6, n3 = 2, n4 = 5, n5 = 4 and
n6 = 3. The genotype is in the end defined by 100 scalar
parameters. The cavity has a symmetrical shape with respect
to the plane of motion which is consistent with the search for
zero displacement in the x-direction. It is interesting to note
that the targeted displacement induces for the final design a
maximal strain of 80 %, measured as the highest eigenvalue
of the Green-Lagrange tensor. The CNN model is able in
these conditions to describe the output displacement with an
accuracy of 1%.

For case study #2, the design obtained using the design
algorithm is represented in fig. 7-c and d. Interestingly, the
phenotype chosen to get a twisting motion of the free surface
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Fig. 7. Case study #1 and #2 solution representations with (a for #1 and
c for #2) its definition with Bézier curves in the volume and (b for #1 and
d for #2) the displacement field using FEM.

leads to a helical overall shape of the inner cavity. Such
type of geometry is obtained using 5 Bézier curves with
respectively n1 = 6, n2 = 4, n3 = 7, n4 = 5 and n5 = 5.
The geometry seems intuitively logical, and it is obtained
without any prior information in the design process, nor any
designer expertise. As outlined in the video associated to the
paper, it largely outperforms even the best solutions in the
initial population.

D. Experimental evaluation for case study #2

For further method assessment, the design obtained for
case study #2 is implemented and tested. The SPA is
produced using additive manufacturing, with Polyjet process
(Stratasys, USA). A set of five specimens is printed. The SPA
body is made out of Agilus30™ Black (FLX985) soft mate-
rial. The fixed base is made of VeroMagentaV™ (RGD852)
rigid material (Fig. 8).

For each specimen, a 100-Hz motion tracking system
composed of 4 Arqus A5 cameras (Qualisys, Sweden)
is used with markers attached at the location of points
(P1,P2,P3,P4). Four other markers on the base plane are
used to reconstruct the XY plane in which the displacements
(U1,U2,U3,U4) are defined. They are plotted in figure 9,
while pressure is applied from 0 to 50 kPa within 30 s. The
standard deviation of the results for five pressurization cycles
for the 5 specimens is equal to 0.03 mm, 0.027 mm, 0.017
mm and 0.019 mm for respectively P1 to P4, which shows
a good consistency between the prototypes.

The amplitude of displacements of the 4 points of interest
are similar (Fig. 9). This amplitude is in average 68% larger
than the one expected from FEM simulation. The displace-
ments measured at 25kPa, i.e. 50% of the target pressure,
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P3P4

Reconstructed
plane

Pneumatic
supply

Fixed base

Tracked
markers

Fig. 8. Part of the experimental setup with the specimen on a fixed base,
infrared markers tracked by the Qualisys system and a SPA. Points P1 to
P4 are highlighted with respect to their corresponding marker placed on the
SPA.

0 0.2 0.4
x (mm)

-0.4

-0.3

-0.2

-0.1

0
y

(m
m

)

0 0.1 0.2 0.3
x (mm)

0

0.1

0.2

0.3

y
(m

m
)

-0.3 -0.2 -0.1 0
x (mm)

0

0.1

0.2

0.3

y
(m

m
)

-0.3 -0.2 -0.1 0
x (mm)

-0.4

-0.3

-0.2

-0.1

0

y
(m

m
)

initial P4

initial P3

initial P2

initial P1

Target
P4

Simulated
phenotype

Target
P3

Target
P2

Target P1

Intended
Motion

0 to
0.5 bar

experimental
25 kPa
motion

Fig. 9. Displacements of points P1 to P4. Blue markers are experimental
data, light blue markers show the displacement at 25kPa. Final displacement
at 50kPa corresponds to the green crosses.

correspond in average to 48% of the total displacement. So
the material nonlinearity does not seem to be significant. The
difference between simulation and experiment is probably
here mainly due to the difficulty to calibrate the material
constitutive model with this type of Polyjet-based material,
which anisotropy was outlined [31]. Still, one can notice that
in terms of direction of displacements, the path followed
by the 4 points is very close to the motion associated to
the desired twisting motion around the Z axis. This is very
encouraging in terms of synthesis of SPA with the method.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a design method of SPA inner
structures based on a GA incorporating a CNN model. The
GA manipulates a representation of the SPA based on Bézier
curves and GMPs. No prior information is used to determine
the internal structure of an actuator. The introduction of a
CNN model reduces significantly the computation time. At
the same time, the CNN model accuracy remains sufficient
during the synthesis thanks to the transfer learning, as noticed
with the 2 case studies, including a non-trivial twisting SPA
design. We could observe the possibility to design with no
prior information a specific inner structure, even in presence
of up to 80 % deformation with an accuracy of CNN model



of 1 %. For the second case study, the capacity to generate a
twisting motion by working on the SPA inner structure was
experimentally confirmed. This tends to confirm the interest
of the approach we propose.

As such, the method is defined by several parameters,
related to the GA and to the CNN. Their values were here
mostly reused from a related work [17]. This is encouraging
on the possibility to use the method as such, without major
adjustment of these parameters. If such an adjustment
is needed for other design problems, the user can tune
the GA parameters following [27]. Concerning the CNN
parameters and its architecture, well-known architecture such
as described in [29] or automatic CNN model tuning as
presented in [32] can be considered.

This work opens several perspectives. First, the synthesis
problem is defined in a general way, as the search for desired
displacements of a set of points. When the number of points
increases, we may face difficulties related to the uneven
distribution of permissible displacement errors, as described
in [6]. Investigating this aspect will be of interest.

Also, the genotype we propose can be used to describe
material removal on the outer part of the volume as well.
Using GMPs placed at different locations, the creation of
cellular materials with internal voids can also be described.
A perspective is to build crossover and mutations rules for
these operations, and to manage their simultaneous uses, as
this could lead to the creation of non-functional individuals if
the integrity of the pressurized inner cavity is not maintained.

Finally, the method could be extended to include as well
multimaterial distributions, and to consider the integration
in the definition of the fitness value of criteria beyond the
motion behavior, such as manufacturing rules.
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