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Preamble 
The philosophical analysis of mathematical explanation concerns itself with two different, 
although connected, areas of investigation. The first area addresses the problem of whether 
mathematics can play an explanatory role in the natural and social sciences. The second deals 
with the problem of whether mathematical explanation occurs within mathematics itself. 
Accordingly, this entry surveys the contributions to both areas, it shows their relevance to the 
history of philosophy, mathematics, and science, it articulates their connection, and points to 
the philosophical pay-offs to be expected by deepening our understanding of the topic. 
 
1. Mathematical explanation in the empirical sciences 
 
Nearly all of our most successful empirical sciences employ a great deal of mathematics. In 
addition, scientists often emphasize the value of explaining some phenomenon that they have 
discovered. It is natural to wonder, then, if mathematics is well-suited to contribute to the 
explanation of natural phenomena and what these contributions might be. In the philosophy of 
science most accounts of explanation identify an explanation with an appropriate description of 
a cause (see Salmon 1984, Cartwright 1989, Woodward 2003, Strevens 2008, and Beebee, 
Hitchcock & Menzies 2010 for an overview). Nearly everyone can admit that mathematical 
tools are an excellent means of tracking or representing causes. For example, mathematics can 
be used to explain why Halley’s comet’s orbit has a period of 75 years. Much of the debate 
about mathematical explanation in the empirical sciences has focused on more contentious 
cases: what role might mathematics play in non-causal explanations, if there are any, and how 
might these cases challenge this or that account of causal explanation (Reutlinger & Saatsi 
2018)? 
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One kind of case that has been emphasized aims to explain the possibility or impossibility of 
some process. For example, why can we not divide our 23 strawberries equally among three 
friends (Lange 2013), or why can we arrange 81 stamps into a 9 by 9 array? The legitimate 
explanations seem to be that 23 is not divisible by 3 without remainder and that 9 x 9 = 81. 
Neither mathematical fact is a cause of the feature of the process in question, so we seem to 
have a non-causal explanation where mathematics is part of the explanation. The possibility or 
impossibility of other processes are explained by other areas of mathematics that investigate 
structures or formal features of natural systems. For example, why can we not make a circuit of 
the bridges of Königsberg that involves crossing each of the bridges exactly once (Pincock 2007, 
Molinini 2012)? This is explained by the abstract structure of the bridge network. Why is it 
possible for there to be stable planetary orbits? One explanation that has been proposed 
appeals to the dimensions of space-time (Woodward 2003). 
 
Another kind of non-causal mathematical explanation deals with a striking or surprising feature 
of a phenomenon, where that feature can be identified through a mathematical analysis of the 
situation. The feature may be tied to a minimization process, or be especially resilient or stable 
for what is arguably a mathematical reason. Perhaps the most discussed case is the length in 
years of the life-cycle of three species of periodic cicada: why are these lengths either 13 or 17 
years (Baker 2005, 2017)? An explanation is that 13 and 17 are prime numbers and that prime 
numbered life-cycles confer a relative fitness advantage in avoiding predators and competition 
for scarce resources like food. Other broadly evolutionary cases include the hexagonal shape of 
honeycomb cells (Lyon & Colyvan 2008, Räz 2017, Wakil & Justus 2017) and the pattern of 
seeds in a sunflower (Lyon 2012). There is an extensive literature on how these optimality 
explanations might work in biology and economics (Potochnik 2007, Rice 2015, 2021). However, 
this explanatory contribution from mathematics can be found in other domains as well. For 
example, why do soap films obey Plateau’s laws (Lyon 2012, Pincock 2015a)? This can be 
explained through a process of surface minimization, subject to constraints. The mathematics 
of the situation is central to the character that the laws take on. Other cases turn on a 
mathematical analysis of the stability or instability of some process. For example, why do the 
so-called Kirkwood gaps appear in our solar system’s asteroid belt (Colyvan 2010)? Occupying 
some spatial regions is unstable, so that an asteroid that starts in such a region is 
overwhelmingly likely to leave it. Similar analyses explain patterns in the rings of Saturn or the 
collapse of an engineered structure like a bridge. (See also Ashbaugh, Chicone & Cushman 
1991, Colyvan 2001, Lipton 2004, Baker 2015a and Lange 2017 for a range of other examples.)  
 
The rest of section 1 will consider some of the history of the debates about non-causal 
mathematical explanations (section 1.1) and their significance for various theories of scientific 
explanation (1.2). The section then turns to two other debates that are closely related to these 
features of these explanations: how mathematical models may explain despite their highly 
idealized character (1.3) and how the explanatory role of mathematics in science could support 
a platonistic interpretation of pure mathematics (1.4). 
 
1.1. Some historical remarks 
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Does mathematics help explain the physical world or does it actually hinder a grasp of the  
physical mechanisms that explain the how and why of natural phenomena? It is not possible 
here to treat this topic in its full complexity but a few remarks will help the reader appreciate 
the historical importance of the question. 
 
Aristotle describes his ideal of scientific knowledge in “Posterior Analytics” in terms of, among 
other things, knowledge of the cause: 

We suppose ourselves to possess unqualified scientific knowledge of a thing, as opposed 
to knowing it in the accidental way in which the sophist knows, when we think that we 
know the cause on which the fact depends as the cause of the fact and of no other, and 
further, that the fact could not be other than it is. (BWA, 111, Post. An. I.1, 71b 5–10)  

The causes [aitia] in question are the four Aristotelian causes: formal, material, efficient, and 
final. Nowadays, translators and commentators of Aristotle prefer to translate aition [aitia] as 
‘explanation[s]’, so that the theory of the four causes becomes an account of four types of 
explanations. For instance, here is Barnes’ translation of the passage quoted earlier: “We think 
we understand a thing simpliciter (and not in the sophistic fashion accidentally) whenever we 
think we are aware both that the explanation because of which the object is is its explanation, 
and that it is not possible for this to be otherwise.” (CWA, 115, Post. An. I.1, 71b 5–10)  
 
But how do we obtain scientific knowledge? Scientific knowledge is obtained through 
demonstration. However, not all logically cogent proofs provide us with the kind of 
demonstration that yields scientific knowledge. In a scientific demonstration “the premisses 
must be true, primary, immediate, better known and prior to the conclusion, which is further 
related to them as effect to causes.” (BWA, 112, Post. An. I.1, 71b 20–25) In Barnes’ translation: 
“If, then, understanding is as we posited, it is necessary for demonstrative understanding in 
particular to depend on things which are true and primitive and immediate and more familiar 
than and prior to and explanatory of the conclusion.” (CWA, 115, Post. An. I.1, 71b 20–25) 
 
Accordingly, in “Posterior Analytics” I.13, Aristotle distinguished between demonstrations “of 
the fact” and demonstrations “of the reasoned fact”. Although both are logically cogent only 
the latter mirror the causal structure of the phenomena under investigation, and thus provide 
us with knowledge. We can call them, respectively, “non-explanatory” and “explanatory” 
demonstrations. 
 
In Aristotle’s system, physics was not mathematized although causal reasonings were proper to 
it. However, Aristotle also discussed extensively the so-called mixed sciences, such as optics, 
harmonics, and mechanics, characterizing them as “the more physical of the mathematical 
sciences”. There is a relation of subordination between these mixed sciences and areas of pure 
mathematics (see Dear 2011). For instance, harmonics is subordinated to arithmetic and optics 
to geometry. Aristotle is in no doubt that there are mathematical explanations of physical 
phenomena: 

For here it is for the empirical scientist to know the fact and for the mathematical to 
know the reason why; for the latter have the demonstrations of the explanations, and 
often they do not know the fact, just as those who consider the universal often do not 
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know some of the particulars through lack of observation. (CWA, vol. I, 128, Post. An. 
I.13, 79a1–79a7) 

However, the topic of whether mathematics could give explanations of natural phenomena was 
one on which there was disagreement. As the domains to which mathematics could be applied 
grew, so also did the resistance to it. One source of tension consisted in trying to reconcile the 
Aristotelian conception of pure mathematics, as abstracting from matter and motion, with the 
fact that both physics (natural philosophy) and the mixed sciences are all conversant about 
natural phenomena and thus dependent on matter and motion. For instance, an important 
debate in the Renaissance, known as the Quaestio de Certitudine Mathematicarum, focused in 
large part on whether mathematics could play the explanatory role assigned to it by Aristotle 
(Mansocu 1996, ch. 1). Some argued that lacking causality, mathematics could not be the 
‘explanatory’ link in the explanation of natural phenomena (see also sections 1.2 and 1.3).  
 
By the time we reach the seventeenth century and the Newtonian revolution in physics, the 
problem reappears in the context of a change of criteria of explanation and intelligibility. This 
has been beautifully described in an article by Y. Gingras (2001). Gingras argues that “the use of 
mathematics in dynamics (as distinct from its use in kinematics) had the effect of transforming 
the very meaning of the term ‘explanation’ as it was used by philosophers in the seventeenth 
century” (2001, 385). What Gingras describes, among other things, is how the mathematical 
treatment of force espoused by Newton and his followers – a treatment that ignored the 
mechanisms that could explain why and how this force operated – became an accepted 
standard for explanation during the eighteenth century. After referring to the seventeenth and 
eighteenth centuries’ discussions on the mechanical explanation of gravity, he remarks: 

This episode shows that the evaluation criteria for what was to count as an acceptable 
‘explanation’ (of gravitation in this case) were shifting towards mathematics and away 
from mechanical explanations. Confronted with a mathematical formulation of a 
phenomenon for which there was no mechanical explanation, more and more actors 
chose the former even at the price of not finding the latter. This was something new. 
For the whole of the seventeenth century and most of the eighteenth, to ‘explain’ a 
physical phenomenon meant to give a physical mechanism involved in its production. … 
The publication of Newton’s Principia marks the beginning of this shift where 
mathematical explanations came to be preferred to mechanical explanations when the 
latter did not conform to calculations. (Gingras 2001, 398) 

Among those who resisted this confusion between “physical explanations” and “mathematical 
explanations” was the Jesuit Louis Castel. In “Vrai système de physique générale de M. Isaac 
Newton” (1734), he discussed Principia’s proposition XIII of Book III (on Kepler’s law of areas). 
He granted that the proposition connected mathematically the inverse square law to the 
ellipticity of the course of the planets. However, he objected that “the one is not the cause, the 
reason of the other” (Castel 1734, 97) and that Newton had not provided any physical 
explanation, only a mathematical one. Indeed “physical reasons are necessary reasons of 
entailment, of linkages, of mechanism. In Newton, there is none of this kind.” (Castel 1734, 121) 
  
Some contemporary discussions bear close proximity to these worries. Consider Morrison’s 
book Unifying Scientific Theories (2000). One of the major theses of the book is that unification 
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and explanation often pull in different directions and come apart (contrary to what is claimed 
by unification theories of explanation). One of the examples discussed in her introduction 
reminds us of Castel’s objections: 

Another example is the unification of terrestrial and celestial phenomena in Newton’s 
Principia. Although influenced by Cartesian mechanics, one of the most striking features 
of the Principia is its move away from explanations of planetary motions in terms of 
mechanical causes. Instead, the mathematical form of force is highlighted; the planetary 
ellipses discovered by Kepler are “explained” in terms of a mathematical description of 
the force that produces those motions. Of course, the inverse-square law of 
gravitational attraction explains why the planets move in the way they do, but there is 
no explanation of how this gravitational force acts on bodies (how it is transported), nor 
is there any account of its causal properties. (Morrison 2000, 4) 

Using several case studies (Maxwell’s electromagnetism, the electroweak unification, etc.), 
Morrison argues that the mathematical structures involved in the unification “often supply little 
or no theoretical explanation of the physical dynamics of the unified theory” (Morrison 2000, 
4). In short, the mathematical formalism facilitates unification but does not help us explain the 
how and why of physical phenomena. 
 
We have to close these historical remarks here, although it would be interesting to pursue 
these questions in a more systematic way into the nineteenth and the twentieth centuries (see 
however Dorato 2017 for a wide-ranging claim concerning “explanatory switches” at crucial 
junctions in the history of physics).  
 
The aim of the above was to prepare the ground for showing how in contemporary discussions 
in philosophy of science, to which we now turn, we are still confronted with such issues. 
 
1.2. Theories of explanation 
 
Two legacies of the Aristotelian tradition surveyed in section 1.1 are that explanations require 
causes and that providing an explanation requires giving an argument that turns on laws. 
Debates in the philosophy of science since the 1960s have shown how one can privilege one 
legacy over another (Salmon 1989). Hempel’s deductive-nomological analysis of explanation 
requires that an explanation be a deductively valid argument from true premises, where at 
least one premise is a scientific law (Hempel 1965). Hempel and other empiricists in this broad 
tradition are wary of making causes central to explanation. This is apparent even in some of 
Hempel’s critics such as Kitcher, who emphasizes the unifying power of explanations. For 
Kitcher, an explanation is an instance of a deductive argument scheme, where the schemes to 
adopt are identified on the basis of global features of the claims we accept (Kitcher 1989, see 
section 2.2.2 for additional discussion). 
 
By contrast, Salmon’s work has persuaded many philosophers of science that explanations need 
only provide causal information about the explanatory target (Salmon 1984, 1989). For Salmon 
and others in this tradition, explanations do not require laws and need not even be arguments. 
One development of this approach preserves Salmon’s emphasis on causal mechanisms as a 
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special sort of process. The so-called “new mechanists” endorse a broader notion of causal 
mechanism than Salmon allowed for, and identify an explanation of some target with a 
mechanism that produces it (Machamer, Darden & Craver 2000). Other approaches to causal 
explanation include David Lewis’ counterfactual analysis of causation (Lewis 2004) and 
Woodward’s interventionist theory (Woodward 2003, 2021a). Despite their differences, Lewis 
and Woodward allow for causal explanations in the absence of mechanisms. This makes their 
approaches to explanation easier to generalize to non-causal cases. 
 
Philosophical discussions of non-causal mathematical explanation can be classified based on 
how they are related to these debates about scientific explanation more generally. One 
position argues for the need to restore something like Hempel’s emphasis on laws or Kitcher’s 
claims about unification (Baron 2019). Another position generalizes from an account of causal 
explanation so that it can include these mathematical cases (Saatsi & Pexton 2013, Reutlinger 
2016). Yet a third position is pluralist about explanation, and argues that explanations come in a 
variety of distinct sorts that cannot be fit into one or the other of these two options (Pincock 
2018, 2023). 
 
Lange’s extensive discussions of non-causal explanations can be seen as a valiant attempt to 
preserve the law-based approach to scientific explanation that goes back to Hempel (and 
Aristotle) (Lange 2013, 2017). Lange’s work on laws emphasizes how to identify claims with the 
right kind of modal strength to contribute to explanations (Lange 2009). Consider the contrast 
between “All gold cubes are less than 1 cubic mile in volume” and “All Ur-235 cubes are less 
than 1 cubic mile in volume”. The former statement is contingent, while the latter statement 
has some degree of necessity. This allows the latter statement to contribute to an explanation. 
Lange’s approach to mathematical explanation extends this point so that mathematical claims 
can function in explanations in a distinctive way due to their special degree of necessity. This 
allows mathematics to contribute to what Lange calls explanations by constraint that show how 
some outcome is guaranteed to arise (Lange 2017, ch. 2). This is how Lange treats the 
strawberry division case and also cases like the bridges of Königsberg. Other mathematical 
explanations turn on the dimensions of the quantities involved or the statistical features of 
some process (Lange 2017, ch. 5, 6). In each of these types of cases, the modal character of the 
mathematical claim allows it to explain just as the modal character of ordinary scientific laws 
allow them to explain. 
 
Unsurprisingly, many philosophers have challenged Lange’s proposals in ways that are 
reminiscent of how Salmon objected to Hempel’s deductive-nomological account (Pincock 
2015a, Reutlinger 2017b, Saatsi 2018). For example, Craver and Povich object that, in the 
absence of a causal constraint on explanation, Lange’s proposals lack any suitable worldly basis, 
and so count too many representations of some target as explanatory (Craver & Povich 2017, 
Lange 2018a). As a mechanist about explanation quite generally, Craver seems inclined to 
dismiss the possibility of non-causal mathematical explanations (Craver 2014). His co-author 
Povich has offered a more constructive proposal for these cases that allows for explanations 
with a variety of worldly or ontic bases (Povich 2020, 2021). Povich deploys a version of what 
amounts to a new consensus for handling non-causal explanations: if a proposed explanation 
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relates to the right counterfactuals in the right way, then it is legitimate (Woodward 2018, Rice 
2021). However, there is as yet no agreement on what sorts of counterfactual tests are 
sufficient for explanation (see Lange 2021a for some objections to this approach). 
 
One option is to treat a mathematical claim like a law that governs some situation, and to credit 
the mathematics with explanatory power whenever it allows us to assess a range of 
counterfactual scenarios. This is Reutlinger’s proposal, which deliberately loosens the 
requirements that Woodward places on interventions (Reutlinger 2016, 2017a, 2018, 
Reutlinger, Colyvan & Krzyzanowska 2022). For example, in the bridges of Königsberg case, the 
mathematical claim indicates that a circuit of the bridges would be possible in the 
counterfactual scenario where some of the actual bridges were absent. Reutlinger concludes 
that the mathematical claim thus explains what is going on in the actual world by indicating 
what makes a difference to the feature of interest. Arguably, though, this approach is too 
liberal. Suppose we ask why we have 81 stamps. It is a mathematical truth that 9 x 9 = 81, and 
so we can arrange our stamps in a 9 x 9 array. So if we could not arrange our stamps in a 9 x 9 
array, then we would not have 81 stamps. But the truth that 9 x 9 = 81 does not explain why we 
have 81 stamps. 
 
Another option is to treat a mathematical claim like a cause. Then the claim will be explanatory 
when a “counter-mathematical” that supposes that this claim is false winds up making a 
difference to the target in question. This sort of counter-mathematical involves impossible 
worlds where necessary truths come out false. This is the option that Povich takes (Povich 
2020, 2021). Another family of proposals along these lines has been developed by Baron in 
collaboration with Colyvan and Ripley (Baron, Colyvan & Ripley 2017, 2020). Baron et al. draw 
on David Lewis’ procedure for evaluating counterfactuals tied to causation: consider the 
scenario that arises through a miraculous change that is just enough of a change to make the 
antecedent of the counterfactual true. In addition, Baron et al. require that the features of the 
natural world that are implicated in this shift in the mathematics be changed in a corresponding 
way. For example, for the cicada case, the central mathematical claim is that prime periods 
minimize intersections when compared to non-prime periods. So among the years 12, 13, 14, 
15, 16, 17, and 18 (that are identified by ecological constraints), the primes 13 and 17 stand out 
as comparatively more fit. Baron et al. consider the consequences of supposing that 13 is not 
prime. If 13 was not prime, they argue, then it would have factors besides 1 and 13, and so 
having a 13 year life cycle would not confer any relative fitness advantage. Thus, in this 
impossible world, the cicadas would not have evolved a 13-year life cycle. This is meant to show 
that 13’s being prime makes a difference to the evolution of 13-year life cycle cicadas. (See also 
section 2.2.1 for a parallel debate for pure mathematics.) 
 
There are pressing questions for these proposals about the nature of impossible worlds and our 
epistemic access to them (Kasirzadeh 2021a). Another sort of objection has been raised by 
Baron himself in work that develops another account of mathematical explanation (Baron 
2020). Baron, like Baker and Lange, aims to identify a special class of genuinely or distinctively 
mathematical explanations of natural phenomena (Baker 2005, 2009a, Lange 2013). What is 
special about these cases is that the mathematics explains, but not by representing or 
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describing some non-mathematical explainers such as causes or other worldly difference 
makers. Baron’s general worry is that simply using countermathematicals fails to distinguish 
explanations that employ mathematics from these genuinely mathematical explanations. We 
can see this using our original stamp case: why can we arrange our stamps in a 9 x 9 array? 
Because we have 81 stamps and 9 x 9 = 81. This case passes Baron et al.’s countermathematical 
test, for were 9 x 9 not equal to 81, then our 81 stamps could not be arranged in a 9 x 9 array. 
However, the mathematical claim here seems to be simply tracking the non-mathematical 
features of the stamps, and so Baron and others would not want to count this as a special sort 
of mathematical explanation.  
 
Baron concludes that some additional requirements must be imposed beyond the truth of the 
relevant countermathematical. Here Baron reaches back to Kitcher’s idea that explanations are 
instances of a special sort of argument scheme (Kitcher 1989), where the schemes are found 
through a process of appropriately unifying the claims that we accept (for objections to this 
proposal see Pincock 2023 and Povich forthcoming). Other recent work on non-causal 
mathematical explanations also seems to be returning to some of the original sources of these 
debates. For example, Lange argues that the best way to make sense of the explanatory power 
of pure mathematics in the empirical sciences is to adopt an Aristotelian interpretation of pure 
mathematics (Lange 2022).  
 
Lyon proposed another way of relating mathematical explanations to causal explanations by 
adapting Jackson and Pettit’s notion of a “program explanation” (Jackson & Pettit 1990). A 
program explanation does not invoke a property that causes the outcome of interest. Instead, 
the explanation appeals to a property A that guarantees the presence of some member of a 
family of properties, where some such property B causes the outcome of interest. As Lyon 
summarizes his proposal, “An explanation of an empirical fact is mathematical – i.e., it has 
mathematics doing explanatory work – if the explanation is a program explanation that uses 
mathematics in a way that is indispensable to the program” (Lyon 2012, 568). One concern with 
this proposal is that it includes cases where the mathematics merely represents some causally 
relevant property, as with the stamps case noted above: programming is too indiscriminate a 
relation to avoid this worry (Saatsi 2012). 
 
A sweeping way of dealing with the apparent tension between causes and mathematics has 
been pursued by some ontic structural realists (Ladyman & Ross 2007, French 2014). They 
identify the fundamental metaphysical structure of the world with a mathematical structure. If 
one adopted this kind of structural realism, then the explanatory power of mathematics in the 
empirical sciences would receive a satisfying analysis. In fundamental physics, scientists would 
be working with the fundamental mathematical structure directly, and so explanations there 
would be essentially mathematical. In non-fundamental domains such as biology or economics, 
scientists would be investigating features of the world that are ultimately grounded in some 
mathematical structure. So again it would make sense for many of the explanations in non-
fundamental sciences to be mathematical. Causal explanations would then turn out to be 
perfectly consistent with more fundamental mathematical explanations. Few philosophers are 



 
 

9 

willing to adopt such a metaphysical position in order to resolve questions about mathematical 
explanation, although at least one physicist has defended this approach (Tegmark 2014). 
 
Another, less metaphysical, solution to these difficulties is to retain an account of how causal 
explanations work and to simply supplement it with a distinct account of how various kinds of 
non-causal explanations arise (Pincock 2015a, Pincock 2018, with criticisms from Knowles 
2021a). This sort of explanatory pluralism is also reminiscent of one aspect of the Aristotelian 
tradition. One challenge for the explanatory pluralist is to make sense of the value that 
scientists ascribe to explanations: how can there be some special value in having an explanation 
if explanations come in different kinds that have nothing in common? One response to this 
challenge is that grasping an explanation produces scientific understanding, but the nature and 
value of this scientific understanding remains a subject of active debate (Rice & Rohwer 2021). 
Another response is to defend a restrictive form of explanatory monism. It may turn out that 
this monism about explanation is so restrictive that there are no mathematical explanations in 
science (Zelcer 2013, Kuorikoski 2021). This is reminiscent of one side of the Renaissance 
debate noted in section 1.1. 
 
Another sort of pluralism arises from supposing that causal explanations involve the 
mechanisms championed by the new mechanists, and then allowing for other sorts of 
explanations that work in different ways. One type of case that has received extensive 
discussion is so-called “topological” explanation. These explanations appeal to structural or 
network-based features to explain an aspect of a system (Kostic 2020, 2023, Ross 2021). One 
position is that topological explanations are non-causal, non-mechanical explanations that are 
based on a different kind of explanatorily relevant feature. For example, Kostic and Khalifa 
argue that a non-ontic approach that privileges scientist’s explanatory goals is needed to make 
sense of topological explanation (Kostic & Khalifa 2021, 2022). Another position is that an 
appropriately flexible notion of mechanism can count genuine topological explanations as 
mechanical explanations (Bechtel & Abrahamsen 2010, Bechtel 2020, Huneman 2010, 2018, 
Brigandt 2013, Green et al. 2018). As with the debates arising from Woodward’s and Lewis’ 
counterfactual approaches to causal explanation, the main question is what counts as a 
mechanism and how non-mechanisms can be explanatory (Janson 2018, 2020, Janson & Saatsi 
2019, Andersen 2020, Jha et al. 2022). 
 
More recently, some authors have tried to restore some kind of explanatory monism by arguing 
that all scientific explanations turn on non-representational, expressive elements (McCullough-
Benner 2022, Hunt forthcoming). If this was right, then there would be no difficulty making 
sense of mathematical explanations so long as mathematics can be seen to perform whatever 
expressive function an author identifies. The viability of an expressive approach thus turns on 
questions about the interpretation of pure mathematics that are considered in sections 1.4 and 
2.2. 
 
1.3. Mathematical models and idealization 
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One assumption of the Aristotelian tradition that is often unquestioned in the work 
summarized in section 1.2 is that whatever provides the explanation (i.e. the explanans) must 
be true. Philosophical investigations of scientific models and how these models may explain 
have convinced many that an explanans need not be true. The argument for this conclusion is 
straightforward: Scientific models explain and scientific models are not true. So, truth is not 
required for explanation (Bokulich 2011; see also Cartwright 1983, Morrison 2015, Rice 2018 
and Yablo 2020). 
 
A traditional response to this argument is that even though models are not true, a model can 
only explain if it generates some truths about the target of explanation (Colyvan 2010, see 
section 1.4 for more discussion). That is, a model explains only when it represents its target to 
be a certain way. The debate thus turns on the options for making sense of how models 
represent, especially when those models are mathematical, and if the representational aspects 
of models are sufficient to make sense of model-based explanation. One proposal is that a 
model explains when the model represents a target system to be a certain way and also 
represents something else that explains why the system is that way. For example, a causal 
model of outcome E needs to represent E and some cause C of E. However, there is no 
consensus on what it takes for a model to represent something.  
 
As a model is distinct from its target, and the model and target are often composed of different 
materials, it is natural to conclude that structural relations are central to what a model 
represents. However, it is hard to maintain that a model represents a target just in case there is 
a structural relation between the model and target (Suárez 2010, 2015). For example, a model 
is isomorphic to itself, and so it stands in a structural relation to itself. But we do not want to 
say that a model represents itself. There are also model-target relations that lack any clear 
structural characterization. For example, a model may represent the solar system, and yet 
contain only two point particles moving on trajectories that fail to stand in any non-trivial 
structural relation to anything in the actual solar system. So it seems that standing in a 
structural relation is neither necessary nor sufficient for a model to represent a target. 
 
One response to these problems is that a model represents a target when agents claim that a 
structural relation obtains between the model and the target, where that relation may be quite 
selective and involve reinterpretations of various elements of the model (Pincock 2012, ch. 2, 
Frigg & Nguyen 2020). For example, the projection relating a map to some country may be fairly 
complicated, and involve various conventions for what symbols on the map indicate about the 
country. Some authors associate the relations that agents establish between model and target 
with inferential principles (Bueno & Colyvan 2011, Bueno & French 2018). So according to these 
various proposals, a model explains a feature of a target when either some representational 
relationship or inferential licenses from model to target have been established by agents, and 
these connections genuinely explain that feature (e.g. they are causes of the feature). For 
example, a suitably interpreted map can explain the impossibility of train travel between two 
cities by accurately representing the train network that fails to link those cites. 
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The different approaches to explanation surveyed in section 1.2 can then be used to identify 
explanatory models and what they explain. A mechanist about explanation can allow that 
mathematical models explain by representing mechanisms, while difference-making views will 
require an explanatory model to represent difference-making, i.e. how changing factor X will go 
along with a change in outcome Y. All of these proposals will argue that scientific models do not 
need to be true in order to explain. All that needs to occur is for the model to provide some 
truths by representing the right things about the target. So the presence of falsehoods that the 
model also provides about the target does not stand in the way of the model’s explanatory 
power. 
 
This approach to explanatory models and idealization has been called into question by 
Batterman. One argument from Batterman is that there are explanatory models that do not 
explain in virtue of an element of the model representing some explanatorily relevant factor 
such as a cause or more exotic non-causal difference maker. Instead, in such cases, “while we 
have a genuine mathematical explanation of physical phenomena, there is no appeal to the 
existence of mathematical entities or their properties. Instead, the appeal is to a mathematical 
idealization resulting from a limit operation that relates one model … to another” (2010, 7-8). 
The case that Batterman is discussing here involves an operation (known as taking the 
thermodynamic limit) that transforms a “finite statistical mechanical model” into a “continuum 
thermodynamic model”. This is central to the explanation of the universality of some features 
of phase transitions that include liquid/gas transitions and magnetization. The features are 
universal in the sense that they arise across systems with very different microphysical features, 
and so seem especially puzzling. 
 
One point that Batterman is making here is that mathematical operations that connect models 
can be significant for a mathematical explanation of an empirical phenomena (see also 
Batterman & Rice 2014, Batterman 2019, Batterman 2021). The defenders of traditional 
approaches to model explanation often focus on cases where a single mathematical structure is 
used to explain. However, the basic ideas of the traditional approach can be extended to deal 
with the explanatory significance of some mathematical operations. For example, one 
mathematical model may be transformed into another mathematical model through a 
mathematical operation. If this operation reflects something of explanatory significance, then 
the two models and the operation connecting them may be central to the explanation. Some 
idealizations are associated with these operations, as in the case where an ocean is treated as 
infinitely deep or a planet is modeled as a point particle. In such cases, the operations function 
by changing or removing the interpretation of the elements of the model.  
 
Batterman also develops another point that poses a more significant challenge to traditional 
approaches to model explanation. This is that the “mathematical idealization” that results from 
this operation, and that is tied to one of these models, is essential to the whole explanation. In 
the ocean case, there is no temptation to say that the ocean being infinitely deep in one model 
is explanatorily relevant to the character of the waves on the surface of the actual ocean. All 
that this idealization turns on is that the depth is above some threshold. Other cases can be 
handled using similar “Galilean” idealizations that eliminate the falsehood from the genuine 
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explanation (Weisberg 2007). But in Batterman’s cases, such as the phase transition case, he is 
clear that he takes the idealization to be essential to the explanation: “These nontraditional 
idealizations play essential explanatory roles involving operations or mathematical processes 
without representing the system(s) in question” (2010, 23). If this point is accepted, then these 
cases would undermine the scope of the traditional approach. 
 
In the philosophy of physics there has been an extensive discussion of how essential these 
idealizations are to the explanations in question (Belot 2005, Bokulich 2008, Norton 2012, 
Lange 2015a, Franklin 2018, Sullivan 2019, Strevens 2019, Rodriguez 2021. See also Easwaran et 
al. 2021). Some critics of Batterman have argued that these cases can be dealt with using 
explanations that avoid these idealizations or that treat these idealizations in the manner that 
we treated the infinitely deep ocean. Other critics of Batterman have argued that a more 
selective approach to what these models represent allows one to admit that the idealizations 
are essential to generating the explanation, but that they are not literally to be included in the 
explanation itself. For example, a counterfactual approach to these cases would identify the 
explanation with some counterfactuals that are generated by the model. Batterman and others, 
in turn, have responded that all of these criticisms fail to do justice to the phenomena in 
question or what scientists say about their explanations (Morrison 2018, Batterman 2019, 
McKenna 2021).  
 
Other alternatives to a traditional approach to mathematical modeling and explanation have 
been developed using other sorts of cases as their primary motivations (Rizza 2013, Berkovitz 
2020, Kasirzadeh 2021b, McKenna 2022). One theme of this work is a generalization of 
Batterman’s point that scientific explanations often involve many models whose 
representational relation to the explanatory target is more involved than what is usually 
allowed. For example, Kasirzadeh considers a case with two mathematical models, with 
different spatial scales, of a process of skin color pattern formation (Kasirzadeh 2021b). 
Biologists asked for an explanation of how the two processes related to one another. 
Kasirzadeh argues that this explanation required additional “bridge mathematics” over and 
above the mathematics found in the original two models. The additional mathematics 
contributed to the explanation by characterizing how the microscopic processes gave rise to the 
unexpected macroscopic structures. McKenna goes further and argues for the importance of 
cases where “models cannot be stitched together in purely mathematical terms” (McKenna 
2022). In McKenna’s main case various models of sea ice permeability are developed for the 
purposes of large-scale climate modeling. No single mathematical model of sea ice proved to be 
adequate to supply the right parameters to the large-scale model. Instead, different models of 
sea ice were used in conjunction with high-resolution empirical data about samples of sea ice 
formations. The significance of these cases for the explanations that arise from these modeling 
techniques is likely to be a subject of ongoing debate. 
 
1.4. Explanatory indispensability arguments 
 
Many philosophers are interested in non-causal mathematical explanations in science because 
they seem to support an explanatory indispensability argument for a platonist interpretation of 
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pure mathematics. Colyvan and Baker have been the most ardent defenders of such an 
argument (Colyvan 2001, 2010, Baker 2005, 2009a, 2022). In his 2001 book Colyvan presented a 
general indispensability argument for the existence of mathematical entities like the natural 
numbers: 

1. We ought to have ontological commitment to all and only those entities that are 
indispensable to our best scientific theories; 
2. Mathematical entities are indispensable to our best scientific theories. 
Therefore: 
3. We ought to have ontological commitment to mathematical entities (Colyvan 2001, 
11). 

This notion of ontological commitment was first articulated by Quine (Quine 2004, Putnam 
2010). These commitments reflect what one should believe exists. Premise 1 is tied to a 
naturalistic approach to these beliefs that claims they should be determined by the character of 
our best scientific theories. For Quine, one’s ontological commitments are settled by the best 
regimentation of one’s scientific theories into first-order logic, where what makes a 
regimentation the best is determined by ordinary scientific criteria like consistency and 
simplicity. Some of Colyvan’s cases in his book invoked the explanatory contribution that 
mathematical entities make to our best theories. If we suppose that one aim of science is to 
explain, then a regimentation may be the best in part because it affords explanations of various 
scientific phenomena.  
 
An explanatory version of this indispensability argument became more prominent after Melia’s 
exchange with Colyvan (Melia 2000, 2002, Colyvan 2002). Melia argued that indispensable 
quantification over mathematical entities was not sufficient for ontological commitment. Any 
such commitments could be canceled by a “weaseling” maneuver that added “but I do not 
accept the existence of any mathematical entities.” For example, one could use numbers to 
count how many apples and pears one has and conclude that there are more apples than pears. 
But Melia would then add that he rejected the existence of natural numbers, thereby canceling 
that commitment. Colyvan replied that such an addition was incoherent when the 
mathematical entities were explaining something, and Melia agreed: “Were there clear 
examples where the postulation of mathematical objects results in an increase in the same kind 
of utility as that provided by the postulation of theoretical entities, then it would seem that the 
same kind of considerations that support the existence of atoms, electrons and space-time 
equally supports the existence of numbers, functions and sets” (Melia 2002, 75-76). The debate 
about indispensability and platonism then largely turned to the evaluation of cases.    
 
Baker took up Melia’s challenge by reformulating the argument so that the explanatory 
question became central. Baker also introduced new cases like the cicada case where the 
parallel between atoms and numbers was meant to be clearer. In Baker’s formulation, the 
argument is:  

1’. We ought rationally to believe in the existence of any entity that plays an 
indispensable explanatory role in our best scientific theories. 
2’. Mathematical objects play an indispensable explanatory role in science. 
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3’. Hence, we ought rationally to believe in the existence of mathematical objects (Baker 
2009a, 613, premises renumbered). 

The emphasis on explanation in premise 1’ is of course consistent with Quine’s process of 
regimentation. For example, we opt for the theory of cicadas that best explains their character. 
If we then work out the best regimentation of this theory, we will find that it will entail that 
prime numbers exist. All premise 1’ maintains, then, is that one should endorse whatever these 
ontological commitments turn out to be. However, a second way to support premise 1’ is 
available: one could appeal to inference to the best explanation and its use to support scientific 
realism about unobservable entities like electrons. Baker sometimes ties the appeal of his 
indispensability argument to scientific realism: “A crucial plank of the scientific realist position 
involves inference to the best explanation (IBE) to justify the postulation in particular cases of 
unobservable theoretical entities … the indispensability debate only gets off the ground if both 
sides take IBE seriously, which suggests that explanation is of key importance in this debate” 
(Baker 2005, 225). The appeal to IBE avoids the Quinean process of regimentation by directing 
our attention to some explanatory target such as the length of the life-cycles of some species of 
cicada. If we are scientific realists, then we accept the use of IBE in support of our claims about 
the existence of various entities. So if we find that the best explanation also includes abstract 
objects like prime numbers, then we should also accept their existence. 
 
Three worries about this explanatory indispensability argument can be fruitfully distinguished. 
The first worry is that the argument is somehow circular, begs the question or else fails to 
correctly identify the basis for our knowledge of the existence of mathematical entities. The 
point was forcefully presented by Steiner in 1978. Steiner argues for the existence of 
mathematical explanations and also claims to know of the existence of abstract, mathematical 
entities. However, “no explanatory argument can establish the existence of mathematical 
entities” (1978b, 20). The reason for this is attributed to Morgenbesser: “We cannot say what 
the world would be like without numbers, because describing any thinkable experience (except 
for utter emptiness) presupposes their existence” (1978b, 19-20). The point seems to be that 
we must be able to compare mathematical and non-mathematical explanations of some target 
in order to get an explanatory argument going. But if the target always “presupposes” the 
existence of some mathematical entities, then this comparison is not possible. Bangu has 
developed this point by noting how many of the cases discussed have targets that are 
mathematical in character, as with the prime periods of the cicadas (Bangu 2008, 2012, see 
Baker 2021a for a response). So, the worry continues, mathematical explanations are only 
indispensable in science if we have used mathematical entities to characterize the target 
phenomena. Pincock has a somewhat similar concern: if the targets are characterized in weak 
mathematical terms, then only weak mathematical theories will be needed to explain these 
targets, and these theories can be easily supplied with a nominalistic interpretation that 
preserves these theories’ explanatory power (Pincock 2012, see Baker 2015b for a reply to 
these worries). 
 
Another worry accepts that there are in some sense mathematical explanations in science. 
However, premise 2’ is rejected because these explanations fail to involve the existence of any 
mathematical objects. Saatsi has developed this criticism by claiming that mathematics only 
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explains by representing some non-mathematical features of the physical world (Saatsi 2007, 
2011). On this reading, premise 2’ requires the existence of some “distinctively” or “genuinely” 
mathematical explanations, but there are no such explanations. As Saatsi puts the worry, “what 
really matters for the indispensability argument – all that matters! – is whether or not 
mathematics plays the kind of explanatory role that we should take as ontologically 
committing” (Saatsi 2016, 1051). Until the defenders of the argument clarify what distinctively 
mathematical explanations are and how they involve mathematical objects, it seems that 
premise 2’ is in trouble. Other versions of this objection may be found in Daly & Langford 2009, 
Rizza 2011, Tallant 2013, Liggins 2016, Busch & Morrison 2016, Barrantes 2019 and Boyce 2021 
(see also Panza & Sereni 2016 for a helpful overview of these debates). 
 
A third kind of worry about premise 2’ is developed by mathematical fictionalists like Yablo and 
Leng (Leng 2010, 2021, Yablo 2012, 2020). Fictionalists accept the existence of distinctively 
mathematical explanations and yet argue that these explanations do not presuppose the 
existence of any mathematical objects. For example, Leng argues that “we can generate 
mathematical explanations of physical phenomena that do not appeal to any abstract 
mathematical objects, but instead only require modal truths about what follows logically from 
our mathematical assumptions, together with the recognition that the assumptions of our 
mathematical theories are true when interpreted as about the physical system under 
examination” (Leng 2021, 10437). Leng can thus endorse the very same unified derivation of 
the features of Baker’s cicadas, and yet refrain from accepting the existence of mathematical 
objects. While Saatsi takes the physical features of the system to be the genuine explainers, 
Leng uses those same features to interpret the mathematical theories that are doing the 
explanatory work. Either way, premise 2’ of the indispensability argument comes out false. 
 
Colyvan and Baker’s strategy for supporting premise 2’ has largely involved cases where it 
appears that mathematical objects play a role in the explanation that is analogous to what 
unobservable entities like electrons play in other explanations. For example, in the cicada case, 
the prime numbers afford a unified derivation of the target of the explanation. This strategy 
would be most effective against representational approaches to mathematical explanation. The 
basic idea is that scientists value these explanations, and so any reinterpretation of them in 
non-mathematical terms risks privileging an unmotivated philosophical theory over some 
legitimate scientific practice. As Baker and Colyvan put the point in a reply directed at Daly and 
Langford (2009): “Commitments to philosophical theories such as nominalism, a causal theory 
of explanation, or the ‘indexing’ view of mathematical applications are not good reasons for 
rejecting well-supported scientific and mathematical claims” (Baker & Colyvan 2011, 332).  
 
A second strategy that Colyvan has pursued is to challenge critics to recast these explanations 
in non-mathematical terms. The refusal to do this involves an “easy road” to nominalism that 
Colyvan thinks is untenable: “when some piece of language is delivering an explanation, either 
that piece of language must be interpreted literally or the non-literal reading of the language in 
question stands proxy for the real explanation” (Colyvan 2010, 300). This strategy is most 
effective against fictionalists. It involves a conception of scientific explanation that requires that 
every genuine explanation be presentable in literal, non-metaphorical language: to say why 
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something is the case, we must literally say what is responsible for what, and so it must be in 
principle possible to avoid fictional or metaphorical tools. If fictionalists are right about pure 
mathematics, then mathematics is simply such a tool, and so they should be able to sketch a 
non-mathematical version of the explanations at issue. The fictionalist response is to deny this 
conception of explanation.  
 
Yet another kind of criticism of premise 2’ accepts both the existence of mathematical 
explanations and that these explanations involve mathematical objects, but maintains that 
these explanations are dispensable from our best science. That is, either the best regimentation 
of our scientific theories will avoid quantification over mathematical objects or no appeal to IBE 
will actually support adopting such an explanation. This sort of criticism can be traced back to 
Field’s pioneering Science without numbers (Field 1980). There Field contrasts “intrinsic” 
explanations with “extrinsic” explanations. He claims that all mathematical explanations are 
extrinsic and that for every extrinsic explanation of some target, there is a superior, intrinsic 
explanation of that very target (Field 1980, 43–44; see Marcus 2013). The explanations 
championed by Colyvan, Baker and others suggest that it is not clear that a mathematical 
explanation is always extrinsic or that a non-mathematical explanation that is intrinsic is 
superior in all respects. Consider again the non-causal explanation of the impossibility of 
traversing the bridges of Königsberg or the evolutionary explanation of the prime periods of the 
cicada. While some non-mathematical derivation of these targets is surely available, this does 
not settle whether or not these derivations should count as explanations or what their 
explanatory virtues might be. 
 
Perhaps the most promising defense of premise 2’ would be to provide a positive account of 
distinctively mathematical explanations that would clarify how endorsing such explanations 
commits one to the existence of some mathematical objects. The recent literature on this issue 
again seems to lead to a kind of standoff. Consider, for example, Baron’s “Pythagorean” 
proposal for these explanations (Baron forthcoming). Baron defines a Pythagorean to be 
someone who not only believes in mathematical objects as abstract entities, but who claims 
that some of the intrinsic properties of these abstract entities are also possessed by concrete 
entities. This is possible because the salient intrinsic properties of the mathematical entities are 
structural properties that are found in the concrete world whenever the concrete entities are 
arranged in the right structure. These shared, structural properties and their necessary 
mathematical relations thus enable mathematical truths to explain features of physical systems 
such as the bridges or cicadas. In addition, Baron is clear that “Structural properties on my 
account make indispensable reference to abstract objects” (Baron forthcoming, 25). So one 
defense of premise 2’ involves adopting Baron’s Pythagoreanism. 
 
Other accounts of distinctively mathematical explanation support the rejection of premise 2’. 
For example, Lange’s modal interpretation of distinctively mathematical explanations leads him 
to endorse what he calls an “Aristotelian realist” interpretation of pure mathematics in terms of 
a special kind of abstract property, without the recourse to any abstract objects (Lange 2021b, 
see also Franklin 2008). According to Lange, the best way to make sense of the explanatory 
power of mathematical truths is to suppose that “mathematics concerns mathematical 
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properties possessed by physical systems” (Lange 2021b, 50). As with Baron, these 
mathematical properties can help to explain why these physical systems have some other 
properties. For Lange the main benefit of such an Aristotelian interpretation is that the salient 
modal features of the physical systems arise from the presence of the mathematical properties. 
This helps to clarify in what sense the mathematical truth and the properties it invokes may be 
explanatorily prior to some target property. Crucially, though, for Lange this interpretation of 
pure mathematics eliminates the need to invoke abstract objects. If Lange is right, then, 
premise 2’ of the explanatory indispensability argument is false. (See also Knowles & Saatsi 
2021, Knowles 2021a, Knowles 2021b and Baker 2022 on additional challenges to this premise.) 
 
One diagnosis of the problems with indispensability arguments is that the conclusion of the 
argument concerns the interpretation of pure mathematics while the premises of the argument 
consider how mathematics is used in science. Perhaps, then, a platonist would be better served 
by focusing on explanatory considerations that arise within the practice of pure mathematics. 
This is the focus of section 2. 
 
2. Mathematical explanation in mathematics 

 
Much mathematical activity is driven by factors other than establishing that a certain theorem 
is true. In many cases mathematicians are unsatisfied by merely knowing that a mathematical 
fact holds and reprove it, while also claiming explanatory benefits for the new proof. This type 
of explanatory activity appears within mathematics itself (see the Preamble) and thus one 
often speaks of “internal” or “intra-mathematical explanations” (Baron, Colyvan & Ripley 
2020, Betti 2010, Mancosu 2008). The expression “internal mathematical explanation" covers 
a wide range of different phenomena: an internal mathematical explanation could amount to 
the recasting of an entire area of mathematics or it might aim at providing explanatory proofs 
for specific theorems. The variety of these mathematical explanatory activities has been 
investigated in D'Alessandro (2020), Hafner and Mancosu (2005), Lange (2018b), and 
Sandborg (1997, Ch. 1). 
  
Amongst these different explanatory activities, most of the attention has been focused on  
proofs which not only prove that a theorem is true, but also show why it is true. While there 
might not be agreement on specific instances, many mathematicians often claim that certain 
proofs have an explanatory power and that others do not. These claims are found throughout 
the history of mathematics and the philosophy of mathematics (see Lange 2015c, 2016, 2017 
(Ch. 7-9) and Mancosu 2001).  In the words of Bouligand: 

Many theorems can be given different demonstrations. The most instructive are of   
course those that let one understand the deep reasons of the results that one is 
establishing. (Bouligand, 1932, p. 6, Mancosu’s translation) 

And the real algebraic geometer Gregory Brumfiel draws a stark contrast between two 
different types of proofs to be found in real algebraic geometry, i.e., what he calls 
transcendental proofs (i.e., proofs based on transfer theorems that infer the truth of a 
statement for all real closed fields from its truth on a specific real closed field, say the real 
numbers) vs. a type of proof that holds uniformly for all real closed fields. The first type of 
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proof is rejected by Brumfiel as non-explanatory and, by contrast, the latter provide 
explanatory benefits. In his words: 

In this book we absolutely and unequivocally refuse to give proofs of this […] type 
[transcendental proofs]. Every result is proved uniformly for all real closed ground 
fields. Our philosophical objection to transcendental proofs is that they might logically 
prove a result, but they do not explain it, except for the special case of real numbers. 
(Brumfiel 1979, 166) 

 
As the previous examples show, explanatory proofs could be of several types and explain in 
different manners. A recent debate has focused on the issue of whether proofs by induction 
are explanatory. On the one hand, Lange (2010) argues that proofs by induction are not 
explanatory. His argument relies on the use of a form of upward and downward induction 
from a fixed number k, with k≠1. According to Lange, if proofs by ordinary mathematical 
induction are explanatory, so are proofs by upward and downward induction from a fixed 
number k, with k≠1. But if so, then the typical asymmetry of explanations, which also holds of 
mathematical explanations, is not respected: for a certain property P, P(1) is part of the 
explanation of P(k) and P(k) is part of the explanation of P(1).  Baker (2009b) rejects Lange’s 
argument by arguing against the explanatory equivalence between proofs by ordinary 
mathematical induction and proofs by upward and downward induction. Hoeltje et al. (2013) 
reject what they see as an unacknowledged assumption in Lange’s argument, namely that a 
universal sentence explains its instances. Dougherty (2017)’s line of attack is based on Lange’s 
need to presuppose a problematic notion of identity of proofs, which he questions using an 
alternative criterion of identity spelled out using two equivalent characterizations (the first 
appealing to the language of homotopy type theory and the second using algebraic 
representatives to proofs). Both Baldwin (2016) and Lehet (2019) defend the explanatory 
value of induction in mathematics: while Baldwin offers positive considerations as to why 
inductive arguments are explanatory, Lehet dwells on inductive definitions which – she argues 
– might be cases of explanations in mathematics.  
 
The distinction between explanatory and non-explanatory proofs has also been applied to other 
types of proofs, for instance proofs that explain by using diagrams (see D’Alessandro 2020, 
Brown 1997), or proofs that explain by drawing on analogies (see Lange 2017). Significant 
philosophical activity has focused on those proofs that explain by revealing the reasons, or the 
grounds, why a theorem is true. As stressed by Lange (2021c), in this context the word 
“ground” should not be understood as connected to the recent literature on metaphysical 
grounding (e.g., see Correia and Schnieder (2002)). We should rather think of the notion of 
“conceptual grounding”, as developed by, e.g. Smithson (2020). This notion of ground has an 
illustrious pedigree in philosophers and mathematicians such as Bolzano (see Kitcher 1975, 
Mancosu 1999 and Sebestik 1992) or Cournot (see Mancosu 1999), and recent contributions 
have stressed its value in the mathematical realm (see Betti 2010, Detlefsen 1988, Jansson 
2017, Pincock 2015b, Poggiolesi and Genco 2023). Indeed, just as in the scientific literature it is 
widely accepted that causal explanations track a causal relation in the world and explain by 
revealing the causes of why a certain fact holds, it seems reasonable to accept that (at least 
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certain) mathematical explanatory proofs track a grounding relation in the mathematical realm 
and thus explain by mentioning the grounds or reasons why a theorem is true.  
 
2.1. Some historical remarks 
 
Since contributions in analytic philosophy to the study of mathematical explanations date back 
only to Steiner 1978a, one might suspect that the topic was a byproduct of the Quinean 
conception of scientific theories (see Resnik & Kushner, 1987, 154). Once mathematics and 
natural science were placed on the same footing, it became possible to apply a unified 
methodology to both areas. Thus, it made sense to look for explanations in mathematics just as 
in natural science. However, this historical reconstruction would be mistaken. Mathematical 
explanations of mathematical facts have been part of philosophical reflection since Aristotle. 
We have already seen in section 1.1 the distinction Aristotle drew between demonstrations “of 
the fact” and demonstrations “of the reasoned fact”. Both are logically rigorous but only the 
latter provide explanations for their results. Aristotle had also claimed that demonstrations “of 
the reasoned fact” occur in mathematics. Only these demonstrations can be called 
“explanatory” demonstrations, and some of these demonstrations will be mathematical proofs.  
 
Aristotle’s position on explanatory proofs in mathematics was already challenged in ancient 
times. Proclus, in his “Commentary on the first book of Euclid’s Elements”, informs us on this 
point. He reports: “Many persons have thought that geometry does not investigate the cause, 
that is, does not ask the question ‘Why?’” (Proclus 1970, 158-159; for more on Proclus on 
mathematical explanation see Harari 2008). Proclus himself singles out certain propositions in 
Euclid’s “Elements”, such as I.32, as not being demonstrations “of the reasoned fact”. Euclid 
I.32 states that the sum of the internal angles of a triangle is equal to two right angles. If the 
demonstration were given by a scientific syllogism in the Aristotelean sense, the middle of the 
syllogism would have to provide the ‘cause’ of the fact. But Proclus argues that Euclid’s proof 
does not satisfy these Aristotelian constraints, for the appeal to the auxiliary lines and exterior 
angles is not ‘causal’: 

What is called “proof” we shall find sometimes has the properties of a demonstration 
in being able to establish what is sought by means of definitions as middle terms, and 
this is the perfect form of demonstration; but sometimes it attempts to prove by 
means of signs. This point should not be overlooked. Although geometrical 
propositions always derive their necessity from the matter under investigation, they 
do not always reach their results through demonstrative methods. For example, when 
[from] the fact that the exterior angle of a triangle is equal to the two opposite interior 
angles it is shown that the sum of the interior angles of a triangle is equal to two right 
angles, how can this be called a demonstration based on the cause? Is not the middle 
term used here only as a sign? For even though there be no exterior angle, the interior 
angles are equal to two right angles; for it is a triangle even if its side is not extended. 
(Proclus 1970, 161-2) 

In addition, Proclus also held that proofs by contradiction were not demonstrations “of the 
reasoned fact”. The rediscovery of Proclus in the Renaissance was to spark a far-reaching 
debate on the causality of mathematical demonstrations referred to above as the Quaestio de 
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Certitudine Mathematicarum (see section 1.1 for more on this debate). The first shot was 
fired by Alessandro Piccolomini in 1547. Piccolomini’s aim was to disarm a traditional claim to 
the effect that mathematics derives its certainty on account of its use of “scientific 
demonstrations” in the Aristotelean sense (such proofs were known as “potissimae” in the 
Renaissance). Since “potissimae” demonstrations had to be causal, Piccolomini attacked the 
argument by arguing that mathematical demonstrations are not causal. This led to one of the 
most interesting epistemological debates of the Renaissance and the seventeenth century. 
Those denying the “causality” of mathematical demonstrations (Piccolomini, Pereyra, 
Gassendi etc.) argued by providing specific examples of demonstrations from mathematical 
practice (usually from Euclid’s Elements) which, they claimed, could not be reconstructed as 
causal reasonings in the Aristotelian sense. By contrast, those hoping to restore “causality” to 
mathematics aimed at showing that the alleged counterexamples could easily be 
accommodated within the realm of “causal” demonstrations (Clavius, Barrow, etc.). 
Interestingly, both positions in the debate assumed that mathematical proofs could be 
syllogized (Mancosu & Mugnai 2023). The historical developments have been presented in 
detail in Mancosu 1996 and Mancosu 2000.  
 
What is more important here is to appreciate that the basic intuition – the contraposition 
between explanatory and non-explanatory demonstrations – had  a long and successful 
history that has influenced both mathematical and philosophical developments well beyond 
the seventeenth century. For instance, Mancosu 1999 shows that Bolzano and Cournot, two 
major philosophers of mathematics in the nineteenth century, construe the central problem 
of philosophy of mathematics as that of accounting for the distinction between explanatory 
and non-explanatory demonstrations. In the case of Bolzano this takes the form of a theory of 
Grund (ground) and Folge (consequence). Kitcher 1975 was the first to read Bolzano as 
propounding a theory of mathematical explanations (see Betti 2010 and Roski 2017 for recent 
contributions). In the case of Cournot this is spelled out in terms of the opposition between 
“ordre logique” and “ordre rationelle” (see Cournot 1851). In Bolzano’s case, the aim of 
providing a reconstruction of parts of analysis and geometry, so that the exposition would use 
only “explanatory” proofs, also led to major mathematical results, such as his purely analytic 
proof of the intermediate value theorem. 
 
In conclusion to this section, we should also point out that there is another tradition of 
thinking of explanation in mathematics that includes Mill, Lakatos, Russell and Gödel. These 
authors are motivated by a conception of mathematics (and/or its foundations) as 
hypothetico-deductive in nature and this leads them to construe mathematical activity in 
analogy with how explanatory hypotheses occur in science (see Mancosu 2001 for more 
details). Related to inductivism are Cellucci 2008, 2017, which emphasize the connection 
between mathematical explanation and discovery.  
 
2.2. Models of mathematical explanation  

 
From the above, it should be obvious that both philosophers and mathematicians have 
appealed to the notion of explanation within mathematics and that amongst the different 
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contexts in which such explanatory activity appears, proofs play a special role. But what 
distinguishes a proof that explains from one that doesn’t? How should one proceed in 
providing an account of explanatory proofs? It is here that two possibilities emerge. On the 
one hand, one can follow a top-down approach where one starts with a general model of 
explanatory proof and then tries to see how well it accounts for the practice. On the other 
hand, one can embrace a bottom-up approach where one begins by avoiding, as much as 
possible, any commitment to a particular theoretical framework. Only afterwards, one 
attempts to provide a taxonomy of recurrent types of mathematical explanatory proofs and 
tries to see whether these patterns are heterogeneous or can be subsumed under a general 
account.  

 
Supporters of the bottom-up approach include Hafner and Mancosu (2005), Mancosu (2008) 
and Lange (2015b, 2015c, 2017, 2018b). Probably the main characteristic of their 
investigations is the extremely rich and varied set of examples considered; precisely in virtue 
of this variety, Lange argues that there is no general pattern characterizing explanatory 
proofs; at most one can claim that there are different classes of explanatory proofs. Lange 
proposes several salient features of mathematical theorems, which (in different contexts) are 
responsible (in those contexts) for the distinction between explanatory and non-explanatory 
proofs. Among them, he discusses extensively symmetry and simplicity. As for simplicity, it 
amounts to the requirement for a proof of a simple result “exploits some similar, simple 
feature of the setup” (see Lange 2017, 257). As for symmetry, it is a property that arises when 
dealing with mathematical results that display some striking symmetry: for the proof to count 
as explanatory, it needs to show how such symmetry follows from a similar symmetry in the 
set-up of the problem.  Lange defends these properties by using cases studies drawn from 
probability, real analysis, number theory, complex numbers and geometry, among other areas 
of mathematics. One of the most representative (see Lange 2017, 239–242) is the proof of 
d’Alembert’s theorem to the effect that in a polynomial equation of n-th degree in the 
variable x and having only real coefficients, the nonreal roots always come in pairs (any non-
real root and its complex conjugate will both satisfy the equation). What explains this 
symmetry? A non-explanatory proof can be given by algebraic manipulations but this does not 
reveal the reason for the result which, according to Lange, is the fact that the axioms of 
complex arithmetic are invariant under substitution of i for -i. Bueno and Vivanco (2019) 
points out that it is unclear why what Lange isolates as the symmetric feature of the proof 
(which makes it explanatory). is a symmetry at all. They suggest that this proof turns on an 
appropriate feature of the relevant structure.  
 
Other instances of the bottom-up approach may be found in Paseau (2010), Arana & Mancosu 
(2012), Colyvan, Cusberg & McQueen (2018), D’Alessandro (2021) and Ryan (2021). Each 
article considers an aspect of mathematical practice and tries to address it on its own terms. 

 
Top-down approaches take their start from a general theory of mathematical explanation and 
then explore how well the practice fits the model. A typical example of a top-down approach 
in mathematical explanation is Kitcher’s unficationist theory, to be discussed below. But one 
can also apply this description to overarching views on the nature of explanation. While there 
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are several examples one could mention, here we present an influential proposal that finds its 
origin in Kim (1994). In order to classify the different accounts of scientific explanation Kim 
uses the contraposition between ‘explanatory internalism’ and ‘explanatory externalism.’ 
Whereas for ‘explanatory internalism’ explanations are activities internal to an epistemic 
corpus (a theory or set of beliefs), an ‘explanatory externalist’ will look for some systematic 
pattern of objective dependence relations which explanations track or can be identified with. 
We divide the present section in two subsections that follow this division: one will be 
dedicated to the presentation of the externalist, or ontic, accounts of explanatory 
mathematical proofs, while the other to the internalist, or epistemic, ones. Among the 
externalist accounts, we will discuss Steiner’s theory, several counterfactual theories of 
mathema cal explana on, and some other proposals. Among internalist accounts we will 
discuss Kitcher’s theory, together with two novel ones proposed by Frans (2021) and Mej a-
Ramos (2019). 
 
2.2.1. Externalist models of mathematical explanation 

 
Amongst the several existing contemporary externalist models of explanatory proofs, the 
oldest and probably most well-known is Steiner’s account. Steiner aims at finding criteria that 
could characterize explanatory proofs. After having discussed several possible criteria, such as 
abstractness, generality, and visualizability, Steiner rejects them all in favor of the idea that 
“to explain the behavior of an entity, one deduces the behavior from the essence or nature of 
the entity" (Steiner 1978a, 143). Although such an idea could seem prima facie intuitive and 
interesting, it turns out to be quite problematic. First, it leads to the notorious difficulties 
linked to the concepts of essence or essential property; moreover, such concepts risk having 
little traction in a mathematical context since all mathematical truths are regarded as 
necessary. Hence, instead of talking of “essence,” Steiner speaks of “characterizing 
properties” by which he means “a property unique to a given entity or structure within a 
family or domain of such entities or structures,” where he takes the notion of a family as 
undefined. In other words, for Steiner the difference between explanatory and non-
explanatory proofs lies in the characterizing properties, which are found only in the former 
but not by the latter. However, this is not all: an explanatory proof needs to be generalizable 
as well. Varying the relevant feature (and hence a certain characterizing property) in such a 
proof needs to give rise to an array of corresponding theorems, which are proved – and 
explained – by an array of “deformations” of the original proof. 

 
There have been two extensive critical discussions of Steiner’s account. The first was provided 
by Resnik and Kusher (1987) who argued that the distinction between explanatory and non-
explanatory proofs is context-dependent.  The second, which also offers a counterexample to 
the theory based on a case of explanation from real analysis recognized as such in 
mathematical practice, has been developed by Hafner and Mancosu (2005). There have also 
been attempts to improve Steiner’s model. The work developed by Weber and Verhoeven 
(2002) can for example be seen as an attempt to improve Steiner’s notion of deformation. 
Indeed, while Steiner suggests that explanation concerns an array of related proofs and 
theorems, although maintaining that each proof is an explanation of the individual theorem, 
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Weber and Verhoeven (2002) start with what makes pairs of proofs – P1 and P2 – count as 
explanatory.  In particular, they focus on explaining why, while a certain class of object x has a 
property Q (proof P1), another class of objects y enjoys property Q’ (proof P2). Here P1 and 
P2 use the same axioms and the same logical rules, but while  P1 uses a characterizing 
property of x, but not of y, P2 uses a characterizing property of y, but not of x. A final attempt 
to enrich Steiner’s account is proposed by Salverda (2017) who tries to adapt this approach to 
an internalist perspective on explanations of the sort discussed in section 2.2.2. 

 
In the field of causal explanations, a dominant perspective has been formulated in 
counterfactual terms. Although there has long been a resistance in the use of counterfactuals 
to account for explanations in mathematics (see Lange 2017, 88, 2022), many authors adopt 
this approach, perhaps due to the attractiveness of a unified theory of explanation that 
promises to hold in both causal and non-causal contexts.   
 
According to a counterfactual account, the evaluation of whether a mathematical fact F 
explains another mathematical fact G boils down to the evaluation of the following two 
counterfactuals: 

CF1: if F had not been the case, G would not have been the case, 
CF2: if G had not been the case, F would not have been the case. 

The first counterfactual, CF1, needs to be true: it directly accounts for the explanatory power 
of the relation between F and G. By contrast, the second counterfactual, CF2, needs to be 
false since it serves to ensure that the relation between F and G is asymmetric, i.e., it shows 
that it is not the case that G explains F. 

 
Once the counterfactuals are specified, a theory for counterfactuals needs to make clear what 
truth-conditional account of counterfactuals is adopted. Here (at least) two options naturally 
emerge. On the one hand, one can evaluate a counterfactual using possible worlds semantics; 
for example, Lewis’s closeness-based semantics, which trivializes for mathematical 
counterfactuals (see Lewis 1973, and Stalnaker 1968), has recently been extended to avoid 
these trivialities (see for example Nolan 2001 and Priest 2002). This extension, which 
considers both possible and impossible words, can be used to evaluate the truth value of 
counterfactuals CF1 and CF2. On the other hand, one can also try to adapt the standard tools 
of structural equation modelling (see Pearl 2000) to evaluate the truth value of CF1 and CF2. 
In this case, one interprets mathematical facts as variables which can either take the value 1 
or the value 0, according to whether the propositions they represent are either true or false. 
While the variable that denotes F is an exogenous variable – its values are determined by 
factors outside the model – the variable that denotes G is endogenous – its values are 
determined by the value of other variable(s), in our case F. In order to test whether the 
counterfactual CF1 is true, one needs to intervene on the value of the variable assigned to F 
and check whether this change affects the value of the variable assigned to G.  As for the 
truth value of CF2, its falsity, and thus the asymmetry required by the explanatory relation, is 
built into the nature of endogenous variable.  
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Both Colyvan and al. (2022) and Baron and al. (2020) support a counterfactual theory of 
explanation that is mainly discussed in the possible worlds’ semantics framework. More 
precisely, while Colyvan and al.  defends the value of a monist theory of explanation, Baron 
and al. (2020) exemplify the counterfactual approach to mathematical explanations with a 
real case of explanatory proof. 
 
Gijsbers (2017) develops a counterfactual account of explanatory proofs which relies on the 
structural equation framework, but where the notion of “intervention” à la Woodward 
(2003), cannot be employed in the mathematical context. As Woodward emphasizes, an 
intervention is a causal change to the value of a variable. Instead Gijsbers introduces the idea 
of a “quasi-interventionist” theory of mathematical explanation: in this theory, quasi-
interventions reveal asymmetries which are inherent not in the mathematical proofs, but in 
the mathematical practice (see Gijsbers, 2017, 59). In other words, asymmetries are no longer 
accounted for in an objective, but rather in a more subjective way that is tied to the features 
of the practice in question. 
 
In a sense Gijsbers’ model is complementary to the one proposed by Frans and Weber (2014). 
Indeed, while Gijsbers accounts for the explanatory power of proofs in counterfactual terms, 
without using the notion of intervention, Frans and Weber account for the explanatory power 
of proofs with a mechanistic model of explanation that directly generalizes on Woodward’s 
notion of an intervention. 
 
The use of counterfactuals to model mathematical explanations has been criticized by 
Kasirzadeh (2021) and Lange (2022). While Kasirzadeh questions whether the explanans of an 
explanatory proof can be meaningfully varied in a mathematical context, as the 
counterfactual accounts would require, Lange argues instead that the counterfactual account 
is rather threatened by the existence of too many non-trivially true countermathematicals. 
Both Kasirzadeh and Lange emphasize that the capacity to answer what-if-things-had-been-
different questions does not correlate with explanatory power in mathematics. Finally, note 
that also in Jansson (2018) one might find criticisms on the use of the structural equations’ 
framework to model dependence relations other than causation, and thus arguably also 
dependence relations in a mathematical context.  

 
Not all externalist models for mathematical explanations are modifications of Steiner’s theory 
or conveyed in counterfactual terms. Pincock (2015b) for example proposes to classify a proof 
as explanatory when it invokes more abstract kind of entities than the topic of the theorem it 
proves. Wilhelm (2021) and Poggiolesi (2023) contain different proposals for the analysis of 
explanatory proofs that are similar in perspective to Pincock’s approach. In their cases the 
determination of the explanatory power of different proofs requires a formalization of the 
proofs in logical systems. While for Wilhelm (2021) the explanatory power of a proof comes 
from the balance between the simplicity and the depth of the formalized proof, Poggiolesi 
(2023) distinguishes an explanatory proof from a non-explanatory one in that only in the 
(formalized version of the) former one can witness an increase of conceptual complexity from 
the assumptions to the theorem the proof aims to establish. 
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2.2.2. Internalist models of mathematical explanation 
 
In a paper of 1974, Friedman posed a challenge for any coherent account of scientific, and 
thus presumably also mathematical, explanation: he argued that any such account needed to 
show how explanation generates understanding. “I don’t see how the philosopher of science 
can afford to ignore such concepts as ‘understanding’ and ‘intelligibility’ when giving a theory 
of the explanation relation.” (Friedman 1974, 8). While externalist, or ontic, accounts do not 
directly concern themselves with Friedman’s challenge, they do not deny the link between 
explanation and understanding. However, they simply do not pose understanding as a 
defining characteristic of explanation. By contrast, internalist, or epistemic, accounts are 
those which directly address this challenge.  

 
In the philosophy of science, one of the main conceptions of scientific understanding is the 
unificationist model which argues that explanations provide understanding by unifying 
different phenomena. Although the idea is undoubtedly intuitively appealing, the key 
question is whether the notion of unification can be made more precise so that we can 
distinguish between what an explanation is and what is not. Friedman (1974) is an early 
attempt to do this, although his formulation was quickly shown to suffer from several 
technical problems (see Kitcher 1976). Kitcher is, on the other hand, the main supporter of 
the unificationist approach. His proposal consists in looking at unification as the reduction of 
the number of argument patterns used in providing explanations while being as 
comprehensive as possible in the number of phenomena explained: 

Understanding the phenomena is not simply a matter of reducing the “fundamental 
incomprehensibilities” but of seeing connections, common patterns, in what initially 
appeared to be different situations. Here the switch in conception from premise 
conclusion pairs to derivations proves vital. Science advances our understanding of 
nature by showing us how to derive descriptions of many phenomena, using the same 
patterns of derivation again and again, and, in demonstrating this, it teaches us how to 
reduce the number of types of facts that we have to accept as ultimate (or brute). So 
the criterion of unification I shall try to articulate will be based on the idea that E(K) is 
a set of derivations that makes the best tradeoff between minimizing the number of 
patterns of derivation employed and maximizing the number of conclusions 
generated. (Kitcher 1989, 432) 

Let us make this a little bit more formal. Let us start with a set K of beliefs assumed to be 
consistent and deductively closed (informally one can think of this as a set of statements 
endorsed by an ideal scientific community at a specific moment in time; Kitcher 1981, 75). A 
systematization of K is any set of arguments that derive some sentences in K from other 
sentences of K. The explanatory store over K, E(K), is the best systematization of K (Kitcher 
here makes an idealization by claiming that E(K) is unique). Corresponding to different 
systematizations we have different degrees of unification. The highest degree of unification is 
that given by E(K). But according to what criteria can a systematization be judged to be the 
best? There are three factors: the number of patterns, the stringency of the patterns, and the 
set of consequences derivable from the unification.  
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Two remarks are in order when it comes to Kitcher’s proposal. First, his account of theoretical 
unification is mainly thought of for the general question of scientific explanation, although he 
sees as one of the virtues of his viewpoint to be extendable to mathematics as well. Secondly, 
Kitcher’s model is not meant to address the local question of what distinguishes an 
explanatory proof from one that does not explain (as all other accounts do); it rather provides 
a novel perspective on the global question of how to systemize a whole body of knowledge 
that has explanatory value. The application of Kitcher’s model to explanatory proofs has been 
explored in two opposite directions. On the one hand, Hafner and Mancosu (2008) tested 
Kitcher’s model with three different methods to prove theorems about real closed fields (see 
Brumfiel 1979); the authors showed that the model makes predictions about the explanatory 
power of these methods which contradicts judgments coming from the mathematical practice 
(See also Pincock 2015b). On the other hand, Frans (2021) not only reassesses the value of 
unificatory understanding, which it is a type of explanatory understanding, for mathematics; 
additionally, he shows through a plethora of different examples, ranging from Pythagoras’ 
theorem to the theorem that states that sum of the first n integers equals n(n+1)/2, that 
proofs can contribute to unificatory understanding.   

 
A novel internalist account has recently been proposed by Inglis and Mej a-Ramos (2019), who 
apply Wilkenfeld’s functional model of understanding (see Wilkenfeld (2014)) to the 
mathematical case. Wilkenfield’s approach consists in reversing Friedman’s perspective: while 
Friedman demanded that philosophers clarify how explanations, suitably defined, generate 
understanding, Wilkenfield defines explanations as those things that generate understanding.   
By doing so, Wilkenfield moves the burden of clarification from the notion of explanation to 
that of understanding and how it is generated: this move – he argues – has recently become 
tenable as philosophical accounts of understanding have become more and more 
sophisticated.   
 
In Inglis and Mej a-Ramos (2019) the conception of understanding adopted is that of Kelp 
(2016), along with a modal model of the generation of understanding (see Atkinson and 
Shiffrin 1968). With these two elements at hand, Mej a and Ramos iden fy three proper es 
that any mathematical explanatory proof is likely to have: (i) an explanatory proof would 
direct the reader’s attention to its conceptually important section; (ii) it would reorganize the 
new and existing information into coherent new schema; (iii) it would reduce the chances of 
working memory capacity to be exceeded. 
 
Other internalist accounts of explanatory proof have been developed by Delarivière, Frans & 
Kerkhove (2017), Dutilh Novaes (2018), and Lehet (2021).   
 
3. Some connections to other debates 
 
A number of fruitful studies have recently appeared connecting mathematical explanation to 
mathematical beauty, purity of methods, understanding in mathematics, mathematical style, 
and mathematical depth. We simply refer to one or two such background studies and 
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encourage the reader to explore the bibliography of the studies referred to. The most extensive 
studies connecting mathematical beauty and explanation are Giaquinto (2016) and Lange 
(2016). The notion of purity of method has long been of interest to mathematicians and 
philosophers (see Detlefsen and Arana (2011) and Arana and Mancosu (2012)). Among the 
most recent contributions on purity and mathematical explanation are Skow (2015), Lange 
(2015b), Ryan (2021) and Arana (2023). The connection between mathematical explanation and 
understanding has been discussed in Molinini (2011), Cellucci (2014), and Delariviére et al. 
(2017). For connections between mathematical depth and mathematical explanation see Lange 
(2015c). Moreover, theorists of style in mathematics and science have emphasized the 
importance of explanatory arguments for characterizing style (see Mancosu (2021) for an 
overview). 
 
The issues that have shaped the debates about mathematical explanation reviewed in sections 
1 and 2 also arise in ongoing debates in the philosophy of mind and moral theory. For the 
philosophy of mind, one puzzle is how appealing to mental properties can explain human 
actions even though a human is a physical entity. If non-mental, physical properties are apt to 
explain any physical event or pattern of physical events, then it seems that mental properties 
are dispensable or “epiphenomenal”. For moral theory, a series of questions arise about how 
moral properties relate to the presumably non-moral features of the physical world. In terms of 
explanation, it seems like there is no explanatory work for moral properties to do, at least with 
respect to physical events. However, our ordinary practices frequently appeal to these 
properties in putative explanations. So, as with the philosophy of mind, it seems that we must 
either revise our explanatory practices or else find a place for these properties in a more 
comprehensive conception of reality. 
 
Kim’s exclusion argument is a prominent driver of these debates in the philosophy of mind (Kim 
2005). Kim argues that the existence of mental properties requires that these properties 
provide some genuine contribution to the explanation of physical events. However, Kim 
maintains that mental properties are excluded from this contribution by the causal closure of 
the physical, i.e. every physical event has a purely physical explanation. One response to Kim is 
that the right conception of causal explanation makes space for mental properties to explain 
(Shapiro & Sober 2007, Woodward 2021b). The “explanatory autonomy” of the mental can thus 
be obtained in a way that parallels similar generalizations of causal explanation to allow for 
genuine mathematical explanations of physical phenomena (section 1.2). Pluralists about 
mathematical explanation can develop a different response to exclusion arguments: if 
explanations come in different kinds, then an explanation of one kind does not stand in the way 
of an explanation of another kind (Batterman 2021). Baker (2022) has pursued a different kind 
of response that compares Dennett’s intentional stance with a “mathematical stance” that 
enables mathematical explanations of physical phenomena. 
 
Harman and Street have advanced explanatory challenges to moral properties that can be 
fruitfully compared to criticisms of the explanatory indispensability argument for mathematical 
platonism (Harman 1977, Street 2006). While Harman focuses on the explanation of moral 
observations (e.g. that some action is wrong), Street emphasizes a broader concern with 
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explaining other phenomena such as the prevalence of some moral judgments (e.g. that 
murder is wrong). For both, the challenge is that the best explanation does not involve moral 
properties. That is, moral properties are explanatorily dispensable for the targets in question. 
As Sinclair and Leibowitz emphasize, this argument, and the responses to it, parallel debates 
about the explanatory dispensability of mathematical objects (Sinclair & Leibowitz 2016). One 
innovation in the debate about moral properties is Enoch’s argument that it is sufficient for 
moral properties to be indispensable to practical deliberation. If this non-Quinean condition for 
ontological commitment is granted, then it may be feasible to identify new forms of 
explanatory indispensability for mathematical objects. For some investigations into how such 
arguments may or may not extend to mathematics, see Leng (2016), Baker (2016), Enoch (2016) 
and Clark-Doane (2020). 
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