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Abstract: To achieve high accuracy bathymetry retrieval using remote sensing images with robust
performance in a 0 to 25 m-deep lagoon with sharp bottom depth variations, a new Iterative Multiple
Band Ratio (IMBR) algorithm is tested against known Multiple Band Ratio (MBR) and Single Band
Ratio (SBR) algorithms. The test was conducted using the five multispectral bands, at 10 to 60 m
resolution, of a Sentinel-2 image of the 25 km2 Poe lagoon, a UNESCO World Heritage Area. The
IMBR approach requires training datasets for the definitions of depth threshold at which optimal
band ratios vary. IMBR achieved accuracy, quantified with an original block cross-validation pro-
cedure across the entire depth range reached a mean absolute error of 46.0 cm. It compares very
favorably against MBR (78.3 cm) and the various SBR results (188–254 cm). The method is suitable
for generalization to other sites pending a minimal ground-truth dataset crossing all the depth range
being available. We stress that different users may need different precisions and can use MBR or SBR
algorithms for their applications. For the hydrodynamic modelling applications that are developing
in New Caledonia, the IMBR solutions applied to Sentinel imagery are optimal.

Keywords: satellite derived bathymetry; rugose lagoon; adaptive iterative model; band ratio;
UNESCO World Heritage Area; multispectral image

1. Introduction

Knowledge of bathymetry is a critical issue for many coastal scientific and manage-
ment applications. In shallow coral reefs and lagoons, bathymetry plays an important role
in geophysical and biological processes: living communities, substrate types and habitat
zonation are frequently related to water depth [1], sedimentary facies are controlled by
depth and energy regime [2,3] and coral bleaching is also depth-dependent [4]. In terms of
applied coastal studies, accurate bathymetry is paramount to achieve many applications,
from the assessment of coasts facing storms or changing climate conditions [5], to real-
istic hydrodynamic 3D modelling [6,7] or the exploration of submerged landscapes and
archaeological sites [8,9].

In New Caledonia, located in the Southwest Pacific, sediments produced in particular
by the mining industry impact marine living communities all around the main island,
called Grande-Terre [10]. Hydrodynamic models are used to investigate the dynamics
and fate of terrestrial inputs into the lagoons [11]. However, bathymetry is not known
precisely everywhere for the 19,385 km2 of shallow and deep lagoons [12] that surround
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Grande-Terre. Gaps in bathymetric data have impaired the development of coastal models
in the past, but recent projects aim to expand the current spatial coverage of hydrodynamic
models from the south-west lagoon [11] to all lagoons around Grande-Terre. Therefore, it
was necessary to investigate a relatively low-cost, fast, and accurate way to fill bathymetric
gaps especially for shallow lagoon areas that cannot be navigated and surveyed with
traditional hydrographic means using depth sounders.

Traditional bathymetric measurements made by echo-sounders, either single- or multi-
beam, record water depth from the sea surface from some sort of sea-going vessels. This
acquisition process remains expensive and time-consuming [13]. Furthermore, soundings
in shallow water require specific compact echosounders which still cannot perform in the
shallowest part of lagoons (0–1 m), out of reach even for small vessels. The problem is even
more acute in areas with sharp bottom depth variations (i.e., rugose areas), such as around
reticulated patch reefs that can be very extensive and impenetrable. Methods relying
on airborne bathymetric LIDAR (Light Detection And Ranging) provide very efficient
solutions in such shallow waters down to 30 m in clear waters, but remain very expensive
despite improving in cost/coverage ratios [14,15]. Finally, satellite imagery can be inter-
preted to infer bathymetry synoptically using optical data with a wide range of spatial
resolutions (from 300 m down to 1 m) and therefore at a much lower cost. However, the
spatial resolution remains much lower than traditional hydroacoustic methods (~0.05 m).

Limitations of satellite optical imagery for bathymetric modelling have been exten-
sively discussed in the past [16,17] and these inherent limits are still present today [18].
Nevertheless, developments are still on-going, taking advantage in particular of new
multispectral high spatial resolution (1–10 m) sensors that allow new algorithms to be
tested [19–28]. Specifically, for New Caledonia, a first attempt of bathymetry retrieval using
MEdium Resolution Imaging Spectrometer (MERIS) scenes has been undertaken [29] but
the spatial resolution was too coarse to be relevant for the development of numerical mod-
els. However, many of these recent developments use commercial imagery with narrow
swath, whose processing would be too costly to cover all New Caledonia lagoons. Con-
sidering our constraints, we aimed for deriving Satellite-Derived Bathymetry (SDB) using
preferentially the free wide-swath Sentinel-2 multispectral images. With a five-day revisit
time, a 10 m medium-scale native resolution and its suitable spectral resolution, the Euro-
pean Space Agency sensor have high potential for marine and coastal applications [30–34],
and its use for bathymetry retrievals is increasing [21–24].

Several methods relating to passive SDB have been demonstrated in recent years.
These approaches can be subdivided into three different categories. The first category,
based on empirical modelling, is the most commonly applied on passive hyperspectral and
multispectral data [13]. These methods rely on a simple radiative model describing the
subsurface water reflectance following depth [35–38], for instance

R(h) = rv

(
1 − e−αh

)
+ rbe−αh (1)

where h is the depth, rv is the reflectance due to volume scattering resulting from an
infinitely deep-water column, rb is the bottom reflectance and α is a water attenuation
coefficient considering downwelling and upwelling pathway. We follow here the notations
and formalism provided by Lyzenga et al. [36].

Many complex processes and especially the air–water interface effects are often ne-
glected, which allows the model form to be applied with reflectance as well as with radiance,
most often assuming homogeneous effects of the atmosphere over the study area, which
is generally small. As a result, three main factors of variation of the radiative signal are
generally taken into account: water attenuation, bottom reflectance and volume scattering.
Equations are solved by empirical estimation requiring in situ depth measurements or
some simplifying hypotheses to remove some of the unknowns. These methods generally
suffer from the natural spatial variability of water attenuation and bottom reflectance that
are inherently overlooked, especially over large areas. For this reason, they are commonly
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applied by spatial regions after some sort of spatial segmentation is performed to limit the
intra-region variability [39,40] and with locally tuned parameters [41,42].

The second category of satellite-derived bathymetric approaches regroups the so-
called semi-analytic methods. These methods theoretically do not require in situ depth
measurements. They consist of solving a more constrained equation system from the
radiative transfer theory with more optically important parameters (Inherent Optical Prop-
erties, IOPs), but also with more control of the model error on water leaving reflectance
retrievals [14]. Their advantages are that they provide a per pixel solution whose per-
formances are spatially more stable than empirical methods and allow in parallel the
evaluation of several optically important biophysical parameters such as chlorophyll con-
centration or backscattering coefficient. On the other hand, they require a spectral library
of the so-called end-members and rely on the spectral matching between the simulated and
the measured signals. An important first step is thus an accurate atmospheric correction.
Considering the more complex equations and numbers of unknown factors to solve, these
methods are more suitable for hyperspectral sensors [14,21,25].

Finally, the last category of bathymetric approaches regroups pure statistical classi-
fication or machine-learning methods. Most machine-learning processes targeting water
depth retrieval rely on decision trees [43] or neural networks [44,45]. They are very efficient
and accurate, but often require a large set of calibration measurements, in order to avoid
over-fitting and to be able to generalize from one area to another. Neural networks present
the advantages of considering the non-linear relationship that can occur between depth
and optical signals [44].

This study describes the application of a new SDB algorithm based on Sentinel-2
data available from the Copernicus Program and its portal. The shallow and rugose Poe
lagoon located on the west coast of New Caledonia is investigated, also using adequate
ground-truthing for model calibration and validation. Specifically, after a brief review of the
current state of the art, we evaluate the performance of single-band ratio and multi-band
ratios models applied to Sentinel-2 data. We first applied these models to the shallowest
part of the Poe lagoon (< 4 m) and then to an extended area including bathymetry up to
25 m. However, choosing suitable bands remains a difficult task and often results in depth-
dependent performances, enabling good accuracy for either shallow or deep waters, but
not both. To overcome this issue, a new band optimization iterative approach is proposed
that optimally suited our objectives to perform well on shallow water lagoons displaying
large and sharp bathymetric changes as well as very irregular shallow coral reef areas.

2. Materials and Methods
2.1. Study Site

The study site, the Poe area, is located in the central part of the west coast of New
Caledonia. It is part of the UNESCO’s World Heritage Lagoons of New Caledonia. It
includes a 25 km2 shallow sedimentary lagoon bounded on the shore side by an extensive
seagrass bed. This shallow lagoon, quasi rectangular-shaped, is bounded on its western
side by a narrow pass called the Sharks’ Fault (Faille aux Requins), and on its eastern
side by the Gouaro Bay which is open onto the ocean. Finally, on the southern side, Poe
lagoon is delimited by a 15 km long barrier reef (Figure 1). The lagoon itself contains
several benthoscapes (e.g., bottom types, substrates, depth variability) such as sand, very
low-density seagrass and algal beds, irregular coral structures and mixed hardground
bottoms, which are more abundant eastward. With a maximum measured depth of about
25 m in the pass and a maximum depth of only 4 m in the inner lagoon, the study site
demands a bathymetry retrieval process that is accurate for the narrow range of shallow
depth found throughout most of the lagoon, while still being accurate within the 0–25 m
range around the pass area. These constraints are, however, actually fairly typical of most
island shallow reef systems, bordered by deep channels and slopes. Considering this,
we hereafter defined two areas of interest for the rest of the study (Figure 1). The first
one, called the Shallow Lagoon Area (SLA), encompasses only the inner lagoon whose
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maximum depth is less than 4 m. The second zone is then called the Extended Lagoon
Area (ELA) and is composed of the SLA, the Sharks Fault and the eastern border of the
Cap lagoon.
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Figure 1. Location of the study site (red dot on the lower-left thumbnail). Sentinel-2 image of the Poe lagoon (5 March 2018),
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of the extended area that includes the Sharks Fault pass (red).

2.2. Sentinel-2 Imagery and Pre-Processing

The 10 m spatial resolution available for several bands of the MultiSpectral Instru-
ment (MSI) Sentinel-2A and -2B sensors was deemed a good compromise to capture the
topography of the area with adequate precision while allowing us to collect a reasonable
amount of calibration/validation bathymetric data at the same resolution.

The open-data Sentinel-2 distribution strategy allows accessing numerous images,
which is a significant advantage as different images can provide different qualities due to
sea surface effect and glint, cloud cover or water clarity, which ultimately can alter any
algorithm performances [22]. The choice of the ‘best’ image must follow several criteria.
Ideally, the image should be free of apparent sea surface sunglint and with no cloud cover.
Moreover, the end of high tide at the time of acquisition and low precipitation the days
before the acquisition generally mean better water clarity and transparency for this area.
The Sentinel-2A level 1-C image selected for this study (S2A_MSIL1C_20180305T230901)
was captured on 5 March 2018, with a tide level of 1.31 m. Without any apparent glint in
the lagoon that could have required some radiometric corrections [46], the image has been
judged of sufficient quality.
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Following the same philosophy than Kerr and Purkis [25], the five most water-
penetrating spectral bands were considered (Table 1).

Table 1. Sentinel-2 spectral and spatial characteristics.

Band Name Central Wavelength
(nm)

Spectral Bandwidth
(nm)

Spatial Resolution
(m)

Extra (shorter) Blue 443.9 27 60
Blue 496.6 98 10

Green 560.0 45 10
Red 664.5 38 10

Extra (longer) Red 703.0 19 20

The land and few clouds were masked by thresholding the near-infrared band. Cloud
cover was less than 1.5% with residual cloud shadows far away from the study site.

The shorter blue and longer red bands (Table 1) were resampled (nearest-neighbor
method) at a spatial ground resolution of 10 m to match the higher spatial resolution of the
other bands.

The image was atmospherically corrected using the ACOLITE software [47], which
is designed to process Sentinel-2 and Landsat 5/7/8 for coastal and inland water ap-
plication [48]. The method uses multiple dark targets in the scene to construct a “dark
spectrum”, which is used to estimate the atmospheric path reflectance according to the best
fitting aerosol model [28,49,50].

2.3. In Situ Acquisition and Processing

Empirical methods require depth datasets for training and validation purposes. This
is compulsory for the calibration of the algorithms, and for accuracy assessment. In situ
bathymetric transects were acquired using a single-beam echosounder in the deep pass
(Sharks Fault) and in the shallow lagoon using a Seafloor HydroLite™-TM, HydroLite-DFX,
which has a precision of 0.1% of actual depth (Figure 1). Records were georeferenced using
a Geode, Juniper SystemTM, GPS. This campaign took place 22nd–23rd of May 2018. The
survey was accomplished at a rate of 2 Hz with a maximum cruising speed of about 2
m/s. Records were resampled to provide approximately one sounding every 2 m. Finally,
a pressure sensor was simultaneously deployed in the Poe lagoon to perform accurate
tidal correction and to be in line with the chart datum of the Hydrographic Service of the
French Navy.

In coral rugose environments, significant depth variation, even at a 10 m spatial
resolution, within 100 m2-pixel can be found. In that case, insufficient coverage of in situ
measurements can bias accuracy assessment since it is difficult to ascertain if a handful
of in situ depth records can represent well the depth across the entire pixel. In order to
reduce this bias in training or control, pixels overlapped by too few bathymetric records
were discarded. For that purpose, a minimum threshold of 20% of pixel area covered by
ground-truth data was applied. For valid pixels, the assigned ground-truth depth was the
average of the overlapping in situ bathymetric records. Eventually, 607 pixels were kept,
including 86 located within the Sharks Fault.

2.4. Baseline: The Stumpf Model with a Single Band-Ratio as an Enhancement of Empirical Models

Among the aforementioned first type of approaches (empirical modelling) and in
order to reduce the effect of bottom reflectance changes, Stumpf et al. [38] proposed an
empirical model based on the ratio of the logarithms of two bands i and j (practically blue
and green), which can be expressed as

ĥ = m1
ln(nRw(λi))

ln
(
nRw(λj

)
)
− m0 (2)
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where ĥ is the estimated depth, Rw(λi) the water reflectance for the spectral band i, m1 a
tunable constant to scale the ratio to depth, m0 an offset coefficient and n a fixed constant. In
practice, it consists of calibrating two constants using in situ depth soundings: the scaling
coefficient m1, and the offset coefficient m0. The constant n is only aimed at transforming
the reflectance values in order to avoid negative logarithm and to obtain a linear response
of the ratio with depth. In this paper, the expression “blue to green ratio” is used when
referring to the ratio of logarithms of these two bands, after multiplication by the constant n.

The rationale of the method is that reflectance of both bands decreases exponentially
as depth increases; however, the band with a shorter wavelength (blue band) will be
less attenuated than the other. Accordingly, the ratio of the blue to green increases with
depth. Moreover, it is stated that a change in bottom albedo affects both band logarithms
similarly [37]; hence, ratios are much more sensitive to depth variation than to bottom
albedo changes. In comparison with the first empirical models by Lyzenga [35], this
solution allows reducing bottom change sensitivity and allows estimating depth with
fewer empirical parameters. The method has been generally applied with a single ratio,
generally using the blue to green bands, considering their depth of penetration and their
availability on most multispectral very high-resolution sensors launched the past two
decades (such as IKONOS, Quickbird, or GeoEye). However, to the best of our knowledge,
except the use of multi-regression of the five most penetrating bands by Purkis et al. [26]
and the use of different ratio of Sentinel-2 bands by Caballero and Stumpf [22], the choice
of relevant bands according to their optimal depth of penetration has not been much
discussed or implemented with the new generation multispectral sensors (e.g., Worldview2,
or Sentinel-2).

2.5. Enhancement of Empirical Models with Band Selection and Adptative Iterative Modeling
2.5.1. General Principles

In practice, the performances achieved by empirical models remain spatially variable
and can be poor in some conditions. The scientific literature reports this variability in
accuracy and generally assumes sensitivity to environmental variations, such as water
optical property or bottom reflectance variations, to be the factors responsible for it. How-
ever, the model calibration itself can be responsible for some part of the problems, as it is
inherently dependent on the range of depths considered during the modelling exercise.
Specifically, bands with a longer wavelength are completely attenuated after few meters (or
less) under the surface and subsequently the backward signal is insignificant. In the case of
unperfected or absent volume scattering correction, a noisy residual signal remains. On the
other hand, bands with shorter wavelength penetrate deeper, going through larger amount
of volume scattering, and generating larger error if improperly corrected. As a result,
the ideal band ratio model should be optimized according to the processed bathymetric
intervals, by minimizing, or avoiding, the contribution of less adequate bands. Unfortu-
nately, most empirical models, including the Stumpf’s algorithm, are linear in the sense
that they are not optimized according to the different depth intervals and use the same
bands throughout the study areas. In doing so, longer wavelength coefficients, whose
water-leaving reflectance entirely come from volume scattering in deep areas, can bias the
prediction. This is not a new finding. Very early, Jupp [51] proposed a bathymetric model
based on the depth of penetration of each band. The difference between the attenuation
properties of different bands is well known [52,53] and the changes resulting from different
band selections have been reported [54,55]. Yet, surprisingly, the selection of the best set of
bands in regard to the depth interval at stake remained rarely considered.

Practically, the first step of our approach was to push the Stumpf model to its limits by
systematizing its application with the calibration/validation of every possible single band
ratio (called SBR hereafter) model available on Sentinel-2 and evaluate the performances
for the different depth ranges occurring on our study site. Specifically, separated single
band ratio models were individually compared for all the 10 ratios that can be available
from the five chosen Sentinel-2 bands (Table 1). Second, the single-band ratio regression is
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extended to a general model by the simultaneous use of several ratios and the integration
of a term penalizing model complexity. This penalization leads to an automatic selection of
relevant ratios and avoids over-fitting, as shown by Figueiredo et al. [56].

Finally, in a last optimization step, a two-iteration calibration process is proposed.
The principle is that the depth of any given pixel is firstly predicted by a global model
calibrated with the whole sounding dataset. This initial prediction identifies depth within
a narrow possible range, which is taken as a first guess allowing to refine further the pixels
estimation. For this, a second iteration is performed using a model this time calibrated
only with in situ measurements contained within the interval of the first guess.

The workflow in Figure 2 summarizes the overall process. The following sections
refer to the title of the boxes in the flowchart.
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2.5.2. Multiple Band-Ratio (MBR) Model

Five spectral bands can yield up to 10 different ratios. To achieve a general multiple
band ratio (MBR) approach, multilinear regressions based on all available ratios against
the training depth data were computed. This is formalized using:

ĥ =
D

∑
d=1

md
ln(nRw(λi))

ln
(
nRw(λj

)
)

− m0 (3)

min
M

 N

∑
n=1

(
hn + m0 −

D

∑
d=1

md
ln(nRw(λi))

ln
(
nRw(λj

)
)

)2

+ α
D

∑
d=1

md
2

, with M =

 m0
...

mD

 (4)

where formalism is the same as for Equation (2). D and hn are respectively the number
and depth values of true soundings. The model in Equation (3) is a multilinear regression
model with an offset coefficient m0. In order to avoid overfitting, a regularization process is
used (see Equation (4)). The computations minimize the term in Equation (4) with respect
to the coefficient vector M. The hyper-parameter α is thus here to penalize the complexity
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of the model. Here, we used the ridge regularization process, also known as the Tikhonov
regularization [57,58].

2.5.3. Iterative Multiple Band-Ratio (IMBR) Model

Based on the observation of the influence of depth toward optical ratios (presented
in Figure 3 in the Results section), we therefore choose to define depth thresholds before
applying multiple MBR on multiple depth ranges. The first step of this method consists
of computing a global MBR model using the full training dataset, as described above in
Section 2.5.2. This first step allows establishing first guesses about unknown depth and
consequently allows flagging each pixel within a likely range of depth. Secondly, for each
pixel, these first bathymetric estimates are recomputed but only using a MBR model with
weight ratios suitable to infer depth within the likely range of depth that was guessed
at step 1. Visual analysis of the behaviors of the ratios along depth allowed us to define
a first guess on these thresholds. Further analysis of performance of the model (using
coefficient of determination, root mean square error, and mean absolute error) led us to
refine two thresholds at 5.5 and 12 m (Figure S1). Thus, after a first screening of the whole
Sentinel-2 area using a global MBR, three different MBR are performed for each range
of depth between these thresholds (intervals 0–5.5 m, 5.5–12 m and over 12 m). This
original two-step optimization forms our final iterative regularized multiple-band ratio
(IMBR) model.
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2.6. Accuracy Assessment

In order to account for the low number of available pixels, the models were assessed
using a cross-validation process. Traditional leave-one-out and K-folds cross-validation
were initially applied, but to avoid spatial correlation in the control bathymetric measure-
ments that have been collected along continuous transects, we used a block cross-validation
procedure. This means that segments of transect, representing at least 50 m, were used
either as control or validation samples. This is comparable to a K-folds cross-validation
applied to data which are ordered by acquisition time [59,60]. In other words, among the
segments, one is retained as the control data, and the remaining segments are used for
model calibration. The process is repeated, until each segment served once as the control
data. Once all the prediction was achieved, the model performance was evaluated with
the Mean-Absolute-Error metrics. The cross-validation process allows the tuning of the
hyper-parameter of penalization and the estimation of model error.
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2.7. Performance of the Different Models

We demonstrate the improvements made by our approach by firstly performing differ-
ent bathymetry estimations (SBR and MBR) on the portion of the lagoon corresponding to
the Shallow Lagoon Area (SLA). This area includes in situ measurements, within the 0–4 m
range only. Then, measurements from the Extended Lagoon Area (ELA), down to 23 m,
located within the pass were inserted in the training dataset for both SBR and MBR models.
The comparison of the results provided by these two calibration sets allows discussing
model robustness to various ranges of depth. Lastly, our IMBR algorithm was applied to
the ELA, and then extended to a wider region of the west coast which included several
other shallow lagoons.

3. Results
3.1. Single-Band Ratios

As expected, scatterplots of raw band ratios versus measured bathymetry soundings
(Figure 3) show variable behaviors depending on the depth level and the selected wave-
lengths. Band ratios that used the red signal display a drastic change in behavior around
a critical depth of about 4 m and display a quite linear relationship for soundings below
this threshold. The blue to green ratio (i.e., ratio commonly used by practitioners of the
Stumpf algorithm) displays a less straight relation but seems to cover a wider range of
depth considering the fairly linear cloud of points between 1 and 20 m.

For single-band ratio models applied to the ELA, the best performances are obtained
by the blue to green ratio, but it could only describe approx. 52% of the depth variation
(see Supplementary Material Figure S2). Others SBR models performed very poorly in
comparison. Once applied to the SLA, single-band ratio models showed opposite results.
The amount of depth variation described by the blue to green model is reduced by more
30%, whereas models based on the red band showed a drastic increase in performance,
reaching a coefficient of determination of 90% for the green/red SBR model (top and
middle panels Figures 4 and 5). However, no acceptable compromise remains as none of
the ratios provided suitable solutions for both ELA and SLA areas.

3.2. SBR versus MBR Models Applied on SLA

Stumpf’s model based on the blue to green ratio provided poor results (21.5% of
variance explained only and Mean Absolute Error of 0.405 m) when applied to the SLA
(Figure 4). It struggles to explain the small gradient of observed depths in this area (between
approx. 1 m and 3.5 m) as most of the estimated depths lie between 2 and 3 m. Conversely,
the green to red product offers remarkable results in this shallow bathymetric range. It
explained almost 90% of the variance of depth, reduced both MAE and RMSE and thus
achieved well its objectives. For the SLA, comparatively to the green/red SBR model,
MBR provided a slight increase in accuracy. While the percentage of variance explained
(89.4 versus 89.6%) is equivalent, the MBR provided notable differences spatially and
improved spatial accuracy. Areas with a bathymetry close to the hydrographic zero are
more important. The eastern part of the lagoon, known to have a rugose bathymetry,
appears less smooth than with a green/red SBR (Figure 4).
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3.3. SBR versus MBR Models Applied on ELA

The green-red SBR and the MBR models calibrated on the SLA allows a precise
prediction of depth. Figure 5 displays the results of the same SBR and MBR models but
trained this time with the entire soundings dataset, thus including the Sharks Fault. For
this extended dataset, the Stumpf model (i.e., the blue to green SBR) provided much better
results than the green-red SBR, in line with previous Sentinel-2 studies [22]. The green-red
SBR seems particularly inadequate for this range of depths (0–25 m). While the Stumpf
blue-green ratio explained up to 52.6% of the variance, it still underestimated soundings
over 4 m. The MBR model clearly outperformed the two SBR estimations and explained
nearly 90% of the variance. Nevertheless, both the Stumpf and MBR models provided large
areas of inaccurate (red in Figure 5) pixels located in the very shallow waters, scattered
along the coastline and the barrier reef. With the MBR model, even if known features of
the lagoon (e.g., sharp irregularities on its eastern side) seems to be poorly represented, the
deep passage is now within a coherent range, from 7 m down to 25 m.

3.4. Results from IMBR on ELA

IMBR, by design, takes full advantage of the various band ratio behaviors presented
in Figure 3. Based on Figure 3, an initial threshold has been defined at 4 m; then, empirical
optimization led to the definition of two additional thresholds at 5.5 and 12 m as explained
above (see Methods Section 2.5.3). Within these two thresholds, three different MBR were
implemented with the most suitable bands (Figure 6). Figure 6 shows the evolution of
weights (called md in Equation (4)) for every selected SBR depending on the intervals of
depths. The importance given to band ratio is also changing along the calibration depth.
Among a certain depth interval, negative weight for a specific ratio indicates that the
importance of this ratio is quasi-negligible for estimation of depth. For example, green/red
ratio is an important component for the 0–5.5 m and 5.5–12 m interval but its influence on
bathymetric estimation is insignificant in the last interval (>12 m).

The calibration in two separated steps offers a general improvement of the perfor-
mance, as seen in Figure 7, with a coefficient of determination reaching 92% and a mean
absolute error almost falling by 45%. The greatest enhancement is achieved on the shal-
low prediction. The mean absolute error in prediction smaller than 4 m is about 16.7 cm,
reaching the accuracy level obtained by models calibrated on the shallowest area. Simul-
taneously, the model is not limited to shallow depths and can predict deeper bathymetry
without any strong bias. As a drawback, some outlier predictions remain. For example, two
outliers, which are located on the steep ridge of the deep inlet, are strongly over-estimated.
Their removals allow us to reach the best accuracy obtained in this study, with a mean
absolute error of 13.7 cm for shallow depths (<4 m).

The generalization of the IMBR model is stable, as can be observed in Figure 7. The
shallow bathymetry recovers the same level of detail as for MBR predictions over SLA
(Figure 4), even in the eastern part of the lagoon. The number of pixels predicted above
sea-level remains small and is generally contained in the intertidal zone, where the semi-
dry area could be left after the soil thresholding/masking process. The Sharks Fault shows
coherent predictions within a range of 7 up to 26 m.



Remote Sens. 2021, 13, 4108 13 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 6. Evolution of the ratio weights (md Equation (4)) over the three depth intervals of calibration. 

The calibration in two separated steps offers a general improvement of the perfor-
mance, as seen in Figure 7, with a coefficient of determination reaching 92% and a mean 
absolute error almost falling by 45%. The greatest enhancement is achieved on the shallow 
prediction. The mean absolute error in prediction smaller than 4 m is about 16.7 cm, reach-
ing the accuracy level obtained by models calibrated on the shallowest area. Simultane-
ously, the model is not limited to shallow depths and can predict deeper bathymetry with-
out any strong bias. As a drawback, some outlier predictions remain. For example, two 
outliers, which are located on the steep ridge of the deep inlet, are strongly over-estimated. 
Their removals allow us to reach the best accuracy obtained in this study, with a mean 
absolute error of 13.7 cm for shallow depths (< 4 m). 

The generalization of the IMBR model is stable, as can be observed in Figure 7. The 
shallow bathymetry recovers the same level of detail as for MBR predictions over SLA 
(Figure 4), even in the eastern part of the lagoon. The number of pixels predicted above 
sea-level remains small and is generally contained in the intertidal zone, where the semi-
dry area could be left after the soil thresholding/masking process. The Sharks Fault shows 
coherent predictions within a range of 7 up to 26 m. 

Figure 6. Evolution of the ratio weights (md Equation (4)) over the three depth intervals of calibration.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. IMBR-derived bathymetry for the ELA (calibration on the global dataset). Predictions are at zero hydrographic 
level; therefore, the very few red pixels on prediction maps are incoherent prediction, estimated above sea level. Accuracy 
metrics are provided above the validation plot. 

4. Discussion 
4.1. Interest of the New IMBR Approach 

None of the single-band ratio models are able to properly estimate bathymetry across 
a wide range of depth. A tradeoff between performances in shallow and deeper areas is 
needed when selecting bands. Ratios based on longer red wavelengths provide accurate 
measurements of the shallow area but are unable to provide a valid estimation of deeper 
bathymetry. In such cases, the denominator band becomes fully attenuated, resulting in 
an insignificant signal. Conversely, predictions based on shorter wavelength ratios do not 
saturate within the interval from 0 to 25 m, but they have very low sensitivity in the shal-
lower area, while the deeper areas undergo a light but systematic underestimation. More-
over, the presence of phytoplankton or green vegetation (as in Brisset et al. [61] during a 
green tide) at a shallow depth likely triggers an increase in the green reflectance. Using 
this band as the denominator brings the risk of a non-depth-related decrease in the ratio, 
which can bias shallow estimations. 

The multiple-band ratios model overcomes this tradeoff of performances and is now 
frequently used, e.g., [25,26,40], providing fair estimations simultaneously on both shal-
low and deep bathymetry. The combination of ratios allows us to better leverage the com-
plementarity of wavelengths which can carry information on different depth levels. How-
ever, the multiple-band ratios model is still biased. A significant part of the lagoon is pre-
dicted above the sea level, while the rugosity of the eastern part of the lagoon remains 
poorly represented. Indeed, as shown in Figure 3, the complete attenuation of the denom-
inator bands results in a drastic change in the behavior of some ratios, around a critical 
depth. These inconsistent behaviors, together with the use of a unique linear solution, 
prevent the model from fully leveraging shorter-wavelength bands at a shallow depth. 

The iterative multiple-bands ratio model is fully leveraging complementarity of 
wavelengths. It provides the most accurate estimation on shallow areas according to our 
tests on both SLA and ELA. As a first step, it takes advantage of the ability of the MBR 
model to provide fair estimation, regardless of the depth level. In a second step, it refines 

Figure 7. IMBR-derived bathymetry for the ELA (calibration on the global dataset). Predictions are at zero hydrographic
level; therefore, the very few red pixels on prediction maps are incoherent prediction, estimated above sea level. Accuracy
metrics are provided above the validation plot.



Remote Sens. 2021, 13, 4108 14 of 20

4. Discussion
4.1. Interest of the New IMBR Approach

None of the single-band ratio models are able to properly estimate bathymetry across
a wide range of depth. A tradeoff between performances in shallow and deeper areas is
needed when selecting bands. Ratios based on longer red wavelengths provide accurate
measurements of the shallow area but are unable to provide a valid estimation of deeper
bathymetry. In such cases, the denominator band becomes fully attenuated, resulting in
an insignificant signal. Conversely, predictions based on shorter wavelength ratios do
not saturate within the interval from 0 to 25 m, but they have very low sensitivity in the
shallower area, while the deeper areas undergo a light but systematic underestimation.
Moreover, the presence of phytoplankton or green vegetation (as in Brisset et al. [61] during
a green tide) at a shallow depth likely triggers an increase in the green reflectance. Using
this band as the denominator brings the risk of a non-depth-related decrease in the ratio,
which can bias shallow estimations.

The multiple-band ratios model overcomes this tradeoff of performances and is now
frequently used, e.g., [25,26,40], providing fair estimations simultaneously on both shallow
and deep bathymetry. The combination of ratios allows us to better leverage the comple-
mentarity of wavelengths which can carry information on different depth levels. However,
the multiple-band ratios model is still biased. A significant part of the lagoon is predicted
above the sea level, while the rugosity of the eastern part of the lagoon remains poorly
represented. Indeed, as shown in Figure 3, the complete attenuation of the denominator
bands results in a drastic change in the behavior of some ratios, around a critical depth.
These inconsistent behaviors, together with the use of a unique linear solution, prevent the
model from fully leveraging shorter-wavelength bands at a shallow depth.

The iterative multiple-bands ratio model is fully leveraging complementarity of wave-
lengths. It provides the most accurate estimation on shallow areas according to our tests
on both SLA and ELA. As a first step, it takes advantage of the ability of the MBR model
to provide fair estimation, regardless of the depth level. In a second step, it refines the
estimation thanks to an optimal model dedicated to a narrower depth range. Nevertheless,
few outliers and erroneous above-sea-level predictions may remain. These are mainly due
to mis-classification during the first step. In addition, we acknowledge that the definition
of depth threshold is not yet automatized, but further systematical incremental analysis
showed that these two thresholds were the pair of values yielding the most reliable esti-
mations (See Supplementary Material Figure S1). Readers are invited to apply the same
analysis should they apply the method presented here.

4.2. The Use of Sentinel-2 Imagery

This paper demonstrates that the choice of Sentinel-2 imagery was quite satisfactory.
Firstly, the native spatial resolution of Sentinel-2 scenes (10 m for 3 bands) is fully appropri-
ate for building a high-resolution hydrodynamic model of New Caledonia lagoons, and
to represent realistically sharp depth variations. The good results achieved here bring
confidence for the further developments of these models. It must be however pointed out
the need to resample the 20 m (extra-red band) and 60 m (extra-blue band) bands to take
advantage of the portfolio of all possible band ratios. In some very rugose areas, this can
be a limitation if ratios based on these two bands are effective. However, here, the best
results were achieved with the contribution of the 10 m bands (see Figures 5–7).

Second, with its straightforward, open-access delivery time and frequency of revisit
(5 days), the whole mission offered a wide choice of available images, which is critical
to avoid images polluted by cloud, waves, turbid plumes, etc. Selecting an image with
a clear atmosphere and water column is critical for maximizing the performances of any
algorithm. The flexibility brought by the Sentinel-2 image portal and tested for the Poe
Lagoon is generalizable to the different New Caledonian lagoons. Many lagoons (but not
all, as was the case for Poe before this study) have a good coverage of publicly available
depth sounding data (by the French hydrographic survey offices) in a variety of depth



Remote Sens. 2021, 13, 4108 15 of 20

ranges. That should allow the fast processing of other New Caledonia lagoons within the
0–30 m depth range at most. A first demonstration of generalization is provided with
Figure 8 example, with a series of new Caledonian west coast lagoons in the same depth
ranges and bottom types as Poe lagoon. In this case, we used the entire footprint of the
Poe lagoon image and applied the IMBR calibrated on Poe soundings to this wider zone.
Estimation of depth is coherent with patterns visible on the true-color images and based
on our knowledge of these sites. Obviously, an independent ground-truth survey will
quantify the errors, and also optimize the process locally should the Poe parameterization
prove to be sub-optimal for these other lagoons.

Using the continuous growth of the Sentinel-2 archive also allows us to revisit areas
that had to be processed with sub-optimal images (due to clouds, for instance, etc.), and/or
revisit areas that could be affected by large disturbances that have the potentials to modify
coastlines and shallow lagoons such as cyclones, floods or large swells [62].

4.3. Portfolio of Methods for Practitionners

The number of published methods to estimate bathymetry is wide and continues to
expand, with several new references each year. In front of the wide portfolio of methods, it
seems reasonable to recommend to practitioners and users of bathymetry products that are
not remote sensing specialists to have a good understanding of their needs first. Indeed,
the requirements are very variable from numerical modelers in search of very accurate
products (in our case) to ecologists requesting a coarse level to characterize species habitats
and who could be happy with a single-band ratio method and a low precision of few-meter
accuracy. It also does not face the same challenges and choices when the sizes of targeted
areas range from the entire New Caledonia (~20.000 km2 of reefs and lagoons) to a single
lagoon or bay covering a few km2 at most. The review Section 2.1 summarizes the main
types of algorithms available to date. Most have variations and different potential based on
different images, which can range from MERIS at 300 m spatial resolution data to numerous
multispectral-derived products at 1 to 10 m resolution, including Sentinel images, and
to hyperspectral airborne images. Other important constraints include the access to a
minimum set of ground-truth data, necessary for calibration and reaching good accuracy.
Dense and regular surveys are difficult and costly to acquire and can be a challenge in
some very shallow lagoon inaccessible even to small vessels.

Specifically, for New Caledonia, the next steps are to systematically map the bathymetry
of the lagoons for which numerical models are being developed, and still using Sentinel-2 im-
ages. Elsewhere, in all coral reef provinces worldwide, it is possible to identify shallow lagoons
intersected by deep passes where the approach described here can be usefully applied.
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5. Conclusions

Using a New Caledonian lagoon example, the results of the study confirmed the
limitations of Single-Band Ratio (SBR) algorithms that performed well on shallow and deep
areas separately, as long as the suitable bands were used. Applying this method for rugose
previously uncharted lagoons is, however, impractical as it requires a careful delimitation
of each shallow and deep area to fit and apply separate models. Applying SBR models
across the entire lagoon yielded average results.

The simultaneous use of Multiple-Band Ratios (MBR) has partially overcome the SBR
algorithm limitations. When calibrated on the whole lagoon, SBR models were clearly
outperformed by the MBR model on both shallow and deep areas. Yet, the MBR model did
not achieve the best performances, obtained with dedicated SBR models, specifically fitted
for the targeted depths.

Finally, the Iterative Multiple Band Ratios (IMBR) model addressed all limitations
and reduced the average absolute error by more than 40% in some configurations. In
shallow areas, IMBR outperformed MBR with an average absolute error of the same order
as dedicated SBR models, while being calibrated on the whole lagoon. The IMBR model
could address the entire depth range of the study area with a single procedure, which was
accurate for both shallow details and deep channels.

Combined with the IMBR method, Sentinel-2 data proved to be a useful source of
information for bathymetry retrieval, offering for our needs a satisfying ground resolution.
This potential is strengthened by the mission revisit time which increases the probability to
access free images of high environmental quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13204108/s1, Figure S1: Influence of the choice of threshold pair on the IMBR performance
(RMSE, MAE, R2). White rectangles showing best areas of thresholds combination. Figure S2: All
possible combinations of SBR model outputs compared with in situ data on ELA. Accuracy metrics
are provided above each validation plot.
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