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New technical developments are opening the door to an understanding of why
metabolic rate varies among individual animals of a species
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Abstract

Researchers from diverse disciplines, including organismal and cellular physiology,
sports science, human nutrition, evolution and ecology, have sought to understand the
causes and consequences of the surprising variation in metabolic rate found among and
within individual animals of the same species. Research in this area has been hampered
by differences in approach, terminology and methodology, and the context in which
measurements are made. Recent advances provide important opportunities to iden-
tify and address the key questions in the field. By bringing together researchers from
different areas of biology and biomedicine, we describe and evaluate these develop-
ments and the insights they could yield, highlighting the need for more standardisation
across disciplines. We conclude with a list of important questions that can now be

addressed by developing a common conceptual and methodological toolkit for studies

KEYWORDS

INTRODUCTION

Metabolic rate provides a quantification of the energetic cost of liv-
ing by telling us the rate at which an organism converts fuel into
energy or heat. Its measurement is of great interest to biologists
working at all levels, from molecules to communities. Metabolic rate
is central to the energy flux within cells. Limitations on the rate
at which individuals can generate adenosine triphosphate (ATP) will
determine key life history traits, such as growth, self-maintenance,
and reproduction and the trade-offs amongst them. The development
of metabolic theories within ecology have advanced our understand-
ing of broad scale variation in life histories across taxa.l1-3! There
has also been some success in linking metabolic rate in animals to
whole-organism performancel#-¢] and even to colony size in colonial
species.”! Nonetheless, our understanding of how and why metabolic
rate varies is incomplete, particularly within species (reviewed in
refs.[8, 9]) where substantial (often ~2-fold) spatial and temporal
variation can be found among individuals, sexes and life history
stages.

While some of this variation is probably due to measurement arte-
facts or lack of standardisation (e.g., for the effect of body size on
metabolic rate), it is still unclear how much of the remaining vari-
ation is adaptive or non-adaptive, or whether it is genetically or
environmentally determined. Such information is essential if we are
to predict how animals will cope with rapid environmental change
and to understand the causes of metabolic disease. Very large differ-
ences in heritability estimates among studies have been reported!10!

on metabolic variation in animals.

ATP, energetics, energy, mitochondria, nutrition, physiology, respirometry

and we lack information on the role of developmental processes and
short-term reversible changes in physiology. The proximate mecha-
nisms determining variation in whole-body metabolic rate in animals
remain disputed among researchers in the field. Much of this debate
focusses on metabolic scaling,[11] but there are also issues surrounding
mass-independent variation driven by changes in, for example, mito-
chondrial function,!12! size of cells, organs or tissues with different
energy requirements.13.14]

The evolutionary mechanisms driving this persistent variation
in metabolic rate also remain largely unexplored. It might reflect
fluctuating and/or context-dependent selection, with fitness peaks
changing in space and time.[1>1¢] However, constraints on plastic-
ity and indirect selection through genetically-correlated traits!1°] are
also probably at play. In particular, metabolic activity or efficiency
can carry costs, such as oxidative damage or protein glycation.[12]
Understanding how energetic efficiency is traded off against those
costs is necessary to better describe evolutionary constraints on
metabolic rate. Since whole-body metabolic rate is necessarily the
sum of the respiration of separate tissues, we also need to iden-
tify the targets of selection that have the biggest impact on energy
management.

The aim of this paper is to examine these gaps in our knowledge
in animal metabolic rates and how they can be tackled through an
interdisciplinary approach to methods and concepts. We highlight
how recent technological and conceptual advances have opened new
approaches, and list key questions that can now be addressed. We

think these insights will be useful to a broad range of researchers from
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diverse backgrounds and study systems, including human health and
disease.

ALTERNATIVE MEASURES OF METABOLIC RATE

Throughout the history of scientific study, researchers have faced tech-
nological limitations that constrain the questions they can address.
One of the oldest questions relating to energy expenditure and
metabolism relates to the identification of the causes underlying vari-
ation in metabolic rates, both among and within species.!”] It has
long been known that metabolic rate varies at the individual level
with development, age, season, time of day, activity level, environment
and sex, and can also differ within individuals at the tissue or cellu-
lar level.l?] Recent technological advances have expanded the scope of
this research: for example, we can now measure mitochondrial func-
tion in wild animals sampled at high elevation field sites, 18! or using
frozen tissue,[1?! and even via miniscule tissue-punches from specific
regions of the brain.[2°] Given the rate at which technology is open-
ing new avenues in this area, we should now identify the key questions
we need to answer, rather than only focus on those we were able to
address in the past.

However, despite the array of emerging technologies for estimat-
ing whole-animal metabolic rates, there is confusion surrounding the
terminology for the various types of metabolic rate that are commonly
studied (Table 1). Whole-animal metabolic rate, usually quantified indi-
rectly through measurement of oxygen uptake rates during aerobic
respiration, is not a single, fixed trait.[1921] For example, while some
estimates of whole-animal metabolic rate reflect solely maintenance
costs, others include costs associated with physical activity, thermoreg-
ulation and other physiological functions including growth or digestion
(Table 1). Furthermore, some types of metabolic rate are measured
during relatively short time periods when the animal is in a constant
state, while others represent longer timeframes that include spon-
taneous costs associated with changes in activity, internal processes
or external conditions (Table 1). The most appropriate measurement
depends on the question of interest. For example, routine metabolic
rate - which typically includes maintenance costs, spontaneous activity
and the short-term costs of an autonomic stress response - is generally
calculated as an average metabolic rate throughout the measurement
period.!2223] While routine metabolic rate can be useful when measur-
ing acute metabolic responses to a stressor (e.g., a temperature change
or response to a predator), it is often rather loosely defined and can
sometimes be used as a substitute for field metabolic rate (FMR).[22]
This conflation of terminology is problematic, since routine metabolic
rate is usually measured in food-deprived animals while FMR also
includes additional energy expenditure such as food digestion. Further
confusing the issue is that researchers studying different disciplines or
taxonomic groups often use different terminology to refer to similar
estimates of metabolic rate (Table 1), or use inconsistent abbreviation
conventions when referring to specific estimates of metabolic rate or

capacity (e.g., aerobic scope - the difference between maximum and
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minimum aerobic metabolic rates - being variously referred to as AS,
absolute aerobic scope [AAS], or factorial aerobic scope [FAS]; Table 1).

Which is the most appropriate measure of
whole-animal metabolism?

Due to the relative ease of standardising measurement conditions,
animal physiologists have tended to focus on measuring the minimal
(floor) and maximal (ceiling) metabolic rates, whether at the whole ani-
mal or cellular (mitochondrial) level. These measurements can reveal
the physiological capacity and constraints acting on the animal. Anal-
yses of minimal metabolism have led to insights into, for instance,
the spatial distribution of ectotherms in relation to their thermal
and hypoxia tolerancel?4 and relationships between body mass and
metabolic rate in mammals and birds.!25] However, the terminology
needs to be clear: ‘minimal metabolic rate’ is perhaps a misnomer, since
it usually refers to the animal in a resting but not torpid or hiber-
nating state (when metabolism can drop even lower). Furthermore,
the assumptions underlying the estimations of minimal metabolism
may not always be met: the subjects may not be in a post-absorptive
state, species with indeterminate growth are typically always grow-
ing, and, in endotherms, individuals are frequently found in conditions
outside of the thermoneutral zone in the wild (and they may come
in/out of heterothermy). Moreover, whether minimum metabolic rate
should be measured during rest or the active phase of the day make
the comparisons difficult because of circadian variations in energy
expenditure.l26] These challenges make it hard to standardise and jus-
tify the conditions under which the measurements are made. Measures
and derivatives of maximum metabolic rate pose similar problems: the
peak rate of oxygen consumption can depend on the context in which
metabolic rate is maximised (Table 1). It can be expressed as a multi-
ple of resting or basal metabolic rate (BMR) to facilitate comparisons
among groups of animals differing in body size; the resulting index
can indicate the relative contribution of activity energy expenditure
to total metabolic rate. However, there are a number of ways of cal-
culating this index, depending on the period over which the energy
expenditure is measured (e.g., FAS is usually measured as instanta-
neous rates whereas physical activity level (PAL) measures daily energy
expenditure [DEE] - see Table 1 for definitions). Moreover, as with min-
imal metabolism, animals are rarely operating at their maximal rate
of metabolism. Maximum FAS or PAL can reach values as high as 10
(e.g., in migrating birds) but only for brief periods since this rate is
dependent on stored fuel and can carry other long-term costs.!27] The
limit for maximal sustained FAS or PAL is set by an alimentary energy
supply limit.[28-301 A typical value, that can be sustained for months
while maintaining energy balance, is around 2.5 for birds and mammals,
including humans.[3] A heightened energy intake allows a greater FAS
or PAL over shorter time intervals of several weeks, as observed in
nestling feeding birds and in professional endurance athletes during
the 3-week Tour de France cycle race,[3233] but the maximum declines

curvilinearly with event duration.!2?]
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TABLE 1 There are many types of metabolic rates measured by scientists, with the list below representing those frequently appearing in the

Absolute difference between basal (or standard) and maximum metabolic rate; often referred to as

Minimum resting metabolic rate required by an endotherm to survive at thermoneutrality,
measured in an animal that is postabsorptive, non-growing, non-reproductive and resting (but
not sleeping or in hibernation or torpor)

The total energy used by an individual during a full circadian cycle

The energy dissipated as heat after food intake (often referred to as SDA - see below - in

Maximum metabolic rate divided by basal (or standard) metabolic rate
Metabolic rate measured in a food-deprived and post-absorptive individual
Metabolic rate measured in a free-ranging individual

Maximum aerobic metabolic rate, usually induced by sustained physical activity but sometimes also
measured post-feeding in ectotherms. In some taxa and disciplines this is referred to as VO, max
(when measured as the maximum rate of oxygen uptake during physical activity)

Maximum resting metabolic rate during acute cold exposure in endotherms
DEE or field metabolic rate divided by BMR
Maximum metabolic rate that is induced by either exercise (MMR) or acute cold (M,,)

Metabolic rate measured in a resting animal (synonymous with resting metabolic rate)

Metabolic rate measured in a resting animal (synonymous with REE). Is sometimes used to
imprecisely refer to any of routine metabolic rate, basal metabolic rate, or standard metabolic

Average metabolic rate during spontaneous behaviour or a particular activity, under controlled

The energy dissipated as heat after food intake (see diet-induced thermogenesis)
The lowest stable metabolic rate over ~3 h measured in a sleeping individual

Minimum metabolic rate required to survive at a particular temperature, for an animal that is
post-absorptive, non-growing, non-reproductive and resting (but not in torpor or diapause).
Applied to ectotherms, and to endotherms outside of thermoneutrality

literature
Abbreviation Type of metabolic rate Definition
(A)AS Absolute aerobic scope
just aerobic scope (AS)
BMR Basal metabolic rate
DEE Daily energy expenditure
DIT Diet-induced
thermogenesis ectotherms)
FAS Factorial aerobic scope
FMR Fasting metabolic rate
FMR Field metabolic rate
MMR Maximum metabolic rate
Mgum Summit metabolism
PAL Physical activity level
PMR Peak metabolic rate
REE Resting energy
expenditure
RMR Resting metabolic rate
rate
RMR Routine metabolic rate
conditions
SDA Specific dynamic action
SMR Sleeping metabolic rate
SMR Standard metabolic rate
SusMR Sustained metabolic rate

Metabolic rate over an extended period, with energy balance maintained via food intake

As definitions of these metabolic rates can vary among fields of study, we provide brief, simple definitions along with common abbreviations (note that the
same abbreviation is sometimes used to mean different measures).

For some research questions, especially those with an ecological set-
ting, a more relevant measurement is the average metabolic rate (e.g.,
FMR or DEE) since this represents overall energy (and hence food)
requirements for a specified period. However, this can be more chal-
lenging to measure in a standardised manner, 34! although a historical
record of FMR can now be estimated retrospectively even in deep sea
fishes.[35] This approach has revealed differences in thermal perfor-
mance curves between two ecotypes of cod Gadus morhua, consistent
with temperature differences in the habitat in which they live.[3¢]
Meanwhile some of the most detailed measures of DEE come from
humans. The DEE of modern humans is similar to that of other mam-
mals when accounting for body size differences.[3”! Humans usually
maintain a neutral energy balance during daily life, possibly controlled
via homeostatic regulation of body mass.l38] However, environmen-
tal perturbations can change DEE and/or energy intake, potentially
altering this balance. For example, at low environmental tempera-

tures, cold-induced brown adipose tissue activation may contribute
to a small, yet highly variable thermogenesis,[3?! but humans have
been shown to increase their energy intake to a greater extent than
needed to offset the increase in DEE.l40! Circadian misalignment (i.e.,
chronically eating and sleeping at unusual times in the 24 h cycle)
causes a higher sleeping metabolic rate and lower DEE, while energy
intake is increased, potentially leading to weight gain.[*1! These exam-
ples demonstrate the value of using FMR and/or DEE over simply

floor/ceiling rates of metabolism in energy budget models.

Correlations between measures of metabolic rates

The ambiguity and multiplicity of metabolic rate measures is not the
only issue we have to take into account when considering varia-
tion in metabolic rate. Another interesting question is to what extent
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these different measures of metabolic rate are under independent
control. According to the aerobic capacity model, there is a mecha-
nistic link between minimum (BMR or standard metabolic rate [SMR];
see Table 1 for definitions) and aerobic maximum metabolic rates
(MMR or Mgn; Table 1).142] This relationship has been demonstrated
for over 40 years using both artificial selection experiments in con-
trolled conditions!4344] and measurements on wild-caught animals
taken into captivity.[4546] A recent meta-analysis of phenotypic cor-
relations between minimum and maximum metabolic rates across
a large number of species from all five classes of vertebrates has
found an overall significant positive relationship.14”] However, the cor-
relation between BMR and M, was found to be non-significant
in mammals, possibly due to the role of uncoupling mechanisms in
thermogenesis.[47! This suggests an effect of phylogeny and evolution
through differential selective pressures on the strength of relation-
ships between metabolic traits. We should also take into account the
level at which the correlation is measured,[4547481 its repeatability!4?]
and the circumstances of the measurements (e.g., whether made in
the laboratory or in the wild[4850]). For example, intraspecific varia-
tion in BMR and Mg, in birds suggests that these traits are under
independent physiological control and may lack a functional link.[>%]
Since metabolism is a labile trait, which may change over time and
with environmental conditions, our analyses should in the first instance
standardise the measurement conditions before trying to assess
the level and magnitude of correlation between different metabolic

measures.

WHOLE-ORGANISM MEASUREMENTS OF
METABOLIC RATE TELL US LITTLE ABOUT THE
UNDERLYING PROCESSES

When seeking to understand the underlying processes linking
metabolic rate to health and performance, important questions remain
regarding how organism-level measures relate to the mitochondrial or
tissue-organ measures, and about measures of O, consumption versus
energy flux. There are at least four important caveats to carefully
consider here.

First, measures of whole-body O, consumption are not the mere
sum of O, consumed by each mitochondrion within the body. Non-
mitochondrial O, consumption can be close to 10% of the total in
many cells, due to the activity of various oxidases, desaturase and
detoxification enzymes.[52]

Second, the O, used at the mitochondrial level by the electron trans-
port chain is not perfectly coupled to oxidative phosphorylation (i.e.,
the production of ATP), since energy is partially dissipated as heat by
proton leakage.l>3] The efficiency with which mitochondria produce
ATP (vs. heat) for a given amount of O, can vary among tissues and indi-
viduals and with the environmental context (e.g., changing in response
to food intake), making it difficult to infer functional consequences
from whole-body measurements of metabolic rate.[1254] Moreover,
whole-body O, consumption does not include the contribution of

anaerobic metabolism to ATP production.!55!

B?oEssastS_w

Third, tissues and organs show considerable variation in mass-
specific metabolic rates. For example, in humans, 70%-80% of resting
energy expenditure is due to highly active organs that comprise only
around 5% of body weight (e.g., liver, kidneys, heart and brain{¢]). Dif-
ferences in aerobic metabolic rate between tissues or organs can be
due to differences in mitochondrial content!>’! or reliance on anaer-
obic metabolism, and are dynamic, depending on the biological context
(e.g., whether the body is at rest or engaged in aerobic or resistance
exercise).

Fourth, although some tissues/organs make only a minor con-
tribution to whole-body metabolic rate, the functioning of their
mitochondria may have significant consequences for health, perfor-
mance and fitness. For example, the mitochondria in innate immunity
cells, which on the whole contribute little to metabolic rate, are
nevertheless important in immune responses due to their produc-
tion of reactive oxygen species (ROS) that both act as signalling
molecules and attack pathogens.[58:59! Similarly, variation in mitochon-
drial metabolism within spermatozoa has major consequences for male
fertility.[60]

Overall, making extrapolations from mitochondria to tis-
sues/organs, whole-body metabolic rate and fitness is complex.
Ultimately, an individual’s survival and reproduction is likely to be
determined by its total energy requirements in relation to fuel avail-
ability, which will vary across biological and ecological contexts. Hence,
important new insights are likely to come from integrative research
on whole-body metabolic rates and energy flow through different
tissues/organs, the latter being assessed directly or indirectly via O,

consumption at the mitochondrial, cellular or tissue-organ levels.

WE NEED TO KNOW HOW TO LINK
WHOLE-ANIMAL METABOLIC RATE TO
BIOLOGICAL FUNCTIONS

There is strong evidence that measures of metabolism (e.g., BMR, RMR,
MMR, DEE; see Table 1) are responsive to selection, and can cor-
relate with differences in survival and reproductive performance in
natural populations (but see [661-63]) However, correlations between
metabolic rate and Darwinian fitness can disguise multiple indepen-
dent factors that contribute to both metabolic rate and fitness. For
instance, they do not reveal whether it is the cumulative energy
demand, and/or the efficiency of ATP production, that are under
selection. In addition, the organism may change its behaviour or phys-
iology to optimise the amount of energy available to enhance fitness

outcomes in a given set of circumstances.

Compensatory responses

There is increasing evidence that rates of energy metabolism can
change within individuals in response to short-term shifts in envi-
ronmental pressures. For example, across a wide diversity of both

endothermic and ectothermic taxa, mass-independent BMR and SMR
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are known to change as a function of food availability.[64] Low food
availability can also trigger torpor use in heterothermic endotherms,
reducing the energetic costs of thermoregulation by regulating body
temperature below normothermic levels.[5] These within-individual
shifts in metabolic rate are a result of mitochondrial plasticity, whereby
the mitochondrial activity and number changes as a function of envi-
ronmental conditions.[4! For instance, at the onset of physical exercise,
there is a redistribution of blood flow from inactive tissues (e.g., diges-
tive organs) to active ones (e.g., skeletal musclel®8]). This can alter the
relative contributions of different tissues to whole-animal metabolic
rate as whilst mitochondrial activity or efficiency are sometimes corre-
lated between tissues within the same individual,[é7] this is not always
the case.l8] It is also important to recognise that mitochondria in
different tissues of the same individual may respond differently to envi-
ronmental changes, at least based on the relatively small number of
studies that have investigated this issue.[6970]

While previously assumed to be neutral, there is increasing evi-
dence that allelic variation in the mitochondrial and nuclear genomes
that influences mitochondrial function can give rise to bioenergetic
adaptations at the population- and species-level, and even at higher
taxonomic levels!7!! For example, complex | subunits (ND4, ND1,
ND3) involved in mitochondrial oxidative phosphorylation are under
both positive and purifying selection in Atlantic salmon Salmo salar,
with selection for increased aerobic capacity in lower-temperature
waters.[72] Furthermore, nearly a quarter of all mitochondrial-encoded
genes were found to be subject to positive selection in bats, and a
greater proportion of the nuclear encoded genes that are associated
with oxidative phosphorylation were under positive selection than
were the non-respiratory nuclear genes, 73] highlighting the impor-
tance of mitochondrial and mitonuclear adaptations in the evolution of
species with an energetically demanding lifestyle.

From respiration to power generation

A major goal of whole-organism respiration measurements is to esti-
mate how the energy provided by nutrients to different tissues (heart,
muscle, etc.) is used to generate work and power (chemical or mechani-
cal). This transduction from energy to power depends on mitochondrial
phenotype and efficiency, which (as mentioned above) can vary accord-
ing to species, tissues and environmental conditions. However, it is
also affected by the food substrate that is used by the mitochondria,
which varies across the animal kingdom. Most studies of mitochondrial
bioenergetics use common metabolites provided by carbohydrates
(pyruvate, malate and succinate), proteins (glutamate) or lipids (fatty
acids), but underestimate the importance of alternative substrates
that can also be important (e.g., proline in some invertebrates!74751).
These different classes of substrate generate different amounts of ATP
per unit of oxygen consumed (the ATP/O ratio, sometimes referred
to as P/O), ranging from approximately 2.5 ATP/O for glucose to 3.5
for palmitate. ATP/O, a measure of mitochondrial efficiency, can also
depend on the intensity of mitochondrial respiration and the quality of

mitochondria, which in turn will hinge on factors such as mitochondrial

morphology, membrane composition and organisation, and the content
and state of different enzymes.[ 1276771 The results of these differences
will also translate into variation in rates of ROS production or proton
leakage from the inner membrane, both of which lead to variation in
the efficiency of oxidative phosphorylation.[12] High rates of ROS gen-
eration in the absence of sufficient antioxidant and repair capacity lead
to oxidative stress, which can disrupt mitochondrial components and
further magnify dysfunction and loss of efficiency.[54]

Given these complexities, simply measuring mitochondrial content
and mitochondrial respiration rates with standard substrates at maxi-
mal capacity is insufficient to allow a proper assessment of the ability
to perform work per unit of time, or the rate of ATP synthesis. Informa-
tion on mitochondrial substrate utilisation and efficiency of oxidative
phosphorylation are also required, which will partly depend on the
proportion of mitochondrial capacity that is being used in situ. Further-
more, depending on physiological and environmental conditions, the
limits of aerobic capacity may only be reached at the expense of oxida-
tive damage accumulation. Therefore, the true cost of living needs to
be measured in terms not only of energy expenditure, but also of the

resulting oxidative stress that is incurred.

PROGRESS WILL DEPEND ON APPROPRIATE
ADOPTION OF NEW METHODS

Techniques for measuring metabolic rate need to be continually devel-
oped to enable us to record the most robust measurements and
to answer new questions. To this end, existing technologies can be
adjusted to measure additional metabolic parameters that shed new
light on organisms’ capacity to cope with their environment. For exam-
ple, a modified static respirometry chamber, with a built-in device
to induce swimming, was used to determine a fish’s hypoxic perfor-
mance curve and estimate the proportion of the AAS an individual
can reach depending on the ambient oxygen availability.[”8! Alterna-
tively, existing techniques can be combined to address novel questions:
the combination of cardiac loggers and accelerometers revealed that
the sudden dives by adult narwhals Monodon monoceros caused by
anthropogenic noise had twice the metabolic cost of routine dives of
equivalent duration and depth.[7? New technology is emerging to facil-
itate measurement of metabolic rates in novel contexts (summarised
in Table 2), particularly in more ecologically relevant conditions or
across the animalt's ontogeny, and so potentially enhancing our under-
standing of the factors that affect Darwinian fitness. For instance, it
has long been considered almost impossible to measure the FMR of
wild fish.[134] Recent advances have shown, however, that this can be
estimated from the isotopic composition of carbon in their otoliths
(813C410)L3%] or from high resolution acoustic telemetry.[89] Moreover,
tissue biopsies are being developed to estimate mitochondrial respi-
ration, with the potential to be used in longitudinal studies tracking
animal metabolic performance, for example, in response to environ-
mental challenges.[67:8182] While some of these new techniques need
further validation and calibration, they open promising new avenues

for investigating metabolic rate.
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However, all methods force us to make assumptions about how rep-
resentative or relevant measurements will be of real world situations.
For example, measurements of mitochondrial function using in vitro
assays are often made under non-limiting conditions (such as maximal
uncoupling respiration) and yet are used to infer changes in mitochon-
drial function when the body is at rest.[83] Similarly, measurements
of the oxygen consumption of confined animals are usually taken at
a single constant temperature, despite the fact that organisms will
face variable temperatures under natural conditions, with likely strong
effects on energy requirements.!8485] Measuring the oxygen consump-
tion of wild animals is usually done after they have been subjected to
stress, either due to capture, the attachment of measurement equip-
ment or from injections.!8¢] Similarly, when taking measurements in
humans, we need to consider how well their behaviour in a laboratory
setting reflects that in ‘real life’

The doubly labelled water (DLW) method is a relatively effective
method for measuring total energy expenditure in free living individu-
als, at least in terrestrial species, and is often considered to be the ‘gold
standard’. However, it does assume that the subject behaves normally
for the 24-48 h after having been injected with the sample of DLW (an
assumption that is rarely tested and may not be truel®”1) and has limita-
tions such as high costs, low temporal resolution and a time-consuming
procedure to analyse the sample.[88! Individuals also typically have to
be recaptured for final blood sampling, although single sampling meth-
ods (e.g., using faeces rather than blood for the final sample) can be
used to reduce disturbance.[89! Alternative approaches are to mea-
sure heart ratel®! or use accelerometry,! %% both of which can provide
estimates of metabolic rate over much finer time periods whilst being
less direct measures of metabolism where conversion equations for a
particular species of interest are often not available.[?1]

Overall, researchers need to be aware of the limitations of
metabolic measurements, relating to measurement type, environmen-
tal/laboratory scenarios and statistical adjustments, and state these
explicitly in their reports. They need to be aware of the risk of measure-
ment error (especially evident when measuring minimal metabolism,
when ‘impossible’ records stand out, but more hidden in other mea-
surements). It is also important to consider whether and how to correct
for differences in body composition, so as to avoid confounding factors
due to inconsistencies in tissue mass.[>¢] For example, calorie restric-
tion appeared to cause cellular-level metabolic suppression in mice if
analyses of resting metabolic rate took account of changes in fat and
lean mass.l 92 However, more refined models based on changes in indi-
vidual organ sizes found that the reduction in resting metabolic rate
was explained fully by changes in organ size, so that there was no evi-
dence for metabolic suppression at the level of the cells.[?2] One way to
better recognise the limitations inherent in our measurements would
be to set up standardised ‘reference states’ of animals and experimen-
tal conditions under which metabolic rates are measured. This would
provide baseline data against which to interpret data from new studies.
There have been some attempts to standardise measurement settings
of energy expenditure in humans, with attention to details such as the
time of day and duration of measurements, lighting levels, conditions

under which the subjects spent the previous night, and their activity

and posture at the time of measurement,!?3] but this approach needs
to be expanded further to cover more species and methods. Such stan-
dardisation could lead to a more coherent interpretation of metabolic
rate measurements and a better understanding of real-world effects on
energy expenditure.

Metabolic rate is flexible in response to the variable environ-
ments that most organisms inhabit over both daily and seasonal
timeframes. The need to incorporate realistic conditions into mea-
surements of metabolic rate is therefore an important consideration.
Indeed, given rates of global environmental change, accounting for
varying conditions within our measurements may be particularly
timely.[76:94] While technical limitations have hitherto precluded our
ability to obtain whole-animal and subcellular measurements under
non-standardised (i.e., non-laboratory) conditions, it is now becoming
possible to take measurements under ecologically relevant scenarios,
including those from swimming fish,[9%! hovering hummingbirds, ¢!
diving mammalsl7?! and hibernating wild lemurs.[?7] Within a sub-
cellular context, the largest limitations to measurements of energy
metabolism are the invasiveness of procedures (but see ref.[67]),
and the fact that measurements are taken either when mitochondria
are functioning at their highest rate, or when they are not pro-
ducing ATP at all. Whilst measurements of subcellular metabolism
may provide important information on the mitochondrial capacity of
ATP production per amount of oxygen consumed (thereby revealing

n[12,54])

the effectiveness of cellular respiratio values may often be

unrepresentative of natural functioning.

CONCLUSIONS: WHERE SHOULD THE FOCUS OF
FUTURE RESEARCH LIE?

Technical advances are making it increasingly possible to obtain mea-
sures of metabolic rates that are high-throughput, taken under natural
field conditions, and across scales of biological organisation (Table 2).
However, the greatest gains in knowledge will be achieved if the field
is also open to incorporating ideas, expertise and methods from other
disciplines, such as genomics and quantitative genetics. For instance,
selection studies have yet to show whether metabolic rate itself is
under selection, or evolves through, for example, a genetic corre-
lation with (an)other trait(s) under selection, possibly body sizel?8]
and/or growth.[99:190] With increased accessibility of genetic analy-
ses and tools (online databases, gene ontologies, etc.), efforts should
be made to untangle these links between metabolic rate and other
key traits such as body size/growth/body composition. Systems biology
or bioenergetics modelling may help, for instance by revealing where
relationships among traits are constrained due to the laws of physics.
We suggest a list of unanswered (but answerable) questions in
Table 3. Where possible, the following principles in approach should be
adopted. Future work should include longitudinal studies of both whole-
animal and tissue-level metabolic rates in both animals and humans,
throughout all life stages.[191] Although challenging for immature indi-
viduals of many species, these investigations should consider the role

of sex differences in metabolic rate variation and evolvability, espe-
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cially considering that the ATP-generating machinery, mitochondria, is
maternally inherited. Studies should also include different environmen-
tal circumstances, reflecting the natural variation, and ideally include
experiments conducted in the wild as well as the laboratory. Studies should
include all ontogenetic stages, and use a standardised method to avoid
confounding effects.[102]

The future for studies into the causes and consequences of variation
in metabolic rate is bright: we need to seize the opportunities that are

opening for us.
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