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Abstract 18 

Metal release into the environment from anthropogenic activities may endanger ecosystems and 19 

human health. However, identifying and quantifying anthropogenic metal bioaccumulation in 20 

organisms remain a challenging task.  In this work, we assess Cu isotopes in Pacific oysters (C. gigas) 21 

as a new tool for monitoring anthropogenic Cu bioaccumulation into marine environments. Arcachon 22 

Bay was taken as a natural laboratory due to its increasing contamination by Cu, and its relevance as a 23 

prominent shellfish production area. Here, we transplanted 18-month old oysters reared in an oceanic 24 

neighbor area into two Arcachon Bay mariculture sites under different exposure levels to continental 25 

Cu inputs. At the end of their 12-month long transplantation period, the oysters’ Cu body burdens had 26 

increased, and was shifted toward more positive δ65Cu values. The gradient of Cu isotope 27 

compositions observed for oysters sampling stations was consistent with relative geographic distance 28 

and exposure intensities to unknown continental Cu sources. A binary isotope mixing model based on 29 

experimental data allowed to estimate the Cu continental fraction bioaccumulated in the transplanted 30 

oysters. The positive δ65Cu values and high bioaccumulated levels of Cu in transplanted oysters 31 

support that continental emissions are dominantly anthropogenic. However, identifying specific 32 

pollutant coastal source remained unelucidated mostly due to their broader and overlapping isotope 33 

signatures and potential post-depositional Cu isotope fractionation processes. Further investigations on 34 

isotope fractionation of Cu-based compounds in an aqueous medium may improve Cu source 35 

discrimination. Thus, using Cu as an example, this work combines for the first time a well-known 36 

caged bivalve approach with metal stable isotope techniques for monitoring and quantifying the 37 

bioaccumulation of anthropogenic metal into marine environments. Also, it states the main challenges 38 

to pinpoint specific coastal anthropogenic sources utilizing this approach and provides the perspectives 39 

for further studies to overcome them. 40 

Metal stable isotopes in transplanted oysters as a new tool for monitoring 
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Introduction   42 

Metal pollution of aquatic environments inherently alters their chemical composition and poses 43 

health risks to ecosystems and humans (Fu et al., 2016; Gaetke et al., 2014; Reilly, 2004). 44 

Identifying the origins of metals that accumulate at any given site is a key step in developing 45 

successful emission control strategies and targeting contaminated sites for remediation (Barletta et 46 

al., 2019; de Souza Machado et al., 2016; Lu et al., 2018; Weiss et al., 2008). To this end, the 47 

study of the composition of metal stable isotopes in low-cost biomonitoring organisms may be a 48 

promising approach for identifying and quantifying anthropogenic inputs (Martín et al., 2018; 49 

Shiel et al., 2012; Smith et al., 2021, 2020). However, a prerequisite step is to examine the ability 50 

of this approach in discriminating between natural Cu (the geochemical background) and 51 

anthropized Cu, the latter being Cu released to the environment after its transformation within the 52 

anthroposphere. 53 

 In coastal and marine ecosystems, bivalve mollusks have been widely used in “Mussel 54 

Watch programs” for monitoring among other pollutants, marine trace metal (Krishnakumar et al., 55 

2018; Lu et al., 2017; Zhou et al., 2008). Indeed, bivalves, such as oysters and mussels, combine 56 

several features that are advantageous for biomonitoring purposes: they are suspended matter 57 

filter-feeders, abundant, sessile, and relatively easy to collect and handle in the laboratory (Araújo 58 

et al., 2021a). Datasets of elemental levels in these organisms help obtain qualitative information 59 

about spatial and temporal trends on metal bioaccumulation, but physiological (e.g., body size, 60 

homeostasis) and environmental (e.g., salinity, primary production, phytoplankton assemblages) 61 

factors may be confounding, and prevent an accurate assessment of  the influence of 62 

anthropogenic metal inputs in the environment (Briant et al., 2017; Cossa and Tabard, 2020; Lu et 63 

al., 2019, 2017; Pourmozaffar et al., 2019). In turn, metal stable isotopes and mixing models can 64 

potentially help track metals from their respective natural and/or anthropogenic origins, thus 65 

providing a more direct appreciation of anthropic influence (Araújo et al., 2021b). Indeed, isotope 66 

signatures of metals within the anthroposphere are associated with manufactured materials or their 67 

by-products. They result from their original sources (e.g., coal and ore deposits), modulated by 68 

their transformation processes, such as electroplating and smelting (Borrok et al., 2010; Brocza et 69 

al., 2019; Gonzalez and Weiss, 2015; Shiel et al., 2010; Sun, 2019; Tonhá et al., 2020; Zeng and 70 

Han, 2020; Zhong et al., 2021). Isotope signatures of metals circulating in the anthroposphere tend 71 

to differ from isotope compositions of metals occurring naturally in waters and sediments, which 72 

are modulated by weathering and biological activity (Araújo et al., 2019a; Babcsányi et al., 2014; 73 

Guinoiseau et al., 2017; Mulholland et al., 2015; Vance et al., 2016). In previous studies, Zn and 74 

Cd isotope records in wild bivalve’s soft tissues allowed to gauge and/or quantify anthropogenic 75 

inputs in marine environments (Araújo et al., 2021b; Shiel et al., 2013, 2012). These previous 76 



works used bivalve samples provided by samples banks feed by Mussel Watch programs from 77 

France and United States, operating continuously since the 70s. Unfortunately, these national 78 

biomonitoring programs do not cover all marine sites, and they are inexistent in most countries.  79 

Transplanting bivalves from one ground to another is an alternative to circumvent the 80 

unavailability of bank samples. It has been commonly practiced to observed metal 81 

bioaccumulation trends in these organisms over determined periods (Geffard et al., 2002; Regoli 82 

and Orlando, 1994; Riget et al., 1997; Roméo et al., 2003; Séguin et al., 2016; Senez-Mello et al., 83 

2020, 2020; Wallner-Kersanach et al., 2000). We are unaware of studies using “non-traditional” 84 

isotopes in transplanted organisms.     85 

A first examination on the variations of Cu isotope abundances (65Cu and 63Cu) in soft 86 

tissues of wild bivalves (mussels and oysters) revealed the potential to obtain information related 87 

to Cu sources, bioaccumulation mechanisms, and physiological status (Araújo et al., 2021a). The 88 

latter study was conducted in a low-contaminated Atlantic site (Vilaine Bay) and integrated a 10-89 

year biomonitoring period. It attributed the observed temporal isotope fractionation patterns of 90 

mussels to homeostatic regulation processes, involving changes in uptake and excretion rates with 91 

increasing Cu bioavailability. For oysters, Cu isotope compositions evolved linearly with Cu body 92 

burden, indicating a conservative isotope fractionation with Cu bioaccumulation over time. 93 

However, the use of this particular isotope bioaccumulation pattern observed in oysters to identify 94 

and quantify the biological incorporation of anthropogenic Cu remained untested. To continue this 95 

work, we conducted an in-situ experiment with transplanted and caged oysters in Atlantic oyster-96 

rearing site recognized by its Cu-contamination history.  97 

With up to 12000 tons/year, France is at present Europe’s top producer and consumer of 98 

Pacific oysters (Crassostrea gigas, Buestel et al., 2009), and environmental concerns with high Cu 99 

anthropogenic bioaccumulation in France’s farmed oysters dates back to the 1930s (Hinard, 1932). 100 

Arcachon Bay (AB) is the oldest French oyster-producing basin, where a continuous increase in 101 

Cu concentrations since 1982 is observed (Claisse and Alzieu, 1993; Fig. 1). Although Cu is an 102 

essential micronutrient for oysters, excessive environmental concentrations of this metal can 103 

damage endocrine systems and affect larval life stages, thus impacting ecological services 104 

provided by these organisms, and up to compromising mariculture production and food safety 105 

(Gamain et al., 2017; Mai et al., 2012; Sussarellu et al., 2018; Wang et al., 2011; Wijsman et al., 106 

2019). The origin of the increased Cu observed in AB oysters was putatively attributed to the 107 

growing use by nautical activities of Cu-based antifouling paints after the ban of tributyltin (TBT), 108 

a biocide that had long entered in the composition of such paints (Claisse and Alzieu, 1993). 109 

Nevertheless, previous studies using Cu concentration data in sediment, water, and bivalves did 110 

not allow to pinpoint the origin of this increased Cu, and/or ascertain its bioaccumulation.  111 

As a new approach for our study, bivalves originating from a coastal neighboring site were 112 

transplanted into AB and monitored for one year. Parameters included their elemental Cu levels, 113 



Cu isotope compositions, and other biometric data, including shell length and weight of soft tissue 114 

parts. Transplanted, caged bivalves share their previous and identical environmental chemical 115 

exposure and life histories, and hence, they are advantageous to reduce possible isotope 116 

variabilities related to variations in environmental and biological factors (Benedicto et al., 2011; 117 

Caro et al., 2015; Ostrander, 1996; Senez-Mello et al., 2020). Since oysters were reared together 118 

and at the same site since their larval stage, we hypothesize that the differences in isotope 119 

fingerprints observed in transplanted oysters after a one-year exposure period reflect the different 120 

local Cu isotope signatures at the new site. In our study of the AB, observed isotope shifts in 121 

bivalves’ soft tissues are attributable mainly to the bioaccumulation of Cu coming from coastal 122 

anthropogenic sources, rather than isotope changes affecting marine Cu. Thus, using Cu as an 123 

example, this work combines for the first time a well-known caged bivalve approach with metal 124 

stable isotope techniques for monitoring and quantifying the bioaccumulation of anthropogenic 125 

metals by these organisms into marine environments. Also, it states the main challenges to 126 

pinpoint specific coastal anthropogenic sources utilizing this approach and provides the 127 

perspectives for further studies to overcome them.  128 

 129 

Methods  130 

Study area  131 

The Arcachon Bay (AB, 44°40’N, 01°10’W, Fig. 1) is a French macrotidal coastal lagoon (1 - 5 m 132 

tidal range, 156 km2) connected to the Atlantic Ocean by a 5 km long channel (Deborde et al., 133 

2008). Surface seawater temperature ranges between 1 and 30 °C, and salinity is between 22 and 134 

32 psu, with a significant difference between western and eastern basins that are under the 135 

influence of oceanic and continental waters, respectively (Deborde et al., 2008). Shellfish farming 136 

activities are characteristic of the local culture and economy, which started at the end of the 19th 137 

century. The perimeter of AB is entirely lined by suburban centers and associated marinas (Fig. 1). 138 

The port of Arcachon is one main leisure port of of the French Atlantic coast, accounting about 139 

12,000 registered boats, which 95% of pleasure crafts, and the rest are used for fishing, oyster 140 

farming and maritime transport (Le Berre et al., 2010). A census performed in the early 2000’s 141 

showed that most of these embarkations now use annually about 4,3m3 of copper-based 142 

antifouling paints since TBT paints were banned (Auby and Maurer,  2004).. Thus, the sheer 143 

intensity of leisure boating activities interacts strongly with AB’s natural environment and its 144 

professional users (Le Berre et al., 2010). The inner basin is affected by a major source of fresh 145 

water by the Leyre River, and other small rivers that flow into the lagoon (Rimmelin et al., 1998). 146 

The farm activities in the Leyre river watershed (Fig. 1) are a source of pesticides in the AB 147 

(Fauvelle et al., 2018).  148 

 149 

Oyster transplantation experiment and wild oyster collection 150 



One thousand 18-month-old C. gigas oysters were used for the transplantation experiment. They 151 

originated from the “Arguin Banc” site in the open Bay of Biscay, and presumably fully under 152 

oceanic influence (Fig. 1), and were transplanted in AB where they were held in polyethylene 153 

mesh bags used as cages.  This pool of oysters was sub-divided into two 500-organism batches 154 

that were transplanted on 30th March 2017 (beginning of the study, T0) at the sites of “Comprian” 155 

(inner AB) and “Grand Banc” (outer AB, Fig. 1). At each time point, ca. 80 individual oysters 156 

were collected from each site after 3-, 6-, and 12-month exposure periods.  157 

After collection, bivalves were depurated in laboratory tanks during 24 h, using filtered 158 

local seawater. Then, 30 specimens were taken for biometric measurements, including shell length 159 

and weight, total body weight, and the weight of their lyophilized soft tissues (namely dry tissue), 160 

to quantify their growth using a body condition index: (weights of dry tissue / (total body tissue – 161 

shell) * 1000; (Lawrence and Scott, 1982). Depending on the weight of the organisms, soft parts 162 

of between 20 and 50 individuals were pooled, homogenized, and dried for the metal analyses 163 

presented here. The average bioaccumulated Cu body burden (µg Cu per individual bivalve) in the 164 

soft tissues of each pool was estimated by multiplying Cu concentrations of the pool by the 165 

corresponding mean dry weight of the soft tissues.  This is meant to accommodate differences is 166 

growth rates and neutralize biodilution. 167 

 In AB, there are three oyster sampling stations from the French marine chemical 168 

contamination biomonitoring network ROCCH. These stations, which include the Comprian site, 169 

have been using indigenous oysters to monitor marine contaminants, including TBT and Cu, since 170 

1980 (https://wwz.ifremer.fr/surval/). For an example, Fig. 1 shows a time series of Cu and TBT 171 

levels in oysters from Comprian. For our study, an additional sample made of lyophilized soft 172 

tissues of ca. ten indigenous oysters from Comprian and collected in the winter of 2019 and 173 

prepared identically to the transplanted oysters within the biomonitoring framework of the 174 

ROCCH.   175 

 176 

Sample preparation and analyses  177 

Bivalve sample digestion and chemical analysis have already been detailed in previous 178 

publications (Araújo et al., 2019,a,b; 2021a,b). Briefly, aliquots of freeze-dried bivalve tissues 179 

(~200 mg) were digested in closed vessels by a concentrated nitric acid solution and using 180 

microwave energy. Copper elemental analyses were performed by quadrupole inductively coupled 181 

plasma mass spectrometry (ICP-MS). For isotope analyses, aliquots of digested samples 182 

containing 500 ng of Cu were purified using an AG-MP1 resin, and Cu isotope abundances 183 

determined by multicollector ICP-MS (Neptune, Thermo Scientific) at the Pôle Spectrométrie 184 

Océan (PSO) laboratory (Ifremer, France). Reference materials (RMs) of other animal tissues 185 

(oyster SRM 1566b-NIST®; protein fish DORM-4, NRC-CNRC®) and procedural blanks were 186 



included in each sample batch for analytical control. All sample preparation procedures were 187 

carried out with ultrapure water and high-purity acid blends.  188 

Isotope analyses samples were dissolved in diluted acid nitric (2% v/v) and analyzed at 189 

concentrations around 250 ng g−1. A Stable Introduction System (SIS: cyclonic spray chamber and 190 

PFA nebulizer at 50 µL min-1, ESI) was used to introduce samples into spectrometer. The raw Cu 191 

isotope ratios were corrected for mass bias using the standard bracketing technique and the final 192 

Cu isotope compositions expressed using the conventional δ-notation relative to the isotope 193 

certified reference material NIST SRM-976 (Eq. 1): 194 

��� ����	
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 −   1' ( 1000  (Eq. 1) 195 

 196 

For unknown samples and RMs, δ65CuSRM-976 values represent the average and the two-standard 197 

deviation (2s) of two or three individual measurements performed during a single analytical 198 

session. The precision average obtained for individual samples and RMs was better than ±0.05‰. 199 

The obtained δ65CuSRM-976 value for the RM fish protein DORM-4 (+0.55 ± 0.02‰, Table 1) fell 200 

in the same range of values published for this material (+0.52 ± 0.08‰, Sullivan et al., 2020; 201 

+0.48 ± 0.06‰, Sauzéat et al., 2021). The δ65CuSRM-976 value obtained for three full replicates of 202 

the oyster tissue SRM 1566b of +0.25 ± 0.03‰ is in line with the long-term reproducibility for 203 

this RM (+0.22 ± 0.03‰, 2s, n = 8, Araújo et al., 2021) at PSO laboratory.     204 

 205 

Results and discussion  206 

 207 

Evolution of bioaccumulated Cu and its isotope composition in transplanted oysters  208 

The dataset is presented in Table 1, and all biometric data are included in the Supplementary 209 

Material (Table 1S). The biometric data indicate a faster and higher body growth of oysters in 210 

Grand Banc (outer AB) compared to those in Comprian (inner AB, Table 1S). Hence, to cancel 211 

out effects of biodilution in Cu concentrations and to be able to compare Cu bioaccumulation 212 

despite growth rate differences between these sites, we computed the oysters’ Cu body burden (µg 213 

Cu/per individual, Table 1) rather than Cu concentrations.   214 

 Oysters transplanted in Comprian and Grand Banc sites shared temporal patterns of Cu 215 

concentration, body burden, and isotope compositions, i.e., a significant increase in the 216 

concentration of bioaccumulated Cu accompanied by a shift toward more positive δ65Cu values 217 

(Fig. 2, Table 1). In Comprian, over the one-year exposure period, mean oyster Cu body burdens 218 

increased continuously from 44 to 189 µg (four-fold increase), while δ65Cu values shifted from 219 

+0.35 to +0.60‰. The latter is remarkably close to indigenous oysters from Comprian harvested 220 

in winter 2019 (+0.59‰, Fig. 2). In Grand Banc, the Cu body burden levels are lower than in 221 



Comprian at the 3-month and 6-month time steps, but reach a very similar 188 µg/per individual 222 

(Fig. 2a) at the end of the exposure period. In turn, the Cu isotope composition does not evolve 223 

monotonously, with an initial shift to lower δ65Cu values at the first-time step followed by an 224 

increase and stabilization near 0.4‰ (Fig. 2b). Despite comparable Cu body burdens at the 2 AB 225 

sites reached at the end of the transplantation experiment, the oysters’ final isotope compositions 226 

differ by 0.17‰ (Fig. 3a). It is also notable that the largest isotope shift occurs at Comprian, about 227 

0.25‰.  228 

The temporal changes from initial δ65Cu values in oyster soft parts, and the increase of Cu 229 

body burden and concentration suggest that bioaccumulated Cu in AB has a distinct origin from 230 

that offshore, at the Arguin Banc site (Fig. 3a). In line with our initial hypothesis, the simultaneous 231 

and linear increases of elemental body burden and isotope compositions shows that there exists a 232 

pool of bioavailable Cu inside the AB which is distinct from the offshore marine environment. 233 

The faster Cu bioaccumulation and larger magnitudes of isotope variation in oysters from 234 

Comprian (inner AB) suggest that this area is under greater exposure to continental Cu emissions. 235 

(Fig. 3a). This is possibly due to its geographic proximity to agriculture and urban sources from 236 

the Leyre watershed and/or the influence from nautical releases (antifouling paints) from the inner 237 

bay. In contrast, the more restricted isotope variations and lower Cu bioaccumulation rates in 238 

Grand Banc (outer AB) are consistent with the more oceanic character of this site, which also 239 

captures an attenuated and temporally-delayed continental Cu signal. The observed shift to lower 240 

δ65Cu values in the first three months of the transplantation experiment (GB-T1 sample in outer 241 

AB) is attributed to off-shore seawater during the summer (low river flow). Indeed, estuarine 242 

waters from the neighboring Gironde estuary (Atlantic French coast) with low anthropogenic Cu 243 

displayed enrichments in light isotope about +0.12 ± 0.08‰ (1s, n= 8, Petit et al., 2013), which 244 

supports this proposition. Indeed, as will see in the further discussion, the estimated end-member 245 

of marine bioaccumulated Cu pool for oysters matches well with a low δ65Cu value for oceanic 246 

waters.  247 

 248 

Inferring a Cu binary source model to apportion the continental and natural Cu fractions 249 

bioaccumulated in oysters  250 

The gradient of Cu isotope compositions observed for oyster soft parts at Comprian and Grand 251 

Banc sampling stations was consistent with exposure intensities to a continental Cu source. 252 

Plotting δ65Cu values against its reciprocal concentration (1/[Cu]) is a useful approach to identify 253 

source mixing processes (El Azzi et al., 2013; Kříbek et al., 2018; Mihaljevič et al., 2019). The 254 

good fit of all oyster samples (indigenous and transplanted) on a straight line (R2 = 0.93, p <0.05) 255 

indicate that bioaccumulated Cu and associated δ65Cu values can be described in terms of a simple 256 

binary mixing source model involving two end-members, defined here as representing the 257 

continental and marine bioavailable Cu pools in oysters, respectively (Fig. 3b). The “mixture line” 258 



obtained by regression analysis allow to estimate the values of these two end-members, which in 259 

turn can then be used to quantify the continental Cu fraction bioaccumulated in oysters. As noted, 260 

these end-members represent bioaccumulated pools of Cu, rather than actual Cu sources to this 261 

environment. Since they are based on the oyster dataset, they already include any potential 262 

biological isotope fractionation induced by oyster Cu bioaccumulation. Therefore, they can be 263 

used to quantify the continental Cu fraction bioaccumulated in oysters’ soft tissues irrespectively 264 

of any biological fractionation. The implications in their use for source identification are discussed 265 

in next section.  266 

 By substituting a global natural concentration baseline of Cu in oysters (~34 mg kg-1, Lu et 267 

al., 2019) in the linear regression equation, we obtain +0.02‰ for an isotopic end-member 268 

representing the natural marine Cu bioaccumulated pool at our study site. Interestingly, this value 269 

is close to some relatively unpolluted estuarine water samples from the neighboring Gironde 270 

estuary (Atlantic French coast, +0.12 ± 0.08‰, 1s, n = 8, Petit et al., 2013). For the other end-271 

member, we use the highest Cu concentration reported in oysters from the French Mussel Watch 272 

program (of approximately 2,500 mg.kg-1) to obtain a value about +0.65‰ for the continental 273 

bioaccumulated Cu end-member (Fig. 3b). This extrapolation towards low and  elevated Cu 274 

concentrations is consistent with the exceptional capacity of oysters to bioaccumulate high loads 275 

of Cu, as high as 4 % d.w. of whole‐body tissue (Wang et al., 2011).The standard error of the 276 

regression analysis (S), which represents the average distance that the observed values fall from 277 

the regression curve, is about ±0.05 ‰ and is considered the uncertainty associated with the 278 

estimation of the two end-member values.  279 

The calculated δ65Cu end-member values of +0.65 ‰ and +0.02 ‰ enable the use of a 280 

simple binary mixing model to quantify respectively the relative fractions of continental and 281 

marine Cu fractions bioaccumulated in their soft tissues during the time-course of the 282 

transplantation:  283 

 284 

Cu,-./0.1./23(%) =   5 6 78�� 9:;<=>
 6 78�� ;:?@A>6 78�� BCAD@A>AD:=
 6 78�� ;:?@A>E*100 (Eq. 2) 285 

 286 

where δ65Cusample, δ65Cunatural, and δ65Cuanthropogenic stand for the δ65Cu values obtained for the 287 

sample of interest, and the estimated values for natural and anthropogenic Cu end-members, 288 

respectively. The computed values are included in Table 1. Uncertainty values were computed by 289 

error propagation in Equation 2 using analytical uncertainties of oyster samples (Table 1) and 290 

estimate uncertainties of end-members (±0.05‰) were below 1% for transplanted oysters.  291 

The Cu of continental origin bioaccumulated in oysters before transplantation amounts to 292 

52 %, revealing the transport of continental emissions to the marine environments beyond AB. In 293 

the transplanted oysters from Comprian, this percentage climbs to 92%, matching closely this of 294 



indigenous oysters (90%). Even if oysters from Grand Banc display similar Cu bioaccumulation 295 

loads (Table 1), the continental Cu fraction is significant, with a contribution of 65 % to the Cu 296 

body burden.  As a consistency check, we use the concentration presented in Fig. 1.  It shows that 297 

the Cu concentrations in contemporary oysters have nearly quadrupled over the last 40 years, 298 

indicating the “new” Cu incoming AB unlikely to derive from natural sources.  It is reassuring that 299 

the ¾ of continental Cu in present-day oysters estimated from the time series is close to the 300 

isotopically-calculated fraction. Most anthropic sources reported in the literature, including 301 

antifouling and urban sources, display more positive Cu isotope composition averages than the 302 

Upper Continental Crust, which isotope range is about 0‰ (Fig. 4). Therefore, it is plausible that 303 

the bioaccumulation of Cu emitted from coastal anthropogenic sources shifts oyster’s isotope 304 

compositions to positive values, such as observed in our study. Thus, we consider continental Cu 305 

emissions in AB dominantly anthropogenic. The following section discusses the potential use of 306 

oyster’s isotope signatures to pinpoint anthropogenic Cu sources. 307 

 308 

A critical assessment of using recorded Cu isotope signals in oysters for source identification  309 

Using oyster isotope signatures for source identification requires verifying if biological uptake and 310 

biogeochemical processes in sediment-water interface can overprint original isotope signatures of 311 

sources. Here, we assess the potential effect of these factors on Cu isotope signals recorded in 312 

oysters.   313 

Oysters can accumulate Cu (and Zn) at high concentrations without serious toxic effects, 314 

due to great capacity for detoxifying excess Cu and Zn by making these metals under inert and 315 

non-toxic forms. Presumably, this mechanism compensates for their lack of significant cellular Zn 316 

and Cu excretion (Kunene et al., 2021; Rainbow, 2018; Wang et al., 2018, 2011). Indeed, the 317 

“half-lives” calculated for Cu and Zn excretion from the same C. gigas species from the 318 

neighboring Gironde estuary Atlantic Coast, are about 1,500 and 3,000 days,  respectively 319 

(Geffard et al., 2002). These durations are very long compared to the life-spans of our oysters, and 320 

are consistent with the limited elimination of these elements into inert, intracellular, metal-rich 321 

granules (Geffard et al., 2002; Wang et al., 2018). Thus, these very low excretion rates of Cu and 322 

Zn in oysters likely to not affect isotope budget of whole soft tissues, which makes these 323 

organisms “integrative isotope recorders” of the source contributions in the bioaccumulated Cu 324 

and Zn from their surrounding environment. While this has already been shown for Zn isotopes in 325 

oysters in aquarium-based experiments (Ma et al., 2019), it is still to be rigorously confirmed for 326 

Cu.  However, based on the similarity of bioaccumulation mechanisms for these both 327 

micronutrient elements (Kunene et al., 2021; Tan et al., 2015, Weng et al. 2018), and the data 328 

presented above, we can speculate that it is also true for Cu.   329 

Thus, we attribute the greatest difficulty to pinpoint anthropogenic Cu not to biological 330 

fractionation processes, but rather to the gaps in ours constrain about Cu isotope fractionation in 331 



anthroposphere (Tonhá et al., 2020; Viers et al., 2018; Yin et al., 2018). Anthropogenic isotope 332 

signatures latter derive mainly from mineral deposits of this element, which present the most 333 

extensive range among the natural compartments (−16.5 to +10 ‰, Klein and Rose, 2020; Mathur 334 

and Wang, 2019; Moynier et al., 2017; Wang et al., 2017). Consequently, anthropogenic sources 335 

also display a wide isotope variability that can overlap each other, hampering the discrimination of 336 

individual Cu anthropogenic sources (Fig. 4). This drawback becomes more critical in complex 337 

coastal environments where several anthropogenic metal sources normally coexist.   338 

It is worthy also to argue that the direct comparison of Cu isotope compositions between 339 

distinct, but connected marine biogeochemical reservoirs (e.g., sediment, water, biota) and 340 

anthropogenic materials is also fraught with uncertainties due to potential isotope fractionation 341 

that may occur during release and transfer between these environmental compartments before 342 

bioaccumulation. As an example, in Cu-polluted soils by Cu-based fungicide, soil particle 343 

leaching and surface runoff exhibit a shift up to 0.40 ‰ in comparison to the particulate phase 344 

source (Babcsányi et al., 2016; Blotevogel et al., 2018; El Azzi et al., 2013). In marinas and 345 

harbors, sediments that have been Cu-contaminated by antifouling paints show isotope signatures 346 

slightly lighter than the source anti-fouling paints themselves, but significantly different from the 347 

natural background (Briant, 2014). This suggests a preferential release of heavy isotopes from 348 

these compounds when solubilized in seawater, or the occurrence of an unaccounted fractionation 349 

process between the paint chip and its host sediment. Similar modifications on source isotope 350 

signatures induced by changes in the metal speciation have also been observed for Zn, Hg, and Cd 351 

isotope systems in sites with industrial and metallurgical contamination legacies or in laboratory 352 

involving photochemical reactions of Ag-nanoparticles (Tonhá et al., 2020; Brocza et al., 2019; Li 353 

et al., 2021; Shiel et al., 2010; Zhong et al., 2020). 354 

It is noted that anthropogenic fingerprints in natural sample archives like sediments, 355 

exceed in amplitude the isotope range from the natural Cu baseline. The latter normally centered 356 

around 0‰ (Fig. 4). This isotope pattern is illustrated when comparing sediment from almost 357 

pristine to highly contaminated sites, like those of the Loire estuary, Port Camargue, and Toulon 358 

Bay (Fig. 4). The latter is characterized by lighter isotope signatures related to warfare and 359 

shipbuilding contamination legacies that ranges from -0.79 to +0.34‰ (Araújo et al., 2019a). In 360 

contrast, Port Camargue sediments range from -0.13 to + 0.44‰ (Briant, 2014), tending in overall, 361 

to more positive values related to Cu-based antifouling paints. In turn, the relatively 362 

uncontaminated Loire estuary sediments have a narrower isotope range, with δ65Cu values 363 

between -0.24 and +0.09‰, with an average of −0.04 ± 0.18‰ (2s, n = 31). This average value is 364 

close to that of UCC (~0 ‰) and likely reflect the variability of its natural sources, such as 365 

weathered particles derived from soils and rocks of the Loire river watershed (Araújo et al., 366 

2019b). 367 



These studies and ours demonstrate that Cu isotopes can be useful to discriminate 368 

anthropogenic and natural sources in despite of possible isotope modifications of anthropogenic 369 

metals after their release into the environment.  While identifying specific coastal sources remain 370 

a challenge task because these post-depositional isotope changes, they still carry isotope signals 371 

that can be traced and apportioned in particulate and dissolved phases, and ultimately, into the 372 

organisms.  373 

 374 

Conclusions 375 

This study confirmed, for the first time, the applicability of a “non-traditional” metal stable 376 

isotope system in transplanted oysters to monitor metal bioaccumulation. Our findings 377 

demonstrate that Cu isotopes can constrain the continental Cu fraction bioaccumulated in oysters 378 

and infer its natural or anthropogenic origin. The present methodology of transplanting oysters 379 

into an environmental contamination gradient can be extended to other metal isotope systems and 380 

then yield an apportionment of anthropogenic contributions to the metal body burden of these 381 

organisms.  Furthermore, it does not hinge on the availability of sample banks of costly 382 

environmental monitoring networks operating for long time series.  383 

Unfortunately, source pinpointing remains elusive and further studies are sorely needed.  384 

Indeed, the biogeochemical reactions of anthropogenic metal-based substances released into 385 

aquatic environments may potentially induce fractionation of metal isotopes between particulate 386 

and dissolved phases. This results mainly from changes in the metal atom’s coordination, strength 387 

of bonds, ligand complexation (inner-sphere vs. outer-sphere formations), and adsorbent features 388 

on the water column (Balistrieri et al., 2008; Dong and Wasylenki, 2016; Ducher et al., 2016; 389 

Guinoiseau et al., 2016; Li et al., 2015; Lu et al., 2016; Moynier et al., 2017). Thus, further 390 

laboratory and field experiments are required to observe and model how anthropogenic metals 391 

from a range of compounds known to contaminate marine environment yield different isotope 392 

signals in particulate and dissolved phases. For Cu isotopes, in the context of marine pollution, 393 

Cu-based anti-fouling paints are an obvious first experimental target.  394 

Nevertheless, the combined use of several isotope systems, like Zn, Cd, Ag, and Pb in the 395 

so-called “multi-isotope approaches", which have been successfully applied to individual pollutant 396 

tracking (Araújo et al., 2021c; Li et al., 2019; Shiel et al., 2012), could enhance their power of 397 

discrimination for different metal pollutant sources. This multi-isotope approach is timely for 398 

environmental forensic applications addressing pollution source identification in marine 399 

environments, since concentrations of trace metals, notably Cu, Zn, and Ag, are on the rise in 400 

urbanized marine coasts (Barletta et al., 2019; Zalasiewicz, 2018), or still present in mobile and 401 

bioavailable forms in legacy inventories (Araújo et al., 2019a; Briant et al., 2013; Caplat et al., 402 

2005; Dang et al., 2015b, 2015a; Resongles et al., 2014; Tonhá et al., 2020). 403 

 404 
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Fig. 1. Study site map and sampling stations. 18-month old oysters harvested from Arguin Banc were transplanted to Comprian and Grand Banc. The 

historical trends on Cu and TBT concentrations in indigenous oysters from the Comprian site are from ROCCH monitoring network (available at Surval: 

https://wwz.ifremer.fr/surval/).  

 

 



 

 

 

Fig. 2.  (a) Temporal evolution of Cu body burden levels (Cu µg/per individual) and (b) δ65Cu 

values (‰) for oysters before (Arguin Banc) and after their transplantation in Arcachon Bay (AB), 

at Comprian and Grand Banc. The data refer to pools of oysters collected after three-, six-, and 

twelve-month long transplantation periods. An additional 2019 sample composed of 18-month old 

indigenous oysters was  acquired from the French Mussel Watch program (ROCCH) 

environmental sample bank. 

  



 

Fig. 3. (a) Plot of δ65Cu values (‰) against Cu body burden levels (Cu µg/individual bivalve) for 

oysters transplanted from Arguin Banc to the Comprian and Grand Banc sites; T1, T2, T3 labels 

refers to three-, six-, and twelve-month long transplantation periods. (b) Binary isotope source 

mixing model based on the regression analysis of oyster samples. The 2019 sample composed of 

indigenous oysters was acquired from the ROCCH sample bank. The natural bioaccumulated end-

member is estimated at +0.02‰ using worldwide concentration baseline for oysters (Lu et al., 

2019). The continental Cu end-member (+0.65‰) is estimated using the highest Cu concentration 

in the ROCCH database for Pacific oysters (2,5000 mg.kg-1). Error bars represent the analytical 

precision (2s) obtained for two measurements performed for each sample.  

 

 

 



 

Fig. 4. Copper isotope compositions (δ65Cu, values in ‰) of oysters (this study) and 

anthropogenic materials reported in the literature: antifouling paints (Briant, 2014), fungicides 

(Babcsányi et al., 2016; Blotevogel et al., 2018; El Azzi et al., 2013), vehicule traffic-related 

sources (Dong et al., 2017; Schleicher et al., 2020; Souto-Oliveira et al., 2019).  Oyster isotope 

data from Vilaine bay (Biscay Bay, Atlantic French shore) were published previously (Araújo et 

al., 2021a) and are included here for comparison. Coastal sediments include samples from Toulon 

bay (Araújo et al., 2019a), Port Camargue (French Mediterranean shore, Briant, 2014) and Loire 

estuary (Araújo et al., 2019c) (Biscay Bay, Atlantic French shore). They represent sediment 

isotope signatures related to harbor activities mixed to warfare contamination legacy, Cu-based 

antifouling paints and a low-Cu contaminated system, respectively. Grey band centered around 0 

‰ represents Cu isotope range average reported for Upper Continental Crust (UCC) (Liu et al., 

2015).   

 



 

Table 1. Copper concentrations, Cu body burden, and isotope compositions for dry-pooled oyster samples. The quantification of the 

continental Cu fraction (%) bioaccumulated in oysters using a binary isotope model is detailed in the text.  

Oyster sample ID  Exposure period 

[Cu]  

(mg kg-1) 

Cu body 

burden (µg) 

F65Cu (‰) 2s 

Bioaccumulated 

continental Cu 

fraction (%) 

Oysters before exposure experiment (T0)   before exposure 72.1 44 0.35 0.06 52  

Indigenous oyster (2019) in Comprian 18 months 305 ND  0.59 0.01  90 
Transplanted oysters in Comprian            

Com-T1 3 months 106 115 0.50 0.01 77  
Com-T2 6 months 257 133 0.53 0.02 81  
Com-T3 12 months 304 189 0.60 0.05   92  

Transplanted oysters in Grand Banc           
GB-T1 3 months 56 76 0.26 0.01 39  
GB-T2 6 months 107 101 0.42 0.00 63  
GB-T3 12 months 107 188 0.43 0.02 65  
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