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Abstract :   
 
Mussel culture in Europe is currently suffering from mass mortality events with mortality rates up to 100%. 
Vibrios belonging to the Splendidus clade have recently been implicated in these events. In this study, we 
demonstrate that V. tasmaniensis LGP32 and V. crassostreae J2-9, two model pathogens of oysters, are 
also pathogenic to blue mussel larvae in an immersion challenge test. After five days, LGP32 and J2-9 
had killed 93 and 73% of challenged mussel larvae, respectively. Because quorum sensing, bacterial cell-
to-cell communication with small signal molecules, has been demonstrated to control the virulence of 
various vibrios, we further investigated whether it had an impact on the virulence of V. tasmaniensis and 
V. crassostreae. We identified the components of a multichannel quorum sensing system (as also found 
in many other vibrios) in the genomes of both species. Knock out of selected components of this pathway 
revealed that in general quorum sensing in V. tasmaniensis LGP32 and V. crassostreae J2-9 has no 
impact on motility, protease activity, biofilm formation and virulence towards mussel larvae. Finally, the 
quorum sensing inhibitor cinnamaldehyde did not protect mussel larvae from these pathogens. Together, 
these data indicate that the multichannel quorum sensing systems of V. tasmaniensis LGP32 and V. 
crassostreae J2-9 have no impact on virulence of the bacteria towards blue mussel larvae. Hence, quorum 
sensing controlling virulence is not a general feature in vibrios as it has different outcomes on virulence 
in different species. 
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Highlights 

► Splendidus clade vibrios are major pathogens of bivalves. ► V. tasmaniensis and V. crassostreae 
contain multichannel quorum sensing systems. ► These systems have no impact on virulence to blue 
mussel larvae. ► The link between quorum sensing and virulence is different for different vibrios. 

 

Keywords : Bivalve, Splendidus clade, Larviculture, Immersion challenge, Quorum sensing 
 
 

 

 



3 

 

1. Introduction 64 

Mussels are the most important aquaculture species in Europe based on live weight. The two main 65 

cultivated species are the blue mussel (Mytilus edulis) and the Mediterranean mussel (Mytilus 66 

galloprovincialis) (FAO, 2017).  Recently, mussel culture in Europe has suffered from mass mortality events 67 

with mortality rates up to 100%. In addition to environmental and genetic factors (Benabdelmouna and 68 

Ledu, 2016; Polsenaere et al., 2017), bacterial pathogens have been linked to mussel mortality (Eggermont 69 

et al., 2014; Ben Cheikh et al., 2016). Vibrios belonging to the Splendidus clade (including V. crassostreae 70 

and V. tasmaniensis) are amongst the major bacterial pathogens of marine bivalves (Beaz-Hidalgo et al., 71 

2010; Travers et al., 2015; Le Roux et al., 2016; Dubert et al., 2017) and V. splendidus strains have also 72 

been implied in mussel mortality events (Ben Cheikh et al., 2016; Oden et al., 2016; Eggermont et al., 73 

2017). The implication of vibrios in mortality events in mussels is a very recent observation and the 74 

pathogenicity mechanisms are currently unknown. 75 

Quorum sensing, bacterial cell-to-cell communication with small signal molecules, is known to control 76 

the virulence of many bacteria, including vibrios, and inactivation of these systems often decreases the 77 

virulence of these pathogens (Milton, 2006; Defoirdt, 2014). Vibrios usually contain multichannel quorum 78 

sensing systems, in which multiple signal molecules determine the output of the system (Figure 1). Three 79 

types of signal molecules can be produced by vibrios (although not all vibrios produce all types): acylated 80 

homoserine lactones (AHLs), autoinducer-2 (AI-2), and cholerae autoinducer-1 (CAI-1) (Milton, 2006). The 81 

concentrations of the signal molecules determine the cellular level of the quorum sensing master regulator 82 

(a homolog of V. harveyi LuxR), which in turn controls the expression of many genes (van Kessel et al., 83 

2013). Virulence-related phenotypes that are controlled by this kind of systems include motility, biofilm 84 

formation, and the production of lytic enzymes such as proteases (Sultan et al., 2006; Tian et al., 2008; 85 

Natrah et al., 2011; Defoirdt, 2014; Yang and Defoirdt, 2015). Moreover, multichannel quorum sensing 86 

systems have been documented to be required for full virulence of vibrios towards various host organisms 87 

(Ye et al., 2008; Bjelland et al., 2012; Defoirdt and Sorgeloos, 2012), and inhibitors of these systems (such 88 

as cinnamaldehyde, brominated furanones and brominated thiophenones) protect aquatic animals from 89 

vibriosis (Defoirdt et al., 2006; Brackman et al., 2008; Yang et al., 2015). 90 

In this study, we aimed at identifying multichannel quorum sensing systems in these pathogens, and 91 

at determining the impact of these systems on the virulence of V. tasmaniensis and V. crassostreae 92 

towards blue mussel larvae. 93 

 94 

 95 
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2. Materials and methods 96 

2.1. Bacterial strains and growth conditions 97 

V. tasmaniensis and V. crassostreae strains used in this study are described in Table 1. The bacteria were 98 

grown in marine LB broth (m-LB; tryptone 10 g/l, yeast extract 5 g/l, Instant Ocean synthetic sea salt 35 99 

g/l) at 18°C with shaking (100 rpm). Cell densities were determined spectrophotometrically at 600 nm. 100 

 101 

2.2. Identification of multichannel quorum sensing system genes in V. tasmaniensis and V. 102 

crassostreae and confirmation of the activity of the quorum sensing system  103 

GenBank was screened for homologs of components of the V. campbellii multichannel quorum sensing 104 

system in V. tasmaniensis and V. crassostreae by performing BLAST searches at the website of the National 105 

Center for Biotechnology Information (www.ncbi.nlm.nih.gov).  106 

The activity of the quorum sensing system of the vibrios was assessed by introducing the cosmid pBB1 107 

(Bassler et al., 1993) into natural rifampicin resistant mutants through conjugation using the donor strain 108 

E. coli SM10 (λpir). The pBB1 cosmid contains a tetracycline resistance gene and the V. campbellii lux 109 

operon under control of its native promoter and is activated by homologs of the V. campbellii quorum 110 

sensing master regulator LuxR. Hence, vibrios with an active quorum sensing system will produce quorum 111 

sensing-dependent bioluminescence. Transconjugants containing the pBB1 cosmid were selected on agar 112 

containing rifampicin (100 mg/l) and tetracycline (20 mg/l). 113 

 114 

2.3. Construction of V. tasmaniensis and V. crassostreae quorum sensing mutants 115 

Deletion of selected genes was performed by allelic exchange using pSW7848T (Val et al., 2012), a R6K γ-116 

ori-based suicide vector. This vector encodes the ccdB toxin gene under the control of an arabinose-117 

inducible and glucose-repressible promoter, PBAD (Le Roux et al., 2007). Briefly, two 500 bp fragments 118 

flanking the gene to delete were amplified and cloned into pSW7848T using the Gibson assembly method 119 

according to the manufacturer’s instructions (New England Biolabs, NEB). The construct was transferred 120 

from an E. coli donor strain to the Vibrio LGP32 or J2-9 by conjugation as described previously (Le Roux et 121 

al., 2007). Subsequently, the first and second recombination leading to pSW7848T integration and 122 

elimination was selected on chloramphenicol + glucose and arabinose media, respectively. After re-123 

isolations, the gene deletion was confirmed by PCR using external  primers. 124 

 125 

 126 
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2.4. Motility, protease and biofilm formation assays 127 

Swimming motility was assessed as described previously by Yang and Defoirdt (2015). Briefly, 5 µl aliquots 128 

of the isolates (OD600 = 1) were inoculated in the centre of LB35 soft agar (0.2 % agar) plates. Plates were 129 

incubated upright at 18°C, and motility halos were measured after 24 h.  130 

Caseinase and gelatinase activities were determined according to Natrah et al. (2011). For each assay, 131 

overnight grown cultures were diluted to an OD600 of 0.5, and 5 μl aliquots of the diluted cultures were 132 

inoculated to the centre of the test plates. Caseinase and gelatinase activities were assessed on agar plates 133 

containing 2% skimmed milk powder and 0.5% gelatin, respectively. Colony and clearing zone diameters 134 

were measured after 4 and 7 days incubation at 18°C for caseinase and gelatinase, respectively. In order 135 

to visualise the clearing zones in the gelatinase assay, saturated ammonium sulphate (80% solution in 136 

distilled water) was poured over the plates.  137 

Biofilm formation was measured by crystal violet staining as described by Brackman et al. (2008). 138 

Briefly, overnight grown cultures were diluted to OD600 of 0.5 and inoculated into the wells of a 96-well 139 

polystyrene plate. The plates were incubated for 24h. After incubation, the OD600 of the wells were 140 

measured. After this, the wells were rinsed 3 times with tap water, and stained for 20 min with a 0.1% 141 

crystal violet solution. The stain was removed, wells were rinsed 3 times with tap water, and air dried. The 142 

dye bound to adherent cells was redissolved in 95% ethanol, and absorbance was measured at 570 nm 143 

and expressed relative to the OD600. 144 

 145 

2.5. Challenge tests with blue mussel D-larvae 146 

Challenge tests were performed as described previously (Eggermont et al., 2017). Wild-caught mature blue 147 

mussels were stimulated to spawn by thermal shocks in sterile sea water at 5°C and 20°C until gametes 148 

were released. Spawning males and females were transferred to sterile plastic cups containing 50 ml sterile 149 

sea water and allowed to spawn for 15 minutes. Sperm and eggs were collected and gently mixed at a 10:1 150 

ratio in a beaker containing 1 l of sterile sea water. After the appearance of polar bodies, the eggs were 151 

gently rinsed with sterile sea water using a sterile 30 μm sieve to remove excess sperm. Fertilized eggs 152 

were incubated in 2 l of sterile sea water (max 100 eggs/ml) containing chloramphenicol, nitrofurazone 153 

and enrofloxacin (each at 10 mg/l). After two days of incubation, D-larvae were harvested on a sterile 60 154 

μm sieve. The larvae were washed gently with sterile sea water to remove the antibiotics. Rinsed D-larvae 155 

were transferred to a beaker containing 1 l of sterile sea water and distributed uniformly using a plunger. 156 

Subsamples were taken to calculate the larval density, and the density was corrected in order to obtain a 157 

final concentration of 250 larvae/ml. All manipulations were performed under a laminar flow hood. 158 
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One ml aliquots of the larval suspension in synthetic sea water supplemented with 10 mg/l tryptone 159 

and 5 mg/l yeast extract were subsequently transferred to 24-well plates. The final larval density was 200 160 

larvae/ml. Vibrios were inoculated into the rearing water at 105 cells/ml. In the experiment with 161 

cinnamaldehyde, 10 µM of cinnamaldehyde (Sigma) was added to the wells (Pande et al., 2013). Larvae to 162 

which no bacteria were added and that were otherwise treated in the same way as challenged larvae, 163 

were used as controls. Each treatment was performed in 24 replicates. The plates were incubated at 18°C. 164 

Each day, four replicates per treatment were stained with lugol (5% (v/v)), and stained larvae were counted 165 

under a binocular microscope (Nikon Eclipse E 200, Nikon Instruments Europe). Larvae were considered 166 

alive when stained black by lugol, death if only parts of the larvae were stained or if shells were empty.   167 

 168 

2.6. Statistics 169 

All statistical analyses were performed using the SPSS software, version 24. A significance level of 1% was 170 

used in all analyses. 171 

 172 

 173 

3. Results and discussion 174 

3.1. Virulence of V. crassostreae J2-9 to blue mussel larvae 175 

V. tasmaniensis LGP32 and V. crassostreae J2-9 are well-known pathogens of oysters, that have been used 176 

as model strains to explore virulence mechanisms and immune responses in oysters (Duperthuy et al., 177 

2010; Duperthuy et al., 2011; Toffiano-Nioche et al., 2012; Lemire et al., 2015; Vanhove et al., 2015; Le 178 

Roux et al., 2016; Bruto et al., 2017). Presence of genetically related strains has also been documented in 179 

mussels (Vezzulli et al., 2015). We previously reported that V. tasmaniensis LGP32 is also pathogenic to 180 

blue mussel larvae (Eggermont et al., 2017). In order to determine pathogenicity of V. crassostreae J2-9 to 181 

blue mussel larvae, we used the same immersion challenge test with sterile D-larvae (Eggermont et al., 182 

2017). V. crassostreae J2-9 showed to be pathogenic to the larvae, leading to significant mortality from 183 

day 2 onwards when compared to the unchallenged control (independent samples t-tests, P < 0.01) 184 

(Figure 2).  185 

 186 

 187 

 188 

 189 
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3.2. Identification of components of a multichannel quorum sensing system in the genomes of 190 

V. tasmaniensis and V. crassostreae and confirmation of the activity of the system 191 

Similar to many other Vibrio spp., vibrios belonging to the Splendidus clade have recently been suggested 192 

to contain multichannel quorum sensing systems (Zhang and Lee, 2021). Based on the genome sequences 193 

that are available in GenBank (Le Roux et al., 2009; Wang et al., 2013; Lemire et al., 2015), we identified 194 

homologs of the components of the V. campbellii multichannel quorum sensing system in the genomes of 195 

V. tasmaniensis and V. crassostreae (Table 2). This suggests that these two species also contain a 196 

multichannel quorum sensing system, with AHL, AI-2 and CAI-1 as signal molecules and a signal 197 

transduction cascade with LuxU, LuxO and LuxR, and is consistent with detection of AHLs, AI-2 and CAI-1 198 

in Splendidus clade vibrios (including V. splendidus, V. chagasii and V. pomeroyi) by using signal molecule 199 

reporter strains (Yang et al., 2011). Recently, Girard et al. (2017) reported that V. tasmaniensis LGP32 200 

produces various AHLs, which were identified by mass spectrometry.  201 

The activity of the quorum sensing system was investigated by conjugating the cosmid pBB1 into the 202 

vibrios. This cosmid contains the V. campbellii lux operon under control of its native promoter and is 203 

activated by homologs of the V. campbellii quorum sensing master regulator LuxR. We could confirm 204 

activity of the V. tasmaniensis quorum sensing system as V. tasmaniensis LGP32 pBB1 produced the typical 205 

V-shaped bioluminescence pattern that is the hallmark of quorum sensing-regulated bioluminescence in 206 

vibrios (Figure 3). Unfortunately, it was not possible to introduce cosmid pBB1 into V. crassostreae J2-9 as 207 

this strain is naturally resistant to tetracycline, the antibiotic required to select pBB1 carrying bacteria. 208 

 209 

3.3.  Impact of quorum sensing on motility, protease activity and biofilm formation of V. 210 

tasmaniensis and V. crassostreae  211 

To explore their role in QS-related phenotypes, the luxM, luxS and luxR genes were successfully deleted in 212 

V. tasmaniensis LGP32, and the luxM, luxS and cqsA genes were deleted in V. crassostreae J2-9. We 213 

determined the impact of these knock outs on phenotypes that have been previously associated with 214 

quorum sensing-regulated virulence of other vibrios, i.e. motility, protease activity and biofilm formation 215 

(Defoirdt, 2014). Both V. tasmaniensis LGP32 and V. crassostreae J2-9 were highly motile (Table 3). There 216 

were no significant differences between wild types and mutants, except for the luxM deletion mutant of 217 

V. tasmaniensis LGP32 (which was more motile than the wild type) and the cqsA deletion mutant of V. 218 

crassostreae J2-9 (which showed lower motility than the wild type). The higher and lower motility of the 219 

luxM and cqsA deletion mutant of V. tasmaniensis and V. crassostreae, respectively, might be explained 220 

by a (yet unknown) signal transduction pathway that does not involve the known shared signal 221 
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transduction pathway (using LuxU, LuxO and LuxR). A similar effect has been previously observed for the 222 

vhh hemolysin gene in V. harveyi, which was differentially expressed in a luxS deletion mutant, whereas 223 

inactivation of other components of the multichannel quorum sensing system had no effect 224 

(Ruwandeepika et al., 2011). Another explanation for the higher motility of the luxM mutant of 225 

V. tasmaniensis is that both the production of AHLs and motility are energy-consuming processes 226 

(McCarter, 2001; Keller and Surette, 2006) and consequently, inactivation of the AHL synthase LuxM might 227 

result in increased cellular energy levels which in turn might lead to higher motility. Further, the strains 228 

tested positive for caseinase and gelatinase activities, with no significant differences in these activities 229 

between wild types and quorum sensing mutants. Finally, all strains were capable to form biofilms on 230 

polystyrene (Table 3). The quorum sensing mutants of V. tasmaniensis showed lower biofilm formation 231 

than the wild type. However, the difference was only significant for the luxS deletion mutant. There were 232 

no significant differences between wild type and mutants of V. crassostreae.  233 

 234 

3.4. Impact of the multichannel quorum sensing system of V. tasmaniensis and V. crassostreae 235 

on virulence towards blue mussel larvae 236 

We further compared mortality in blue mussel larvae caused by wild types and quorum sensing mutants 237 

of V. tasmaniensis and V. crassostreae. For V. tasmaniensis, there were no significant differences in 238 

virulence between wild type and quorum sensing mutants (Figure 4A). For V. crassostreae a slightly (but 239 

significantly) increased mortality was observed for larvae challenged with the luxS deletion mutant when 240 

compared to larvae challenged with the wild type from day 2 onwards (independent samples t-test, P < 241 

0.01) (Figure 4B). Survival of larvae challenged with the luxM and cqsA deletion mutants was similar to 242 

that of larvae challenged with the wild type.  243 

In a last experiment, we used a chemical biological approach to block the multichannel quorum sensing 244 

systems of V. tasmaniensis and V. crassostreae by adding cinnamaldehyde to the rearing water. 245 

Cinnamaldehyde has been shown before to block the multichannel quorum sensing in vibrios by inhibiting 246 

the DNA-binding activity of the quorum sensing master regulator LuxR, and the compound blocked the 247 

virulence of V. harveyi towards brine shrimp and giant river prawn larvae (Brackman et al., 2008; Pande et 248 

al., 2013). However, no significant differences in survival of mussel larvae challenged with V. tasmaniensis 249 

or V. crassostreae were observed after treatment with cinnamaldehyde (Figure 5). Together, our data 250 

indicate that inactivation of the quorum sensing system of V. tasmaniensis and V. crassostreae does not 251 

attenuate their virulence. A multichannel quorum sensing system has been reported to be required for full 252 

virulence in several Vibrio species, such as V. alginolyticus, V. campbellii and V. salmonicida (Ye et al., 2008; 253 
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Bjelland et al., 2012; Defoirdt and Sorgeloos, 2012), whereas it has no effect on the virulence for V. 254 

tasmaniensis and V. crassostreae, which is similar to what has been reported for V. anguillarum (Li et al., 255 

2018). 256 

 257 

 258 

4. Conclusions 259 

In this study, we identified the components of a multichannel quorum sensing system in the genomes of 260 

the bivalve model pathogens V. tasmaniensis LGP32 and V. crassostreae J2-9. We found that motility is 261 

controlled by HAI-1 in V. tasmaniensis and by CAI-1 in V. crassostreae and that biofilm formation is 262 

controlled by AI-2 quorum sensing in V. tasmaniensis, whereas the multichannel quorum sensing systems 263 

of V. tasmaniensis and V. crassostreae have no effect on protease activity, and on virulence of the 264 

pathogens towards blue mussel larvae. Hence, since quorum sensing controlling virulence is not a general 265 

feature in vibrios, it is not possible to extrapolate the impact of quorum sensing on virulence of vibrios 266 

from one species to another. 267 

 268 

 269 
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Tables 435 

Table 1. Strains used in this study. 436 

Strain Genotype Reference 

V. tasmaniensis LGP32 

  LGP32 WT Wild type from which the luxM, luxS and luxR deletion 

mutants were derived. 

Le Roux et al. (2009) 

  LGP32 luxM Deletion of luxM (AHL synthase gene) This study 

  LGP32 luxS Deletion of luxS (AI-2 synthase gene) This study 

  LGP32 luxR 

 

Deletion of luxR (quorum sensing master regulator) This study 

V. crassostreae J2-9 

  J2-9 WT Wild type from which the luxM, luxS and cqsA deletion 

mutants were derived. 

Lemire et al. (2015) 

  J2-9 luxM Deletion of luxM (AHL synthase gene) This study 

  J2-9 luxS Deletion of luxS (AI-2 synthase gene) This study 

  J2-9 cqsA Deletion of cqsA (CAI-1 synthase gene) This study 

 437 

 438 

 439 

 440 

 441 

 442 

 443 
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Table 2. Homologs of components of the V. campbellii ATCC BAA-1116 (Vca) multichannel quorum sensing system identified within the genomes 444 

of V. tasmaniensis LGP32 (Vta) and V. crassostreae J2-9 (Vcr), and nucleotide identities between the homologs. 445 

Gene Function Locus tag1 Vca 

(chromosome) 

Locus tag1 Vta 

 (chromosome) 

Locus tag1 Vcr  % identity Vca-Vta  

(% coverage) 

% identity Vca-Vcr  

(% coverage) 

% identity Vta-Vcr 

(% coverage) 

luxM AHL synthesis M892_17055 (chr I) VS_RS16040 (chr II) VCR9J2v1_1350180 70   (95) 72   (96) 77   (94) 

luxN AHL detection M892_17050 (chr I) VS_RS16035 (chr II) VCR9J2v1_1350181 73   (95) 76   (96) 80   (95) 

luxS AI-2 synthesis M892_13670 (chr I) VS_RS12075 (chr I) VCR9J2v1_700111 81 (100) 81 (100) 89 (100) 

luxP AI-2 detection M892_24610 (chr II) VS_RS16480 (chr II) VCR9J2v1_110050 68   (80) 68   (81) 84 (100) 

luxQ AI-2 detection M892_24605 (chr II) VS_RS16485 (chrII) VCR9J2v1_110051 64   (57) 64   (63) 81   (99) 

cqsA CAI-1 synthesis M892_21495 (chr II) VS_RS08055 (chr I) VCR9J2v1_720342 76   (90) 75   (90) 83   (99) 

cqsS CAI-1 detection M892_21490 (chr II) VS_RS08060 (chr I) VCR9J2v1_720343 72   (98) 73   (98) 83   (99) 

luxU Signal transduction M892_16185 (chr I) VS_RS04560 (chr I) VCR9J2v1_50013 69   (56) 71   (26)2 83 (100) 

luxO Signal transduction M892_16180 (chr I) VS_RS04555 (chr I) VCR9J2v1_50012 76   (95) 77   (95) 88 (100) 

luxR Master regulator M892_13795 (chr I) VS_RS11960 (chr I) VCR9J2v1_700132 77   (86) 79   (86) 89 (100) 
1locus tags refer to the genome sequences in Genbank: Vca chr. I: CP006605; Vca chr. II: CP006606; Vta chr. I: NC_011753; Vta chr. II: NC_011744; Vcr: CCJY00000000.1 
260% identity at amino acid level (70% coverage) 

 446 

 447 

 448 

 449 
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Table 3. Motility, caseinase and gelatinase activities and biofilm formation of V. tasmaniensis LGP32 and 450 

V. crassostreae J2-9 wild types and quorum sensing mutants (average ± standard deviation of three 451 

independent experiments). 452 

Strain Motility halo1 Caseinase activity2 Gelatinase activity2 Biofilm formation3 

V. tasmaniensis LGP32 

  LGP32 WT 62 ± 4 1.4 ± 0.1 2.6 ± 0.2 0.22 ± 0.03 

  LGP32 luxM 78 ± 2* 1.4 ± 0.0 2.7 ± 0.1 0.14 ± 0.03 

  LGP32 luxS 72 ± 5 1.6 ± 0.1 2.6 ± 0.2 0.11 ± 0.02* 

  LGP32 luxR 

 

63 ± 3 1.4 ± 0.1 2.7 ± 0.2 0.18 ± 0.04 

V. crassostreae J2-9 

  J2-9 WT 72 ± 5 1.4 ± 0.0 2.5 ± 0.2 0.17 ± 0.04 

  J2-9 luxM 72 ± 4 1.4 ± 0.0 2.6 ± 0.2 0.13 ± 0.02 

  J2-9 luxS 75 ± 4 1.4 ± 0.0 2.7 ± 0.2 0.19 ± 0.01 

  J2-9 cqsA 56 ± 3* 1.3 ± 0.1 2.6 ± 0.2 0.22 ± 0.02 
1 Diameter of the motility zone (mm) 
2 Ratio between the activity zone and the colony diameter 
3 OD570 of crystal violet-stained biofilms on polystyrene multiwell plates/OD600 

* Significantly different from the wild type (independent samples t-test; P < 0.01) 

 453 

 454 

 455 

 456 

 457 
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 467 
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Figures 469 

 470 
Figure 1. Generic scheme of multichannel quorum sensing systems of vibrios. The LuxM, LuxS and CqsA 471 

enzymes synthesise acylated homoserine lactone (AHL), autoinducer-2 (AI-2) and cholerae autoinducer-1 472 

(CAI-1), respectively. These signal molecules are detected at the cell surface by the LuxN, LuxPQ and CqsS 473 

receptors, respectively. The receptors feed a shared phosphorylation/ dephosphorylation signal 474 

transduction cascade involving the LuxU and LuxO proteins. This cascade controls the production of the 475 

master regulator LuxR. The level of LuxR is proportional to the concentration of the signal molecules, and 476 

LuxR determines the transcription of the quorum sensing target genes. “P” denotes phosphotransfer. 477 

Based on Defoirdt et al. (2008). 478 

 479 

 480 

 481 

 482 



17 

 

 483 
Figure 2. Survival of blue mussel D-larvae challenged with V. crassostreae J2-9. Error bars represent the 484 

standard deviation of four mussel cultures. “Control” refers to unchallenged larvae that were otherwise 485 

treated the same as the other larvae. 486 
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 501 

Figure 3. Quorum sensing-dependent bioluminescence of V. tasmaniensis LGP32 pBB1. The data points 502 

are averages of three replicates. Error bars are too small to be visible on the graph. 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 

 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

1000

10000

100000

1000000

10000000

0 2 4 6 8 10 12

Lu
m

in
e

sc
e

n
ce

/O
D

6
0

0

Time (h)



19 

 

A 

 

B 

 
Figure 4. Survival of blue mussel D-larvae challenged with V. tasmaniensis LGP32 (panel A) and V. 519 

crassostreae J2-9 (panel B) wild type (WT) and quorum sensing mutants. Error bars represent the standard 520 

deviation of four mussel cultures. “Control” refers to unchallenged larvae that were otherwise treated the 521 

same as the other larvae.  522 
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 528 
Figure 5. Survival of blue mussel D-larvae challenged with V. tasmaniensis LGP32 or V. crassostreae J2-9, 529 

with and without the quorum sensing inhibitor cinnamaldehyde (added at 10 µM to the rearing water at 530 

the start of the experiment). Error bars represent the standard deviation of four mussel cultures. “Control” 531 

refers to unchallenged larvae that were otherwise treated the same as the other larvae. 532 
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