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Abstract
The monitoring of soil moisture and sea surface salinity over the Earth has been profoundly 
enhanced during the last thirteen years due to a new generation of satellite sensors. L-band 
radiometry is currently the only technology providing direct measurements of soil mois-
ture, insensitive to surface roughness and distribution of elements in the soil, and the only 
technology the only technology for measuring that allows us to measure sea surface salinity 
from space. The Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Pas-
sive (SMAP) satellite missions resolve global and local variability with a spatial resolution 
of approximately 43 km, a swath width close to 1000 km, and a sampling time, for each 
mission, of at least twice every 3 days. These resolutions and samplings can be increased 
by either merging data from the two sensors, and with complementary information gath-
ered from other passive or active sensors, or with in situ information at higher spatial reso-
lution. Numerous scientific studies based on the use of this new type of measurement have 
led to a better understanding and constraint of the processes governing the variability of 
the water cycle, ocean circulation and the Earth’s climate. The continuity of measurements, 
and the increased spatial and radiometric resolution is critical for fulfilling scientific needs. 
Future L-band radiometry missions currently being planned in Europe (the Copernicus 
Imaging Microwave Radiometer), and in China (the Ocean Salinity mission) should pro-
vide better constraints on auxiliary parameters by combining multiple frequencies, but they 
will not have improved spatial resolution beyond SMOS and SMAP. The temporal continu-
ity with SMOS and SMAP will likely not be ensured. In parallel, new concepts are being 
developed to increase spatial resolution of both land and ocean parameters.
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Article Highlights

• L-band radiometry monitors soil moisture and sea surface salinity from space opera-
tionally since 2010

• Satellite soil moisture and salinity reveal variability related to water cycle, biosphere 
and ocean processes

• Existing scientific studies argue in favor of increasing the spatial resolution of future 
satellite missions

1 Introduction

Soil moisture (SM) and sea surface salinity (SSS) are key parameters for studying the 
water cycle, i.e., the exchanges between the Earth’s water reservoirs, the ocean, the land, 
the atmosphere and the cryosphere, as well as for studying the biosphere and the ocean var-
iability. Their measurement from space is particularly relevant as they can be performed at 
global scale and at spatial resolutions on the order of, or lower than 50 km, while most land 
and ocean large mesoscale features occur at these resolutions and cannot be observed from 
in situ measurement networks. The monitoring of SM and SSS has been greatly enhanced 
since 2010 with the launch of the first L-band radiometer onboard the European Soil Mois-
ture and Ocean Salinity (SMOS) mission, the U.S.-Argentine Aquarius mission (but at a 
lesser spatial resolution) and the U.S. Soil Moisture Active Passive (SMAP) mission.

This review article aims at reviewing the main advances made possible by passive and 
active microwave remote sensing of SM and SSS, focusing on spatial resolution of at least 
50 km.

In the first part, we detail the main sensors characteristics and the principles for the 
SM and SSS measurements. Then, we review scientific applications over land and over 
ocean. In the last part, we present the perspectives for next-generation SM and SSS satellite 
missions.

2  Spaceborne Sensors and Principle of Measurement for Soil Moisture 
and Sea Surface Salinity

2.1  Passive Microwave Radiometry

Microwave observations are sensitive to SM and to SSS through the effects of moisture and 
of salinity on the dielectric constant, and hence, on the reflectivity/emissivity of the soil 
and of the sea surface, respectively (Ulaby et al. 1986). Vegetation (Jackson and Schmugge 
1991) and surface roughness (Choudhury et al. 1979) reduce the sensitivity of the micro-
wave observations to SM. Vegetation and roughness effects become more pronounced as the 
frequency increases. Hence, low frequencies in the L-band range (∼1–2 GHz) are preferred 
for SM sensing. In this frequency range, radiometry detects emissivity from the top few 
centimeters of the soil (5 cm on average, see Sect. 3.2.1). The sensitivity of the dielectric 
constant to the salinity increases as the frequency decreases, and the L-band range is the 
best compromise in terms of sensitivity, spatial resolution and low disturbances by external 
effects (atmospheric perturbation, ionospheric Faraday rotation, galactic noise) (Lagerloef 
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et al. 1995). At L-band, radiometry detects emissivity from the top first centimeter of the 
ocean (Boutin et  al. 2016). Moreover, in order to limit the radio frequency interferences 
(RFI), the three satellite missions carrying L-band microwave radiometers, SMOS, Aquar-
ius and SMAP, have used the 1.4 GHz protected band (Daganzo-Eusebio et al. 2013).

There are a number of approaches that can be used to retrieve SM from low-frequency 
passive microwave observations as reviewed in Wigneron et al. (2017). Almost all of these 
approaches are based on the same radiative transfer equation. This equation requires the 
estimation of a number of parameters/variables such as physical temperature, vegetation 
effects, roughness, and soil properties. Over the ocean, only very low-frequency passive 
measurements are sensitive to SSS. Nevertheless, the sensitivity remains relatively small, 
and all other contributing effects must be minimized. Therefore, measurement of SSS 
over the global ocean is currently only feasible using L-band radiometry. SSS is retrieved 
through full radiative transfer models that involve other variables such as SST and wind 
speed, and to a lesser extent, atmospheric parameters, as reviewed in Reul et al. (2020).

2.1.1  Soil Moisture and Ocean Salinity (SMOS)

The SMOS mission was launched on 2 November 2009 and is still operating in Febru-
ary 2023 (Kerr et al. 2001). It is an element of the European Space Agency (ESA) Earth 
Explorer programme and was developed by ESA, the Centre National d’Etudes Spatiales 
(CNES) and Centro para el Desarrollo Tecnológico Industrial (CDTI) (Kerr et al. 2001). 
The SMOS mission is covering new grounds in several domains. It is the first L-band radi-
ometer in space achieving a global and continuous coverage. It was also the first satellite to 
infer SSS and SM directly and in an absolute fashion, i.e., without scaling or change detec-
tion with a suitable accuracy (0.04  m3/m3 for SM). The instrument concept was also very 
new as it was the first 2D interferometer in space. This instrument had the advantage of 
providing fully polarized multi-angular measurements of the surface. It also has an unsur-
passed native spatial resolution (~ 30 km at 3 dB below the satellite and 43 km on average 
over the whole field of view) gridded to 15 km resolution. The price to pay is in terms of 
sensitivity when compared to traditional radiometers. It is also worth noting that as the 
scene is reconstructed, the observations are always made at exactly the same point (which 
can in principle be selected) enabling perfect comparison between different acquisitions 
and better correction of water land transition. Thanks to the instrument design, the level 
of the antenna back lobes is very low. However, being the first L-band mission has some 
drawbacks, e.g., the level of RFI in the protected 1400–1427 MHz band was found to be 
very high and unexpected (Daganzo-Eusebio et al. 2013).

The mission characteristics are to cover the globe twice in less than 3 days to capture 
the quickly varying variables, with a dusk/dawn orbit to minimize the humidity and tem-
perature gradients at the land and ocean surface atmosphere interface and minimize Fara-
day rotation effect thanks to the 06 a.m. orbit.

The calibration relies on the cold and a hot target approach for the zero interferometric 
baseline receivers which determine the absolute value of the scene brightness temperature 
(Colliander et al. 2007). Thanks to the three redundant systems (Noise Injection Radiom-
eters), the mission has achieved a very high stability and a very stable calibration (Martín-
Neira et al. 2016).

The approach to retrieve the SSS relies on the multi-acquisition process to drastically 
improve the signal to noise ratio (Boutin et al. 2012; Reul et al. 2012, 2014b). The accu-
racy of the retrieved SSS strongly depends on the modeling of the physics underlying the 
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measurement of microwave radiometry, and on the colocation/uncertainty of the needed 
auxiliary data of sea surface temperature (SST) and wind speed. Thanks to the SMOS 
measurements, followed by the Aquarius and SMAP measurements, this modeling has 
been greatly developed (Reul et al. 2020). In particular, parametrizations of the dielectric 
constant (Boutin et al. 2021b) and of the emissivity of the sea surface due to roughness and 
foam have been improved and are still the subject of active research (English et al. 2020).

Being a “first” both in terms of instrument and measurements, SMOS had to explore 
unchartered territories leading to constant and significant improvements in the algo-
rithms. Therefore, the algorithms have evolved considerably and three total reprocessing 
campaigns have already been carried out. Users should be very wary of using the latest 
reprocessing version (see a list of various versions on https:// www. catds. fr/ Produ cts/ Avail 
able- produ cts- from- CPDC/ Corre spond ance- betwe en- Catds- versi ons- DPGS- versi ons), and 
never combine two versions in any analysis.

Thanks to its characteristics, the SMOS mission has two very important features: (1) it 
provides the science community with more than 13 years of continuous and homogeneous 
data and (2) it can be easily and seamlessly merged with other similar missions such as the 
SMAP mission from NASA.

SMOS delivers a whole range of products. The basic product is Level 1 multi-angular 
fully polarized brightness temperatures. These temperatures are available in real time, as 
well as with a slight delay (typically several hours) with an easier format to handle.

Level 2 products are mainly SM, vegetation opacity and SSS. Pseudo-dielectric constant 
(Waldteufel et al. 2004), RFI maps and other products can also be obtained. SM is also pro-
duced in near real time (less than 3 h after acquisition) (Rodríguez-Fernández et al. 2017) 
and is directly ingested in Numerical Weather Prediction (NWP) models as at the Euro-
pean Centre for Medium range Weather Forecast (ECMWF) (Muñoz-Sabater et al. 2019; 
Rodríguez-Fernández et al. 2019).

Level 3 SM and SSS global maps are produced operationally at ‘Centre Aval de Traite-
ment des Données SMOS’ (CATDS). Other Level 3 and Level 4 SM and SSS products 
are generated in delayed time with refined or alternative algorithms at CATDS, at Barce-
lona Expert Center (BEC), and in the frame of the ESA Climate Change Initiative (CCI) 
projects.

Several Level 3 and 4 products are also available either from space agencies or from 
various institutes, such as Root Zone Soil Moisture (RZSM), disaggregated SM data at 
1 km (Molero et al. 2016), water bodies (Parrens et al. 2017, 2019), freeze thaw soil state 
(Rautiainen et  al. 2016), strong winds (Reul et  al. 2016), SSS with a spatial resolution 
increased to 0.05° in global ocean and semi-enclosed basins (Olmedo et  al. 2016), SSS 
corrected from instantaneous rainfall (Supply et al. 2020), sea surface density and spiciness 
(Kolodziejczyk et  al. 2021), thin sea ice thickness (Kaleschke et  al. 2016), biomass and 
carbon (Brandt et al. 2018a; Rodríguez-Fernández et al. 2018; Tian et al. 2018), improved 
rainfall estimates over land (Pellarin et al. 2020), yield estimates and food security (Gibon 
et al. 2018), flood risks and fire risks (Chaparro et al. 2016), or drought indices (Ojha et al., 
2023).

https://www.catds.fr/Products/Available-products-from-CPDC/Correspondance-between-Catds-versions-DPGS-versions
https://www.catds.fr/Products/Available-products-from-CPDC/Correspondance-between-Catds-versions-DPGS-versions
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2.1.2  Aquarius

The Aquarius mission (Lagerloef et al. 2008) was launched on 10 June 2011 onboard the 
SAC-D spacecraft of the Comisíon National de Actividades Espatiales (CONAE), the 
Argentinean Space Agency. It carried an L-band radiometer and a scatterometer developed 
by National Aeronautics and Space Administration (NASA) as the primary sensors. The 
main scientific objectives were to measure SSS over the global ice-free oceans with a 150-
km spatial resolution for a 7-day revisit, and to achieve a measurement error less than 0.2 
on a 30-day time scale, taking into account all sensor and geophysical random errors and 
biases. The Aquarius sensor consisted of horns (3 beams) operating in push broom mode. 
It viewed continually away from the Sun to avoid signal contamination from solar L-band 
energy flux. The three beams vary in width and incidence angle to form a 390-km-wide 
ground swath, with three ground footprints of 74 km × 94 km, 84   km x 120 km and 96 km   
× 156 km. With an exact repeat cycle of 7 days, Aquarius provides a near global coverage 
at 7-day intervals. Due to an electronic failure on the SAC-D platform, the Aquarius mis-
sion ended on 7 June 2015.

The Aquarius instrument provided much less noisy Level 2 SSS than SMOS due to 
its better radiometric resolution and because a RFI filtering system was installed onboard 
based on RFI contamination observed by SMOS (Le Vine et al. 2014). Hence, Aquarius 
has been considered as a reference for retrieving SSS from L-band radiometric measure-
ments for a long time. However, owing to the frequent revisit of SMOS, and providing 
that RFI are well filtered out, the precision of monthly SMOS SSS reprocessed with recent 
algorithms is very close to the one of monthly Aquarius SSS at Level 3 [see Table 4 in 
Boutin et al. (2021a)]. Moreover, the SSS gradients and eddying features are better detected 
with SMOS thanks to its better spatial resolution than that of Aquarius (e.g., Hasson et al. 
2019; Thouvenin-Masson et al. 2022), and the combination of SMOS and Aquarius SSS 
enhances the quality of monthly SSS satellite products (Boutin et al. 2021a).

2.1.3  The Soil Moisture Active Passive mission (SMAP)

The SMAP mission (Entekhabi et al. 2010) jointly developed by the Jet Propulsion Labora-
tory (JPL) and NASA Goddard Space Flight Center (GSFC) was launched on 31 January 
2015. The measurement objective of SMAP is to produce global mapping of SM, includ-
ing its state as frozen or thawed, every two to three days. Originally, SMAP included an 
L-band radar and an L-band radiometer for coincident active/passive measurements inte-
grated as a single observation system. The radiometer and radar instruments became opera-
tional in April 2015. Although the SMAP radiometer has since been operating flawlessly, 
the radar transmitter ceased operating on 7 July 2015 due to a hardware glitch, leaving 
the radiometer the only operational instrument collecting science observations (Piepmeier 
et al. 2017).

Despite this untimely loss, there are several hardware innovations that equip the radiom-
eter with advanced data acquisition capabilities, which were not available in earlier radiom-
eter designs. The 6-m rotating mesh antenna onboard the spacecraft, for example, provides 
a lightweight yet robust solution to a 360° scanning mechanism that provides not only a 
wide swath coverage (~ 1000 km) but also full and unobstructed views of fore- and aft-look 
brightness temperature observations at an effective resolution close to 43 km (Piepmeier 
et al. 2017). Building on SMOS and Aquarius experiences, the SMAP receivers have the 
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ability to record time–frequency subband data, which provides an unparalleled flexible way 
to detect emission contamination caused by manmade sources of RFI that are sparse in 
time and/or frequency (Mohammed et al. 2016; Piepmeier et al. 2014). This spectrogram-
based RFI mitigation approach significantly improves radiometric accuracy and data avail-
ability in the presence of correctable RFI. SMAP’s successful demonstration of RFI sub-
band data acquisition as well as the use of a large spinning lightweight antenna to achieve a 
wide swath coverage at fine spatial resolution have influenced the design of several upcom-
ing radar and radiometer missions, including the NASA-ISRO SAR mission (NISAR 2018) 
and the Copernicus Imaging Microwave Radiometer (CIMR) (Kilic et al. 2018).

The SMAP science data products are provided at various granule extents. Operationally, 
the Level 1 products include raw/calibrated brightness temperature observations from the 
radiometer arranged in 6  pm ascending and 6 am descending half-orbit granules. These 
products include the Level 1B geolocated time-ordered brightness temperatures and the 
Level 1C brightness temperatures resampled on the Equal-Area Scalable Earth (EASE)-
Grid map projections at 9- and 36-km grid resolutions. The Level 2 products, on the other 
hand, contain SM retrievals derived from the Level 1 products, ancillary data, and other 
satellite data products. These products include SM estimates retrieved at 9- and 36-km grid 
resolutions on the same EASE-Grid map projections as the Level 1 products. One particu-
lar Level 2 SM product makes use of the Copernicus Sentinel-1 C-band radar observations 
to achieve global mapping of SM at a 3-km grid resolution with an average revisit interval 
of up to 12 days. The Level 3 products are in general daily composites of their respective 
Level 2 half-orbit granules of SM and freeze/thaw state estimates, whereas the Level 4 
products include RZSM and carbon net ecosystem exchange generated from state-of-the-
art data assimilation models. Near real-time processing streams were also developed to 
deliver half-orbit granules of brightness temperature and SM products within a few hours 
of measurement acquisition, supporting a wide range of operational needs ranging from 
weather forecast, crop growth, to drought monitoring. Ongoing validation activities indi-
cate that all SMAP operational SM products continue to meet or exceed their respective 
target accuracy, which is 0.04  m3/m3 over non-frozen and light-to-moderate vegetated land 
surfaces (Colliander et al. 2021).

2.1.4  The Advanced Microwave Scanning Radiometer (AMSR)

The AMSR-E of the Earth Observing System (EOS) was developed by the National 
Space Development Agency of Japan (NASDA) and launched on 4 May 2002 by NASA 
onboard the Aqua satellite. The AMSR-E instrument measures radiation at six frequen-
cies in the range 6.9–89 GHz, all dual polarized (Table 1). The antenna scans conically 
at a fixed incidence angle of 55° across a 1445-km swath, providing near-global cover-
age in two days or less. The spatial resolution at the surface varies from approximately 
60 km at 6.9 GHz to 5 km at 89 GHz. The Aqua orbit is Sun-synchronous with equator 
crossings at 01.30 p.m. and 01.30 a.m. local solar time. AMSR improved upon the capa-
bilities of earlier passive microwave radiometers, such as the Scanning Multichannel 
Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I).

From 2002 to 2011, AMSR-E onboard NASA’s Aqua satellite collected, collecting 
passive microwave measurements of land and ocean parameters related to global water 
and energy cycles. As a follow-on instrument to AMSR-E, AMSR2 offers enhanced 
spatial resolution, better calibration, and improved mitigation of radio-frequency inter-
ference. Combining reprocessed AMSR-E data with subsequent AMSR2 observations 
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provides a nearly continuous record dating back to 2002. AMSR2 has operated since 
2012 onboard the Japanese Aerospace Exploration Agency (JAXA) Global Change 
Observation Mission 1st—Water "SHIZUKU" (GCOM-W1) satellite (http:// www. jaxa. 
jp/ proje cts/ sat/ gcom_w/ index_e. html). Advanced Microwave Scanning Radiometer 
(AMSR) collection includes passive microwave data products on brightness tempera-
ture, precipitation, snow water equivalent, sea ice, SM and sea surface temperature.

Regarding land, measurements at higher frequencies than the L-band range, in the 
C- and X-band ranges (∼ 6.8–10  GHz), have been shown to be sensitive to SM, but 
primarily in regions of low vegetation (Jackson et  al. 2002; Wigneron et  al. 1995). 
The increased attenuation by vegetation and the shallow sensing depth (on the order 
of 1 cm for bare soil) at C-band impose limitations on the retrieval of SM by AMSR. 
Implementing theory into a practical SM retrieval algorithm requires a reduction in the 
dimensionality by making simplifying assumptions or by providing a priori estimates of 
some parameters (ancillary data). If all of these factors are considered to be significant 
and are incorporated into the algorithm, this can result in an under-determined system 
of equations (i.e., more unknowns than measurements), regardless of how many fre-
quencies and polarizations are available.

The AMSR2 data record is further planned to be extended with the planned launch of 
the AMSR3 instrument in 2024, potentially leading to a consistent long-term climate data 
record obtained from the same instrument. The availability of such a long-term global 
data record will benefit research studies that require information on long-term SM trends. 
AMSR provides important long-term information over large areas of the globe, particularly 
in the dynamic transition zones between arid and forested areas where the SM is most vari-
able and unpredictable.

In addition, the potential SSS retrieval capability from the differential sea surface ver-
tically polarized emissivity contrast between the C-(6.9  GHz) and X-(10.7  GHz) bands 
AMSR-E data has been demonstrated in Reul et al. (2009) for the very high SSS gradients 
and the warm Amazon river Plume areas. While the frequency differential contrast is sig-
nificantly less sensitive to SSS than in the L-band (1.4 GHz), it minimizes the impact of 
sea surface temperature and wind speed, allowing the strong SSS signals to be monitored. 
This principle was recently applied to the SSS signal in the China Sea using the same fre-
quency channels data from the microwave radiometer onboard the Chinese HY-2A satel-
lite (Song and Wang 2017). As currently developed in the ESA Climate Change Initiative 
(Boutin et al. 2021a), the common operation period between AMSR-E and SMOS (January 
2010–October 2011) can be exploited to best tune the AMSR-E SSS retrieval algorithm. 

Table 1  AMSR frequency channels characteristics

Center frequency Band width Polarization Beam width Ground resolution Sam-
pling 
interval

GHz MHz Degree km km

6.925/7.3 350 V/H 1.8 35 × 62 10
10.65 100 1.2 24 × 42
18.7 200 0.65 14 × 22
23.8 400 0.75 15 × 26
36.5 1000 0.35 7 × 12
89.0 3000 0.15 3 × 5 5

http://www.jaxa.jp/projects/sat/gcom_w/index_e.html
http://www.jaxa.jp/projects/sat/gcom_w/index_e.html
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Combined with the dedicated L-band sensor era (2010-now), this shall allow the generation 
of the longest satellite-based climate SSS time series in some warm tropical large river plume 
regions, e.g., Amazon and Orinoco, Mississippi, Congo and Niger, Bay of Bengal.

2.2  Active Remote Sensing of Soil Moisture

Active techniques are complementary to passive microwave radiometry. In contrast to radi-
ometry, active techniques are much affected by structure parameters of the vegetation and 
surface roughness, at first order. On the other hand, they provide a better spatial resolution 
on the order of one kilometer.

2.2.1  Reflectometry

Satellite reflectometry offers a new data source for remote sensing of SM. Reflectometer is 
a bistatic radar with the transmitter and the receiver separated from each other. The trans-
mitted signal is bounced off the earth surfaces into the receiver with the dominant contri-
bution expected to be around the specular point.

L-band Global Navigation Satellite System (GNSS) signals were well matched for 
reflectometry due to their use of pseudo-random noise (PRN) codes for ranging. The 
GNSS-based Reflectometry (GNSS-R) was initially developed for ocean altimetry (Hajj 
and Zuffada 2003; Martin-Neira 1993) and has been extended to land remote sensing. The 
significant advancements in GNSS-R technologies in the past two decades led to the selec-
tion of the Cyclone Global Navigation Satellite System (CYGNSS) mission by NASA (Ruf 
2012). It has been launched on 15 December 2016. CYGNSS observatories make single 
circularly polarized reflectivity observations at the Global Positioning System (GPS) fre-
quencies (1.5 GHz).

The theoretical principle of inferring SM from GNSS-R data is based on the response of 
L-band microwave reflectivity to SM (Zavorotny et al. 2010). Several empirical approaches 
for SM retrieval from CYGNSS data have been published based on the collocations of 
CYGNSS data and SMAP SM by using linear regression (Chew and Small 2018; Clarizia 
et al. 2019; Kim and Lakshmi 2018) and artificial neural network trained with the in situ 
station data (Eroglu et al. 2019). These empirical approaches can produce reasonable per-
formance for SM retrieval over regions with a sufficient correlation between CYGNSS data 
and SMAP SM. However, over most parts of the CYGNSS coverage, the empirical correla-
tion was low (< 0.3), leading to a poor performance for CYGNSS SM retrieval (Chew and 
Small 2018).

Alternatively, the change of SM over semi-arid regions and many agriculture regions 
from CYGNSS can be improved using a semi-empirical model based on the dielectric con-
stant model of soil used by the SMAP and SMOS missions. It relates the CYGNSS reflec-
tivity to SM, vegetation water content, and rough surface scattering (Yueh et al. 2020b).

An alternate approach to independent SM retrieval for each acquisition time is to focus 
on the SM changes in the time series of CYGNSS observations (Al-Khaldi et al. 2019). 
This time series approach can avoid the drawback of empirical regression algorithms, but 
requires a high-quality SM product, such as that from SMAP, for scaling the CYGNSS data 
into SM. 
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2.2.2  Synthetic Aperture Radar

Over the past thirty years, Synthetic Aperture Radar (SAR) remote sensing has shown 
great potential in estimating SM at the agricultural plot scale, which is essential for 
water resource management.

In the case of bare soils, the SAR radar signal, which is affected by three different radar 
parameters (polarization, incidence angle and frequency), is also correlated with soil sur-
face roughness and moisture content (Baghdadi and Zribi 2016; Ogilvy and Merklinger 
1991; Ulaby et  al. 1978, 1986). In recent decades, various algorithms have been pro-
posed to retrieve SM using machine learning (El Hajj et  al. 2017; Ezzahar et  al. 2020; 
Notarnicola et al. 2008; Paloscia et al. 2013; Santi et al. 2016), change detection techniques 
(Bauer-Marschallinger et al. 2018; Foucras et al. 2020; Gao et al. 2017), direct inversion of 
a scattering model of a single radar signal, or more radar configurations [e.g., multi-inci-
dence (Zribi and Dechambre 2003), multipolarization (Wang et al. 2019), multifrequency 
(Bindlish and Barros 2000)].

These different approaches have been enhanced with the Copernicus Sentinel-1 mission 
launched on 3 April 2014, which has allowed strong temporal repetitiveness adapted to 
the needs of water resource use at the local scale. A synergy with Sentinel-2 optical data 
through indices such as Normalized Difference Vegetation Index (NDVI) is much used 
to parameterize the effect of vegetation in the radar signal backscattered by the land sur-
face. The proposed approaches allow access to agricultural plots (El Hajj et al. 2017) or an 
intermediate scale of approximately 1 km (Bauer-Marschallinger et al. 2018; Foucras et al. 
2020). For the latter, numerous disaggregation and synergy approaches have been devel-
oped between radar data and low-resolution active or passive microwave data (Amazirh 
et al. 2019; Kim et al. 2017b). In this context, various operational SM products have been 
developed at intermediate resolutions (1 km, 3 km, etc.), particularly based on the synergy 
between SMAP and Sentinel-1 data (Das et al. 2019).

3  Soil Moisture Science and Applications

3.1  Science Results from SMOS

SMOS has been in operation for more than 13 years and still operates flawlessly. Through-
out these years, several steps had to be carried out to ensure scientific successes, as it was 
both the first L-band mission and the first interferometer in space. The focus was first put 
on basic variables (SM and SSS), but several other science domains and applications very 
quickly emerged. This very rapid transition is due to the fact that for the first time a space 
instrument (L-band radiometer) could give direct access and in an absolute fashion to SM 
(i.e., without scaling, change detection or strong assumptions).

3.1.1  Soil Moisture and Derived Quantities

SMOS SM and vegetation opacity (VOD for Vegetation Optical Depth) are retrieved 
directly from the SMOS multi angular measurements. The retrieval scheme is based on 
a minimization of a cost function (Kerr et  al. 2010) and has no empirical or change 
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detection caveats. The products are available globally from deserts to tropical rain forest 
with an accuracy only related to the vegetation density (Kerr et al. 2016). Data resolu-
tion is typically 40 km and they are delivered on a 15 km grid.

The first direct application was to infer RZSM from SM using simplified approaches 
(Ford et al. 2014). This led to a number of very interesting research topics such as the 
elaboration of reliable drought indices and the analysis of interactions between water 
storage and vegetation stress. SM also proved to be a very important variable when 
assessing flood risks (Baugh et al. 2020; Mecklenburg et al. 2016). With soil saturation 
coupled with heavy rainfall forecasts, it is possible to delineate area where flood risks 
(or flash floods in another context) are very likely (Laachrate et al. 2019). A feasibility 
study showed that the main limitation to set up such a flood forecast system was the 
accuracy of the precipitations (Mecklenburg et  al. 2016). The SM obtained by SMOS 
is also useful for sand dust prediction (Gherboudj et al. 2015; Kim et al. 2017a). One 
limitation of SM products is their current spatial resolution. Many efforts have been 
made to infer higher resolution products for use in agriculture and hydrology (Ver-
hoest et al. 2015). High-resolution SM fields were derived using different disaggrega-
tion approaches relying either on optical data sets (Molero et al. 2016) or on radar/SAR 
measurements (Tomer et al. 2016). They enabled studies on, e.g., irrigation (Dari et al. 
2021; Paciolla et al. 2020), desert locust early warning (Escorihuela et al. 2018). Such 
approaches have also been used to get finer information on other variables such as bio-
mass and water bodies (see below). It is well understood that the quality of the outputs 
is slightly degraded when compared to the quality that would be obtained by a real radi-
ometer with a higher resolution, but it fills a gap.

Having access to either brightness temperatures or SM fields in near real time fostered 
the use of SMOS in NWP models (Rodríguez-Fernández et al. 2017). At ECMWF, near 
real-time data were used first for monitoring and then, assimilated in the model. The results 
show limited improvements because model assimilation schemes were not designed to 
assimilate absolute measurements of SM (Muñoz-Sabater et al. 2019). In summary, SMOS 
SM was improved relative to other techniques providing indirect SM estimates, without 
necessarily improving the assimilation scores. SMOS significantly contributed to establish-
ing where NWP models have issues and need improvements to be able to assimilate not 
only SMOS but also other sensors in land data assimilation systems (Crow et al. 2020).

The precipitations derived from satellite are very useful, but they suffer from inaccura-
cies in several areas (see a review in Pellarin et al. 2020). Using an assimilation scheme 
ingesting SMOS data enabled to significantly improve rainfall estimates (Pellarin et  al. 
2020; Roman-Cascon et al. 2017). Using such information was also very useful for food 
security programs as demonstrated as early as 2011 by W. Crow at United States Depart-
ment of Agriculture and then by Gibon et al. (2018).

SMOS data proved to be also useful in hydrology. First studies were made to see how 
assimilating SMOS data in hydrological models could improve model outputs (Lievens 
et  al. 2015), and recent studies showed that some improvements were noticeable (Fleis-
chmann et  al. 2021). Other groups studied the monitoring of water bodies below dense 
canopies with a relatively high temporal sampling, quantities that are not necessarily meas-
urable from space with other sensors (Parrens et al. 2017, 2019). This led, e.g., to a sea-
sonal monitoring of the Amazon and Congo basins, and this monitoring could be improved 
using disaggregation approaches (Parrens et  al. 2019). This offered the first opportunity 
to understand and monitor the hydrology of these large basins largely covered with dense 
forests. With now more than 13 years of data including several El Niño/La Niña events, we 
can better describe and thus, understand climate teleconnections. Monitoring water bodies 
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also opens a new research field related to gas exchanges between water bodies and the 
atmosphere.

3.1.2  Vegetation Opacity

SM and vegetation opacity (also called VOD) can both be inferred using the multi-angular 
capability of SMOS (Kerr et  al. 2001, 2016; Wigneron et  al. 2000). VOD is part of the 
SMOS data since the beginning of the mission, but it suffered in the early stages from 
the trial and errors of accurate image reconstruction and associated calibration. After the 
second SMOS mission reprocessing though, brightness temperatures became sufficiently 
reliable to be used even over dense canopies to infer VOD, which is linked to low veg-
etation water content (i.e., grass, crops, etc.) and branch/ trunk biomass for trees and for-
ested areas. The relationship between VOD and tree height (and thus biomass) was shown 
at an early stage in the SMOS mission to be clear (Rahmoune et al. 2014), but since the 
last reprocessing, significant advances were made leading to a number of very significant 
results related to biomass monitoring (Brandt et al. 2018a, b; Fan et al. 2018; Tian et al. 
2018) and more generally to carbon related issues (Scholze et al. 2019).

Monitoring both biomass and vegetation water content together with SM obviously puts 
forward a new venue in terms of deforestation and deforestation-related impact, fire risks 
mapping or fire recovery. For instance, intense deforestation could be readily associated 
with a decrease in SM and a large increase in the seasonal cycle of SM (Bousquet et al. 
2022).

3.1.3  Cryosphere

SMOS also proved to be a very valuable tool to monitor cryosphere even though this was 
not a priority at launch. The first application was to infer thin sea ice thickness as the signal 
is very complementary to that of altimeters such as CryoSat-2. SMOS measures thin sea 
ice well, while CryoSat measures well thick sea ice (Kaleschke et  al. 2016, Tian-Kunze 
et al. 2014). By combining both measurements, sea ice can be monitored globally with an 
unprecedented accuracy in the Artic polar cap which shrinking trend since 2010 can be 
described, and sea ice around Antarctica can also be monitored.

Studying Antarctica also enabled to make significant progresses in terms of assessing 
snow melt periods (which are increasing regularly), and ice sheet internal temperatures 
(Leduc-Leballeur et al. 2020). SMOS also allows assessing the amount of water in liquid 
form in either snow or ice, opening new paths on Greenland deep melting and avalanche 
risks mapping (Houtz et al. 2021; Naderpour et al. 2021). Such results are leading to the 
possibility in the mid-term to reach at long last a way to estimate snow water equivalent 
(Houtz et al. 2019).

Over land masses, a freeze thaw (F/T) detection approach was established soon after the 
launch of SMOS at the Finnish Meteorological Institute due to the sharp change in dielec-
tric constant when soil freezes, giving way to an operational F/T product (Rautiainen et al. 
2014, 2016). This information is obviously of paramount interest for assessing climate-
induced changes at high latitudes, but it can also be related to methane exchanges that are 
very much related to the thawed period. To improve this high latitude monitoring further, 
as L-band enables to estimate soil’s temperature below a snow layer, studies to monitor 
soil temperature throughout the year and thus to monitor permafrost extent variations have 
been initiated, capitalizing on the more than 13 years of SMOS data.
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Finally, it was recently found both theoretically, and at ground and satellite levels, 
that the dielectric constant (hence, VOD) of vegetation undergoes huge changes around 
0 °C at L-band, meaning that, if not done carefully, estimates of biomass at high lati-
tudes could be erroneous (Schwank et al. 2021).

3.1.4  Summary

After 13 years in space, and being the first of its kind, SMOS has enabled a wealth of 
science results which cannot be summarized in a few pages. The results also cover a 
very large range of science topics going from smart irrigation to climate trends, and 
from desert locust warning to dust transport. The impressive publication record is one 
of the most traceable indicators of success, and should the satellite continue to operate 
nominally for several years, new insights of our changing climate will become available.

3.2  Science Results from SMAP

Given the central role of SM and its freeze/thaw state in the Earth system, SMAP’s fre-
quent global mapping addresses a wide range of Earth system science and applications 
objectives (Entekhabi et al. 2014). We review below the main results obtained for each 
SMAP overarching scientific mission goal.

3.2.1  To Estimate Global Surface Water and Energy Fluxes

The first science goal of the SMAP project was to estimate global water and energy 
fluxes at the land surface. These fluxes are key determinants of the global water, energy 
and biogeochemical cycles. Direct and in situ measurements of these fluxes are limited 
to several hundred point-locations using eddy-covariance instruments. Their underlying 
processes are parameterized in Earth System models and the variations in the approach 
to their parameterizations result in large deviations among models on how they charac-
terize the dynamics of the global water, energy and biogeochemical cycles.

The influence of SM availability on water, energy and biogeochemical fluxes at the 
land–atmosphere interface extends beyond surface SM and involves the profile of SM at 
least down to the extent of vegetation roots. L-band frequency radiometry detects emis-
sivity from the top few centimeters of the soil (about 2–20 cm depending on the SM). 
SMAP science data products provide an estimate of the top 5 cm on average. However, 
the sensing depth should not be confused with SM information inherent in the measure-
ments. The SM profile is continuous, and the dynamics of an extended profile is evident 
in the surface measurements. To specifically address this topic, Akbar et al. (2018) and 
Gianotti et al. (2019b) address the question of the effective depth of the SM profile rep-
resented in the dynamics of SMAP measurements. Using two independent approaches, 
they both find that the dynamics in the measurements represent the dynamics of the SM 
profile that can extend to about 50 cm depending on soils, vegetation and climate, but 
the median is about 15 cm. The estimates and methodologies are verified using in situ 
stations where the SM profile is measured at multiple depths below the surface.
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3.2.2  To Quantify Net Carbon Flux in Boreal Landscapes

The second SMAP science goal was to understand processes that link the terrestrial water, 
energy, and carbon cycles, which can be considered among the primary metabolic cycles 
of the Earth system (Buontempo 2022). The cycles are connected, and, as a result, per-
turbations in one cycle can affect the other cycles. How strongly or weakly they are con-
nected determines the propagation of perturbations across the cycles. Earth System models 
inherently include these connections. The linkages are formed through parameterizations 
that vary greatly among the models. As a result, a major contributor to the uncertainty in 
climate projections can be traced to how they couple these cycles. Over land, the coupling 
between the water and energy cycles can be captured through a diagnostic that is the plot 
of Evaporative Fraction (EF) versus SM. The EF-SM relation should capture the transition 
between water-limited and energy-limited evapotranspiration regimes. The diagnostic suc-
cinctly captures many detailed processes coded within models.

Gianotti et  al. (2019a) diagnosed the linkage between the water and energy cycles in 
six CMIP5 Earth System Models. There is a wide range of coupling strengths among the 
models resulting in varying responses of the water and energy cycle to perturbations. The 
discordance is troubling. Gianotti et al. (2019a) use SMAP SM and evapotranspiration esti-
mated using the weather station network across the continental USA to perform the same 
diagnostic but based on observations alone. The authors showed evidence of a systematic 
transition from water-limited to energy-limited evaporation regimes with increasing avail-
able SM. The plateau for the energy-limited regime depends on the dominant biome and 
climate. In the water-limited regime where EF is reduced with reduced SM, the slope of 
the EF-SM function is the strength (degree) of coupling between the water and the energy 
cycles. The authors produced the same results for the coupling between the water and the 
carbon cycles. They use Solar-Induced Fluorescence (SiF) from satellite measurements 
that are indicative of the amount of Gross Primary Productivity without use of models. In 
this case, the diagnostic is landscape Water Use Efficiency (WUE), which is the ratio of 
carbon-to-water exchange at the land surface.

3.2.3  To Reduce Uncertainty of Climate Model Projections

The third SMAP science goal was to quantify net carbon flux in boreal landscapes. Ampli-
fied winter warming in the Arctic is expected to cause large-scale shifts in the biogeo-
chemical cycles in the region. Changes in the seasonal patterns of inundation, permafrost, 
landscape freeze/thaw and SM are the primary drivers of the biogeochemical flux shifts. 
SMAP measurements are used to map and quantify these variables. This unique capability 
of SMAP motivated the development of SMAP Level-4 products that assimilate radiomet-
ric SMAP observations in conjunction with other satellite measurements, in situ observa-
tions, and models in order to produce a comprehensive picture of water and carbon pro-
cesses—including frozen and thawed seasons—across the boreal latitudes.

The SMAP Level-4 Carbon (L4C) products have been used in many studies. Natali et al. 
(2019) studied enhancements in soil  CO2 emissions due to interannual climate variability 
in the boreal latitudes, which show Boreal-Arctic seasonal  CO2 uptake. There are large dif-
ferences among the models when compared with the SMAP L4C and estimates based on 
flux towers. This highlights the remaining uncertainty on the understanding of the climate-
biogeochemical linkages that form the basis for the construction of these models. SMAP 
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mapping of the key drivers of the climate-biogeochemical linkages and flux tower data 
taken together are actively used to test and further develop these models.

Liu et al. (2020) examined the net landscape carbon exchange with the atmosphere due 
to changes in the date of freeze in Autumn and in the date of thaw in Spring. Landscape 
freeze/thaw is conceptually the on/off switch for processes that constitute the components 
of this carbon budget. Boreal-Arctic ecosystems strongly impact the larger global carbon 
budget and can be either a net annual sink or source for atmospheric  CO2. Using SMAP 
freeze/thaw and L4C products, Liu et al. (2020) found that landscape photosynthetic car-
bon-gain in warmer springs is offset by winter respiration carbon losses resulting in near-
neutral annual C-balance. Net Ecosystem Productivity (NEP) is calculated as the difference 
between gross primary production (GPP) and terrestrial ecosystem respiration. In terms 
of process-understanding, they find that temperature is the dominant control on carbon 
exchange in Spring and Winter, while SM is dominant in Autumn, with greater moisture 
limitations in boreal forests than tundra.

3.2.4  To Improve Flood Prediction and Drought Monitoring

The fourth SMAP science goal was to develop improved flood prediction and drought 
monitoring capability. Sadri et al. (2018) assessed SMAP SM in terms of probability per-
centiles for dry and wet conditions. They compared the SMAP-based drought index maps 
with metrics such as the operational US Drought Monitor (Svoboda 2000), 1-month Stand-
ard Precipitation Index (SPI; https:// clima tedat aguide. ucar. edu/ clima te- data/ stand ardiz ed- 
preci pitat ion- index- spi) and a hydrologic model output for estimated SM. This study is a 
step forward toward building an international SM monitoring system. Sadri et al. (2018) 
also used SMAP data to identify regions of anomalously wet conditions that can be valu-
able for water management purposes. The SMAP-based drought index shows greater con-
sistency with the operational US Drought Monitor when compared to SPI and the integra-
tion of the Variable Infiltration Capacity (VIC, as referred to in Sadri et al. (2018)) land 
surface model. Togliatti et  al. (2019) proposed a forward-looking approach to monitor-
ing crop water stress, which is one of the more important impacts of drought. They used 
SMAP measurements to directly estimate VOD, the degree to which vegetation attenuates 
microwave radiation. VOD is retrieved along-side SM and is related to the total amount 
of liquid water in a vegetation canopy. Thus, VOD allows direct monitoring of seasonal 
changes in crop water that allows predictions of yield or crop failure. A main advantage of 
SMAP VOD over optical/infrared indices is that clouds do not lead to data gaps at critical 
and rapid growth stages of crops.

In the area of flood monitoring and forecasting, a forward-looking example of devel-
oping next-generation and modernized approaches is the introduction of surface inunda-
tion fraction using the SMAP radiometer. The accuracy and reliability of flood assessments 
are dependent on the availability of continuous and high-quality precipitation information. 
Such continuity and quality are often not available in real-time especially in developing 
countries where the hazard impacts are amplified. Optical monitoring of flood extent is 
often limited by cloud cover. Wu et al. (2019) investigated the global consistency of surface 
fractional water inundation retrievals from SMAP versus modeled runoff from the Univer-
sity of Maryland Global Flood Monitoring System (GFMS). Wu et al. (2019) showed that 
favorable SMAP-GFMS correspondence (r ≥ 0.4) is evident over a majority (64%) of the 
global domain; stronger correlations occur in drier climates with low to moderate vegeta-
tion cover and large seasonal flood range. Synchronous flood dynamics appear over 33% 

https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi
https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi
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of the global domain, but SMAP inundation fraction and GFMS flooding in other areas 
also appear to have a lag of up to three months. SMAP and GFMS provide complementary 
information on water storage changes affecting precipitation-driven runoff and flooding, 
which may enable enhanced global flood predictions.

3.2.5  To Enhance Weather Forecasts

The fifth science goal of SMAP was to enhance weather and climate forecast skill. Much of 
the solar energy that contributes to weather and climate dynamics is ultimately made avail-
able to the atmosphere via surface heating. Over land surfaces, the available energy is dis-
sipated by turbulent fluxes (sensible and latent heat) and thermal radiation. The partitioning 
among sensible and latent heat fluxes is a key determinant of the heating and moistening of 
the atmospheric boundary layer which in turn drives thermally driven air motion and moist 
processes. The skill of NWP models depends on the accuracy of their initial conditions as 
atmospheric dynamics as a chaotic system is highly sensitive to initial conditions.

For this SMAP science goal, Dong and Crow (2018) analyzed the pathways and pat-
terns of SM influence on the atmospheric boundary layer. They quantified the coupling 
strength between the land surface boundary condition and the lower atmosphere over the 
European continent, to build on prior benchmark studies on the 2003 European heat wave 
and drought resulting in tens of thousands of deaths (Robine et  al. 2008). Comparisons 
with Soil Moisture-Air Temperature-based estimates suggest that the Soil Moisture-Air 
Temperature Coupling (SMTC) strength provided by seven Coupled Model Intercompari-
son Project Phase 5 (CMIP5) General Circulation Models (GCMs) generally underestimate 
SMTC strengths—particularly in central Europe. This result is consistent with previous 
modeling work and highlights the value of L-band soil moisture remote sensing for land 
surface-atmosphere coupling analyses.

In another study to highlight the role and impacts of SM on the lower atmosphere, 
Feldman et  al. (2019) used two observational sources to diagnose the pathways that are 
independent of models and can therefore serve as benchmarks for performance and guide 
model developments. The SMAP SM product was used in conjunction with the geosta-
tionary European Organisation for the Exploitation of Meteorological Satellites (EUMET-
SAT) Meteosat Second Generation (MSG‐2) satellite. The thermal infrared measurements 
from the MSG-2 Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument 
allow estimation of the diurnal amplitude of the land surface temperature. The MSG-2 
geostationary disk covers Africa and Europe. The nadir for the satellite instrument is the 
Equator over Africa, and hence, highest quality data are available over this continent. Feld-
man et al. (2019) isolated dry-downs (inter-storm periods) within SMAP data over Africa 
spanning diverse biomes and climates for analysis. SM is monotonically decreasing dur-
ing dry-downs, and the evaporative fraction functional form with SM is being traversed 
from energy-limited regime at the beginning of the inter-storm period (wetted soils) to 
water-limited regime as the soil continues to dry. The threshold signifying the transition 
between the regimes has consequences for the land surface temperature state and its diur-
nal amplitude. Once in the water-limited regime, the more efficient turbulent flux cooling 
mechanism or latent heat flux is diminished in favor of more partitioning toward sensi-
ble heat flux. This is evident in the increase in observed diurnal temperature range across 
biomes, especially transitional sub-humid zones. The threshold behavior is evident in the 
shape of the curves which begin in time-into-dry-down as flat (energy-limited regime) to 
rapid warming during the water-limited regime. The lower atmosphere is impacted by this 
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warming response. Due to reduced evaporation rates, the reduced latent heat flux cooling 
goes hand-in-hand with reduced moisture flux. The boundary layer response is reduced 
humidity. Increased warming at the base of the atmosphere results in more growth in the 
atmospheric mixed-layer and entrainment of dry air from above which further reduces the 
humidity in the lower atmosphere.

4  Sea Surface Salinity (SSS) Science and Applications

Ocean surface water masses are primarily defined by the SST and the SSS, building the 
Sea Surface Density (SSD), and featuring the ocean with fronts and jets, eddies and fila-
ments. These oceanic features control the thermohaline circulation, ocean meso-scale and 
submeso-scale instabilities. They have a subsequent impact on water mass transformation, 
subduction and mixing, and can impact the ocean–atmosphere interaction. Some contri-
butions of satellite SSS to improving the understanding of large-scale SSS variations and 
their relationships with ocean circulation and climate variability, of the water cycle (river 
plumes) and of frontal dynamics are highlighted below. There have also been a vast body 
of literature documenting contributions of satellite SSS to the studies of oceanic variabil-
ity and circulation in open ocean, coastal oceans, and marginal seas, some of which also 
involve ocean–atmosphere interactions (cf. review articles by Vinogradova et  al. (2019) 
and Reul et al. (2020)). Some of the most striking features are described below.

4.1  Large‑Scale SSS Variations and Relations with Ocean Circulation and Climate 
Variability

With their near-uniform spatiotemporal sampling, satellites have enhanced the capability 
to characterize the variations of large-scale SSS patterns in the world ocean (Boutin et al. 
2021a) and shed light on the roles of atmospheric forcing, ocean circulation, and poten-
tial feedback to the atmosphere. These measurements have also elucidated the linkages of 
large-scale SSS patterns with various modes of climate variability such as El Niño-South-
ern Oscillation (ENSO), Indian Ocean Dipole (IOD), monsoon, and Madden–Julian Oscil-
lation (MJO).

ENSO, a dominant mode of interannual climate variability due to ocean–atmosphere 
interaction in the tropical Pacific sector, has far-reaching influence around the globe with 
important societal impacts including those on weather and precipitation patterns, agricul-
ture, marine ecosystems, and human health (e.g., McPhaden et al. 2006, 2020b). Satellite 
data have enabled detailed characterizations of large-scale SSS variations and sharp SSS 
fronts associated with ENSO in different parts of the tropical to subtropical Pacific Ocean 
(e.g., Guimbard et al. 2017; Hasson et al. 2014, 2018; McPhaden et al. 2020a; Qu and Yu 
2014). In the equatorial Pacific Ocean, zonal translations of the eastern edge of the West-
ern-Pacific (WP) Warm Pool edge (29 °C isotherm) and WP Fresh Pool (34.8 pss isoha-
line) are pivotal to ENSO development because of their effects on air-sea interaction. Sat-
ellite-derived SSS and SST show that the movement of the WP Fresh Pool is coherent with 
ENSO indices (e.g., Nino3.4 SST and Southern Oscillation index) due to combined effects 
of local precipitation anomaly and advection by anomalous zonal currents associated with 
ENSO (Hasson et al. 2018; McPhaden et al. 2020a; Qu and Yu 2014). Its movement is also 
consistent with that of the WP Warm Pool edge, reflecting the potential role of near-surface 
salinity on upper-ocean mixing of heat and thus, on SST and subsequent air-sea interaction.
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The seminal study of the extreme El Niño event in 1997–1998 by Picaut et al. (2002) 
provided an iconic description of the evolution of that event using multi-variate satellite 
measurements of SST, Sea Surface Height (SSH), and ocean surface winds. The advent of 
salinity remote sensing now allows us to provide a more comprehensive, multi-variate char-
acterization of ENSO evolution by including satellite-derived SSS as well (Fig. 1). During 
the peak of the last extreme El Niño event in 2015, negative SSS anomaly with a magni-
tude over 1 pss was found in the central-equatorial Pacific between 160°E and 160°W and 
between the equator and 2°S with a sharp gradient near the equator (Fig. 1c). The center 
of the precipitation anomaly, however, was located between the dateline and 140°W and 
skewed north of the equator (0°–5°N) (Fig. 1b). The mismatch of SSS and precipitation 
anomalies reflects the importance of anomalous ocean currents (also shown in Fig. 1b).

Fig. 1  Satellite-based multi-variate characterization of oceanic and atmospheric anomalies during the peak 
of the extreme El Niño in 2015 (after McPhaden et al. 2020a). December 2015 anomalies of a SST and 
surface winds, b rain rate and surface winds, c SSS (from SMOS) and surface currents, and d sea level and 
surface currents. Anomalies are computed relative to a mean seasonal cycle over the period of 1998–2017 
for all variables except salinity for which anomalies are computed relative to a seasonal cycle over 2010–
2017 (see McPhaden et al. 2020a for datasets references)
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Satellite-derived SSS has also elucidated other aspects of ENSO-related large-scale 
SSS variations. For example, during the peak of the 2015 El Niño, satellite-derived SSS 
revealed a weak negative SSS anomaly at the latitude range of 15°–25°N across much of 
the zonal extent of the basin including the Hawaii archipelago (Hasson et al. 2018), which 
is also shown in Fig. 1c (light green color at 15°–20°N over much of the central basin). 
No notable pattern of precipitation anomalies at this latitude range (Fig. 1b) was able to 
explain the pattern of weak negative SSS anomalies. Hasson et  al. (2018) attributed the 
latter to the effect of ocean circulation that spread the precipitation-affected SSS anomalies 
from the equatorial Pacific toward the north, e.g., through the advection by the northward 
component of the Ekman currents away from the equatorial zone (also evident in the cur-
rent vectors in Fig. 1c) and likely the instability of the zonal current system. Qu and Yu 
(2014) found that an index derived from SSS variability in the southeast tropical Pacific 
(0°–10°S, 150°–90°W) could distinguish central-Pacific versus eastern-Pacific El Niño 
events. Large extension of the Eastern-Pacific Fresh Pool was also observed in 2012 and 
2015 as a result of the combined effect of precipitation and advection by ocean currents 
(Guimbard et al. 2017).

The important role of salinity in ENSO forecasts has been recognized using satellite-
derived SSS. Zhu et al. (2014) found that realistic salinity field in the initialization of an 
ENSO forecast model improved the hindcast of the 2007–2008 La Niña. Including satel-
lite-derived SSS in the dataset assimilated for the initializations of two other ENSO fore-
cast models demonstrated the positive impacts in the hindcasts of various ENSO events in 
the past decade because of the improved representation of the mixed-layer dynamics and 
subsequent air-sea interaction (Hackert et al. 2020 and references therein).

The IOD, an interannual climate mode originating from ocean–atmosphere interaction 
in the tropical Indian Ocean and modulated by ENSO, has significant impacts on Indian 
Ocean rim countries and beyond (Saji et al. 1999). SMOS revealed SSS signature of IOD 
(Durand et al. 2013) with the maximum SSS variation related to IOD being in the central 
tropical Indian Ocean south of the Equator. The SSS difference in this region between the 
periods for the negative (positive) IOD events in late 2010 (2011) reached 1 pss, compa-
rable to the magnitude of SSS anomalies in the central-equatorial Pacific during the 2015 
El Niño as shown in Fig. 1c. Horizontal advection by zonal currents in the tropical Indian 
Ocean was identified as a major cause for such IOD-related maximum SSS variation. 
Using SMOS and Aquarius SSS data, Du and Zhang (2015) further characterized IOD-
related SSS signatures during 2010–2014 and wind-driven ocean dynamics associated with 
IOD both for the central-equatorial Indian Ocean studied by Durand et al. (2013) and for 
the coastal ocean off Java and Sumatra where changes in wind-driven upwelling influence 
SSS in that region. IOD-related wind forcing also causes wave propagation around the Bay 
of Bengal that modulate the river plume and freshwater exchange between the Bay of Ben-
gal and the Arabian Sea (e.g., Akhil et al. 2020; Fournier et al. 2017b, Nyadjro and Sub-
rahmanyam 2016), which will be discussed in Sect. 4.2 in the context of ocean-water cycle 
linkages.

On intraseasonal time scales, MJO is the dominant mode of variability in the tropics 
and influences longer time scales climate variability such as the monsoon and ENSO. 
Ocean–atmosphere interaction has been suggested to influence MJO development and 
propagation (DeMott et al. 2015; Lau et al. 2012 and references therein). The evaluation 
of ocean–atmosphere interactions associated with MJO simulated by models requires 
measurements of SSS as well as SST with sufficient sampling and coverage to capture the 
respective signatures associated with MJO. Various studies have demonstrated the ability 
of satellite SSS to detect MJO-related SSS signature (Shoup et  al. 2019 and references 
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therein). The contribution of SSS variation to surface density variation associated with 
MJO was found to be comparable to or larger than the contribution of SST variation (Guan 
et al. 2014). In the western to central tropical Indian Ocean, MJO-related precipitation was 
found to be the main cause for the related SSS variation. However, ocean dynamics play 
an important role to MJO-related SSS variations in the eastern tropical Indian Ocean and 
western tropical Pacific. Such findings provided important observational basis to evaluate 
ocean circulation models (Li et al. 2015; Zhu et al. 2020). Whether salinity variation asso-
ciated with MJO affects SST through vertical mixing and thereby influences MJO evolu-
tion requires future investigation.

Satellite-derived SSS has also provided important insights to the signatures and dynam-
ics of tropical instability waves (TIWs). TIWs are thousand-km scale oceanic waves associ-
ated with oceanic instability but modulated by ocean–atmosphere interactions (e.g., Chel-
ton et al. 2001; Legeckis 1977). They have important effects on ocean dynamics, marine 
biogeochemistry, and ocean–atmosphere interaction. For the first time, satellite-derived 
SSS shed light on SSS structure of TIWs in the tropical Pacific and Atlantic Oceans, the 
dependence of Pacific TIW speed on latitude (Lee et  al. 2012) and the phase of ENSO 
(Yin et al. 2014), and the important roles of salinity in Atlantic energetics (Lee et al. 2014; 
Olivier et al. 2020).

4.2  SSS and the Water Cycle: Maritime Continent Region, River Plumes

Salinity-measuring satellites have provided an unprecedented capability to study ocean-
water cycle linkages (e.g., Reul et al. 2014b; Vinogradova et al. 2019). For example, these 
measurements have enabled insights about the linkage between water cycle and ocean cir-
culation in the maritime continent (MC) region (Lee et al. 2019), a climatically important 
sector and a chokepoint of the global ocean circulation connecting the Pacific and Indian 
Ocean. SMAP and SMOS SSS consistently depicted the spatial pattern and temporal evo-
lution of the seasonal freshening in the Indonesian Seas within the MC associated with 
local monsoonal rainfall and runoff from the Borneo Island. These features have not been 
documented from in situ measurements before due to their paucity and heterogeneity. The 
seasonal freshening results in upper-layer dynamic height or sea level anomaly that reduces 
the north-to-south pressure gradient driving the upper layer of the Indonesian Throughflow 
(ITF) through the Makassar Strait (the main channel of the ITF). This modulation of the 
ITF driving force influences the seasonality and annual-mean vertical profile of the ITF 
and its associated transports of heat, freshwater, and carbon. The results have strong impli-
cations to longer-term changes of the ITF in response to changes of the Walker Circulation 
and the atmospheric convection and precipitation center over the MC region.

Salinity-measuring satellites have also enabled synoptic mapping of SSS variability 
of large river plumes, which would not have been achievable with in situ networks alone, 
and with excellent consistency across SSS products from different satellites (e.g., Bou-
tin et al. 2018; Fournier and Lee 2021; Fournier et al. 2016a; Grodsky and Carton 2018; 
Grodsky et al. 2014). Large rivers are a key component of the land–ocean branch of the 
global water and biogeochemical cycles. Although river discharge only accounts for about 
10% of the total freshwater input to the ocean (Trenberth et al. 2007), large river plumes 
can have important influences on physical, biological, and biogeochemical processes in 
regional coastal oceans. A systematic, routine monitoring of the spatiotemporal variability 
of these river plumes around the world ocean using in situ sensors is technologically and 
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logistically challenging, and financially impractical. Salinity-measuring satellites have sig-
nificantly alleviated this gap, as documented by many recent studies.

For example, Aquarius and SMOS SSS illustrate that interannual variability of SSS near 
the Mississippi River mouth, linked to the interannual variability of the Mississippi River 
discharge, can reach 3–4 pss (e.g., Fournier et  al. 2016a; Gierach et  al. 2013), which is 
comparable to the magnitude of seasonal SSS variation in the same region. A state-of-
the-art global ocean data assimilation product was unable to capture such interannual vari-
ation of SSS because the model was forced by climatological seasonal discharge, com-
pounded by the strong relaxation of model SSS to seasonal SSS climatology. Such a model 
limitation undermines the use of the physical state of such model and data assimilation 
products to drive marine biogeochemistry models. SMOS SSS revealed an unusual, large 
river plume in 2015 to the east of the Mississippi River plume that was as strong as the 
latter (Fournier et al. 2016b) (Fig. 2). The unusual river plume was traced to runoff from 
the Texas shelf caused by a storm-induced severe flooding event in Texas in May 2015 
that caused a freshening of the seawaters off the coast of Texas (Fig. 2a). The low-salinity 
waters were then carried by ocean currents clockwise around the Gulf and peeled off as a 
large freshwater plume in the middle of the Gulf by August 2015 (Fig. 2b).

A similarly large river plume occurred multiple times in the Gulf of Mexico since 2015 
due to frequent severe storms in the Texas-Louisiana regions, causing mass die-off of 
marine invertebrates at the marine sanctuary off Texas and Louisiana (https:// sanct uaries. 
noaa. gov/ news/ jul16/ noaa- scien tists- report- mass- die- off- of- inver tebra tes- at- east- flower- 
garden- bank. html; https:// apnews. com/ artic le/ 65f05 6630a ec475 7a587 9e0dc 6b256 91).

Salinity-measuring satellites have also underlined that not all interannual variations of 
large river plumes are dominated by the effect of interannual river discharge. For exam-
ple, the spatial extent of the Amazon-Orinoco river plume is significantly affected by the 
interannual variation of wind-driven ocean dynamics over the western tropical Atlantic 
(Fournier et al. 2017a; Reverdin et al. 2021). The spatial extent of the Ganges–Brahmapu-
tra river plume along the east coast of India is significantly affected by interannual variation 

Fig. 2   SSS in the Gulf of Mexico and SM around the Gulf in May (a) and August (b) 2015 from the 
SMAP satellite. Adopted from Fournier et  al. (2016b). The difference in the pattern of SSS and SM 
between these two months shows the impact of the severe storm over Texas in May 2015 on SM as well 
as SSS off the Texas shelf, which subsequently evolved into an unusual and large freshwater plume in the 
central part of the Gulf

https://sanctuaries.noaa.gov/news/jul16/noaa-scientists-report-mass-die-off-of-invertebrates-at-east-flower-garden-bank.html
https://sanctuaries.noaa.gov/news/jul16/noaa-scientists-report-mass-die-off-of-invertebrates-at-east-flower-garden-bank.html
https://sanctuaries.noaa.gov/news/jul16/noaa-scientists-report-mass-die-off-of-invertebrates-at-east-flower-garden-bank.html
https://apnews.com/article/65f056630aec4757a5879e0dc6b25691
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in wind forcing associated with the IOD and the oceanic response (Akhil et  al. 2020; 
Fournier et al. 2017b). Wind-induced currents have also been shown to be one of the main 
driving forces behind the variability of the Congo region freshwater plume (Hopkins et al. 
2013; Houndegnonto et al. 2021). A large interannual variability of the freshwater plumes, 
related to river discharge but mediated by ocean circulation, has also been observed in the 
Arctic Ocean (Tarasenko et al. 2021). Such knowledge of how river plumes are linked to 
the regional hydrological cycle, and climate variability is important for  improving the 
understanding of the interplay among different elements of the Earth system.

Salinity-measuring satellites also provide key information to study the interplay between 
land-sea fresh water exchange and ocean circulation in the land vicinity. In the core of the 
saltiest period of the Amazon plume (boreal winter), a freshwater plume was observed to 
be transported off the shelf, entering the deep north-western tropical Atlantic. According to 
satellite data, such a phenomenon occurred in 7 out of 10 years, changing the perception 
that during this period, freshwater transport takes place mainly on the shelf and close to the 
shelf break (Reverdin et al. 2021). In the Gulf of Guinea, Alory et al. (2021) showed that 
changes in geostrophic currents and vertical stratification are generated by the Niger River 
plume and that they weaken the coastal upwelling by about 50% near the mouth of the 
Niger River. This phenomenon has important consequences on fisheries resources, as the 
upwellings bring nutrient to the surface.

Satellite SSS has also been used synergistically with other physical and biogeochemical 
measurements to improve the understanding of how river plumes and the associated effects 
on near-surface vertical mixing influence primary productivity (Gouveia et  al. 2019) 
and how the associated physical and ecological processes affect marine biogeochemistry 
(Guerreiro et al. 2017; Lapointe et al. 2021).

4.3  Observing Ocean Thermohaline Fronts from Space

The thermohaline frontal structures and the variability of the ocean are critical for under-
standing ocean and climate changes, but also for shaping biogeochemical tracers and nutri-
ent distribution, which are fundamental for ecological habitat structuration (Chapman et al. 
2020).

Since temperature (salinity) tends to diminish (increase) the density of seawater, the 
intensity and dynamics of density fronts depend on the strength of temperature and salinity 
contrasts. They can either cumulate each other to enhance the density contrast, or com-
pensate each other resulting in lower density contrasts. The former will strongly impact 
the velocity shear, instability and mixing, whereas the latter, for instance at the transition 
between warm/salty and cool/fresh water, has a very low signature in density gradient. The 
density compensation behavior is referred to as ‘spiciness’ (McDougall and Krzysik 2015). 
Because of the nonlinearity of the equation of state of seawater, the large spiciness con-
trasts can have a strong impact on water mass generation and transformation. The so-called 
cabeling process, i.e., mixing of water with contrasted spiciness along a same density sur-
face produces heavier water masses of mixed properties (McDougall 1987; Stewart et al. 
2017). These processes can be active along strong spiciness fronts, and can be responsible 
for generation and subduction of water masses (Thomas and Shakespeare 2015).

As frontal structures are typically mesoscale time and space features, observing and 
monitoring constantly both temperature and salinity at these scales is not possible with 
the sampling of in  situ historical measurements. Owing to the satellite measurements, 
both mesoscale SST and SSS fronts can now be monitored simultaneously from space at 
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a resolution around 45 km for SSS (and higher resolution for SST), revealing some sharp 
thermohaline fronts and associated features such as salty eddy and meanders in the Gulf 
Stream region (Reul et al. 2014a), density compensation in the Azores front and current 
(Kolodziejczyk et al. 2015), TIW frontal signature (see Sect. 4.1), and large river plume 
SSS contrasts (see Sect. 4.2).

An example of the thermohaline signature of the Southern Ocean Subtropical Front 
(STF) in the Southern Indian sector is shown in Fig. 3. The STF is characterized by the 
sharp horizontal hydrological gradients east of 30°E between 40°S and 45°S (Fig. 3). SST 
and SSS horizontal gradients (Fig. 3a, b) are computed and dimensionalized as density gra-
dient in order to quantify their respective contribution to SSD and Sea Surface Spiciness 
(SSSp) gradient (Fig. 3c, d; see Kolodziejczyk et al. (2021), their Eq. 4). SSD and SSSp 
are computed using TEOS-10 toolbox (IOC et  al. 2010), and horizontal SSD and SSSp 
gradients are then computed.

In the Southern Indian sector, the STF is characterized by the sharp signature in SST 
and SSS (Fig. 3a, b). Since the Subtropical Fronts are generally the frontiers between cool/
fresh subpolar water and warm/salty subtropical waters, these fronts are partly compen-
sated in density. Thus, the spiciness gradient exhibits a very strong signature (Fig.  3d), 
while density gradient is less marked at mesoscale (Fig. 3c).

This is in sharp contrast with the tropical regions where intense freshwater river dis-
charges and high rain rate produce very high SSS gradients with no compensation in SST. 
This can create major SSD fronts in the Tropics with potential impacts on local ocean cir-
culation and stratification.

In conclusion, mesoscale fronts analysis from complementary satellite SSS and SST 
maps has been made possible since 2010, thanks to the launch of L-band radiometric mis-
sions. These unprecedented time series reveal the complexity of thermohaline relationship 
within oceanic fronts on mid- to low latitudes. This will be of greater interest in high lati-
tudes where SSD variability is totally controlled by the SSS gradients, thus with crucial 
impacts on ocean circulation and mixing processes. However, progress is still needed to 
improve the resolution (beyond 45 km) and sensitivity (especially in cold water) in SSS 

Fig. 3  Subtropical Front in the ocean to the South of South Africa around 10 October 2016. a Absolute 
value of SSS and b SST horizontal gradient contribution to c SSD gradient and d SSSp gradient (gray shad-
ing in kg  m–3/deg). Corresponding fields of a SSS, b SST, c SSD and d SSSp are color contoured
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satellite measurements (compared to satellite SST), and to unravel the global dynamical 
and thermodynamical processes at mesoscale and submesoscale within frontal regions.

4.4  SSS and Tropical Cyclones

Tropical Cyclones (TCs) are strongly influenced by the underlying SST, which in turn is 
affected by Tropical ocean variability. TCs also typically induce a cold wake of upper-
ocean temperatures that can provide a negative feedback, therefore decreasing their 
intensities.

The strength of the feedback depends on a storm’s intensity and translation speed as 
well as on the ocean heat content and salinity structure, which vary regionally and on sea-
sonal to multidecadal timescales (Balaguru et al. 2012, 2015; Bauer-Marschallinger et al. 
2018; Shay et al. 2000). This is especially true in the northwestern tropical Atlantic and 
Bay of Bengal, where the river plumes (Amazon-Orinoco, Ganga and Brahamaputra) 
increase salinity stratification, limiting hurricane-induced SST cooling (Balaguru et  al. 
2012; Domingues et al. 2015; Grodsky et al. 2012; Reul et al. 2014c, 2021).

Fig. 4  Sea surface salinity (a) and temperature (b) response to the passage of category 5 hurricane Irma in 
the Tropical Atlantic in September 2017. From Reul et al. (2021)
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The climatological impact of TCs on SSS has been recently evaluated for the first time 
using a decade of satellite SSS observations in Reul et al. (2021) and Sun et al. (2021a). 
As shown in Fig. 4, TCs act to initially freshen the ocean surface (due to precipitation), 
and subsequently salinify the surface, largely through vertical ocean processes (mixing 
and upwelling), with strongest surface salinification on the right-hand side of the Northern 
Hemisphere TCs.

The direction of vertical wind shear has also been found to control the location of maxi-
mum TC rainfall, resulting in more freshwater accumulation on the right-hand side of the 
right-sheared storms (Sun et al. 2021b). The accumulated freshwater strengthens salinity 
stratification and inhibits right-side vertical mixing, reducing subsequent surface salinifica-
tion by 0.15–0.3 pss and slightly reducing the surface cooling by about 0.15 °C, relative to 
left-sheared storms. Thus, the directionality of shear can impact ocean-TC coupling.

TC rapid intensification (RI) is difficult to predict and poses a formidable threat to 
coastal populations. A warm upper ocean is well known to favor RI, but the role of ocean 
salinity is less clear. Balaguru et al. (2020) showed a strong inverse relationship between 
salinity and TC RI in the eastern Caribbean and western tropical Atlantic due to near-
surface freshening from the Amazon–Orinoco River system. The impact of interannual to 
multidecadal changes in upper-ocean temperature and salinity stratification on TCs’ cold 
wakes and intensities has only begun to be explored (Balaguru et al. 2020; Huang et al. 
2015).

5  Perspectives

5.1  Scientific Needs

Both SSS and SM are Essential Climate Variable. SSS is also an Essential Ocean Variable 
(Buontempo 2022). L-band radiometric missions have provided unique measurements that 
are crucial to better understand our changing environment and have now accumulated a 
good track record. Radiometric L-band SSS is the root information used to build the ESA 
Climate Change Initiative (CCI; https:// clima te. esa. int) SSS fields (Boutin et al. 2021a, b). 
Radiometric L-band SM, which provides direct information about surface SM contrary to 
active measurements influenced by surface roughness and subsurface structure of soil ele-
ments, participates to the ESA CCI SM climate data record (Madelon et  al. 2021). All 
this argues in favor of a long time series of L-band radiometric measurements enabling 
the monitoring of interannual to decadal variability. However, no gap-free continuity is 
ensured. While SMOS has been operating for more than 13 years and SMAP for almost 
8 years, the next mission carrying an L-band radiometer will be either the Chinese Ocean 
Salinity satellite planned to be launched in 2024 (Li et al. 2022), or the Copernicus Imag-
ing Microwave Radiometer (CIMR) that will not be launched before 2028. Both missions 
will provide multi-variables (e.g., SST, wind/roughness, SSS, ice parameters) that are help-
ful for SSS retrieval and for process studies, but with a similar or even a coarser spatial 
resolution at L-band than SMOS and SMAP. No SMOS follow-on interferometric mission 
is planned even though a number of SM and SSS applications, e.g., for monitoring fronts 
where key processes take place (see Sect.  4.3), for improving SSS monitoring close to 
coast (see Sect. 4.2),  would need higher spatial resolution that can only be provided by the 
interferometric technique.

https://climate.esa.int
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5.2  The Copernicus Imaging Microwave Radiometer (CIMR) Mission

CIMR is a satellite system developed as part of the European Union Copernicus program 
expansion activities. CIMR is designed to monitor the rapid Earth system changes taking 
place in the Arctic in response to the Integrated European Policy for the Arctic require-
ments (Donlon 2020). The aim of the mission is to provide high-spatial resolution micro-
wave imaging radiometry measurements and derived products with global coverage and 
sub-daily revisit in the polar regions and adjacent seas to address Copernicus user needs. 
Its main challenges are (1) to provide high spatial resolution 5 km Ka/Ku band measure-
ments of sea ice parameters (Sea Ice Concentration, Sea Ice Drift, Sea Ice Thickness, Snow 
Depth on sea ice and Sea Ice Surface Temperature), which provides an enhanced capabil-
ity compared to 89 GHz estimates that are challenged by atmospheric effects. Other key 
objectives are (2) to provide high spatial resolution (15 km) C/X band measurements of 
global coverage SST with quasi all-weather capability and rapid (1–2  days) revisit, and 
(3) to maintain an L-band measurement capability to continue the legacy of SSS and SM 
parameters from previous L-band missions but with a coarser spatial resolution. The CIMR 
instrument concept is based around a conically scanning multi-frequency microwave radi-
ometer with a 55° incidence angle with the Earth surface. CIMR measurements will be 
made using a forward scan arc followed by a second measurement of the same location 
using a backward scan arc 260 s later. Channels in L, C, X, Ku, and Ka bands, centered at 
1.414, 6.925, 10.65, 18.7 and 36.5 GHz, respectively, are included in the mission design. 
The measurements will be acquired in vertical (V) and horizontal (H) polarizations, with 
on board and on ground strategies put in place to mitigate RFI contamination. Modified 
Stokes parameters will be computed on-board the spacecraft. The spatial resolution of the 
real-aperture antenna for the C/X-band channel is at least 15 km, and 5 and 4 km for the Ku 
and Ka-band channels, respectively. The L-band channel will have a real-aperture resolu-
tion of at best 60  km (instantaneous, i.e., without accounting for smearing), fundamen-
tally limited by the size of the reflector and the focus of the L-band feed. However, all 
channels will be oversampled along and across-track by 20% allowing gridded products 
to be generated at better spatial resolutions. Channel Noise Equivalent Delta Temperature 
(NEDT) is 0.2–0.7 K with total standard uncertainty at processing Level L1B (instrument 
data processed to sensor units) better than 0.5 K (L, C, X), 0.6 K (Ku), and 0.7 K (Ka). 
Recent evaluations of the CIMR retrieval performances (Jiménez et al. 2021; Kilic et al. 
2021) showed that the simulated CIMR instrument shall provide SSS with accuracy < 0.3 
pss for monthly average composite at spatial resolution ~ 50 km, conforming with the mis-
sion requirements (Donlon 2020).

5.3  Active Systems

Contrary to passive microwave radiometry, active systems are very sensitive to subsurface 
soil structure and water distribution, flawing SM estimates [e.g., (Wagner et  al. 2022)]. 
Nevertheless, they complement radiometric SM estimates by providing higher resolution 
information (cf Sect. 2.2).

The advent of future L-band missions such as NISAR and ROSE-L, which are planned 
to be launched in 2024 and 2028, respectively, should improve SAR SM estimates, espe-
cially in the context of high vegetation density where C-band measurements are restricted 
to less penetration of vegetation cover. Radar multifrequency synergies, as well as spatial 
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multiresolution data, offer an excellent opportunity for more precise SM products at the 
scale of agricultural plots.

The GNSS networks are being rapidly expanded by multiple nations, and the total num-
ber of GNSS satellites operating at L-band frequencies may reach 100 or more soon, which 
can be source of the L-band reflectometry for SM sensing. A temporal revisit of 1 h or less 
could be within reach.

The L-band radiometry and GNSS-R missions can provide insights into near-surface 
SM storage, but do not provide direct information about RZSM, which plays a key role in 
the evapotranspiration/latent heat flux to the atmosphere and the modulation of recharge to 
near-surface groundwater aquifers. Therefore, there have been increasing interests to lever-
age the reflectometry technology to lower frequency by using the signals from communi-
cation satellites such as the Navy’s Mobile Users Objective System (MUOS) operating at 
P-band frequencies (Oetting and Jen 2011). The sensitivity of the P-band reflection signals 
to SM has been analyzed theoretically in Garrison et al. (2017) and Xu et al. (2017) and 
has been demonstrated in Yueh et  al. (2020a). To mature the spaceborne P-band reflec-
tometry technology, the NASA InVEST program has selected the SigNals of Opportunity: 
P-Band Investigation (SNOOPI) mission (Garrison et  al. 2019), which will enable the 
flight demonstration of the P-Cion host board design. A spaceborne concept, which utilizes 
the synthetic aperture radar processing approach and combines the signals from an array of 
small satellites with parallel ground tracks, has been under development in order to reach 
a spatial resolution of about 100 m to 1 km (Yueh et al. 2021). Nevertheless, the P-band 
is not an RFI protected band contrary to L-band, and the feasibility of such measures over 
most of the land surface remains to be demonstrated.

5.4  SMOS‑HR

SMOS, Aquarius and SMAP have demonstrated the uniqueness and usefulness of L-band 
radiometry. Capitalizing on the successes of these missions, acquiring such measurements 
should continue, especially in view of the many operational and scientific users. Obviously, 
data gaps would be most compromising. Several studies and workshops were thus held to 
address this issue while various technology demonstrators were developed. Several sum-
mary notes on these activities were produced (Kerr et al. 2019a, b) and presented to the sci-
entific community (Kerr et al. 2020). On land, the need for high spatial resolution for SM 
is obvious, and radiometric measurements are unique in providing reference SM values. 
Over ocean, studies increasingly point to the strong need for a significant improvement of 
the spatial resolution. For instance, D’Addezio et al. (2019) found that with 40 km resolu-
tion measurements, about 30% of the total SSS variance within 640 km scale is missed, 
whereas the missing variance is only 5% with 10 km resolution measurements. In tropical 
regions, the importance of oceanic mesoscale in the export of freshwater and carbon from 
river plumes has been studied using SMOS and SMAP SSS, but many finer scale phe-
nomena revealed by high-resolution chlorophyll-a, but not accessible with current L-band 
radiometers, highlight the need for high-resolution satellite salinity (Olivier et  al. 2022). 
Moreover, an improved quantification of salt transport by eddies that plays a major role 
in balancing evaporation and precipitation fluxes requires improved resolution capabilities 
of future satellite missions in order to observe mesoscale and sub-mesoscale variability, 
improving the signal-to-noise ratio, and extending these capabilities to polar oceans (Mel-
nichenko et al. 2021). Especially since in the Arctic Ocean, current satellite measurements 
have shown the potential of L-band radiometry to track the spatio-temporal evolution of 
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freshwater from melting ice, but also their severe lack of spatial resolution (Supply et al. 
2022).

Some key high-level system requirements detailed in the studies previously mentioned 
are summarized below, and trade offs for the requirements for a near future mission are 
summarized in Table 2.

Spatial resolution should be at the very least as good as that of SMOS and SMAP, and 
ideally 1 km, though at 10 km a significant step forward would already be achieved. The 
temporal resolution should be at least that of SMOS and SMAP, ideally twice a day. The 
radiometric accuracy should be at least that of SMAP for a single view, and ideally 0.1 K 
though 0.5 or even 1 K would satisfy most users.

Other general requirements for ideal follow-on missions are to be fully polarimetric and 
to have a good RFI filtering approach, as demonstrated by SMAP.

For weather and climate, global coverage should be ensured, while for some operational 
uses (e.g., NWP, flood forecasts, high winds) a near real-time acquisition is absolutely 
necessary.

As described above the most challenging issue is to achieve a better spatial resolution, 
ideally 1 km or less. This seems unachievable with classical antennas since the antenna 
size and number of receivers grow to an unachievable limit (O’Neill et al. 2018). The solu-
tion lies with interferometry as demonstrated by radio astronomers and as proven in space 
with SMOS (Kerr et al. 2010).

From these considerations, the SMOS–HR concept (now in a phase A study at CNES) 
was developed. The concept is based on the SMOS heritage with adaptations making the 
requirements described above achievable (Rodriguez-Fernandez 2020). It capitalizes also 
on new patented approaches to reach the 10 km spatial resolution with longer arms. The 
concept also reduces the area of the field of view affected by aliases. A sophisticated RFI 
filtering approach is also being implemented.

6  Concluding Remarks

Monitoring SSS from space has become possible since 2010 thanks to L-band radiometry. 
It is still the only spaceborne technique allowing SSS measurements. The space measure-
ment of SM was first initiated by active technique (scatterometry) but active measurements 
are also at first-order sensitive to the surface roughness and to the distribution of elements 
in the soil. Only L-band radiometry provides access, since 2010, to direct SM measure-
ments. SM derived from L-band radiometric measurements is now used as a reference for 
adjusting large-scale SM determined by active methods. Thanks to recent technological 
advances (SAR, reflectometry), the great benefit of the latter is to provide information 
about the SM variability at the kilometer scale, or even smaller, while the spatial reso-
lution reached by L-band radiometers currently in flight is ~ 43 km. Maintaining a good 
knowledge of the SSS and SM therefore necessitates the continuity of L-band radiometric 

Table 2  Trade offs for the 
requirements of a near future 
mission

Spatial resolution 10 km

Temporal resolution 3 days on the Equator 
(would be better at higher 
latitudes)

Radiometric accuracy 0.5 K
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measurements. The Chinese Ocean Salinity mission and CIMR are expected to carry the 
next L-band radiometers with spatial resolution of the order of, or coarser than, current 
measurements, respectively, with an asset of multiple frequencies. But their launch might 
take place too late to ensure continuity (SMOS and SMAP are the only instruments still 
in flight for more than 13 years and 8 years, respectively). On the other hand, improving 
the monitoring of areas and processes that are highly sensitive to climate change, near the 
coasts, near the ice, and near inhabited land areas requires an improved spatial resolution. 
Development of new technological concepts opens the way to a spatial resolution of the 
order of ten kilometers or less.
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