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Iceland-Scotland Overflow Water (ISOW) and Labrador Seawater (LSW) are major water
masses of the lower Atlantic Meridional Overturning Circulation (AMOC). Therefore, the
investigation of their transport pathways is important to understand the structure of the
AMOC and how climate properties are exported from the North Atlantic to lower latitudes.
There is growing evidence from Lagrangian model simulations and observations that
ISOW and LSW detach from boundary currents and spread off-boundary, into the basin
interior in the Atlantic Ocean. Nuclear fuel reprocessing facilities of Sellafield and La Hague
have been releasing artificial iodine (129I) into the northeastern Atlantic since the 1960ies.
As a result, 129I is supplied from north of the Greenland-Scotland passages into the
subpolar region labelling waters of the southward flowing lower AMOC. To explore the
potential of 129I as tracer of boundary and interior ISOW and LSW transport pathways, we
analyzed the tracer concentrations in seawater collected during four oceanographic
cruises in the subpolar and subtropical North Atlantic regions between 2017 and 2019.
The new tracer observations showed that deep tracer maxima highlighted the spreading
of ISOW along the flanks of Reykjanes Ridge, across fracture zones and into the eastern
subpolar North Atlantic supporting recent Lagrangian studies. Further, we found that 129I
is intruding the Atlantic Ocean at unprecedented rate and labelling much larger extensions
and water masses than in the recent past. This has enabled the use of 129I for other
purposes aside from tracing ISOW. For example, increasing tracer levels allowed us to
differentiate between newly formed 129I-rich LSW and older vintages poorer in 129I
content. Further, 129I concentration maxima at intermediate depths could be used to
track the spreading of LSW beyond the subpolar region and far into subtropical seas near
Bermuda. Considering that 129I releases from Sellafield and La Hague have increased or
levelled off during the last decades, it is very likely that the tracer invasion will continue
providing new tracing opportunities for 129I in the near future.

Keywords: artificial radionuclides, 129I, ISOW, LSW, AMOC, iodine, ocean circulation
in.org May 2022 | Volume 9 | Article 8977291

https://www.frontiersin.org/articles/10.3389/fmars.2022.897729/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.897729/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.897729/full
https://www.frontiersin.org/articles/10.3389/fmars.2022.897729/full
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles
http://creativecommons.org/licenses/by/4.0/
mailto:m.castrillejo-iridoy@imperial.ac.uk
https://doi.org/10.3389/fmars.2022.897729
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2022.897729
https://www.frontiersin.org/journals/marine-science
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2022.897729&domain=pdf&date_stamp=2022-05-06


Castrillejo et al. Revealing ISOW-LSW Pathways Using Iodine-129
INTRODUCTION

The water circulation in the subpolar North Atlantic (SPNA)
plays a key role on the conduit of greenhouse gases and other
climate properties from the sea surface down to the ocean
interior (e.g., Perez et al., 2018). Climate signals are then
exported southward through the lower limb of the Atlantic
Meridional Overturning Circulation (AMOC). This limb is
mainly composed by the Labrador Sea Water (LSW) and the
two dense overflows supplied from the Nordic Seas, namely, the
Denmark Strait Overflow Water (DSOW) and the Iceland-
Scotland Overflow Water (ISOW). The circulation of DSOW is
being investigated in the Labrador Sea and further south off the
north American shore using time series observations of artificial
iodine (129I) that started in the early 1990’s (Smith et al., 2005;
Orre et al., 2010; Smith et al., 2016). The focus of this study is on
exploring the potential of 129I to trace the complex pathways of
ISOW and LSW in the SPNA and further south into the
subtropical North Atlantic Ocean.

Among the two water masses, ISOW is the less well
understood due to its complex transport pathways, temporal
variability and strong mixing with contiguous water bodies. The
historical ISOW circulation scheme describes a single boundary
transport (magenta solid lines in Figure 1). In that depiction,
ISOW spills from the Nordic Seas into the SPNA through the
sills between Iceland and Scotland (Hansen and Østerhus, 2007;
Beaird et al., 2013), and follows a westward journey along the
perimeter of the Iceland Basin passing primarily through the
Charlie – Gibbs Fracture Zone into the Irminger Sea (Saunders,
1994; Bower and Furey, 2017). Then ISOW turns northward as
part of the boundary current in the western flank of Reykjanes
Ridge and eventually joins the southward flowing Deep Western
Boundary Current in the east Greenland Slope (Dickson and
Brown, 1994; Schott et al., 1999). However, there is growing
evidence from numerical simulations and field observations (e.g.,
Zou et al., 2020) to portray a more complex circulation scheme in
which ISOW travels, more often than previously thought, off
boundary currents (magenta dotted lines in Figure 1). For
example, a number of Lagrangian floats deployed at the
Reykjanes Ridge and programmed to drift at ISOW levels
showed trajectories that detach from the boundary current to
travel westward into the Irminger Sea, southward along the
flanks of the Mid Atlantic Ridge, or eastward to the afar West
European Basin (Bower et al., 2002; Lankhorst and Zenk, 2006;
Xu et al., 2010; Zou et al., 2017; Racapé et al., 2019; Zou
et al., 2020).

Along the journey in the SPNA, ISOWmixes with other water
masses, especially with central waters carried by the North
Atlantic Current and LSW (Yashayaev et al., 2007; Beaird
et al., 2013; Devana et al., 2021). LSW forms by winter
convection in the Labrador Sea and Irminger Sea and
constitutes the major intermediate water mass spreading across
the North Atlantic (Clarke and Gascard, 1983; Yashayaev et al.,
2007; Piron et al., 2017). The transport pathways of LSW are
better known, yet similar to ISOW, drifting buoy observations
indicate strong recirculation of this water mass eastward into
Frontiers in Marine Science | www.frontiersin.org 2
interior basins (e.g., Bower et al., 2009). The number of floats
might still be insufficient, especially for ISOW, but the emerging
views are already compelling for the export of climate anomalies
and suggest that further investigation is needed to provide a
better understanding of the structure of the AMOC (Bower
et al., 2019).

Radionuclide transient tracers are valuable tools to
complement the information obtained from floats and other
physical observations. Hydrographic tracer distributions
integrate past circulation as if floats were released in great
number. A strong tracer candidate for the investigation of the
overflows and LSW is 129I, which is released by the nuclear fuel
reprocessing industry into the surface seawater in the North Sea
region and eventually transported into the SPNA (Yiou et al.,
1994; Edmonds et al., 2001; Alfimov et al., 2004; Smith et al.,
2005; Smith et al., 2011; Alfimov et al., 2013; Gómez-Guzmán
et al., 2013; He et al., 2013a; He et al., 2013b; Smith et al., 2016;
Casacuberta et al., 2018; Castrillejo et al., 2018; Vivo-Vilches
et al., 2018; Wefing et al., 2018). This tracer has already been
successfully employed to identify and follow DSOW between the
Irminger Sea and Bermuda based on its increasing
concentrations that can be measured with high sensitivity, i.e.,
million atoms per liter of seawater (Smith et al., 2005; Smith
et al., 2016). However, measurements of 129I conducted prior to
Castrillejo et al. (2018) and this study indicated that tracer levels
in ISOW and LSW were not large enough to allow the clear
differentiation of these water masses in the North Atlantic
(Santschi et al., 1996; Edmonds et al., 2001). On the other
hand, numerical modelling (Orre et al., 2010) projects a rise in
129I concentrations at depths typically occupied by ISOW in the
eastern SPNA in response to increased radionuclide discharge
rates in recent decades. A glimpse of such tracer increase in
ISOWwas captured for the first time in 2014 in the Iceland Basin
(Castrillejo et al., 2018). Additionally, the 129I time series
conducted in the AR7W line show increasing tracer
concentrations in LSW between 1993 and present (Smith et al.,
2005; Orre et al., 2010; Smith et al., 2016). These results imply
that if 129I was to continue increasing, the tracer could potentially
reveal ISOW and LSW transport pathways in parts of the North
Atlantic where their identification can be challenging if using
properties such as salinity and temperature alone.

The aim of this work is to further explore the potential of 129I
to trace ISOW and LSW transport pathways in the near future.
To that end, we measured 129I from over 200 seawater samples
collected across the subpolar and subtropical North Atlantic
between 2017 and 2019. The new 129I dataset captured deep
tracer maxima associated with density, salinity and potential
temperatures expected for ISOW. Using 129I depth profiles we
were able to provide an independent validation of ISOW
pathways being redrawn by Lagrangian studies. Specifically, we
observed ISOW spreading along the boundary current in the
eastern flank of the Reykjanes Ridge, over the ridge through the
Bight Fracture Zone and off the boundary current following
interior routes into the Iceland Basin and the West European
Basin. The comparison of the new 129I dataset to earlier
distributions shows that tracer concentrations increased
May 2022 | Volume 9 | Article 897729
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notably in recent years, allowing for the first time the
straightforward tracking of ISOW by using this tracer. Further,
we found that 129I increased at an unprecedented rate after 2014
intruding other water masses in the SPNA. For example, 129I
allows distinguishing between different vintages of LSW in the
SPNA and following the southward export of LSW through
interior pathways into the subtropical region.
SOURCES OF 129I

The presence of 129I in the North Atlantic is dominated by
authorized, marine liquid discharges occurring since the 1960ies
until present from the nuclear fuel reprocessing plants of La Hague
into the English Channel and Sellafield into the Irish Sea (Figure 1).
The 129I discharges have been documented over the past decades in
reports of the European OSPAR commission, the Environmental
Agency of the UK, or by companies running the nuclear
installations (e.g., OSPAR, 2015; UK Environmental Agency,
2015). The two facilities alone have discharged more than 6000
kg of 129I to regional waters (He et al., 2013a), which is well above
the ~90 kg globally dispersed in the 1950ies/60ies as fallout through
atmospheric nuclear weapon tests (Wagner et al., 1996; Raisbeck
and Yiou, 1999; Hou, 2004). The combinedmarine discharge rate of
the two reprocessing plants increased gradually from < 1 kg/yr to
about 100 kg/yr in the first 20 years, then escalated through the
1990s to peak at > 350 kg/yr in the early 2000s and remained above
200 kg/yr in the most recent part (Figure 1). The long residence
time of iodine in the ocean water column [over 300,000 yr (Broecker
and Peng, 1982; Wong, 1991)] and the limited interaction with
organic particles in the photic layer (Schink et al., 1995) suggest that
iodine behaves almost conservatively in the ocean. This conservative
behavior is confirmed by the long-distance transport of marine 129I
Frontiers in Marine Science | www.frontiersin.org 3
discharges (e.g. Santschi et al., 1996; Smith et al., 2016) through the
North Sea, the Nordic Seas, the Arctic Ocean and as far as the
subtropical North Atlantic (see the routes schematically depicted in
Figure 1). Consequently, the 129I content in waters circulating
between the point of discharge and the Arctic Ocean can be 6 to
12 orders of magnitude above the natural levels (< 0.1 ×107 at/kg;
atoms per kilogram of seawater) (Snyder et al., 2010) or weapon
tests fallout levels (<< 10 ×107 at/kg) (Edmonds et al., 2001). Further
transport and mixing of waters from the Arctic, North Sea and
northeast Atlantic leads to the entrainment of 129I in different water
masses and streams within the Nordic Seas. The overall result is a
supply of northern waterswith 129I in the range of ×108 - ×1010 at/kg
via the Greenland – Scotland passages into the SPNA. These
northern waters mix with northward flowing southern waters
originating from lower latitudes (e.g., tropical and South Atlantic).
The lower latitude waters may present small impacts of reprocessing
marine discharges due to shallow water recirculation in the North
Atlantic (He et al., 2013b), but they are generally affected by weapon
tests alone and thus carry 10 to 10,000 times less 129I than the
northern waters (Castrillejo et al., 2018).
METHODS

Sample Collection
Sea water samples were collected strategically to investigate the
pathways of the southward lower AMOC in the subpolar and
subtropical North Atlantic Ocean between 2017 and 2019.
Colored dots in Figure 1 show the locations visited during the
four cruises: i) the Iceland Basin and theWest European Basin on
board the Dutch R/V Pelagia during the PE424 (PE) cruise in
July-August 2017; ii) between Lisbon, Portugal, and Cape
FIGURE 1 | Sampling sites during the four cruises (PE424, OVIDE, ATHENA and BATS), the combined 129I marine discharge from the nuclear reprocessing plants
of Sellafield and La Hague since the 1960s until the recent past (e.g. OSPAR, 2015; UK Environmental Agency, 2015), and the schematic circulation adapted from
Daniault et al. (2016) to highlight boundary (solid lines) and interior (dotted lines) pathways of ISOW, LSW and DSOW. Acronyms in figure: Bight Fracture Zone, (BFZ);
Charlie – Gibbs Fracture Zone, (CGFZ); Denmark Strait Overflow Water, (DSOW); Deep Western Boundary Current, (DWBC); East Greenland Current, (EGC); Iceland
Basin, (IB); Iceland, (IC); Iceland Scotland Overflow Water, (ISOW); Irminger Sea, (IS); Labrador Sea, (LS); Labrador Sea Water, (LSW); Mid Atlantic Ridge, (MAR);
North Atlantic Current, (NAC); North Sea, (NS); Reykjanes Ridge, (RR); Sub-Arctic Front, (SAF); Scotland, (SC); and West European Basin, (WEB).
May 2022 | Volume 9 | Article 897729
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Farewell, Greenland, on board the French R/V Thalassa during
OVIDE (OV) cruise in June-July 2018; iii) south of the Azores
Archipelago in the tropical North Atlantic during ATHENA
(ATH) cruise on board the German R/VMeteor in October 2018;
and iv) the Bermuda Atlantic Time Series (BATS) station on
board the North American R/V Atlantic Explorer in June 2019.

In all cruises surface seawater was collected using a surface
pump and the water column was sampled using rosettes
equipped with Niskin bottles and CTD oxygen-conductivity-
temperature-pressure sensors. The seawater was transferred to
500 mL dark plastic bottles after rinsing them 3 times with
seawater. Samples were either processed onboard or at land-
based laboratories at ETH-Zurich.

Radiochemistry and AMS Measurement of
Iodine Isotopes
Iodine was extracted from about 400 mL of seawater at ETH-
Zurich following the methods described in Castrillejo et al.
(2018). Each sample was spiked with about 1.5 mg of
Woodward stable iodine carrier (127I). All iodine in seawater
was oxidized to iodate upon addition of 2% Ca(ClO)2 and then
reduced to iodide by adding Na2S2O5 and 1M of NH3O•HCl
solution. Columns filled with DOWEX® 1X8 ion exchange resin
were conditioned with deionized water and diluted 0.5 M KNO3

solution. The loading of the sample in the column was followed
by the elution of all the iodine by adding 2.25 M KNO3 solution
and precipitation as AgI using AgNO3. The precipitate was
mixed with about 4 mg of Ag and pressed into cathodes for
Accelerator Mass Spectrometry (AMS). Replicates of a seawater
sample (n=11) were conducted to check internal consistency.
Blanks (n=48) were prepared using deionized water and treated
following the same procedure as for the seawater samples.

The calculation of 129I concentrations was done based on the
measured 129I/127I ratio and the well-known amounts of 127I
carrier spiked to each sample. The 129I/127I atom ratios were
measured using the compact 0.5 MV Tandy AMS system at
ETH-Zurich (Vockenhuber et al., 2015). The 129I/127I ratios
were normalized with the ETH-Zurich in-house standard D22
with nominal 129I/127I of (50.35 ± 0.16) × 10-12 (Christl et al., 2013)
and secondary standards with ratios of 5 × 10-12 that are linked to
Frontiers in Marine Science | www.frontiersin.org 4
D22. Blanks presented (2-8) × 105 atoms/kg of 129I, corresponding
to 1-5% of the total 129I measured in seawater samples.

RESULTS
129I Concentrations in the SPNA Between
2017 and 2019
All measured 129I concentrations are reported in Table S1 along
with temperature, salinity and dissolved oxygen data. In the
SPNA we sampled 17 depth profiles which are represented in
Figure 2. And, collected additionally 10 surface and 6 near
bottom samples which are not shown in Figure 2.

The 129I concentrations in all seawater samples ranged between
(0.05 ± 0.05) ×107 at/kg and (275 ± 4) ×107 at/kg. The lowest 129I
concentrations represent natural waters without anthropogenic
influence or that contain a small amount of nuclear weapon test
fallout. On the other end, the highest 129I concentrations indicate a
strong influence of marine discharges from Sellafield and La Hague.
Figure 2 displays a map of 129I depth profiles along the OVIDE
line (Figure 2A) which are arranged in three panels from low-
(Figure 2B), mid- (Figure 2C), to high- (Figure 2D) tracer
concentrations. The 129I concentrations generally increased from
east to west. We found the lowest values at depths greater than 3000
m in the West European Basin (OV7-33, Figure 2B). The Iceland
Basin (OV43-104, Figure 2C) represented a region of transition
where we began to observe higher 129I concentrations in the
intermediate range of (10 - 40) ×107 at/kg. The bottom layer of
the Irminger Sea and the east Greenland shelf (OV76-93,
Figure 2D) presented the highest 129I concentrations in the order
of ×108 - ×109 at/kg. The 129I concentrations from PE stations were
similar to those found in the Iceland Basin and the West European
Basin during OVIDE (Figure 2C).

All acronyms used hereinafter to denote water masses,
currents and geographic locations are listed in Table 1 and
explained in the figure captions.

Relationship Between 129I and Water
Masses in the SPNA
To discuss the transport pathways of ISOW and LSW on basis of
129I concentrations it is first necessary to understand how tracer
TABLE 1 | Acronyms used to denote water masses, currents and geographic locations.

BATS Bermuda Atlantic Time Series MC Maury Channel
BFZ Bight Fracture Zone NAC North Atlantic Current
CGFZ Charlie – Gibbs Fracture Zone NADW North Atlantic Deep Water
DSOW Denmark Strait Overflow Water NEADW North East Atlantic Deep Water
DWBC Deep Western Boundary Current NS North Sea
EGC East Greenland Current PIW Polar Intermediate Waters
ENACW Eastern North Atlantic Central Water RP Rockall Plateau
IB Iceland Basin RT Rockall Through
IC Iceland RR Reykjanes Ridge
ISOW Iceland Scotland Overflow Water SAF Sub-Arctic Front
IS Irminger Sea SC Scotland
LS Labrador Sea SPMW Subpolar Mode Waters
LSW Labrador Sea Water WEB West European Basin
MAR Mid Atlantic Ridge
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concentrations relate to the water mass structure. Here we focus on
OVIDE data because the location of the section is representative for
129I concentrations and water masses that reign in the SPNA
(OVIDE+PE), and that are to large extent, present in lower
latitudes of the Atlantic Ocean (BATS+ATH). Firstly, we plot the
radionuclide concentrations from the OVIDE line versus potential
temperature (q) and salinity (S) in q - S diagrams (Figure 3A). The
water mass endmembers (diamond symbols in Figure 3A) are
chosen based on the most recent water mass classification for the
OVIDE line (Garcıá-Ibáñez et al., 2018). Secondly, we represent the
zonal distribution of 129I with the overlaid water mass structure
(Figure 3B). The water mass structure was inferred from the q - S
diagrams (Figure 3A) and zonal distributions of S, q and O2

(Figure S1).
The q - S diagrams (Figure 3A) show the purest ISOW east of

the Reykjanes Ridge characterized by salinity above 34.95,
potential temperature of 2-3°C and density in the range of
27.85 – 27.90 kg/m3. In the SPNA, ISOW entrains and mixes
mainly with LSW (McCartney and Talley, 1982; Yashayaev et al.,
2007) to form the upper North East Atlantic Deep Water
(NEADWU). The lower branch (NEADWL) has less ISOW and
a larger contribution of Lower Deep Water from Antarctica
Frontiers in Marine Science | www.frontiersin.org 5
(van Aken, 2000a). The lower and upper branches of NEADW
fall roughly in a similar density range as for ISOW but are
comparably fresher and colder. West of Reykjanes Ridge ISOW
further mixes with underlying DSOW and overlying LSW.
Compared to ISOW, DSOW presents a lower salinity (~ 34.90)
and potential temperature (< 2°C), and a density greater than
27.90 kg/m3. The LSW present in the Irminger Sea is fresher (S <
34.90), warmer (q ~ 3°C) and lighter (27.75 kg/m3) than the two
overflows. This LSW probably includes waters formed during
strong winter convection events in 2013-2014 that have been
further renewed with LSW produced during 2015-2017 in the
Labrador Sea and the Irminger Sea (Yashayaev and Loder, 2016;
Piron et al., 2017). For simplicity we will differentiate between
this LSW (LSWnew) and use the term LSWold for the LSW that
left the convection regions and has travelled further (south)east
in the SPNA suffering significant entrainment and mixing during
its downstream journey. Other water masses in the SPNA
include: the southward flowing Subpolar Mode Waters
(SPMWs, other than LSW) that result from cooling and
freshening of Eastern North Atlantic Central Water (ENACW)
through convection events in the SPNA; Polar Intermediate
Water (PIW), the freshest and coldest water originating from
A B

DC

FIGURE 2 | (A) Map of 129I depth profiles displayed from (B) low-, (C) mid-, to (D) high- concentrations. The legends include all stations sampled during the PE424
cruise in 2017 (PE) and the OVIDE cruise in 2018 (OV). Acronyms in figure: Iceland Basin, (IB); Iceland, (IC); Irminger Sea, (IS); Reykjanes Ridge, (RR); and West
European Basin, (WEB).
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the Arctic Ocean; and the Mediterranean Water (MW)
characterized by the highest salinity along the OVIDE line.

The vertical distribution of 129I along the OVIDE section
(Figure 3B) allows the straightforward distinction between
northern and southern origin water masses. Waters of
northern origin generally presented 129I concentrations above
20 ×107 at/kg and occupied the region west of 22.5°W which is
geographically delimited by the position of the Sub-Arctic Front.
In this group we observe ISOW with 129I concentrations in the
(25-40) ×107 at/kg range, PIW along the east Greenland shelf
carrying the highest 129I concentrations (> 100 ×107 at/kg), the
core of DSOW filling the bottom of the Irminger Sea with 129I
concentrations slightly above 100 ×107 at/kg, and LSW and
SPMWs with concentrations in the range of (15 – 40) ×107 at/
kg. LSWnew filling the Irminger Sea water column carries more
Frontiers in Marine Science | www.frontiersin.org 6
129I than the older LSW that is present east of Reykjanes Ridge.
Southern waters dominated the region east of the Sub-Arctic
Front and carried little 129I (< 15 ×107 at/kg) in comparison to
northern waters. Because of this reason, the identification of
ISOW and LSW was easily accomplished by searching for 129I
spikes at deep and intermediate depths (e.g., eastern flank of
Reykjanes Ridge in Figure 3B), even when these water masses
were difficult to distinguish by using S, q and O2 alone
(Figure S1).

DISCUSSION

Observed ISOW Pathways in 2017-2018
Here we provide an independent means of validating transport
pathways of ISOW. Our approach is based on the identification of
A

B

FIGURE 3 | Relationship of 129I with water masses in the SPNA. (A) Potential temperature (q) – salinity diagrams. The color bar indicates the 129I concentrations.
(B) Zonal section of 129I concentrations. The color coding is the same as for (A). The acronyms of the water masses shown in (A) are also represented in (B). Data
correspond to the OVIDE cruise in 2018. Acronyms in figure: Denmark Strait Overflow Water, (DSOW); East North Atlantic Central Water, (ENACW); Iceland Scotland
Overflow Water, (ISOW); Labrador Sea Water, (LSW); Mediterranean Water, (MW); North East Atlantic Deep Water, (NEADW, lower and upper); Polar Intermediate Water,
(PIW); Sub-Arctic Front, (SAF); Subpolar Mode Water, (SPMW).
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deep, high 129I concentrations (> 15 ×107 at/kg) captured at the
layer with 27.85 – 27.90 kg/m3 potential density, S >34.95 and q of
2-3°C. We focus on cases where there is a large 129I concentration
gradient between ISOW and surrounding water masses. These
conditions are met in the Reykjanes Ridge, Iceland Basin and the
West European Basin, but not in the Irminger Sea because there
the 129I concentrations of ISOW are surpassed by higher tracer
amounts carried by the underlying DSOW.

We found seven 129I depth profiles from OVIDE and PE424
cruises that captured the mentioned deep tracer spike in 2017/
2018 (yellow and blue data in Figs. 4A-4C). Station positions are
shown in Figure 4D. The largest 129I spike, of (36.8 ± 0.8) ×107

at/kg, was measured at 2440 m depth in station OV63 located in
the eastern flank of Reykjanes Ridge (Figure 4A). The result is
consistent with a substantial amount of ISOW following the
counterclockwise boundary current in the Iceland Basin towards
the ridge (e.g., Daniault et al., 2016). The crossing of ISOW from
the Iceland Basin into the Irminger Sea occurs primarily via
fracture zones (Petit et al., 2018). Traditionally it was thought
that the principal origin of ISOW found in the boundary current
along the western flank of the Reykjanes Ridge (Daniault et al.,
2016) was the Charlie Gibbs Fracture Zone. However, there is
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growing evidence from modelled and observed float trajectories
that Bight Fracture Zone is a very important pathway of ISOW
into the western flank of the ridge (Bower et al., 2002; Xu et al.,
2010; Zou et al., 2017; Zou et al., 2020). For example, some floats
deployed at ISOW densities in the Bight Fracture Zone (Bower
et al., 2002; Lankhorst and Zenk, 2006; Zou et al., 2017) have
described northward flows connecting with the boundary
current while the majority of RAFOS and Deep Argo floats
released at the Charlie Gibbs Fracture Zone followed west-
northwest interior pathways or took a southward direction
along the Mid Atlantic Ridge (Racapé et al., 2019; Zou et al.,
2020). To check whether there was ISOW at the Bight Fracture
Zone during OVIDE 2018 we collected a near-bottom seawater
sample at 2280 m depth in station OV104 (Figure 4A). The
unequivocal 129I spike [(28.8 ± 0.4) ×107 at/kg] was observed
again indicating the presence of ISOW that was warmer and
lighter than the one found in the eastern flank of Reykjanes Ridge
(Table S1).

In the eastern North Atlantic, 129I observations suggest that
several veins of ISOW spread following interior routes. The 129I
peak of about (26 – 30) ×107 at/kg was easily identified in near
bottom waters collected at stations PE28 and OV57 (Figure 4B)
A B

D E

C

FIGURE 4 | 129I in the Northeastern Atlantic Ocean. Depth profiles of 129I obtained during OVIDE cruise in 2018 (OV, blue) and the PE424 cruise in 2017 (PE,
yellow) at (A) Reykjanes Ridge, (B) the Iceland Basin, and (C) the West European Basin, are represented and compared to nearby depth profiles available in the
literature (grey profiles): HE sites measured in 1993 by Edmonds et al. (2001) and GV sites from the GEOVIDE cruise in 2014 (Castrillejo et al., 2018) revisited during
OVIDE in 2018. (D) Map showing the stations (*) and boundary (solid lines) and interior pathways of ISOW (dotted lines). *Stations GV1 and GV32 were at the same
location as OV7 and OV57 respectively. (E) Temporal evolution of mean 129I concentrations in ISOW at the Reykjanes Ridge, Iceland Basin and the Irminger Sea.
Data used for (E) are summarized in Table S2. Acronyms in figure: Bight Fracture Zone, (BFZ); Charlie – Gibbs Fracture Zone, (CGFZ); Iceland Basin, (IB); Iceland,
(IC); Iceland Scotland Overflow Water, (ISOW); Irminger Sea, (IS); Maury Channel, (MC); Mid Atlantic Ridge, (MAR); Reykjanes Ridge, (RR); Rockall Plateau, (RP);
Rockall Through, (RT); and West European Basin, (WEB).
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pointing to ISOW passages near Maury Channel in the eastern
Iceland Basin (Figure 4D). This result agrees with modelled and
deployed float trajectories (Xu et al., 2010; Zou et al., 2017; Zou
et al., 2020) as well as with hydrographic surveys (Daniault et al.,
2016), although the limited sampling resolution in this study does
not allow confirming if ISOW captured at PE28 and OV57
corresponds to a southward branch detached from the boundary
current (as in Zou et al., 2017) or to water that recirculated
eastward from the Mid Atlantic Ridge. In comparison to the
Iceland Basin, in the West European Basin deep tracer maxima
were more diluted due to greater mixing of ISOW with southern
components of NEADW (Figure 4C). Yet, one could still use 129I
to distinguish ISOW contributions to NEADW even when the two
water masses display similar salinities and potential temperatures
(Garcıá-Ibáñez et al., 2018). For example, PE22 captures a small
peak of 129I ((16.6 ± 0.2) ×107 at/kg) at 2200 m depth in the
intersect between Rockall Through and the West European Basin
consistent with a small southward flow of ISOW (Sherwin et al.,
2008; Chang et al., 2009; Zou et al., 2017). And further south and
below 3000 m depth, station PE17 and OV7 presented tracer peaks
of (17.9 ± 0.2) ×107 at/kg and (7.8 ± 0.2) ×107 at/kg, respectively.
These tracer maxima can only be explained by the lateral
advection of dense overflows like ISOW into the West European
Basin in the absence of other sources of 129I at low latitudes (van
Aken, 2000a; Fleischmann et al., 2001; Zou et al., 2017; Xu et al.,
2018), but their travel path is still unrevealed.

Temporal Evolution of 129I in ISOW
In the 1990s sufficient 129I was found only in DSOW while the
tracer content was close to the natural background in other
waters of the North Atlantic Ocean (Santschi et al., 1996;
Edmonds et al., 2001; Smith et al., 2005). Thus, when did 129I
begin to reveal ISOW pathways? To answer this question, we
compare the 129I depth profiles from 2017-2018 to previous
observations (grey profiles) in the SPNA (Figure 4). Edmonds
et al. (2001) reported the first 129I depth profiles (stations labelled
as ‘HE’ in Figure 4D) in the eastern (HE5) and western (HE6)
flanks of the Reykjanes Ridge and southwest of the Rockall
Plateau in the Iceland Basin (HE4) for samples collected in
1993. Their 129I profiles (Figures 4A, B) showed very low tracer
concentrations throughout the water column. On the contrary,
the overflow water begun to carry sufficient 129I in the Iceland
Basin (station GV32) in 2014 (Castrillejo et al., 2018). And it was
not until 2018 that a strong tracer signal unraveled the passage of
ISOW in the Iceland Basin (OV 57) and other parts of the SPNA.

To provide a more comprehensive view on the temporal
evolution of 129I in ISOW, we calculated the mean tracer
concentrations using all available measurements in the overflow
found east of Greenland and west of the West European Basin. We
exclude the West European Basin from the calculations because
tracer data are insufficient to infer any temporal trend in that region.
West of the West European Basin, 129I observations are also limited
(Table S2), yet Figure 4E convincingly shows a clear increase in
tracer values between 1993 and 2018. Whether tracer
concentrations increased linearly or stepwise cannot be inferred
based on the limited tracer measurements. But it is clear that during
the 25-year time period the 129I concentration in ISOW was
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multiplied 10 times on average, from lower than 5 ×107 at/kg in
the 1990s to higher than 30 ×107 at/kg in the 2010s. Half of the 129I
increase occurred between 1993 and 2014 while tracer levels
doubled in the short time span between 2014 and 2018. Will 129I
continue labelling ISOW? The answer is: very likely yes. It is
reasonable to think that in comparison to present, future ISOW
will carry similar quantities of 129I, or more, because of two reasons:
firstly, the repeated 129I measurements in DSOW show that its
tracer content is still rising (see Figure 3 in Smith et al., 2016);
secondly, the marine radionuclide discharge from the reprocessing
facilities in Europe has either increased or levelled off during the last
decades (see Sources of 129I). The expected implications are that 129I
will stand out in ISOW and that the tracer has potential to shed light
on time scales of ISOW circulation between the source and the
SPNA and further downstream provided there is a continuation of
129I observations to extend the so far limited time series displayed
in Figure 4E.

Spreading of 129I in LSW
To investigate whether 129I was increasing rapidly in other water
masses of the SPNA we compared the vertical distribution of 129I
along the OVIDE line between 2014 and 2018 (Figure 5A). The
colored dots and contour lines (in spite of the excessive
interpolation) show that 129I concentrations in the region
occupied by northern waters were in all cases higher (i.e.,
positive values) in 2018 than in 2014, while southern waters
showed small differences in the tracer field (< 5 ×107 at/kg). The
influence of increased 129I releases from the European
reprocessing plants (see Sources of 129I) is most notorious in the
area delimited by difference contour lines of (5-10) ×107 at/kg.
Apart from the overflows and shallow waters, the area comprised
by these contour lines is mainly filled by LSW. In Figure 3 we
showed that it is possible to distinguish young LSW vintages in
the Irminger Sea by their higher 129I concentrations from the
tracer poorer and older LSW that spread (south)eastward passing
the Reykjanes Ridge. This is consistent with the formation process
of LSW that incorporates 129I-rich Arctic-origin fresh water
during convective events in the Labrador Sea (van Aken,
2000b). Following that reasoning, we suggest that the spreading
of LSW plays an important role in setting intermediate and deep
129I values of the SPNA (Figure 5A). For example, 129I
concentrations increased more than 10 ×107 at/kg at depths
occupied by LSWnew in the Irminger Sea. And the eastward
tracer increases delimited by the 5 ×107 at/kg contour line
possibly indicates the transport of older and tracer-poorer LSW.

To further explore if 129I could unveil off-boundary pathways of
LSW beyond the SPNA (turquoise dotted lines in Figure 5B) we
visited three sites in the western and eastern subtropical North
Atlantic Ocean (Figs. 5C and 5D). In the subtropical region,
consistently with the literature, we preferred to call NADWU and
NEADWU the water-masses derived from LSW far from its
formation region, and NADWL for DSOW. To the best of our
knowledge, the tracer observations presented here for BATS
(Figure 5C) constitute the first full-depth profile of 129I in the low
latitude North Atlantic aside from the two full depth profiles
measured off the North American Slope in 1993/1994 (Santschi
et al., 1996). In their 129I dataset, a near bottom tracer peak could be
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observed associated to the transport of NADWL via the Deep
Western Boundary Current (Figure 5C). More recently another
study by Smith et al. (2016) focused on the off-boundary transport
of the same lower branch in our study area east of Bermuda
(magenta dotted lines in Figure 5B). But they did not report 129I
values for shallower depths occupied by NADWU. In our BATS
profile (Figure 5C) we observed a very clear peak of 129I centered at
about 1500 m depth coinciding with potential densities (sq ~27.75
kg/m3, see Table S1) and a local salinity minimum (S~35) that
characterize the LSW in the North Atlantic (McCartney and Talley,
1982). This tracer peak at 1500 m depth therefore shows that 129I
data allow the straightforward identification of NADWU taking off-
boundary pathways near Bermuda (turquoise dotted lines in
Figure 5B). We also sampled two partial depth profiles south of
the Azores Archipelago during ATHENA (Figure 5D). This far east
129I concentrations were lower than at BATS. The depths occupied
by the NEADWU only showed slightly more elevated 129I
concentrations at station ATH95 and a little further south at
ATH96 the ~1500 m depth tracer peak could not be recognized.
We learnt from other transient tracer observations, i. e.
chlorofluorocarbons (CFCs), that highest fractions of LSW in the
subtropical region are found in the DWBC and that the presence of
young vintages is very limited east of the Mid Atlantic Ridge (e. g.
Rhein et al., 2015). The three 129I depth profiles in Figures 5C, D
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show an eastward decrease in tracer concentrations that generally
agrees with the spreading of LSW (or NEADWU) inferred from
CFC tracer fields. Yet, more 129I data are certainly needed to
alleviate the sampling gap between the western and eastern
subtropical North Atlantic and to confirm the relationship
between the tracer distribution and the spreading of intermediate
waters in the subtropical gyre.

The new 129I observations presented here show that deep
ventilation in the subpolar region plays an important role on the
sequestration of the tracer from shallow to deeper water layers
supporting the modelling work of Orre et al. (2010) and Snyder,
Aldahan and Possnert et al. (2010).While 129I has been used to infer
mixing and transport timescales of DSOW in the SPNA (Smith
et al., 2005) and down to Bermuda (Santschi et al., 1996; Smith et al.,
2016), no published work has used 129I for investigating LSW or
ISOWadvection yet. This work clearly demonstrates that 129I is now
being supplied at unprecedented rate (Figure 5A) through the
Greenland-Scotland passages making more northern water masses
traceable in the North Atlantic and that measurable tracer peaks
extend at least as far as 30°N (Figures 4, 5C). The tracer intrusion in
the North Atlantic shows that LSW and the overflows commonly
take off-boundary pathways in agreement with drifting float (Bower
et al., 2009; Bower et al., 2019) and CFC observations (Rhein et al.,
2015). The clarity of 129I peaks captured at the stations sampled afar
A
B

DC

FIGURE 5 | (A) Temporal change of 129I concentrations along the OVIDE line between 2014 (Castrillejo et al., 2018) and 2018 (this study) estimated as the subtraction
of 2014 tracer values from 2018 observations overlapping at similar locations. (B) Map with the section plotted in (A) and the location of 129I depth profiles at (C) BATS
and (D) ATHENA stations in the subtropical North Atlantic. Plot (C) includes the two 129I depth profiles sampled in 1993-1994 near the northeastern American slope at
stations 13 (PS13, 36.3981°N, 74.2358°E) and 11 (PS11, 36.5081°N, 74.0908°E) reported by Peter H. Santschi et al. (1996). Acronyms in figure: Deep Western
Boundary Current, (DWBC); Iceland Basin, (IB); Irminger Sea, (IS); Labrador Sea, (LS); Labrador Sea Water, (LSW); Mid Atlantic Ridge, (MAR); North Atlantic Deep Water,
(NADW); North East Atlantic Deep Water, (NEADW); Reykjanes Ridge, (RR); Sub-Arctic Front, (SAF); and West European Basin, (WEB).
May 2022 | Volume 9 | Article 897729

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Castrillejo et al. Revealing ISOW-LSW Pathways Using Iodine-129
from the boundary regions (Figures 4, 5C) indicates that
recirculation through interior pathways must be important for the
southward lower limb of the AMOC. Deflections of LSW and
ISOW off the boundary currents appear to be related to latitudinal
andmeridional displacements of the North Atlantic Current (Bower
et al., 2009; Bower and Furey, 2017; Xu et al., 2018) and its deep-
reaching eddies and meanders (e.g., Zou et al., 2020). The partition
between northern and southern waters also depends on the
positioning of the North Atlantic Current, with southern
(northern) waters with low (high) 129I concentrations generally
occupying the regions east (west) of the main North Atlantic
Current front. In this regard, a higher density sampling of 129I
across North Atlantic Current boundaries in the subtropical and
subpolar North Atlantic may be of interest to further investigate the
driving forces of LSW and ISOW pathways. We think that the
findings presented here are encouraging for the radionuclide tracer
community. And thus, we call for a larger effort to build continued
129I time series which can help us better understand the structure
and spreading rates of the AMOC.
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