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Abstract: In this paper, the problem of vertical shear flow instabilities at the base of a river plume and
their consequences in terms of turbulent energy production and mixing is addressed. This study was
carried out using 2D non-hydrostatic simulations and a linear stability analysis. The initial conditions
used in these simulations were similar to those observed in river plumes near estuaries. Unstable
stratified sheared flows follow three stages of evolution: (i) the generation of billows induced by
vertical shear instabilities, (ii) intensification, and (iii) elongation. The elongation of the generated
billows is related to the strain intensity, which depends on the physical setting involved (velocity shear,
stratification thickness, and bottom slope). Two vertical shear instabilities were found in our study:
the Holmboe and Kelvin–Helmholtz instabilities. The Kelvin–Helmholtz instability has a smaller
growth time and longer wavelengths; the Holmboe instability is characterized by a longer growth
time and shorter wavelengths. The Kelvin–Helmholtz instability is intensified when the bottom is
sloped and for large shears. The Holmboe instability is stronger when the stratification thickness is
reduced compared to the shear thickness and when the bottom is sloped. For mixing, the flow can
be: (i) pre-turbulent, (ii) quasi-turbulent, or (iii) turbulent. The pre-turbulent flow corresponds to
more mass mixing than momentum mixing and to more Eddy Kinetic Energy dissipation than Eddy
Available Potential Energy dissipation. Such a flow is encountered over a flat bottom whatever the
initial shear is. The quasi-turbulent and turbulent flows are reached when the bottom is sloped and
when the stratification thickness is reduced. Using turbulent mixing statistics (mixing coefficients,
mixing efficiency, Eddy Kinetic Energy, and Eddy Available Potential Energy dissipation rates), we
showed that, despite their slow growth, Holmboe instabilities contribute more efficiently to turbulent
mixing than Kelvin–Helmholtz instabilities. Holmboe instabilities are the only source of turbulent
mixing when sharp density gradients are observed (small buoyancy thickness experiment). Our
simulations highlight the contribution of the Holmboe instability to turbulent mixing.

Keywords: river plumes; Kelvin–Helmholtz instability; Holmboe instability; turbulent mixing;
dissipation rates

1. Introduction

Kelvin–Helmholtz (hereafter KH) instability was first proposed by Helmholtz in
1868 [1]. He argued that the assumption of a fluid being free from friction is not true
in its interior. Indeed, using an analogy with electricity, he showed that the flow of two
neighboring fluids results in surface separation. This surface separation evolves as a
discontinuity in the velocity field in the neighboring fluids. The surface discontinuity was
considered as a surface of gyration where moments of rotation are generated by frictional
processes. Thomson [2] showed that under the action of wind waves, disturbances can
be observed below the ocean surface, which evolve into small waves that travel fast and
finally cease, except when the disturbing force (the wind) continues to act. These growing
waves are manifestations of the Kelvin–Helmholtz instability; they can roll up into vortices
with horizontal axes, named “billows”. This instability was studied with a mathematical
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model that featured two fluid layers with uniform and distinct velocities and densities. This
study was then generalized by Taylor [3] and Goldstein and Taylor [4] using an arbitrary
vertical velocity profile in a continuously stratified fluid. The flow instability equation
was obtained from the linearization of the three-dimensional non-hydrostatic equations.
A condition for instability was obtained based on the Richardson number; the minimum
Richardson number should be lower than a threshold of 0.25.

The KH instability exists in different geophysical and astrophysical flows. In the
Jupiter atmosphere, the interaction between the solar wind and the magnetosphere favors
the development of vortices [5–7]. These vortices result from a KH instability initiated in
the subsolar region and advected by magnetospheric flows to the dusk sector. Magnetic KH
instability and its features (vortices) have also been observed at the surface of a fast coronal
mass ejecta in the Sun [8]. Unstable flow nonlinearities favor the transport of momentum,
plasma, and energy in both large-scale and micro-scale turbulence. In the atmosphere, KH
vortices are observed in the upper troposphere and above the tropopause [9,10]. These
vortices have diameters larger than 200 m and a characteristic period of 12 min. They are
related to maxima in the vertical wind shear.

In the ocean, KH vortices are high-frequency and small-scale features that have been
studied in a wide range of flow conditions in stratified shear flows. These vortices result
from successive processes: (i) a primary Kelvin–Helmholtz instability, (ii) a vortex merger,
and (iii) secondary Kelvin–Helmholtz instabilities. The primary Kelvin–Helmholtz insta-
bility is generated at the interface between two neighboring fluids [11–13]. These authors
used field measurements, numerical simulations, and laboratory experiments to observe
such instabilities. Primary KH instabilities were observed in a tilted tank (in the spanwise
direction), with fluid in the two layers being unequally distant from the shear interface [11].
The author indicates that the primary KH instability is delayed in the asymmetric case
compared with the symmetric configuration. KH vortices, which are a result of a primary
KH instability, were identified in the seasonal thermocline off San Diego, California, in
1988 [12]. These authors found, using turbulent velocity measurements, that these vortices
have a horizontal scale of about 3.5 m. Primary instability waves have been observed in a
stratified flow in the Knight inlet [13]. These authors conducted laboratory experiments
with two reservoirs containing fluids of (slightly) different densities, flowing over a 2D
sill in a rectangular channel. They deduced that the shear interface fluctuations are due to
internal seiche and to primary Kelvin–Helmholtz instabilities. The KH billows (resulting
from primary KH instabilities) at the interface of a stratified shear flow can then undergo a
merging process [14,15].

The merging process of a pair of Gaussian vortices has been studied in different stratifi-
cation conditions. In a weak stratification, vortex mergers proceed in several stages: a diffu-
sive/axisymmetrization phase, a convective/deformation phase, a convective/entrainment
phase, and a final diffusive/axisymmetrization phase [14]. In these stages, the interaction
between vorticity gradients and the rate of strain is central. Brandt and Nomura sug-
gest that their effects on stratification are controlled by the ratio between the growth of
cores (billows cores) and viscous effects (quantified by the Reynolds number). In contrast,
in intermediate to high stratification, vortex mergers are not always possible as strong
baroclinic vorticity prevents them and induces a low diffusivity; the drift of the vorticity
centroid can be observed [15]. Billow mergers or drifts are followed by the growth of
higher-order harmonics associated with a secondary Kelvin–Helmholtz instability [13,16].
A secondary KH instability arises in the vicinity of KH billows. When the density interface
is sharp enough, another secondary instability appears: the Holmboe instability [17–19].
The unstable shear flow, when the density stratification length scale is much smaller than
the shear length scale, undergoes a Kelvin–Helmholtz instability with a steady vortex
formed at the middle of the interface; this is accompanied by a Holmboe instability with
waves traveling along the interfacial boundary [19]. In general, different regions can be
defined in an unstable shear flows: (i) a region with neutral gravity waves, (ii) a region
where two Holmboe modes propagate in the opposite direction, (iii) a region where KH
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instability exists, and (iv) a region with singular neutral modes [18]. After the onset of
vertical shear instabilities (KH and Holmboe), a transition to turbulence occurs [11–13,20].
KH instability favors entrainment between the neighboring layers and therefore mixing [13].
The turbulent patches thus formed are characterized by a spectral slope of −2; they are
limited by mixing occurence in the sloping direction [11,12]. In laminar and turbulent
flows, the KH vortices can develop and pre-existing turbulence may affect the onset of
Kelvin–Helmholtz instability [20].

In river plumes, KH instability can be observed in estuaries and the near-field region
(near the river mouth). This instability can be generated by many physical effects: winds,
river discharge, and tides. Tedford et al. [21] observed a one-sided instability (KH instabil-
ity) in the Frazer River estuary using an echo sounder. They compared field measurements
with the Taylor–Goldstein equation modes. They suggested that the interaction between
river discharge and tides produces KH instability above or below the density interface. In
their study, mixing and turbulence result from strong tidal velocities near the bed and from
shear instabilities. These instabilities have also been studied along the North Passage of
the Yangtze river estuary using a high-resolution nonhydrostatic model [22]. The authors
found that the interaction between freshwater discharge and tides tempers the duration
and length scale of the KH vortices. Moreover, in their study KH instability induces a high
mixing efficiency with maximum mixing rates of 5× 10−6 J m−2 s−1. These turbulent fine
structures influence the behavior of tidal plumes [23]. Iwanaka and Isobe [23] conducted
field surveys near a river mouth and used a nonhydrostatic model; they showed that
small horizontal scale features (<100 m) can be observed in the tidal plume. They related
these small eddies to inertial and Kelvin–Helmholtz instabilities and indicated that such
instabilities act like friction, which prevents tidal plumes from expanding offshore. In
different oceanic regions, the KH instability induces mixing and turbulent processes [24].
In numerous studies, the vertical diffusivity, reached when KH vortices are observed, lies
between 10−4 and 10−3 m2 s−1 [25,26]. In highly stratified river plumes, the size of KH
billows (Ozmidov scale) is O(10 cm) [26]. Thus, these small scale eddies can be difficult
to observe. In most river plumes, the KH billows occupy less than 10% of the interfacial
volume but achieve significant mixing [26].

In the present work, a 2D nonhydrostatic model is used to perform idealized numerical
simulations of stratified shear flows characteristic of river plumes. The following issues
will be addressed:

• What is the evolution of a sheared river plume base under different flow parameters?
• Which type of vertical shear instabilities can affect the plume base and under which

flow conditions?
• What are the effects of the vertical shear instabilities on vertical turbulent mixing?

The paper will be organized as follows: The model equations, configuration, sim-
ulations, and methods will be described in Section 2; the 2D structure and life cycle of
the plume and its interface will be presented in Section 3.1; the vertical shear instabilities
affecting it will be described in Section 3.2; and the turbulent mixing and the efficiency that
those instabilities induce will be given in Section 3.3. The main results will be discussed in
Section 4 and conclusions will be provided in Section 5.

2. Materials and Methods
2.1. Model Configuration

The simulations were performed using the Fluid2d numerical model. Fluid2d is a
versatile Python–Fortran CFD (Computational Fluid Dynamics) model provided by http:
//pagesperso.univ-brest.fr/~roullet/fluid2d/(acccessed on 20 December 2021). Fluid2d is
used to simulate a large range of 2D flows. It is defined on a C-Arakawa grid, where tracers
(buoyancy, vorticity) are discretized at model cell centers. Velocity components and stream
functions are discretized at cell edges and cell corners, respectively. The time discretization
scheme is explicit. In our study, velocity and density equations in the (x-z) plane, under the
non-hydrostatic (NH) approximation, are used. In this approximation, an incompressible

http://pagesperso.univ-brest.fr/~roullet/fluid2d/ 
http://pagesperso.univ-brest.fr/~roullet/fluid2d/ 
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and stratified fluid with no Coriolis effect is considered. No explicit viscosity, nor explicit
diffusivity are used here. The NH Boussinesq equations are written as:

∂xu + ∂zw = 0 (1)

Du
Dt

= −∇p + bk (2)

Db
Dt

= 0 (3)

where u = ui + wk (i and k are the horizontal and vertical unit vectors, respectively) is
the velocity vector, p is the pressure scaled by a mean density ρ0, b is the buoyancy, and
D
Dt = ∂t + u. ∇ is the material derivative.

The first NH equation indicates that the velocity is derived from a streamfunction
with w = ∂xψ and u = −∂zψ. Therefore, the vorticity is deduced as ω = ∂xw− ∂zu = ∇2ψ.
The latter lead to the vorticity and buoyancy equations summarized below:

∂tω + J(ψ, ω) = ∂xb (4)

∂tb + J(ψ, b) = −N2∂xψ (5)

∂2
xxψ + ∂2

zzψ = ω (6)

where ω is the vorticity, b is the buoyancy field, J is the Jacobian operator, N2 is the
Brunt–Vaisala frequency, and ψ is the streamfunction.

The model uses a third order Runge–Kutta (Stably Strongly Preserving scheme) as a
time stepping scheme. The advection scheme is a fifth-order upwind for both tracers and
momentum that has the advantage of built-in dissipation. Neither explicit viscosity nor
diffusivity are used here. The grid size in pixel units is 512 × 2048 in the (z-x) plane and the
time step is 0.01 s. The horizontal and vertical extents of the model grid are 40 m and 10 m,
respectively. A periodic boundary condition is applied in the x direction and a free-slip
boundary is applied in the vertical direction. The model runs for 4 modeled minutes with
outputs every quarter of a second. The model has no external forcing nor Coriolis effect.
The Coriolis effect could be added but in our case it is not mandatory, since the simulation
time is far below the inertial period.

2.2. Model Experiments

Here, a description of the different experiments performed in this study is provided.
Starting from the reference case, sensitivity experiments were carried out, which involved
different flow parameters or topographic ridges. In all the experiments, the initial conditions
were a shear-stratified flow; the background velocity and buoyancy vertical profiles were:

B = N2
0 hb tanh(

z− z0

hb
) (7)

U = −S0hs tanh(
z− z0

hs
) (8)

where hs is the thickness of the shear layer and hb is the thickness of the stratified layer
(Figure 1). The thickness is assumed to be identical for both of these fields (hb = hs),
except in experiment 3, where the stratification thickness is much smaller than the shear
layer thickness (hb = hs

1000 ). The thickness retained in these experiments is 2 m, which
corresponds to an average value of the freshwater thickness in river plumes in previous
studies [27–29]. z0 is the vertical location of the interface, which is taken here as the
mid-depth.
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Figure 1. The initial conditions for all the experiments: (top row)–streamwise velocity; (bottom
row)—buoyancy.

N2
0 is the Brunt–Vaisala frequency, which is computed as:

N2
0 =

g∆ρ

ρ0H
(9)

where H is the total water depth (here 10 m), g is the acceleration gravity, ρ0 is the mean
density (here 1025 kg·m−3), ∆ρ is the density difference between two layers (taken here as
15 kg·m−3 [26]) which leads to a Brunt–Vaisala frequency of 0.01 s−2. This parameter is
fixed for all the experiments shown here.

A total of 4 experiments were carried out in this study. Between these experiments, we
also varied S0, the square root of the vertical shear S2 = (∂zu)2 + (∂zw)2. Most experiments
used a flat bottom, except the last experiment, where topographic ridges were introduced.
The bottom shape zb of the last experiment can be written as:

zb(x) = 1.5 × (1− cos(π x−5
5 )), if 5 ≤ x ≤ 35

0, otherwise
(10)

White noise is added to the initial vorticity to trigger the instability. The initial
minimum Richardson number is below the critical threshold (0.25), which ensures the
generation of vertical shear instabilities. Table 1 summarizes the simulations performed in
this study.
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Table 1. Simulation parameters.

Experiments Initial Shear (s−2) Initial Stratification (s−2) Minimum Richardson Number Interface Bottom Boundaries

Reference 0.25 0.01 0.04 plane (hb = hs) flat Periodic in x + Rigid in z
Exp 2 0.5 0.01 0.02 plane (hb = hs) flat Periodic in x + Rigid in z
Exp 3 0.25 0.01 0.04 plane (hb = hs

1000 ) flat Periodic in x + Rigid in z
Exp 4 0.25 0.01 0.04 plane (hb = hs) sloping Periodic in x + Rigid in z

2.3. Diagnostics for Stratified Sheared Flows Structure and Dynamics

Since we wish to examine the life cycle of the billows at the interface of the stratified
sheared flow, several diagnostics will be defined. Each billow will be characterized by:
(i) its centroid position (xc, zc), (ii) its radius, and (iii) its aspect ratio. The geometrical
moments of vorticity are defined as in Dritschel [30] and we write:

Jmn =
∫ ∫

D
xmznω(x, z)dxdz (11)

The centroid of each billow is defined as:

xc =
J10

J00
, zc =

J01

J00
(12)

The billow semi-major axis a and semi-minor axis b are defined as in Le Dizès and
Verga [31], and we write:

a2 =
J20cos2(φ)− J11sin(2φ) + J02sin2(φ)

J00
, b2 =

J02cos2(φ)− J11sin(2φ) + J20sin2(φ)

J00
(13)

where the rotation angle and the radius of each billow are expressed as:

φ =
1
2

arctan(
2J11

J20 − J02
), r =

√
πab
π

(14)

The average radius of the identified billows for each experiment is quantified. Then,
the moving average (over 30 s) of the billows’ aspect ratio b

a is represented.
The spatial distribution of the Okubo–Weiss parameter [32,33] is computed as:

OW = s2
n + s2

s −ω2 (15)

where ω is the vorticity, sn = −2∂zw is the normal strain, and ss = ∂xw + ∂zu is the
tangential strain.

The Okubo–Weiss parameter identifies regions where the vorticity dominates (OW < 0)
and regions where the strain dominates (OW > 0).

Then, the surface average of the strain intensity s2 = s2
n + s2

s , and the strain direction
αstrain = arctan( sn

ss
) in regions where OW is positive are computed.

The moving average (over 30 s) of these strain diagnostics is compared to the aspect ratio.

2.4. Diagnostics for Instabilities

A decomposition of the flow is performed. The mean flow is the background state
(initial conditions) and perturbations are obtained for the velocity components (u and w)
and the buoyancy field as:

b′(x, z, t) = b(x, z, t)− b(x, z, t = 0) = b(x, z, t)− B(x, z) (16)

u′(x, z, t) = u(x, z, t)− u(x, z, t = 0) = u(x, z, t)−U(x, z) (17)

w′(x, z, t) = w(x, z, t)− w(x, z, t = 0) = w(x, z, t) (18)
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A measure of the turbulence intensity in the stratified shear flow is the eddy kinetic
energy, which is expressed as:

EKE(t) =
1

2LHc

∫ L

0

∫ Hc

0
(u′(x, z, t)2 + w′(x, z, t)2)dxdz (19)

where L is the horizontal length of the domain and Hc is the critical layer, as defined in
Appendix A.

Then, a linear stability analysis is performed using non-hydrostatic (NH) approxima-
tion. A linear analysis of the stability is performed to identify the nature of the instability, its
growth, its phase speed, and its critical layer depth. The EKE of each identified instability
is also computed. Full details about this linear stability analysis are given in Appendix A.

2.5. Diagnostics for Turbulent Mixing

The turbulent mixing is quantified using by the vertical eddy viscosity Km and the
vertical diffusivity Kb [34]:

Km = − 1
LHc

∫ L

0

∫ Hc

0

u′w′

∂zU
dxdz (20)

Kb = − 1
LHc

∫ L

0

∫ Hc

0

w′b′

∂zB
dxdz (21)

Then, the vertical EKE dissipation ε [35] and the vertical buoyancy dissipation εb are
evaluated as:

ε = − 1
LHc

∫ L

0

∫ Hc

0

u′w′

∂zU
((∂zu′)2 + (∂zw′)2)dxdz (22)

εb = − 1
LHc

∫ L

0

∫ Hc

0

w′b′

∂zB
(∂zb′)2dxdz (23)

The turbulent Prandtl number is then deduced from the vertical diffusivity and the
vertical eddy viscosity as Pr =

Km
Kb

.

The irreversible mixing efficiency Γi =
Γ

1+Γ is evaluated [36], where Γ is the mixing
efficiency deduced from Kb = Γ ε

∂zB [35]. This irreversible mixing efficiency will be com-
puted for each vertical shear instability (Holmboe and Kelvin–Helmholtz) using modal
decompositions of the vertical EKE dissipation and the vertical diffusivity that we write as:

K̃b = − 1
LHc

∫ L

0

∫ Hc

0

Re(w̃b̃∗)
∂zB

dxdz (24)

ε̃ = − 1
LHc

∫ L

0

∫ Hc

0

Re(ũw̃∗)
∂zU

(∂zũ∂zũ∗ + ∂zw̃∂zw̃∗)dxdz (25)

The mixing is considered efficient if Γi is larger than 0.2 [37].

3. Results
3.1. Structure and Dynamics of Stratified Sheared Flows

Here, we present and analyze the time evolution of the stratified–sheared interface.
The interface corresponds to a river plume base. The centroid of vorticity is computed with
different parameters (average radius of billows, ratio of centroid distance over the average
radius, magnitude of the strain and its direction, and Okubo–Weiss parameter) to describe
the dynamical processes governing the evolution of the coherent vortices formed at the
plume base. Several sensitivity experiments are carried to understand the dynamics of the
antisymmetric sheared flow in different settings.
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3.1.1. Reference Configuration

Figure 2 shows the time evolution of the buoyancy and vorticity fields at different stages
of the reference simulation. During the first period of this simulation (for 8 < t ≤ 54 s), the
anti-symmetric shear causes the buoyant plume interface to deform and crests and troughs
are generated. The advection of water parcels across the interface produces vorticity that
evolves from a noisy field at the beginning to a wavy stripe engulfing the sheared interface
(see Equation (4)). Then (for 87 ≤ t ≤ 130 s), the crest of perturbation moves upward; this
forms a flow constriction in the upper layer. The flow constriction accelerates the flow in
the upper layer and a roll-up of the shear layer is observed, which generates small eddies
(billows). These billows are two small cyclonic eddies, with an average radius of 3.8 m, and
their roll-ups favor fluid entrainment between the two layers. Finally (at t ∼ 240 s), the two
cyclonic billows elongate; this elongation triggers the development of small-scale filaments
at their rims and in their cores.

Figure 2. Snapshots from the reference experiment of: buoyancy field (top two rows), vorticity field
(bottom two rows). The black dots in the vorticity field indicate the vorticity centroid of each billow.

The billows have a strong vorticity, which competes with the fluid strain. This compe-
tition can be evaluated with the Okubo–Weiss (OW) parameter (Figure 3a). The vorticity
dominates (OW < 0) in the sheared layer during the generation, intensification, and elon-
gation of the billows. Meanwhile, the strain dominance (OW > 0) is patchy during the
period of generation of the billows (at t ∼ 54 and 87 s). Intense strain is found at the edges
of small filaments located in the upper layer (2 m below the surface) and the lower layer
(2 m above the bottom). During this period (for t < 100 s), the strain is mostly tangential
(αstrain ∼ −0.1 rad) and remains constant (its intensity ∼0.02 s−2), as shown in Figure 3b.
This indicates that, during this period, the vorticity favors the generation of the billows
and thus the influence of the strain is not prominent.

Then, the billows roll up and are intensified (at t ∼ 130 s). The strain remains dominant
at the same locations as in the previous periods. It is prominent in small-scale features in
the core of the billows and in the thin tilted interface formed between the billow cores: the
braid. During the period of intensification of the billows (at t > 100 s), the strain intensity
increases sharply and reaches a maximum (∼0.045 s−2) at t ∼ 150 s. The strain is mostly
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tangential during this period, as its direction is nearly horizontal. This tangential strain
induces an elongation of both billows in the horizontal direction, since their aspect ratio
increases sharply up to values of ∼0.15.

The billows reach their full extension during the last period (at t ∼ 240 s). The spatial
distribution of the strain dominance is localized in small filaments in the core of the billows
and between them. Since the elongation of each billow reaches half of the horizontal
domain length, each billow is constrained by the other; then, their aspect ratio decreases
notably (at t > 150 s) and therefore the tangential strain (αstrain ∼ −0.1 rad) slackens.

(a)

(b)

Figure 3. (a) Snapshots of the Okubo–Weiss parameter in the reference experiment. (b) Time evolution
(reference experiment) of the aspect ratio of the two billows (top row), the intensity of the strain
(second row), and its direction (bottom row).

3.1.2. Sensitivity to the Vertical Shear (Exp2)

In this simulation, the (initial) vertical shear is twice that of the reference experiment.
Figure 4 shows the time evolution of the vorticity and buoyancy fields. During the first
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period (for 8 < t ≤ 54 s), the sharp interface evolves quickly and by the end of this period
buoyant crests appear. The vorticity field is noisy and intense and, at the end, turbulent
structures are observed in the sheared interface. Then (for 87 ≤ t ≤ 130 s), the perturbed
interface evolves to form two intense cyclonic billows which begin to roll; due to the
fluid acceleration in the upper layer and the induced tangential strain, they extend in the
horizontal direction. These two billows have a radius of∼3.8 m. Finally (at t ∼ 240 s), these
two cyclonic billows elongate in the tangential direction and their extent reaches half of the
domain length. Filaments and strong vorticity are observed in their core and at their rims.

Figure 4. As Figure 2 for experiment 2.

In this experiment, during the generation of vortices (t ∼ 54 s) the Okubo–Weiss
parameter is weakly positive locally in the top and bottom layers around small filaments
and negative in the sheared layer (Figure 5a). Prior to this period (at t ≤ 54 s), the tangential
strain (αstrain ∼ 0 rad) intensity remains weak (Figure 5b). This indicates that, during this
period, the flow develops intense vorticity that will contribute to the two billow cores.

Then (at t ∼ 87 s), the vortices are formed and roll up. The strain dominance in-
creases in the upper and lower layers, in small strips in the inner core of the billows, and
along the braid. This induces a sharp increase in the intensity of the tangential strain
(αstrain ∼ 0.1 rad), reaching values up to 0.05 s−2 at t ∼ 100 s. The sharp increase in the
tangential strain induces a deformation of both billows, as indicated by the sharp growth
in their aspect ratio (a maximum ∼0.1525).

Lastly (t ∼ 130 and 240 s), the vortices are elongated and intensified. Their elongation
and intensification induce straining in their cores and along the interface separating the
billows. The vorticity is still dominant in the sheared layer. During this period (at t > 100 s),
the billows’ aspect ratio is neither decreasing nor increasing. This is due to the generation
of strong vorticity complemented by a tangential elongation of both vortices. The two
elongated billows cover the length of the domain and therefore limit the growth of the strain.
The intensity of the strain decreases during this period. The strain remains tangential, as its
direction is ∼0 rad.

Thus, the billow radii in this simulation are identical to those of the reference ex-
periment. Despite this similarity, the vortices are formed earlier here and the growth of
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their aspect ratio here is larger than in the reference experiment. This is mainly due to
the intensity of the tangential strain, which reaches 0.05 s−2 compared to 0.04 s−2 in the
reference configuration. The stronger shear favors the earlier generation of billows.

(a)

(b)

Figure 5. As Figure 3 for experiment 2.

3.1.3. Sensitivity to the Thickness of the Interface (Exp3)

In this simulation, the stratification thickness is much smaller than the shear thickness
(see Table 1). Figure 6 shows snapshots of the spatial distribution of buoyancy and vorticity
fields. During the first period (for 8 < t ≤ 54 s), small perturbations form at the thin
buoyant interface. By the end of this period, the small perturbations evolve as two crests
propagating in the opposite direction of the two troughs. Then (for 87 ≤ t ≤ 130 s), the
perturbations evolve as two cyclonic billows that elongate in the direction of the sheared
flow. Finally (t ∼ 240 s), the billows reach their full horizontal extent and filaments develop
in their cores. The average radius of these billows is ∼3.8 m.
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Figure 6. As Figure 2 for experiment 3.

During the linear stage of the instability (at t ∼ 54 s), the vorticity dominates the
strain almost everywhere in the domain, except in local strips in the top and bottom layers
(Figure 7a). The billows are not definitely formed yet and their aspect ratio remains weakly
varying (∼0.145), as shown in Figure 7b. The billows aspect ratio varies with a decreasing
strain intensity during this period. The strain is tangential (its direction is ∼0 rad).

Then (at t ∼ 87 s), the sheared layer rolls up and two distinct billows are formed.
The billows induce intense vorticity in the sheared layer and along the braid (OW < 0).
The billows also lead to an intensified strain in the upper and bottom layers. The aspect
ratio of the two billows grows and reaches values of (∼0.11). Despite the growth in their
aspect ratio, the intensity of the strain varies weakly (∼0.02 s−2) with a tangential direction
(∼0.1 rad).

Finally (at t ∼ 130 and 240 s), the billows intensify and elongate. During this period,
the vorticity is still dominant in the sheared layer. Meanwhile, the strain dominance is
noticeable above and below the sheared layer. The billow aspect ratio increases (at t > 150 s)
and weakly intensifies the tangential strain (∼0.02 s−2).

Thus, in comparison to the reference simulation, the average radius of the billows
remains the same. Despite this similarity, their aspect ratio is larger and the tangential
strain is less dominant. The reduced stratification thickness helps in the earlier growth of
billows. Meanwhile, it induces less strain in the core of the billows and along the braid.



Symmetry 2022, 14, 217 13 of 29

(a)

(b)

Figure 7. As Figure 3 for experiment 3.

3.1.4. Sensitivity to Topographic Ridges (Exp4)

Figure 8 shows the time evolution of the (plane) buoyant interface above topographic
ridges. Firstly (for 8 ≤ t ≤ 54 s), the antisymmetric sheared flow and its interaction
with ridges cause the deformation of the plume base. This deformation yields three
distinct cyclonic billows of different sizes (average radius ∼ 3 m). These three billows
mutually interact, which alters their respective shapes. These billows also interact with the
topographic ridges, which favors their stretching. Then (for 87 ≤ t ≤ 240 s), the sheared
flow evolves in different chaotic vortices and anticyclonic filaments are generated at their
edges due to their mutual interactions and their stretching above the ridges.
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Figure 8. As Figure 2 for experiment 4.

Next, the spatial distribution of the Okubo–Weiss parameter is evaluated (Figure 9a).
First (at t ∼ 54 s), the vorticity dominates in the sheared layer, albeit with some straining in
the core of the billows. During this period (t ≤ 54 s), the intensity of the strain increases
sharply (∼0.01 s−2), as shown in Figure 9b. The growth in the strain exhibits an elongation
of the billows in the tangential direction (aspect ratio ∼ 0.2). After this period (t > 54 s),
the elongation of the eddies nor increases nor decreases due to: (i) the mutual interactions
between the billows; (ii) the billows’ vertical extent, which constricts the regions where the
strain dominates, causing the latter to weaken; and (iii) the continuous interaction between
the billows and the topographic ridges.

Thus, in comparison with the reference configuration, the interaction between topo-
graphic ridges and the anti-symmetric shear flow favors the development of three distinct
cyclonic billows. The average size of the billows is small compared with the reference
configuration due to their mutual interaction and their stretching above the ridges. The
tangential strain is also noticeable above the ridges, which increases its intensity compared
with the reference configuration.

3.2. Modal Analysis and Instability Growth

In this section, the most unstable modes of the stratified–sheared river plume base
are evaluated. Those unstable modes are categorized as Holmboe and Kelvin–Helmholtz
instabilities, as described in Section 2.4. Their growth, their vertical structure, and the time
evolution of their turbulent energies are computed. The sensitivity of these instabilities to
the various parameters is explored.
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(a)

(b)

Figure 9. As Figure 3 for experiment 4.

3.2.1. Reference Configuration

Two vertical shear instabilities are investigated here, the Kelvin–Helmholtz and the
Holmboe instabilities. The vertical shear instabilities exist since the necessary condition
for their development (a Richardson number smaller than 0.25) is already satisfied in the
initial conditions. The Kelvin–Helmholtz instability is characterized by a large growth rate
and zero phase velocity. The Holmboe instability has a nonzero phase velocity and smaller
growth rates.

The linear stability theory is used to investigate these instabilities (Figure 10a). This anal-
ysis predicts that Kelvin–Helmholtz instability occurs for large wavelengths (k ∼ 0.23 m−1,
λ = 2π

k ∼ 27 m). The Holmboe instability occurs for smaller wavelengths (k ∼ 5.4 m−1,
λ ∼ 1 m). The identification of Holmboe instability is investigated using the bifurcation
theory, as shown in Figure A1 and explained in Appendix B.
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Figure 10. (a) The growth rate, (b) the vertical magnitude of the streamwise velocity for the Kelvin–
Helmholtz mode, and (c) the vertical magnitude of the streamwise velocity for the Holmboe mode
for the reference and sensitivty experiments.

The most unstable mode for the Kelvin–Helmholtz instability has a growth time scale
∼17.6 s. The Holmboe instability unstable mode develops slowly with a growth period of
∼88.4 s. The Holmboe waves have a phase speed of 2.4 cm s−1.

Next, the vertical structure of the magnitude of the streamwise velocity for the Kelvin–
Helmholtz and Holmboe instabilities is explored (Figure 10b,c). The Kelvin–Helmholtz
mode has a constant velocity at the surface and near the bottom. In this mode, the stream-
wise velocity is maximal (∼10 cm s−1) at the sheared interface or at the critical layer
(around mid-depth) and surrounded with minima (∼3.3 cm s−1) at the upper and lower
density interfaces. These minima have the same amplitude and are symmetric with re-
spect to the critical layer depth. The Holmboe mode is characterized by a local minimum
(∼22.3 cm s−1), as observed at the critical layer. This local minimum is found in a thin layer
(of a few cm) surrounded by two secondary lobes. The upper lobe flows slightly faster than
the lower lobe.

Now, the horizontally and vertically (from the surface to the critical layer) averaged
Eddy Kinetic Energy (EKE) for the total, Kelvin–Helmholtz, and Holmboe perturbations
are evaluated (Figure 11a). Early time (0 < t ≤ 50 s) is associated with a slight increase
in the total EKE, which characterizes the onset of the instability. Then (at 50 < t ≤ 150 s),
a sharp increase in the total and KH EKE is observed, indicating that the instability fully
develops into two distinct cyclonic billows and the initiation of their elongations. Then, a
decrease in the total and KH EKE is observed, since the billows are well developed and
dissipation can occur.
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(a) (b)

(c) (d)

Figure 11. The total and modal decompositions of the EKE for the reference configuration (a),
experiment 2 (b), experiment 3 (c), and experiment 4 (d).

The KH mode turbulent energy represents an important fraction of the total EKE
(∼10%). The Holmboe instability, characterized by smaller wavelengths, develops when
the KH instability slackens or relaxes. The EKE associated with Holmboe instability is
much smaller (104 smaller) than the KH EKE. This indicates that the KH instability is the
dominant nonlinear process in the reference simulation.

3.2.2. Sensitivity to the Vertical Shear (Exp2)

In this case, the KH instability develops for larger wavelengths ∼27 m and a growth
time of ∼11.4 s (Figure 10a). Meanwhile, the Holmboe instability develops for smaller
wavelengths ∼2 m (k ∼ 2.9 m−1) and a slower growth time of 112 s. The Holmboe
instability induces turbulent waves that travel slowly with a phase speed of ∼0.7 cm s−1.

Now, the vertical structure of the streamwise velocity for each instability is analyzed
(Figure 10b,c). For the Kelvin–Helmholtz instability, the streamwise velocity is uniform in
the top and bottom 2 m. This velocity diminishes in the upper density interface with a local
minimum of 3.5 cm s−1. In the shear layer (between −2 and 2 m), the flow is faster with a
maximum of 9 cm s−1. It is again slower at the lower-density interface. This shows that the
KH instability is intensified in the shear layer while it slackens at both density interfaces.
Meanwhile, the vertical structure of the Holmboe mode has a minimum (∼15 cm s−1) at
the critical layer (depth ∼ 5 m) surrounded by two lobes. The lower lobe travels faster
than the upper lobe. The Holmboe instability results, therefore, in two waves traveling at
different speeds around the critical layer.
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Finally, the time evolution of the EKE for the total perturbations and the KH and
Holmboe decompositions is examined (Figure 11b). The total and KH EKE start to increase
when the generation of the KH instability starts (at t > 40 s). Then, these turbulent energies
reach a maximum at around 90 s once the billows are fully formed. After this peak, the
total and KH EKE increase again during two distinct periods (for 125 < t ≤ 150 s and
between 175 and 200 s). These peaks correspond to the elongation of the billows and their
intensification. Their intensification leads to the development of small-scale features in their
cores, which may also increase the EKE. The Holmboe energy increases during periods
when the total and KH energies weaken. The KH instability represents the dominant
process in this experiment (it is stronger than the Holmboe instability by 103).

Thus, compared to the reference configuration, the stronger shear (i) speeds up the
growth of the KH instability, (ii) retards the growth of the Holmboe instability, (iii) increases
the wavelength of the Holmboe instability, (iv) enhances the energetic contribution of
Holmboe instabilities by an order of magnitude, and (v) diminishes the propagation
of Holmboe waves with a lower layer (near the critical layer) traveling faster than the
upper layer.

3.2.3. Sensitivity to the Thickness of the Interface (Exp3)

When the thickness of the buoyant layer is small compared with the shear thickness,
the KH and Holmboe instabilities co-exist. The KH instability is characterized by larger
wavelength (λ∼ 27 m) and a faster growth time∼15 s (Figure 10a). The Holmboe instability
grows slowly (∼663 s) with a smaller wavelength of ∼5 m. The Holmboe waves propagate
with a phase speed of ∼2 cm s−1.

Now, the vertical structure of the Holmboe and KH instabilities is evaluated (Figure 10b,c).
The streamwise velocity increases in the shear layer has a maximum of 8 cm s−1 and is
slower at the upper and lower shear interfaces (∼4 cm s−1). The streamwise velocity for
the Holmboe mode is minimal (∼0.05 cm s−1) around the critical layer. Two layers are
observed around this critical layer propagating at different speeds. The upper layer moves
slightly faster than the lower layer.

To quantify the turbulent activity, the time evolution of the EKE for the total, KH, and
Holmboe perturbations is plotted (Figure 11c). The total and KH EKE increase after the
onset of the vertical shear instabilities (at t > 50 s). They reach a maximum at t ∼ 100 s
once the cyclonic billows are generated. Then, they increase again after 150 s to reach a
second maximum at t ∼ 180 s. These second maxima correspond to the elongation and
intensification of the billows. Holmboe EKE increases during periods of relaxation of both
the total and KH EKE. Holmboe instability may exist in this case, but its contribution is
weak (102 times smaller than the KH energy).

Thus, compared with the reference simulation, a small buoyancy thickness: (i) speeds
up the generation of the KH instability, (ii) slows down the development of the Holmboe
instability, (iii) increases the spatial wavelength of the Holmboe instability, and (iv) slightly
diminishes the propagation speed of the Holmboe waves.

3.2.4. Sensitivity to Topographic Ridges (Exp4)

In the presence of topographic ridges, the KH and Holmboe instabilities co-exist. The
KH instability grows quickly in time (at ∼14 s) and develops spatially with a wavelength
of ∼27 m (Figure 10a). The Holmboe instability grows with a shorter wavelength of ∼1 m.
Its growth period is ∼46 s. The Holmboe instability waves propagate slowly, with a phase
speed of ∼0.5 cm s−1.

Then, the vertical structure of the KH and Holmboe instabilities in terms of the
streamwise velocity magnitude is evaluated (Figure 10b,c). The streamwise velocity of
the Kelvin Helmholtz mode of instability increases in the shear layer (∼12.5 cm s−1) and
slackens at the edges of this layer. The Holmboe instability mode has a streamwise velocity,
which weakens at the critical layer and strengthens above and below this layer with the
same speed (∼60 cm s−1).
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Finally, the total, KH, and Holmboe EKE during the simulated period are analyzed
(Figure 11d). The total EKE grows rapidly and reaches a maximum at t ∼ 50 . Similarly, the
KH EKE increases rapidly due to the fast generation of billows. Then (t > 100 s), the total
EKE decreases due to frictional processes induced by the interaction between the billows
and the topographic ridges. The latter is also observed for the KH EKE. Meanwhile, the
Holmboe EKE grows during periods of relaxation/decrease in the KH instability but with
a smaller contribution (103 smaller).

Thus, in comparison to the reference simulation, the topographic ridges (i) strengthen
the growth of KH and Holmboe instabilities due to the interaction of the sheared flow
with topographic ridges which accelerate the fluid, (ii) dissipate the KH instability through
frictional processes, and (iii) slow down the Holmboe-induced waves and alters their
wavelengths.

3.3. Turbulent Mixing

In this section, the turbulent mixing is characterized by: (i) the EKE production, (ii) the
buoyancy and EKE dissipate rates, and (iii) the mixing statistics.

3.3.1. Reference Configuration

First, the time evolution of the mass and momentum mixing coefficients and their
dissipation rates are evaluated (Figure 12a). After the onset of instability (at t > 50 s), the
turbulent mixing of mass and momentum sharply increase until it reaches a maximum
at t ∼ 120 s. This maximum corresponds to the generation of billows which favor fluid
entrainment and therefore mixing between the upper and lower layers. Since turbulent
energy is produced via mixing, an energy sink is necessary. Dissipative processes (of EKE
and EAPE/buoyancy) contribute to this sink. The EKE and buoyancy dissipation rates
reach a maximum (at t ∼ 150 s) when the sources of EKE weaken.

Once the billows are formed, they elongate and intensify (for 150 < t ≤ 175 s). Their
elongation and intensification strengthens the water recirculation in their cores and thus
the mixing of mass and momentum increases. During this period, the dissipation rates of
EKE and of buoyancy increase.

Finally (for t > 175 s), the production of EKE by mass and momentum mixing
decreases. This is also accompanied by smaller dissipation rates of buoyancy and EKE.
This is due to the full elongation of vortices, which induce less turbulence; therefore, the
production and dissipation of turbulent energy drop.

To quantify the turbulent mixing, the mass and momentum mixing coefficients, the
buoyancy, and the EKE vertical dissipation rates, the turbulent Prandtl number and the
irreversible mixing efficiency are plotted (Figure 13). The turbulent Prandtl number is ∼0.2,
which is far less than unity (Figure 13e). This indicates that the flow is in a pre-turbulent
phase. This state is due to large mass mixing Kb ∼ 3.4 × 10−3 m2 s−1 compared with the
momentum mixing Km ∼ 7.2 × 10−4 m2 s−1 (Figure 13a,b). The pre-turbulent flow and
its mixing coefficients are largely due to the high EKE dissipation ε ∼ 2 × 10−4 m2 s−1

compared with weak EAPE dissipation εb ∼ 7 × 10−6 m2 s−1 (Figure 13c,d). The pre-
turbulent flow is influenced by the KH and Holmboe instabilities. They influence the
turbulent mixing, as can be quantified with the irreversible mixing efficiency. Here, the
Holmboe instability is more efficient (Γi ∼ 1 > 0.2) in mixing the mass and momentum
than the Kelvin–Helmholtz instability (Γi ∼ 0.9 > 0.2), as shown in Figure 13f.
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(a) (b)

(c) (d)

Figure 12. Vertical eddy viscosity (black solid line), vertical diffusivity (black dashed line), and
vertical dissipation of EKE (black solid line) and buoyancy (black dashed line) for the reference
configuration (a), experiment 2 (b), experiment 3 (c), and experiment 4 (d).

3.3.2. Sensitivity to the Vertical Shear (Exp2)

The enhanced shear favors the early growth of the mass and momentum mixing due
to the rapid generation of instabilities (Figure 12b).

The momentum mixing increases (at t > 50 s) once the shear layer deforms. It reaches
a maximum early (at t ∼ 60 s) of ∼4× 10−3 m2 s−1. The dissipation of EKE reaches a
maximum (at t ∼ 60 s) of∼5× 10−4 m2 s−3. After this period (for t > 60 s), the momentum
mixing decreases. Mass mixing shows variations similar to those of momentum mixing,
though an order of magnitude larger. Meanwhile, the buoyancy dissipation increases
sharply, with a maximum ∼5× 10−5 m2 s−3 occurring at t ∼ 100 s during periods when
mass mixing relaxes.

In this experiment, the flow is in a pre-turbulent phase, since the turbulent Prandtl
number is ∼0.2 (Figure 13e); momentum mixing ∼1.6× 10−3 m2 s−1 dominates over mass
mixing ∼1.6× 10−4 m2 s−1 (Figure 13a,b). This pre-turbulent flow also corresponds to
stronger EKE dissipation (3× 10−4 m2 s−3) than buoyancy dissipation (2.5× 10−5 m2 s−3)
(Figure 13c,d). Turbulent mixing is influenced by the two instabilities, as measured by
their mixing efficiencies. The Kelvin–Helmholtz instability contributes more to the mixing
(Γi ∼ 0.9 > 0.2) than the Holmboe instability does (Γi ∼ 0.4 > 0.2) (Figure 13f).

Thus, in comparison with the reference configuration, the enhanced shear (i) speeds
up the mixing of the mass and momentum, (ii) does not change the nature of the flow (pre-
turbulent), (iii) strengthens the momentum mixing and the induced EKE dissipation rates,
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(iv) weakens the mass mixing and strengthens the EAPE dissipation rates, and (v) intensifies
the mixing efficiency induced by the Kelvin–Helmholtz instability and decreases the mixing
efficiency induced by the Holmboe instability.

Figure 13. Statistics and error bars (vertical segments at the end of the colored lines) for all exper-
iments: (a) vertical eddy viscosity, (b) vertical diffusivity, (c) vertical EKE dissipation, (d) vertical
buoyancy dissipation, (e) turbulent Prandtl number, and (f) irreversible mixing efficiency for KH
(red) and Holmboe (green) instabilities.

3.3.3. Sensitivity to the Thickness of the Interface (Exp3)

When the stratification thickness is reduced compared to the shear thickness, the
momentum mixing increases sharply (at t > 50 s). It reaches a maximum 4× 10−3 m2 s−1

at t ∼ 75 s. The production of EKE is balanced by a growth of EKE dissipation, reaching
values of ∼2.5× 10−4 m2 s−3. Once the billows are generated (75 < t ≤ 150 s), momentum
mixing and its induced dissipation decrease. Then (for t > 150 s), both the sink and the
shear production of turbulent energy increase again due to the elongation of the billows,
inducing a strong recirculation and as well as favoring mixing and dissipation.

Mass mixing shapes the EKE production in the same way as momentum mixing,
with a maximum of ∼4.5 × 10−4 m2 s−1 at t ∼ 75 s. Meanwhile, the sink of EAPE
through buoyancy increases during periods when the mass mixing relaxes or decreases.
Buoyancy dissipation is not important in this case (∼10−12 m2 s−3); momentum dissipation
is thereafter the sole turbulent energy sink.

The flow is in a turbulent phase as Pr ∼ 10 (Figure 13e). The turbulent flow in-
duces more momentum mixing ∼3× 10−3 m2 s−1 than mass mixing ∼2× 10−4 m2 s−1

(Figure 13a,b). The sink of turbulent energy is higher for the momentum ∼ 10−4 m2 s−3

than for the buoyancy ∼10−12 m2 s−3 (Figure 13c,d). The Holmboe instability contributes
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efficiently to the turbulent mixing, since Γi ∼ 0.6 > 0.2. Meanwhile, the KH instability is
not efficient at Γi ∼ 0.01 < 0.2 (Figure 13f).

Thus, in comparison to the reference configuration, the reduced stratification thickness
(i) increases the momentum mixing and decreases the mass mixing, (ii) shapes the flow in a
turbulent phase, and (iii) relates the mixing efficiency to the Holmboe instability.

3.3.4. Sensitivity to Topographic Ridges (Exp4)

Figure 12d shows the time evolution of the mass and momentum mixing coefficients,
the EKE, and the buoyancy dissipation rates. During the onset of the instability (for
t < 100 s), the momentum mixing and EKE dissipation decrease due to the rapid gener-
ation of the billows and their interaction with topographic ridges, which favor frictional
processes. Then (at t > 100 s), the billows are fully developed and engulf almost the entire
vertical extent of the domain. The latter induces a strong momentum mixing, reaching
∼10−2 m2 s−1 with an EKE dissipation rate ∼5 × 10−2 m2 s−3. The interaction between
the topographic ridges and the shear flow induces mixing and EKE dissipation through
intense convection and/or bottom frictional processes.

Mass mixing varies as momentum mixing does and reaches values∼2.5 × 10−2 m2 s−1.
This is related to the vorticity and buoyancy torques in the vorticity transport equation.
The EAPE/buoyancy dissipation varies as the mass mixing (∼2.5 × 10−5 m2 s−3), except
during the onset of the instability (t < 100 s). The strong dissipation of buoyancy is likely
due to the interaction between the flow and the bottom during this early period.

In this experiment, the flow is pre-turbulent as Pr ∼ 0.45 (Figure 13e). The lat-
ter is explained by higher mass mixing ∼2.5 × 10−2 m2 s−3 than momentum mixing
∼7.6 × 10−3 m2 s−1 (Figure 13a,b). The sink of turbulent energy is higher for momentum
∼2.2 × 10−3 m2 s−3 than for buoyancy ∼2.4 × 10−5 m2 s−3 (Figure 13c,d). Both the KH
and Holmboe instabilities are efficient (Γi > 0.2) in mixing the fluid; the Holmboe instability
contributes more (Γi ∼ 1.1) to the turbulent mixing than the KH instability does (Γi ∼ 0.8)
(Figure 13f).

Thus, in comparison with the reference configuration, the interaction between the
sheared flow and topographic ridges (i) strengthens the momentum and mass turbulent
mixing; (ii) slightly increases the turbulence in the flow, despite the pre-turbulent phase
persisting; (iii) favors EKE and EAPE/buoyancy dissipations; and (iv) slightly increases
the mixing efficiency of the Holmboe instabilities and decreases the mixing efficiency of the
KH instabilities.

4. Discussion
4.1. The Structure and Dynamics of Stratified Sheared Flows

In this paper, the structure and dynamics of stratified sheared flows via 2D non-
hydrostatic numerical simulations are studied. In these simulations, the flow evolution in
various physical configurations is analyzed.

Firstly, the stratified sheared interface evolves in time from a wavy strip to billows.
Sensitivity experiments are carried and compared to a reference simulation. In the flat-
bottom cases, the generated cyclonic billows have similar sizes. These sizes are constrained
by the interactions, the initial conditions, and the horizontal length of the domain. An
enhanced shear and a small buoyant interface trigger an earlier growth of these vortices.
The recirculation inside their cores is intensified when the initial shear is increased; this
recirculation is weakened when the buoyant interface is thin (compared with the shear
layer thickness). This recirculation favors the entrainment between the upper and bottom
layers. We also noted that topographic ridges favor the generation of smaller cyclonic
billows with anticyclonic filaments at their edges. In this latter case, the antisymmetric
shear flow induces noticeable turbulence in the domain.

Secondly, the spatial distribution of the Okubo–Weiss parameter for the different
experiments is examined. This tool has been used to identify mesoscale eddies in previous
studies [38–41]. In our experiments, the vorticity dominates in the shear layer when the



Symmetry 2022, 14, 217 23 of 29

bottom is flat. The billows are generated in the stratified sheared layer. Over topographic
ridges, vorticity is also generated due to frictional processes and fluid acceleration. In
this case, the vorticity dominates mostly in the whole domain once strong turbulence
is generated.

Thirdly, the spatial distribution and, in particular, the predominance of the strain
field are explored. The flow is shown to be strained above and below the sheared layer
when the bottom is flat. This is due to the constriction of the flow in these layers, resulting
in high-/low-pressure regions. In these cases, the strain is also generated in the cores of
the billows and along the braid. The latter is due to the flow recirculation, which may
induce local straining. In these experiments, the enhanced shear intensifies the strain in the
upper and bottom layers and in the cores of billows due to increased fluid acceleration and
recirculation. When the buoyant interface is thin compared to the sheared interface, the
straining becomes stronger in the upper and lower layers but weakens inside the billows.
This is due to the increased area above and below the buoyant interface, which results in
greater pressure forces and therefore in higher strain. Meanwhile, when the bottom is wavy,
the strain dominates locally at the edges of the small billows and filaments and above the
ridges. This is due to the interaction between the wavy bottom and the antisymmetric flow;
this interaction creates more turbulence later in the simulation.

Lastly, the strain is shown to be tangential when the bottom is flat, since only stream-
wise velocity is considered initially. The tangential strain is found to be correlated with
the horizontal elongation of the billows. The tangential strain and the induced billow
elongation are intensified when the shear increases, and even more so when the buoyant
interface is thin. Such findings can be explained by the tangential force exerted by the
enhanced shear on the billows causing their deformation in a parallel direction to the flow
(this tangential force is amplified by the increased area when the buoyant interface is thin).
This has also been observed for the case of topographic ridges; tangential strain deforms
these billows due to the local fluid acceleration induced by friction (above the ridges) and
the background shear (top layer).

The generated billows have an average aspect ratio below 1
3 ; such an extreme aspect

ratio may lead to their splitting in the absence of background strain and shear [42]. However,
in our experiments the billows do not split due to their mutual interactions and to the
presence of a shear flow. This small aspect ratio is related to the elongation/strain of the
billows. In particular, a single billow deforms into an elliptical vortex with filaments at its
rim in the presence of background shear [43]. Nevertheless, overall the vorticity dominates
the strain in the experiments with billows. This has also been observed in other studies of
Kelvin–Helmholtz billows [44].

4.2. Development and Role of KH and Holmboe Instabilities

The vertical shear instabilities in stratified sheared flows are analyzed via linear
stability analysis based on 2D non-hydrostatic equations.

Firstly, two vertical shear instabilities are identified: Kelvin–Helmholtz and Holmboe,
in our flow configuration. The Kelvin–Helmholtz instability is characterized as the most
unstable mode by the linear analysis. The Kelvin Helmholtz instability has a wavelength
∼12 times the shear thickness in the studied cases. The KH wavelength is typically an order
of magnitude larger than the shear layer thickness as shown in Smyth and Moum [24]. The
wavelengths may also be constrained by the domain geometry and the initial conditions.
Vertically, the KH instability has a larger magnitude in the shear layer with a maximum
reached at the critical layer (plume base). The Kelvin–Helmholtz instability reaches its
maximum amplitude within a time range between 11 and 18 s. Compared to the reference
simulation, this instability grows faster and intensifies (in terms of EKE): (i) when the shear
increases, (ii) when the shear flow interacts with topographic ridges and also (iii) for a
small buoyancy interface thickness.

Secondly, the Holmboe instability is characterized by smaller wavelengths (between 1
and 5 m) and a longer growth time (between 40 and 663 s). The smallest wavelength (∼1 m)
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and the shortest growth time (∼40–80 s) are found for the reference and wavy bottom
experiments. Meanwhile, the enhanced shear slows down the growth of the Holmboe
instability (∼112 s), and its wavelength is larger (∼5 m). The small buoyancy thickness
induces a Holmboe instability with the slowest growth time (∼663 s) and with a wavelength
∼2 m. The difference between the Kelvin–Helmholtz and Holmboe instabilities is that the
first is stationary (zero phase speed) and the second is propagating (non-zero phase speed).
The Holmboe instability is characterized by two counter-propagating waves (lobes) above
and below the plume base. At the plume base, the magnitude of the streamwise velocity
is minimal (and maximal above and below) for the Holmboe instability; it is maximal for
the Kelvin–Helmholtz instability. In terms of turbulent energy, the Holmboe instability is
intensified during periods of relaxation/decrease in the Kelvin Helmholtz instability but
with a smaller impact. Indeed, the KH EKE represents an important fraction (∼10%) of
the total turbulent energy. Holmboe instability amplification occurs for a sharp buoyancy
interface (small buoyancy thickness) and in the presence of a wavy bottom.

Thus, we showed the existence of the primary Kelvin–Helmholtz and Holmboe insta-
bilities in the studied experiments. We showed that a wavy bottom and small buoyancy
thickness lead to the intensification of the Holmboe instability. The Holmboe instability
has a smaller wavelength and a larger growth time compared with the Kelvin–Helmholtz
instability, as shown in Alexakis [18]. Vertically, the Kelvin–Helmholtz instability has a
larger influence in the sheared layer with a maximum at the base of the plume. This result is
similar to what has been observed at the base of a surface mixed layer when a stratified flow
interacts with Ekman-induced currents [24]. The interaction between downwelling favor-
able winds and the Gironde river plume favors the development of the Kelvin–Helmholtz
instability [29,45]. This instability has also been observed and simulated using a 3D NH
numerical model in the Yangtze river estuary due to the interaction between tidal flood and
high water slack. Kelvin–Helmholtz instability has also been observed and analyzed using
the Taylor Goldstein equation in the Frazer river estuary. The authors found that during
ebb tide and high discharge events, the wavelength of such instability is ∼24 m, which
is similar to the value found in our simulations. Meanwhile, the Holmboe instability is
characterized by two counter-propagating waves (nonzero phase speed) within the critical
layer (plume base). It also grows slowly compared to the KH instability and with shorter
wavelengths. The latter findings have been indicated in previous studies [17,18,46,47].
Carpenter et al. [48] used in situ observations and linear analysis stability theory, indicating
the coexistence of the KH and Holmboe instabilities in the Frazer estuary. Their findings
inferred that both instabilities may coexist in stratified sheared flows such as river estuaries,
which corroborates the results of our study.

4.3. Turbulent Mixing: Intensity and Efficiency

The turbulent mixing is studied via: (i) the mass and momentum mixing coefficients,
(ii) the EAPE and EKE dissipation rates, and (iii) statistics.

These diagnostics are explored in a reference simulation and different sensitivity exper-
iments are carried out. In these experiments, the turbulent mixing (mass and momentum)
and dissipation rates (EKE and EAPE) increase after the linear stage of the instability. Then,
billows are generated, inducing entrainment between the upper and bottom layers in their
cores. The entrainment between these layers results in the turbulent mixing of mass and
momentum. This mixing is a source of turbulent energy and is also linked to its sink
(dissipation rates). The momentum mixing and EKE dissipation rate vary similarly during
the generation, intensification, and elongation of the billows when the bottom is flat. This
remains true for the wavy bottom due to frictional processes and enhanced turbulence;
this turbulence generates smaller cyclonic billows above the bottom and anticyclonic fila-
ments in the water column. Another source of turbulent energy is mass mixing. The mass
mixing increases once the billows are generated. This is due to the intensification of the
stratification when the bottom and upper waters are mixed in the cores of the billows when
the bottom is flat. This is also observed when a stratified shear flow interacts with a wavy
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bottom, resulting in smaller billows and filaments. This source of EKE is concomittant
with a sink of EAPE. In these experiments, the sink of EAPE strengthens once the mass
mixing weakens.

Then, these experiments are compared in terms of mixing statistics. The flow is
characterized as either (i) pre-turbulent (Pr < 1) or (iii) turbulent (Pr > 1). The flow is
pre-turbulent in the reference simulation when the shear increases and when the bottom is
not flat. This is due to more mass mixing (∼10−4–10−2 m2 s−1) than momentum mixing
(∼10−4–10−3 m2 s−1) taking place. This is linked to there being higher EKE dissipation
(∼10−4 m2 s−3) than EAPE dissipation (∼10−5 m2 s−1). The enhanced shear participates in
increasing the mixing (by an order of magnitude) and the induced dissipation (at least by a
factor of 2). When the bottom is wavy, the flow is pre-turbulent; however, a turbulence state
can be reached by the end of the simulation due to frictional processes. In this experiment,
the momentum and mass mixing are intensified compared with the reference simulation.
Frictional processes result from the interaction between the antisymmetric flow and the
bottom and induce more EKE dissipation (∼2 × 10−2 m2 s−3) than EAPE dissipation
(∼2× 10−5 m2 s−3), despite the quasi-turbulence observed by the end of the simulation.
The flow reaches a turbulent phase when the buoyancy thickness is small compared with
the shear thickness. In this experiment, the momentum mixing (∼2× 10−3 m2 s−1) is
stronger than the mass mixing (∼1.3× 10−4 m2 s−1) due to the difference between the
buoyancy and the shear thicknesses (leading to more entrainment occurring in the shear
layer than in the buoyant layer). The EKE dissipation is similar to that in the reference
configuration, but the EAPE dissipation is weaker (∼10−12 m2 s−3) due to the small buoyant
layer thickness. Previous studies in the Frazer river estuary have shown that the diffusivity
mixing coefficients range between 10−4 and 10−3 m2 s−1, which is similar to what we
found in the flat-bottom experiments [21,49]. In the near-field region of river plumes, EKE
dissipation rates are intensified and reach values between 10−4 and 10−3 m2 s−3 [26,50,51].
These values are similar to those that have been simulated in our study: (i) lower values
are expected in river estuaries (flat-bottom experiments) and (ii) higher values are expected
in near-field experiments (wavy-bottom experiments).

Finally, the turbulent mixing efficiency is analyzed to understand the influence of the
Holmboe and Kelvin–Helmholtz instabilities. Despite their weaker growth time, the Holm-
boe instabilities contribute more efficiently to the turbulent mixing than KH instabilities,
except when the shear increases. Their mixing efficiencies are less sensitive to the thickness
of the stratified layer or to the tilt of the bottom (Γi ∼ 1). The KH instabilities are more
efficient when the shear increases (Γi ∼ 0.9) and more inefficient (Γi ∼ 0.01) when the strati-
fication thickness is reduced. The latter results indicate that both instabilities contribute
to turbulent mixing, except when the buoyant layer thickness is small compared with the
shear layer thickness. Yet, Holmboe instability has a larger impact on turbulent mixing
than KH instability, except when the initial shear increases (smaller Richardson number).
Smyth et al. [52] found a scaling of the Holmboe momentum and mass mixing coefficients
as Km = 2.4 × 10−4h∆u and Kb = 0.8× 10−4h∆u (where h is the shear thickness and
∆u is the difference between the maximum and minimum streamwise velocity). In our
study, this would lead to Km = 10−3 m2 s−1 and Kb = 3.2× 10−4 m2 s−1 (see Table 1 and
Figure 1). These values are similar to our results in the case of a small density/buoyancy
thickness; this is the case where only the Holmboe instability mixes efficiently.

These findings confirm that Holmboe instabilities are potential sources of turbulent
mixing in the ocean [53,54]. Smyth et al. [55] showed that the collapse of KH billows
explains the generation of internal waves, which supports their importance in the mixing
of the ocean.

5. Conclusions

In this study, the dynamics, instabilities, and turbulent mixing in stratified sheared
flows were studied. We idealized these flows based on typical conditions of river estuaries
and the near-field regions of river plumes. We analyzed four main physical cases, varying
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the parameters, and identified the dominant instability, structure, and growth rate in each
case. The buoyancy/mass mixing and momentum mixing were compared for all cases
and our findings were compared with those of previous studies and observations (still
considering the limitations of our idealized model and configuration).

Clearly, the main limitation in our study is the absence of 3D dynamics, of a more
complex and realistic topography, and of neighboring dynamical features such as filaments
and eddies. Another limiting feature of our study is the absence of the Coriolis effect
and the interaction between stratified sheared and horizontal rotational flows, leading
to geostrophic or ageostrophic instabilities (baroclinic and symmetric). This underlines
the need for a 3D non-hydrostatic model to expand the present study. The use of a 3D
non hydrostatic model will allow us to understand the link between internal waves and
3D vertical shear instabilities. Furthermore, shear flow instabilities and internal waves
are important in coastal environments due to their impact on marine biology and on
sedimentation. Only a 3D model can address these impacts.
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Appendix A. The Linear Stability Analysis

We linearize the perturbations around a background state in the non-hydrostatic (NH)
Boussinesq equations. We consider the background state to be in a steady regime and in
hydrostatic balance.

The perturbation fields are written as:

(b′, u′, w′, p′) = (b̂(z), û(z), ŵ(z), p̂(z)) exp (σt + ikx) (A1)

where the real part of σ is the growth rate,− Im(σ)
k is the phase speed, and k is the horizontal

wavenumber. The hat fields are eigenfunctions.
These perturbations are injected into the linearized NH equations combined into pair

of equations for the vertical velocity and the buoyancy field.
The matrix form of the pair of equations for the vertical velocity and the buoyancy

field is summarized below:

σ

(
d2

dz2 − k2 0
0 I

)(
ŵ
b̂

)
=

(
−ikU( d2

dz2 − k2) + ikUzz −k2cos(α) + iksin(α) d
dz

−Bz −ikU

)(
ŵ
b̂

)
(A2)

The subscript z indicates a vertical derivative and α characterizes the bottom ridges

angle. Here, we write sin(α) = max(∂xzb(x)) and cos(α) =
√

1− sin(α)2.
Vertical boundaries conditions are ŵ = b̂ = 0.
Howard’s semicircle theorem [56] is used to obtain only physical solutions bounded

by the mean flow velocity extreme values:

(cr − 0.5(Umin + Umax))
2 + c2

i ≤ 0.5(Umax −Umin) (A3)



Symmetry 2022, 14, 217 27 of 29

where cr = − Im(σ)
k is the phase velocity and ci =

Re(σ)
k . The critical layer depth is defined

as the depth where U = cr.
The vertical eigenfunction is written for a specific horizontal wavenumber as:

(b̂(z), û(z), ŵ(z), p̂(z)) = Am exp (imz) (A4)

where Am is the mode amplitude and m is the vertical wavenumber.
Finally, the perturbations from the numerical simulations are projected onto an orthog-

onal basis (exp(i(kx + mz))k,m) to obtain their modal decompositions denoted as (ũ, w̃, b̃).
We write the modal EKE as:

˜EKE = 0.5
∫ L

0

∫ Hc

0
(ũ ∗ ũ∗ + w̃ ∗ w̃∗)dxdz (A5)

where the subscript ∗ denotes the complex conjugate, L is the horizontal length of the
domain, and Hc is the critical depth.

Appendix B. Identification of the Holmboe Mode: The Bifurcation Theory

In order to identify the Holmboe mode characterized by a nonzero phase velocity, we
use the bifurcation theory [57]. This theory evaluates the intersection between σr = Re(σ),
and positive/negative branches of σi = Im(σ). Therefore, we use this theory to identify
the Holmboe mode for each experiment; it is represented with the vertical blue line in
Figure A1.

Figure A1. The bifurcation theory for the reference simulation (a), experiment 2 (b), experiment 3 (c),
and experiment 4 (d). The blue solid vertical line indicates the identified Holmboe mode.
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